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Recent work [1, 2] introduced a new framework for analyzing correlation functions with improved
convergence and signal-to-noise properties, as well as rigorous quantification of excited-state effects,
based on the Lanczos algorithm and spurious eigenvalue filtering with the Cullum-Willoughby test.
Here, we extend this framework to the analysis of correlation-function matrices built from multi-
ple interpolating operators in lattice quantum chromodynamics (QCD) by constructing an oblique
generalization of the block Lanczos algorithm, as well as a new physically motivated reformulation
of the Cullum-Willoughby test that generalizes to block Lanczos straightforwardly. The resulting
block Lanczos method directly extends generalized eigenvalue problem (GEVP) methods, which can
be viewed as applying a single iteration of block Lanczos. Block Lanczos provides qualitative and
quantitative advantages over GEVP methods analogous to the benefits of Lanczos over the standard
effective mass, including faster convergence to ground- and excited-state energies, explicitly com-
putable two-sided error bounds, straightforward extraction of matrix elements of external currents,
and asymptotically constant signal-to-noise. No fits or statistical inference are required. Proof-of-
principle calculations are performed for noiseless mock-data examples as well as two-by-two proton
correlation-function matrices in lattice QCD.

I. INTRODUCTION

Numerical lattice quantum chromodynamics (QCD)
is an integral part of the particle and nuclear physics
toolkit. In lattice QCD, Euclidean-time path integrals
are discretized and evaluated stochastically with Monte
Carlo methods to estimate QCD correlation functions,
allowing first-principles calculation of hadronic energies
and matrix elements. This approach has been employed
with great success to study the dynamics of QCD, includ-
ing its spectrum of states, scattering amplitudes, and var-
ious aspects of hadron structure, as well as to constrain
the Standard Model. However, in practice, the mutually
compounding issues of exponentially decaying signal-to-
noise and excited-state contamination limit what is pos-
sible. This has lead to ongoing research into improved
methods to alleviate these issues.

Challenges in reliably extracting the spectrum of QCD
from single correlation functions (“correlators”) have
lead to the development of methods which analyze
correlation-function matrices (“correlator matrices”) de-
fined from sets of multiple interpolating operators (“in-
terpolators”), each providing complementary informa-
tion. This includes the variational method based on solv-
ing generalized eigenvalue problems (henceforth, GEVP
methods or GEVP) [3–8], the block generalization [7]
of Prony’s method [9–12], and variations on generalized
pencil of functions (GPOF) [8, 13–17]. GEVP methods
are the present standard and state of the art for spec-
troscopy. In practice these methods provide better con-
trol over excited-state contamination than that available
with single-correlator analyses, in both application to
spectroscopy as well as in their generalizations to the ex-
traction of matrix elements. Importantly, GEVP energy
levels admit rigorous interpretation as variational upper
bounds, allowing determination of excited-state energies
with controlled uncertainties. However, these bounds are

one-sided, leading to various well-known difficulties in in-
terpretation.

Recent work [1, 2] has explored a new analysis frame-
work based on the Lanczos algorithm. In this frame-
work, bounds on numerical Lanczos convergence proper-
ties can be reframed to provide rigorous two-sided bounds
on energy levels in correlator analyses. Separately, tools
developed to treat numerical noise from finite-precision
arithmetic can be repurposed to discard spurious states
that arise in application to noisy correlator data. The re-
sulting Lanczos estimators have improved signal-to-noise
properties, without the exponential degradation in Eu-
clidean time separation present in “effective mass” esti-
mators. However, the method has thus far been limited
to analysis of single (scalar) correlation functions.

In this work, we extend the Lanczos analysis formal-
ism to treat correlator matrices. The framework is built
around the block Lanczos algorithm [18–22], which gen-
eralizes the standard (scalar) Lanczos algorithm to use a
basis of multiple vectors. We construct its oblique gener-
alization [23–26], which uses distinct left and right bases,
in the form of recusion relations that can be applied to
treat noisy correlator data [1, 2]. This method yields sim-
ple block generalizations of the recursion relations and
change-of-basis matrices that arise for oblique Lanczos
in the scalar case, allowing similar constructions of esti-
mators for energies, overlap factors, and operator matrix
elements.

The key element to the improved signal-to-noise prop-
erties of the Lanczos framework is filtering of spuri-
ous states that arise as noise artifacts. We reformu-
late the methods introduced in Refs. [1, 2]—the Cullum-
Willoughby and Hermitian subspace tests—to filter spu-
rious noise-artifact states and generalize them to the
block case. In the process, we find that the Cullum-
Willoughby test used in previous examples admits a sim-
ple physical interpretation as identifying states that have
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zero overlap with the entire set of interpolating opera-
tors and therefore have “wrong quantum numbers” that
should not arise from application of the physical transfer
matrix. With this interpretation, the entire state filtering
scheme can be understood in physical terms as restricting
to the subspace of Hilbert space of physical interest.

We test the oblique block Lanczos method on noiseless
mock data and a noisy LQCD 2 × 2 nucleon correlator
matrix. We demonstrate that the improved convergence
and signal-to-noise properties observed in the scalar case
extend to the block case as well. We find that the block
analysis provides nontrivial advantages over separate ap-
plications of the scalar analysis, including cleaner state
resolution and access to relative phases of transition ma-
trix elements.

We find that GEVP is the one-step limit of block Lanc-
zos, and thus that block Lanczos is a direct extension and
superset of GEVP methods. In comparisons on noiseless
and noisy data, we find that block Lanczos offers simi-
lar advantages over GEVP as does scalar Lanczos over
effective energies and other effective estimators.

The remainder of this paper proceeds as follows. In
Sec. II, we construct an oblique block Lanczos algorithm
and corresponding recursion relations for analyzing cor-
relator matrices. In Sec. III, we apply the recursive block
Lanczos analysis formalism to extraction of the spec-
trum, overlap factors, and matrix elements in noiseless
mock-data examples, comparing its performance with
both GEVP and scalar Lanczos. In Sec. IV, we dis-
cuss the convergence properties of this algorithm and
construct two-sided bounds allowing rigorous determina-
tion of energies. In Sec. V, we discuss the physics of the
Cullum-Willoughby test and spurious eigenvalue filtering
and demonstrate how block Lanczos can be applied to
noisy data, extracting the spectrum and overlap factors.
In Sec. VI, we review the GEVP formalism and discuss
how it coincides with single-iteration block Lanczos. We
conclude in Sec. VII.

Several appendices complement the main text. App. A
presents further details of the derivation of the oblique
block Lanczos algorithm. App. B translates notation
from Ref. [21] and derives the form of the KPS bound
presented in Sec. IV. App. C presents additional anal-
ysis of noiseless mock data and addresses the potential
for “pseudo-plateau” behavior. App. D proves that cor-
relator matrices constructed with most commonly used
interpolating operators are real in expectation. App. E
discusses the left GEVP and differences with the stan-
dard right GEVP that can arise for noisy data applica-
tions. App. F discusses Gaussianity tests and uncertainty
assumptions for bootstrap-median and sample-mean esti-
mators. App. G proves that block Lanczos is not equiva-
lent to the correlator matrix analysis method introduced
in Ref. [8] based on applying Prony’s method to GEVP
results.

II. BLOCK LANCZOS FORMALISM

This section presents the oblique block Lanczos algo-
rithm for rank-r correlator matrices of the form

Cab(t) =
〈
χa(t)ψ

†
b(0)

〉
=
〈
χa

∣∣T t
∣∣ψb

〉
, (1)

where t ∈ {0, . . . , Nt − 1}, T is the transfer matrix, and
χa(t) and ψa(t) are interpolating operators chosen to ex-
cite states

|ψb⟩ = ψ†
b |Ω⟩ and |χa⟩ = χ†

a |Ω⟩ (2)

with the quantum numbers of physical interest from the
vacuum |Ω⟩. For a zero-temperature lattice quantum
field theory, the transfer matrix is typically Hermitian
and positive-definite.1 For lattice gauge theories, T is
infinite dimensional [28], in which case objects like |ψa⟩
and ⟨χa| are vectors in the infinite-dimensional Hilbert
space of states. The (non-thermal)2 eigenvalues of T are
denoted λn and ordered such that 1 ≥ λ0 ≥ λ1 ≥ . . . ≥ 0.
The spectrum of LQCD energies is related to the transfer
matrix elements by En = − lnλn where units in which
the lattice spacing is set to unity are used here and below.

In this section, Hermiticity is not assumed for either T
or Cab(t). Restrictions to Hermitian T and to real, sym-
metric Cab(t) will be made in Sec. IV and Sec. V, respec-
tively. To simplify the discussion of applications to noisy
LQCD data it is convenient to begin by constructing the
oblique block Lanczos algorithm for a general infinite-
dimensional operator T and time series of r×r invertible
matrices Cab(t). For r = 1, oblique block Lanczos re-
duces to the (scalar) oblique Lanczos algorithm [29].

To avoid proliferation of indices below, we use boldface
matrix notation for block indices a, b, c, d ∈ {1, . . . , r}
while keeping all other indices explicit. When a symbol
like Cab(t) is bolded, C(t), it indicates the same quantity
as a matrix in the missing indices a, b. Brackets with
subscripts around a matrix expression indicate taking the
indices of the result, e.g.

[aj ]ab ≡ αjab or [AB]ab ≡
∑
c

AacBcb . (3)

Bolded symbols are always matrices and never vectors.
All sums are taken explicitly, with repeated indices never
indicating summation.

1 This implies real, positive eigenvalues. Complex transfer-matrix
eigenvalues can arise in theories with improved actions, but they
are typically exponentially suppressed in the continuum limit
compared to a sector of (strictly positive) physical eigenval-
ues [27]. Negative eigenvalues can arise for theories with stag-
gered fermions, where they can be treated analogously to thermal
eigenvalues [1].

2 For a finite-temperature theory, such as Euclidean LQCD with
a finite temporal extent, T should be augmented to include
“backwards-propagating” thermal states as described in Ap-
pendix A of Ref. [1]. The resulting thermal eigenvalues are eigen-
values of the augmented transfer matrix with magnitudes larger
than unity [1]. Their determination is discussed in Sec. VF.
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The practical steps required to carry out a Lanczos
correlator matrix analysis are summarized here for con-
venience:

1. Apply oblique block Lanczos recursion relations
to C(t) to compute the elements of the block-

tridiagonal matrix T
(m)
ij (Sec. II B).

2. Diagonalize T
(m)
ij to obtain Ritz values λ

(m)
k and

the eigenvectors ω
(m)
iak (Sec. II C). These provide all

information necessary to estimate energies, over-
laps (Sec. II F), and for spurious state filtering in
the noisy case (Sec. V).

3. If residual bounds (Sec. IV) or operator matrix
elements are desired, evaluate an auxiliary re-

cursion to compute the Krylov coefficients K
R/L
tj

(Sec. IID).

4. If operator matrix elements are desired, compute

the Ritz coefficients P
R/L(m)
kta (Sec. II E), normal-

ize the Ritz vectors by computing overlap factors
(Sec. II F), and evaluate the matrix element esti-
mators (Sec. IIG).

5. For noisy data, identify and filter spurious states
using the Hermitian-subspace test (Sec. VB) and
the “block ZCW test” (Sec. VC).

6. Estimate uncertainties idiomatically using (nested)
bootstrapping (Sec. VE).

7. Extract thermal modes separately using a thermal
ZCW test if desired (Sec. VF).

A. Oblique block Lanczos

An oblique block Lanczos algorithm iteratively con-
structs a sequence of left- and right-Lanczos vectors

〈
vLia
∣∣

and
∣∣∣vRjb〉 indexed by i, j = 1 . . .m where m is the itera-

tion count. The Lanczos vectors are defined to satisfy the

generalized bi-orthogonality condition
〈
vLia

∣∣∣vRjb〉 = δijδab

along with the three-term recurrence relations

T
∣∣vRja〉 =∑

b

(∣∣vRjb〉αjba +
∣∣∣vR(j−1)b

〉
βjba

+
∣∣∣vR(j+1)b

〉
γ(j+1)ba

)
,〈

vLja
∣∣T =

∑
b

(
αjab

〈
vLjb
∣∣+ γjab

〈
vL(j−1)b

∣∣∣
+β(j+1)ab

〈
vL(j+1)b

∣∣∣) ,
(4)

where the block-tridiagonal matrix elements αjab, βjab,
and γjab are defined as

αjab ≡
〈
vLja
∣∣T ∣∣vRjb〉,

βjab ≡
〈
vL(j−1)a

∣∣T ∣∣vRjb〉,
γjab ≡

〈
vLja
∣∣T ∣∣vR(j−1)b

〉
.

(5)

The consistency of these definitions with each other and
with the bi-orthonormality condition

〈
vLia
∣∣vRjb〉 = δijδab

is derived in Appendix A.
To construct each new set of Lanczos vectors, the al-

gorithm 1) applies T and orthogonalizes with previous
iterations to make a new set of left and right residual
vectors, then 2) biorthonomalizes the new left and right
residual vectors to obtain the Lanczos vectors. How to
initialize the iteration is discussed below. Step 1) defines
the residual vectors for j > 1 as∣∣rR(j+1)a

〉
≡ T

∣∣vRja〉−∑
b

(∣∣vRjb〉αjba +
∣∣vR(j−1)b

〉
βjba

)
,

〈
rL(j+1)a

∣∣ ≡ 〈vLja∣∣T −
∑
b

(
αjab

〈
vLjb
∣∣+ γjab

〈
vL(j−1)b

∣∣) ,
(6)

where terms involving j−1 are omitted for the case j = 1.
In each equation, the first term applies T to expand the
Krylov space, and the remaining terms implement or-
thogonality with all previous Lanczos vectors. However,
the new sets of residual vectors are not biorthonormal,
as quantified by the residual norm,

∆jab ≡
〈
rLja
∣∣rRjb〉 . (7)

Step 2) thus decomposes the residual norm as

∆jab =
∑
c

βjacγjcb (i.e., ∆j = βjγj) (8)

to define the new set of Lanczos vectors as∣∣vRja〉 ≡∑
b

∣∣rRjb〉γ−1
jba,〈

vLja
∣∣ ≡∑

b

β−1
jab

〈
rLjb
∣∣, (9)

for which
〈
vLja

∣∣∣vRjb〉 = δab. As in the case of scalar

oblique Lanczos, there is no unique correct choice for the
decomposition ∆j = βjγj . The same feature3 leading to

3 The left and right Lanczos vectors
〈
vL
(j+1)a

∣∣ and
∣∣vR

(j+1)a

〉
are

defined so that their spans are identical to those of the residuals〈
rL
(j+1)a

∣∣ and
∣∣rR

(j+1)a

〉
. This ensures that the action of T on

the j-th Lanczos vectors results only in terms proportional to the
(j + 1)-th Lanczos vectors in addition to the terms proportional
to the (j − 1)-th Lanczos vectors explicitly appearing in Eq. (6).
This feature is what leads to the three-term recurrence in Eq. (4).



4

a three-term recurrence is achieved for any definition of∣∣vR(j+1)a

〉
with span{

∣∣vR(j+1)a

〉
} = span{

∣∣rR(j+1)a

〉
}. Thus,

any choice for which βj and γj are both invertible is a
valid convention.

We present several options for block oblique conven-
tions for concreteness, but first emphasize that all phys-
ical results are necessarily independent of convention;
other than insight, different choices can only offer advan-
tages in numerical precision and efficiency. One simple
choice is to take βj = ∆j such that γj = 1; this is in-
voked as a simple way to connect block Lanczos to GEVP
methods in Sec. VI. Roots of matrices offer another set of
options, as well as any factorization applicable for com-
plex, non-Hermitian matrices; this includes LU and QR,
but not Cholesky. Another class of conventions follows
from the eigendecomposition

∆jab =
∑
c

Ω−1
jacΛjcΩjcb, (10)

which for any choice of ρjaτja = Λja can be used to define

γj = ρjΩ
−1
j , βj = Ωjτj , (11)

where ρj and τj are diagonal matrices with entries ρaδab
and τaδab, respectively. This convention intuitively sepa-
rates orthogonalization, implemented by Ω and Ω−1, and
normalization, implemented by ρ and τ ; the remaining
ambiguity in the choice of ρ, τ is the same ambiguity as
arises in the scalar case, which is recovered identically for
r = 1 where Ωj = 1. This convention is used to produce
the numerical results below.

In practice, the initial blocks of right and left states,
|ψa⟩ and ⟨χa|, will typically not satisfy biorthonormal-
ity and thus cannot be used immediately as the initial

Lanczos vectors
∣∣vR/L

1a

〉
. They instead must be treated

as with the residual vectors
∣∣rR/L

ja

〉
above and orthonor-

malized before proceeding. It is cleanest to define this
similarly to subsequent biorthonormalizations, in terms
of the decomposition

⟨χa|ψb⟩ ≡ [∆1]ab = [β1γ1]ab , (12)

with a similar choice of convention required. This then
defines the initial Lanczos vectors as∣∣vR1a〉 =∑

b

|ψb⟩ γ−1
1ba ,〈

vL1a
∣∣ =∑

b

β−1
1ab ⟨χb| .

(13)

These relations are used ubiquitously below to relate ex-
pressions in terms of Lanczos vectors to correlator data
via 〈

vL1a
∣∣T t

∣∣vR1b〉 =∑
cd

β−1
1ac

〈
χc

∣∣T t
∣∣ψd

〉
γ−1
1db

= [β−1
1 C(t)γ−1

1 ]ab,

(14)

and similar expressions for three-point functions and
quantities defined with e.g. right Lanczos vectors on both
sides, etc. However, we emphasize that β1 and γ1 do not
appear explicitly in the tridiagonal matrix T (m) defined
below, and instead generalize the normalization factors
|ψ| and |χ| from the scalar case.

B. Recursion relations

To apply oblique block Lanczos to analyze LQCD
correlator matrices, the iterative procedure on infinite-
dimensional Hilbert-space vectors defined above must be
used to derive recursion relations on finite-dimensional
matrix elements—i.e., correlation function data of the
form Eq. (1).
To begin, we first compute β1 and γ1 by decomposing

(with whatever choice of convention)

Cab(0) = ⟨χa|ψb⟩ = [β1γ1]ab , (15)

per Eq. (12) above, recognizing the definition Eq. (1).
When r = 1, these reduce to the ubiquitous factors of
C(0) in the scalar formalism. The first block of the Lanc-
zos approximation to the transfer matrix is then given by

α1ab ≡
〈
vL1a
∣∣T ∣∣vR1b〉 =∑

cd

β−1
1acCcd(1)γ

−1
1db, (16)

or in matrix form

α1 = β−1
1 C(1)γ−1

1 . (17)

As discussed further in Sec. VIA, the eigenvalues of α1

are the same as the generalized eigenvalues provided by
the GEVP method, given appropriately aligned defini-
tions.
Further iterations allow improving this initial approx-

imation of the transfer matrix. The recursions are most
naturally defined in terms of the residuals

∆jab =
〈
rLja
∣∣rRjb〉 , (18)

and the generalized correlators

Ajab(t) ≡
〈
vLja
∣∣T t

∣∣vRjb〉 ,
Gjab(t) ≡

〈
vLja

∣∣∣T t
∣∣∣vR(j−1)b

〉
,

Bjab(t) ≡
〈
vL(j−1)a

∣∣∣T t
∣∣∣vRjb〉 .

(19)

The j = 1 and j = 2 terms form the recursion base case.
For j = 1, the matrix elements defining G1 and B1 are
not well-defined and only

A1(t) = β−1
1 C(t)γ−1

1 . (20)

is required. The residual norm after the first iteration
can then be computed and decomposed as

∆2 = A1(2)−α1α1 ≡ β2γ2, (21)
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to define β2 and γ2 using some convention for decom-
posing ∆2 into a product of matrices as discussed above.
The next step proceeds by computing

G2(t) = β−1
2 [A1(t+ 1)−α1A1(t)] , (22)

B2(t) = [A1(t+ 1)−A1(t)α1]γ
−1
2 , (23)

A2(t) = β−1
2 [A1(t+ 1) +α1A1(t)α1

− (α1A1(t+ 1) +A1(t+ 1)α1)]γ
−1
2 .

(24)

Once these initial computations are completed to seed
the recursion, the calculation of quantities for subsequent
j ≥ 3 proceeds regularly. In each step, first, βj+1 and
γj+1 are obtained by decomposing the residual norm

∆j+1 = A2
j −αjαj − γjβj ≡ βj+1γj+1 . (25)

Then, the next set of generalized correlators can be com-
puted as

Gj+1(t) = β−1
j+1 [Aj(t+ 1)−αjAj(t)− γjBj(t)] , (26)

Bj+1(t) = [Aj(t+ 1)−Aj(t)αj −Gj(t)βj ]γ
−1
j+1, (27)

Aj+1(t) = β−1
j+1 [Aj(t+ 2)− (αjAj(t+ 1) +Aj(t+ 1)αj)

+αjAj(t)αj + γjA(j−1)(t)βj

− (γjBj(t+ 1) +Gj(t+ 1)βj)

+γjBj(t)αj +αjGj(t)βj ]γ
−1
j+1.

(28)

The next diagonal block of the Lanczos transfer matrix
approximation is then given by

αj+1 = Aj+1(1). (29)

Although βj and γj are computed otherwise, the off-
diagonal blocks satisfy

γj+1 = Gj+1(1) and βj+1 = Bj+1(1), (30)

which can be useful for consistency checks.

C. Ritz values and vectors

After m iterations of oblique block Lanczos, the block-
tridiagonal matrix

T
(m)
iajb ≡

〈
vLia
∣∣T ∣∣vRjb〉 , (31)

expressing matrix elements of T in the Lanczos-vector
basis is given by

T
(m)
iajb =



α1ab β2ab 0
γ2ab α2ab β3ab

γ3ab α3ab
. . .

. . .
. . . β(m−1)ab

γ(m−1)ab α(m−1)ab βmab

0 γmab αmab


ij

.

(32)
This matrix may be understood as the matrix elements
of the true transfer matrix T in the Krylov subspace of
Hilbert space, i.e.,

〈
vLia

∣∣∣T (m)
∣∣∣vRjb〉 ≡

{
T

(m)
iajb , i, j ≤ m

0, otherwise
. (33)

It can be used to define a Hilbert-space operator

T (m) =

m∑
i,j=1

∑
ab

∣∣vRia〉 〈vLia∣∣T ∣∣vRjb〉 〈vLjb∣∣
=
∑
ijab

∣∣vRia〉T (m)
iajb

〈
vLjb
∣∣ , (34)

which can be identified as T multiplied by projection
operators

∑
ia

∣∣vRia〉 〈vLia∣∣ that restrict its left- and right-
action to left- and right-Krylov spaces defined by

KL(m) = span{
∣∣vLia〉 | i = 1, . . . ,m, a = 1, . . . , r},

KR(m) = span{
∣∣vRia〉 | i = 1, . . . ,m, a = 1, . . . , r}.

(35)

Thus, T (m) provides a Krylov-space approximation to the
Hilbert-space operator T .
In this sense, the eigenvalues and eigenvectors of the

Hilbert-space operator T (m) provide the Lanczos algo-
rithm’s optimal approximations of the true transfer ma-
trix eigenvalues and eigenvectors in the Krylov subspace.
Viewing (ia) and (jb) as composite indices, the matrix
may be diagonalized as

T
(m)
iajb =

∑
k

ω
(m)
iak λ

(m)
k (ω−1)

(m)
kjb , (36)

where ω−1 is the matrix inverse of ωk(jb). The eigenval-

ues λ
(m)
k are the Ritz values, from which Lanczos energy

estimators are obtained via

E
(m)
k ≡ − lnλ

(m)
k . (37)

These are the primary quantities required for LQCD
spectroscopy analyses. Calculations of matrix elements
and residual bounds require the Ritz vectors,

∣∣yR/L(m)
〉
,

which decompose the Hilbert-space T (m) as

T (m) =
∑
k

∣∣∣yR(m)
k

〉
λ
(m)
k

〈
y
L(m)
k

∣∣∣ . (38)
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Inserting Eq. (36) into Eq. (34) and comparing with
Eq. (38), we may identify the right and left eigenvectors

ω
(m)
k and (ω−1)

(m)
k of T

(m)
iajb as change-of-basis matrices

relating Lanczos and Ritz vectors,

∣∣yR(m)
k

〉
≡ N (m)

k

m∑
i=1

∑
a

∣∣vRia〉ω(m)
iak ,

〈
y
L(m)
k

∣∣ ≡ 1

N (m)
k

m∑
i=1

∑
a

(ω−1)
(m)
kia

〈
vLia
∣∣ , (39)

where the N (m)
k are constants used to normalize the Ritz

vectors as discussed further below. We may verify this
construction by applying the Hilbert-space T (m) to both
sides of Eq. (39). We first use Eq. (34) and

〈
vLia|vRjb

〉
=

δijδab to find the action of T (m) on the Lanczos vectors,

T (m)
∣∣vRjb〉 = m∑

i=1

∑
b

∣∣vRia〉T (m)
iajb ,

〈
vLia
∣∣T (m) =

m∑
j=1

∑
b

T
(m)
iajb

〈
vLjb
∣∣ . (40)

It is then straightforward to show that

T (m)
∣∣∣yR(m)

k

〉
= N (m)

k

m∑
j=1

∑
b

T (m)
∣∣vRjb〉ω(m)

jbk

= N (m)
k

m∑
j=1

∑
ab

∣∣vRia〉T (m)
iajbω

(m)
jbk

= N (m)
k

m∑
i=1

∑
a

∣∣vRia〉ω(m)
iak λ

(m)
k

=
∣∣∣yR(m)

k

〉
λ
(m)
k ,

(41)

i.e., that
∣∣∣yR(m)

k

〉
is a right eigenvector of T (m). An iden-

tical proof applies to
〈
y
L(m)
k

∣∣∣. The properties and uses

of Ritz vectors are discussed further in the remainder of
this section and in Sec. IV.

D. Krylov coefficients

Matrix element calculations essentially require per-
forming changes of basis from the “Krylov basis” in
which correlation functions are naturally defined to the
Lanczos- and Ritz-vector bases [2]. The block Lanczos
change-of-basis matrices are straightforward generaliza-
tions of their scalar Lanczos counterparts and explicitly
constructed in this and the next subsection.

Krylov-basis vectors are defined by∣∣kRta〉 ≡ T t
∣∣vR1a〉 , 〈

kLta
∣∣ ≡ 〈vL1a∣∣T t. (42)

The Krylov coefficients KR
tj and KL

jt are defined to relate
the Lanczos and Krylov bases as

∣∣vRja〉 = j−1∑
t=0

∑
b

∣∣kRtb〉KR
tjba,

〈
vLja
∣∣ = j−1∑

t=0

∑
b

KL
jtab

〈
kLtb
∣∣ . (43)

As in the scalar case [2], these may be computed from

the elements of T
(m)
iajb by deriving an auxiliary recursion.

The j = 1 Krylov coefficients follow directly from these
definitions,

KR
t1ab = KL

1tab = δt0δab. (44)

The j = 2 case can be computed by inserting these defi-
nitions into the recurrence Eq. (4), obtaining

KR
t2 = δt1γ

−1
2 − δt0α1γ

−1
2 ,

KL
2t = δt1β

−1
2 − δt0β

−1
2 α1

(45)

Krylov coefficients with j > 2 can be computed from
these j ∈ {1, 2} results using the recursion relations

KR
t(j+1) =

(
KR

(t−1)j −KR
tjαj −KR

t(j−1)βj

)
γ−1
j+1,

KL
(j+1)t = β−1

j+1

(
KL

j(t−1) −αjK
L
jt − γjK

L
(j−1)t

)
.
(46)

Krylov coefficients can be used to compute Lanczos
vector norms as〈

vRia
∣∣vRjb〉 = i−1∑

s=0

j−1∑
t=0

∑
cd

KR∗
sica

〈
vR1c
∣∣ (T †)sT t

∣∣vR1d〉KR
tjdb

=
∑
st

[
[KR

si]
†[γ−1

1 ]†C(s+ t)γ−1
1 KR

tj

]
ab
,

〈
vLia
∣∣vLjb〉 = i−1∑

s=0

j−1∑
t=0

∑
cd

KL
isac

〈
vL1c
∣∣T s(T †)t

∣∣vL1d〉KL∗
jtbd

=
∑
st

[
KL

isβ
−1
1 C(s+ t)[β−1

1 ]†[KL
jt]

†]
ab
.

(47)
Both of these expressions reduce to δijδab in noiseless

applications where T (m) is Hermitian. They are useful in
particular for computing the residual bounds described
below.

E. Ritz coefficients

The block-tridiagonal matrix eigenvectors and Krylov
coefficients may be combined to compute the Ritz coef-
ficients

P
R(m)
kta ≡ N (m)

k

m∑
i=1

∑
b

KR
taibω

(m)
ibk ,

P
L(m)
kta ≡ 1

N (m)
k

m∑
i=1

∑
b

(ω−1)
(m)
kib K

L
ibta,

(48)
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which directly relate the Ritz and Krylov vectors as

∣∣∣yR(m)
k

〉
=

m−1∑
t=0

∑
a

P
R(m)
kta

∣∣kRta〉 ,
〈
y
L(m)
k

∣∣∣ = m−1∑
t=0

∑
a

〈
kLta
∣∣PL(m)

kta .

(49)

The factors N (m)
k are arbitrary but can be set to enforce

unit normalization using overlap factors as described in
the next subsection.

It can be useful to define Hilbert-space operators called
Ritz rotators, polynomials in the transfer matrix T built
from the Ritz coefficients as

P
R/L(m)
ka ≡

m−1∑
t=0

P
R/L(m)
kta T t, (50)

which excite the Ritz vectors from the initial block of
Lanczos vectors as

∣∣∣yR(m)
k

〉
=
∑
a

P
R(m)
ka

∣∣vR1a〉 ,〈
y
L(m)
k

∣∣∣ =∑
a

〈
vL1a
∣∣PL(m)

ka .
(51)

Inserting Eq. (13) obtains versions which can be applied
to the starting states prior to biorthonormalization,

∣∣∣yR(m)
k

〉
=
∑
ab

[γ−1
1baP

R(m)
ka ] |ψb⟩ ,〈

y
L(m)
k

∣∣∣ =∑
ab

⟨χb| [PL(m)
ka β−1

1ab] .
(52)

Because the Ritz vectors as well as |ψa⟩ and |χa⟩ are
convention-independent, it follows that the combinations

∑
a

γ−1
1baP

R(m)
kta and

∑
a

P
L(m)
kta β−1

1ab, (53)

must be convention-independent as well, which can be
useful for consistency checks.

F. Overlap factors

Overlap factors between Ritz vectors and the starting
interpolating operators can be computed as

[Z
R(m)
ka ]∗ ≡

〈
χa

∣∣∣yR(m)
k

〉
= N (m)

k

m∑
i=1

∑
bc

β1ab
〈
vL1b
∣∣vRic〉ω(m)

ick

= N (m)
k

∑
b

β1abω
(m)
1bk ,

Z
L(m)
ka ≡

〈
y
L(m)
k

∣∣∣ψa

〉
=

1

N (m)
k

m∑
j=1

∑
bc

(ω−1)
(m)
kjc

〈
vLjc
∣∣vR1b〉 γ1ba

=
1

N (m)
k

∑
b

(ω−1)
(m)
k1b γ1ba.

(54)

As in the scalar case [2], the overlap factors provide
a convenient means of computing the Ritz vector nor-

malization constants N (m)
k in the diagonal case where

|χa⟩ = |ψa⟩. The true transfer matrix is Hermitian, with
degenerate left and right eigenvectors. Physical inter-
pretability of Lanczos outputs requires that this holds
also for the Lanczos approximation to these eigenvec-
tors, i.e., that right and left Ritz vectors coincide as∣∣yR(m)

k

〉
=
∣∣yL(m)

k

〉
. When |χa⟩ = |ψa⟩, this requires

Z
R(m)
ka = Z

L(m)
ka , which in turn implies the N (m)

k can be
computed as

|N (m)
k |2 =

∑
b(ω

−1)
(m)
k1b γ1ba[∑

c β1acω
(m)
1ck

]∗ ∀a, (55)

where there is no summation over a implied, and the
right-hand-side must be independent of a so that the
equality is true for all a as indicated. For noiseless
data and a symmetric oblique convention βj = γj ,
these normalization factors will equal unity automati-
cally. For asymmetric conventions and in applications to

noisy LQCD data, the |N (m)
k |2 can be computed directly

using Eq. (55). In the off-diagonal case |χa⟩ ̸= |ψa⟩,
Z

R(m)
ka ̸= Z

L(m)
ka and moreover right and left Ritz vectors

can only be approximately equal, so a different approach
is required.
The overlap factors together with the Ritz values pro-

vide all information necessary to diagnose and discard
spurious states which arise in applications to noisy LQCD
data. As in the scalar case, Eq. (55) provides a mean
to diagnose noise-artifact states which arise due to non-
Hermiticity of T (m): when the computation yields a non-

real or non-positive |N (m)
k |2, it signals an inconsistency,

specifically that
∣∣yR(m)

k

〉
̸=
∣∣yL(m)

k

〉
. The a-independence

of Eq. (55) provides a separate, non-trivial constraint not
present in the scalar case that only holds for physical
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states. Finally, we find the Cullum-Willougby test as
employed in Refs. [1, 2] can be reformulated as a cut
on anomalously small overlap factors. These points are
discussed in further detail in Sec. V where they may be
explored with example data.

Once |N (m)
k |2 is determined, normalized Ritz coeffi-

cients provide an alternate means to compute the overlap
factors as

[Z
R(m)
ka ]∗ =

m−1∑
t=0

∑
b

〈
χa

∣∣T t
∣∣vR1b〉PR(m)

ktb

=
m−1∑
t=0

∑
bc

Cac(t)γ
−1
1cbP

R(m)
ktb ,

Z
L(m)
ka =

m−1∑
t=0

∑
b

P
L(m)
ktb

〈
vL1b
∣∣T t

∣∣ψa

〉
=

m−1∑
t=0

∑
bc

P
L(m)
ktb β−1

1bcCca(t).

(56)

This can be useful for consistency checks.

G. Operator matrix elements

Matrix elements of generic (local or nonlocal) oper-
ators J can be computed from three-point correlation
function matrices,

C3pt
ab (σ, τ) ≡ ⟨ψ′

a|T σJT τ |ψb⟩ , (57)

where primes denote quantities for the sector of final
states, which could be distinct from those of the initial
states (e.g. in the case of off-forward matrix elements
with different initial and final momenta). As in Ref. [2],

the strategy is simply to compute
〈
y
′(m)
f

∣∣∣ J ∣∣∣y(m)
i

〉
, i.e.,

the matrix elements in the basis of Ritz vectors. The
block generalization adds no formal complications over
the scalar case. Inserting the definition of the Ritz rota-
tors, Eq. (51), yields the prescription〈

y
′L(m)
f

∣∣∣ J ∣∣∣yR(m)
i

〉
=
∑
στab

P
′L(m)
fσa

〈
vL

′

1a

∣∣∣T σJT τ
∣∣∣vR1b〉PR(m)

iτb

=
∑
στab

P
′L(m)
fσa [β

′−1
1 C3pt(σ, τ)γ−1

1 ]abP
R(m)
iτb ,

(58)

where unprimed and primed quantities are computed
from separate diagonal two-point correlator matrices
with initial- and final-state quantum numbers,

Cab(t) =
〈
ψa

∣∣T t
∣∣ψb

〉
and C ′

ab(t) =
〈
ψ′
a

∣∣T t
∣∣ψ′

b

〉
. (59)

Thus, as in the scalar case, once two-point data has been
analyzed, oblique block Lanczos allows explicit computa-
tion of matrix elements for (approximate) energy eigen-
states by simple matrix multiplication of three-point cor-
relator matrices with no additional analysis choices. As-
suming the initial and final states of interest are in the

physical subspace of Krylov space, the choice of L vs R
labels in Eq. (58) is irrelevant.

Note that, in certain cases, block Lanczos matrix-
element estimators are numerically identical to GEVP
estimators (see Sec. VI) as well as estimators based on
generalized pencil of function (GPOF) methods [13–17].
These and other coincidences between methods will be
explored more deeply in future work [30].

H. Correlator decomposition

Lanczos energies and overlap factors provide an ex-
act representation of correlation functions, even for noisy
Monte Carlo data. Specifically,

Cab(t) =
〈
χa

∣∣T t
∣∣ψb

〉
=
〈
χa

∣∣∣ [T (m)]t
∣∣∣ψb

〉
=
∑
k

Z
R(m)∗
ka Z

L(m)
kb [λ

(m)
k ]t,

(60)

for all t ≤ 2m − 1. The first equality is the definition of
C(t). The third can be shown by inserting

[T (m)]t =
∑
k

∣∣∣yR(m)
k

〉
[λ

(m)
k ]t

〈
y
L(m)
k

∣∣∣ , (61)

which follows from the eigendecomposition Eq. (38) and〈
y
L(m)
k |yR(m)

l

〉
= δkl, and recognizing the definitions of

the overlap estimators Z
L/R(m)
ka , Eq. (54). We prove the

remaining second equality below. The result and proof
thereof generalize the scalar result found in Ref. [2].

Some preliminary results are necessary before demon-
strating the second equality of Eq. (60). Comparing the
action of T , following from the three-term recurrence
Eq. (4), with the action of its Krylov-space approxima-
tion T (m), following from Eq. (40) and Eq. (32), shows
that

T (m) |vja⟩ =

{
T |vja⟩ j < m,∑

b

(
|vjb⟩αjba +

∣∣v(j−1)b

〉
βjba

)
, j = m

.

(62)

The difference between these operators therefore acts on
Lanczos vectors as

[T − T (m)]
∣∣vRja〉 = δjm

∑
b

∣∣∣vR(m+1)b

〉
γ(m+1)ba,〈

vLja
∣∣ [T − T (m)] = δjm

∑
b

β(m+1)ab

〈
vLjb
∣∣ . (63)

These results are also used in the explicit construction of
residual bounds below. Eq. (63) implies that

T t
∣∣vR1a〉 = [T (m)]t

∣∣vR1a〉 and
〈
vL1a
∣∣T t =

〈
vL1a
∣∣ [T (m)]t,

(64)
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for all t < m, and

Tm
∣∣vR1a〉 = [T (m)]m

∣∣vR1a〉+∑
b

∣∣∣vR(m+1)b

〉
γ(m+1)ba,〈

vL1a
∣∣Tm =

〈
vL1a
∣∣ [T (m)]m +

∑
b

β(m+1)ab

〈
vL1b
∣∣ ,

(65)
for t = m, with the second term on each RHS represent-
ing a contribution outside the rm-dimensional Krylov
space. Finally, note that the three-term recurrence
Eq. (4) implies

[T (m)]m−1
∣∣vR1a〉 = m∑

j=1

∑
b

∣∣vRjb〉 cR(m)
jba , (66)

where c
R(m)
jab are some (in-principle computable) coeffi-

cients. Their values are not important, but rather that
the vector only has support inside the rm-dimensional
Krylov space (i.e. the sum runs over j ∈ [1,m]). An anal-
ogous left expression holds as well.

We are now equipped to prove the second equality of
Eq. (60). Note first that〈

χa

∣∣T t
∣∣ψb

〉
=
∑
cd

β1ac
〈
vL1c
∣∣T t

∣∣vR1d〉 γ1db, (67)

by Eq. (13), so it is sufficient to show
〈
vL1c
∣∣T t

∣∣vR1d〉 =〈
vL1c
∣∣ [T (m)]t

∣∣vR1d〉 for all t ≤ 2m − 1. To do so, we must
consider two cases, in each decomposing T t = T tLT tR

with some choice of t = tL+tR. In the case t ≤ 2m−2, we
may choose both of tL, tR ≤ m−1. It follows immediately
from Eq. (64) that〈

vL1c
∣∣T tLT tR

∣∣vR1d〉 = 〈vL1c∣∣∣ [T (m)]tL [T (m)]tR
∣∣∣vR1d〉

=
〈
vL1c

∣∣∣ [T (m)]t
∣∣∣vR1d〉 .

(68)

For the remaining case t = 2m− 1, consider tL = m and
tR = m− 1, such that by Eq. (65)〈

vL1c
∣∣TmTm−1

∣∣vR1d〉 = 〈vL1c∣∣∣ [T (m)]2m−1
∣∣∣vR1d〉

+
∑
b

β(m+1)cb

〈
vL(m+1)b

∣∣∣ [T (m)]m−1
∣∣∣vR1d〉 .

(69)

The second term is zero by Eq. (66), i.e.,

〈
vL(m+1)b

∣∣∣ [T (m)]m−1
∣∣∣vR1d〉 =

m∑
j=1

∑
c

〈
vL(m+1)b

∣∣∣vRjc〉 cR(m)
jcd

=
m∑
j=1

∑
b

δj,(m+1)δbc c
R(m)
jcd = 0,

(70)
using the biorthonormality of the Lanczos vectors, so the
desired equality holds for t = 2m− 1 as well. This com-
pletes the proof of Eq. (60).

0 10 20 30
t

0.0

0.2

0.4

E
ef

f
a
b

ab = 00 11 01

FIG. 1. Effective energies Eeff
ij = − lnCij(t)/Cij(t − 1) for

the elements of the correlator matrix for noiseless example as
defined in Eq. (72). Not shown is Eeff

10 , which is identical to
Eeff

01 . Black lines show the exact E0 and E1.

III. NOISELESS DEMONSTRATION

This section works through an application of the block
Lanczos algorithm to noiseless mock-data examples to
assess its performance in the infinite-statistics limit. We
verify the validity of the formalism presented in Sec. II
and compare block Lanczos extractions of energies, over-
laps, and matrix elements with those computed using
standard effective estimators and scalar Lanczos. Com-
parison with GEVP methods is deferred to Sec. VI. The
same mock-data examples defined in this section are also
used in Sec. IV and Sec. VI.
For the demonstration of spectroscopy and overlap

factor extractions, we construct a correlator of length
Nt = 32 with 16 states,

Cab(t) =
15∑
k=0

Z∗
akZbke

−Ekt, (71)

where

Ek = 0.1(k + 1),

Z̃k0 =

{
1, k even

0.1, k odd
,

Z̃k1 =


−0.1, k = 0

1, k odd

0.1, k > 0 even

,

Zka =
Z̃ka√
2Ek

.

(72)

The overall factor of 1/
√
2Ek on the overlaps mimics the

single-particle relativistic normalization of states. These
definitions are engineered to produce common patholo-
gies that arise in analysis of correlator matrix, visible in
the effective energies

Eeff
ab (t) ≡ − ln

Cab(t)

Cab(t− 1)
, (73)
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0 5 10 15 20 25 30
t= 2m− 1

0.5

1.0

1.5
E

(m
)

k
=
−

lo
g
λ

(m
)

k
 C
C00

C11

FIG. 2. Spectrum extracted by block Lanczos (blue) applied to the noiseless correlator matrix Eq. (72) compared with the
spectra extracted by scalar Lanczos (orange, red) applied to each diagonal correlator, as a function of the number of Lanczos
iterations m. Solid lines connect the lowest energies in each extraction, and dashed lines the second-lowest. Block Lanczos
solves for the true eigenvalues exactly after 8 steps, and scalar Lanczos after 16 steps. The black horizontal lines indicate the
true energies En = 0.1(n+ 1).

shown in Fig. 1. The overlaps Zk0 for |ψ0⟩ are defined
to have large overlap with even-k states including the
ground state, resulting in the clear asymptote of Eeff

00 to-
wards the true E0 = 0.1. Meanwhile, overlaps Zk1 for
|ψ1⟩ are suppressed for the ground state but large for
odd-k states, including the first excited state. This re-
sults in an approximate “pseudo-plateau” in Eeff

11 near
the true E1 = 0.2 with slow but visible convergence to-
wards its asymptotic value E0. The ground-state overlap
Z01 for |ψ1⟩ is negative, while all other Zka are posi-
tive. This gives the observed non-monotonic behavior
(i.e. large oscillations) for the off-diagonal Eeff

01 = Eeff
01

at early times and convergence towards E0 from below.
Sec. III C extends this example to resemble the case of
different initial- and final-state quantum numbers for the
matrix element demonstration.

As discussed in Refs. [1, 2], applying Lanczos methods
in the noiseless case requires high-precision arithmetic to
avoid numerical instabilities; see Appendix A of Ref. [2]
for a detailed discussion. As in that work, we use the
mpmath Python package [31]; 100 decimal digits of pre-
cision is sufficient for these demonstrations. In practice,
the same precision concerns do not apply in the noisy case
as explored in Sec. V. More specifically, applications to
noisy data below require Lanczos recursions to be per-
formed in high precision while T (m) eigensolves can be
safely performed in double precision, apart from the case
of thermal modes discussion in Sec. VF.

In this and following sections, we compare block Lanc-
zos with scalar Lanczos applied only to the diagonal el-
ements of the correlator matrix. As explored in Ref. [1],
scalar Lanczos may in principle be applied to the off-
diagonal elements without issue for spectroscopy, but in
this noiseless example it produces non-positive Ritz val-
ues that cannot be shown straightforwardly. Properly

treating overlap factors and matrix elements with off-
diagonal Lanczos requires nontrivial extensions of the
formalism presented in Ref. [2], left for future work.

A. Spectrum

Computing the various quantities in Sec. II, it is
straightforward to verify that all R and L quantities coin-
cide for any symmetric convention βj = γj or any other
convention that reduces to a symmetric one in the noise-
less limit. As in the scalar case, all physical quantities—
Ritz values as well as overlap factor and matrix element
estimators—are insensitive to choice of oblique Lanczos
convention, but basis-dependent quantities like Krylov
coefficients may vary.
Figure 2 shows the Ritz values computed by block

Lanczos, compared with those extracted by scalar Lanc-
zos applied to the diagonal correlators C00 and C11. The
improvements offered by block Lanczos are immediately
apparent. Each block iteration produces r = 2 new Ritz
values, in contrast to scalar Lanczos, which yields only
one. Consequently, block Lanczos exactly solves the spec-
trum of this 16-state system exactly after m = 16/r = 8
steps, i.e. twice as quickly as scalar Lanczos, which re-
quires m = 16 steps. Roughly speaking, this may be
characterized as block Lanczos achieving similar conver-
gence to scalar Lanczos in 1/r steps, albeit while con-
suming matrices of r2 values per iteration.
More quantitatively, we observe that the low-lying

states in the block Lanczos spectrum converges at least
as well as the union of the two scalar Lanczos spectra. As
can be observed in Fig. 2, scalar Lanczos applied to C00

quickly extracts E0 and E2, for which the corresponding
overlaps are large, but does not give a Ritz value for the
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suppressed state E1 until its 8th iteration. The emer-
gence of a Ritz value for E1 is not associated with any
disruption of convergence of its neighboring Ritz values
towards E0 or E2. Meanwhile, the lowest-lying Ritz value
for scalar Lanczos applied to C11 rapidly approaches E1;
due to the suppressed overlap associated with E0, the
lowest-lying Ritz value does not begin converging towards
E0 until m ≥ 5.4 In contrast, block Lanczos yields a se-
quence of Ritz values that quickly and smoothly converge
to the true E0 and E1. Similar comparisons hold for all
other pairs of energies in the spectrum, as expected given
the alternating pattern of overlap suppression in the ex-
ample. Further quantitative comparisons are presented
in Sec. IV, where they can be better understood in the
context of the rigorous bounds on convergence presented
therein.

Block Lanczos Ritz values appear to arise in co-moving
pairs. In this example, the first such pair appear5 to
eventually converge to the ground and first excited state,
while the second such pair apparently converge to the two
highest-lying excited states. This is expected behavior
for Lanczos algorithms, which tend to first extract the
most extremal eigenvalues [22, 32–34].

B. Overlap factors

As presented in Sec. II F, block Lanczos provides an
estimator for overlap factors Zka = ⟨k|ψa⟩, generalizing
the scalar construction. As with the spectrum, block
Lanczos solves for the full set of overlap factors exactly
after m = 8 steps, and scalar does after m = 16 up
to the sign ambiguity discussed further below. Figure 3
compares block and scalar extractions of the overlap fac-
tors in this example. It is clear from the comparison
that the relative sizes of the overlaps govern which order
states are resolved in. Scalar Lanczos applied to either
diagonal correlator preferentially resolves the states with
larger overlaps in that correlator, not yielding values for
the suppressed states until the latter half of iterations.
Block Lanczos, which sees at least one interpolator with
unsuppressed overlap with each state, shows no similar
structure—as with the spectrum, block overlap estimates
converge at least as well as the union of scalar estimates.
This indicates that block Lanczos is able to cleanly re-
solve spectra which must be accessed using multiple in-
terpolators with nearly-disjoint support in the space of
states. This is exactly the circumstance that arises in
lattice studies of multi-particle spectroscopy.

4 We caution against interpreting these behaviors as “pseudo-
plateaus” like those that arise in effective energies, as inspection
of the residual bounds indicates true convergence to states but
in a non-monotonic order; see Appendix C.

5 This association of Ritz values between different Lanczos itera-
tions is purely visual and not quantitative.
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FIG. 3. Overlap factors estimated in the noiseless example
Eq. (72) by block Lanczos (large blue) versus scalar Lanczos
applied to C00 (small orange at left) and C11 (small red at
right), with Zk0 at left and Zk1 at right. Black horizontal
lines represent the true overlaps Zka, with solid lines for even
k, dotted for odd k, and a dashed line in the right panel for
the absolute value of the single negative overlap Z01. Lines
and symbols for the two lowest-lying states are bolded, and to
guide the eye, dotted lines connect estimates corresponding
to the two largest Ritz values in each extraction. No visual
distinction is made between values for different k otherwise,
but note that, restricting to even or odd k, the true Zka de-
crease monotonically in k. Hollow symbols represent negative
values whose absolute value is shown instead; this includes all
block estimates of the negative overlap Z01. The triangles at
the bottom of the right panel indicate block estimates outside
the plot range. Block Lanczos solves for all overlaps exactly
after 8 steps, while each scalar Lanczos requires 16 and finds
the wrong sign for Z01; see the discussion in the text.

Importantly, while the overall phase of overlap factors
is a matter of definition,6 relative signs between differ-
ent overlaps with the same state are physical. Block
Lanczos is able to correctly extract these relative signs
(in this case, between Z00 and Z01). In contrast, scalar
Lanczos—which does not simultaneously process data in-
volving |ψ0⟩ and |ψ1⟩—is fundamentally incapable of do-
ing so. In this example, when scalar Lanczos applied

6 The true transfer matrix eigenstates are eigenvectors, which are
defined only up to an overall phase. Conventionally, overlap
factors for one interpolator are defined to be real to remove this
ambiguity. Typically, this is sufficient to guarantee all overlaps
are real—see the discussion of correlator reality in Sec. V and
Appendix App. D.
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to C11 solves this noiseless example exactly at m = 16,
our definitions necessarily return a positive |Z01|. The
ability to resolve such signs represents a qualitative im-
provement in capabilities of block over scalar Lanczos.

C. Matrix elements

For the demonstration of matrix elements, we extend
the example defined in Eq. (72) to resemble the case of
an off-forward three-point function, with different initial-
and final-state momenta. Specifically, we additionally
define a final-state two-point function and an off-diagonal
three-point function

C ′
ab(t) =

∑
k

Z ′∗
kaZ

′
kbe

−E′
kt,

C3pt
ab (σ, τ) =

∑
fi

Z ′∗
faJfiZibe

−E′
fσ−Eiτ ,

(74)

respectively, with parameters

Ek = 0.1(k + 1) , E′
k =

√
E2

k + 0.12 ,

Zka =
Z̃ka√
2Ek

, Z ′
ka =

Z̃ka√
2E′

k

,

Jfi =

√
4E′

0E0

4E′
fE

′
i

J̃fi ,

(75)

where Z̃ka is as in Eq. (72), J̃00 = 1, and all other el-

ements of J̃fi are randomly drawn from a unit normal
distribution.7 The initial-state spectrum Ek and overlaps
Zak are the same as Eq. (72). The final-state spectrum
E′

k and overlaps Z ′
ak are defined to resemble those of the

initial state in a boosted reference frame. The matrix
elements Jfi are defined to impose the expected energy
scaling in C3pt for single-particle states while maintain-
ing J00 = 1. The block and scalar Lanczos treatments
of the final-state spectrum are similar to the initial-state
results presented in Sec. III A and thus not shown.

The example is sufficiently pathological that standard
ratio plots are not useful to provide. The data are dis-
played below in Fig. 4, which shows effective estimators
for J00 defined for the different elements of C3pt

ab sepa-
rately. Specifically, we use the same two definitions as in
Ref. [2] following from the standard ratio8

R(σ, τ) =
C3pt(σ, τ)

C ′(σ + τ)

√
C(σ)

C ′(σ)

C ′(σ + τ)

C(σ + τ)

C ′(τ)

C(τ)
. (76)

7 The precise values used are provided in the attached file.
8 As noted in Ref. [2], this is not the precise ratio prescribed by the
power iteration method; we employ the standard ratio Eq. (76)
for ease of comparison with other works.
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FIG. 4. For the noiseless example Eq. (75), estimates of
diagonal matrix elements for the ground state J00 (top) and
first excited state J11 as computed by block Lanczos (blue),
as compared with the same summation (Eq. (78), solid) and
power iteration (Eq. (77), dashed) estimators. The horizontal
lines indicate the true values of J00 = 1 and J11. Block Lanc-
zos solves for the true J00 and J11 exactly after m = Nt/4 = 8
steps.

From this ratio, power iteration effective matrix elements
can be constructed as

JPI
00 (t) =

{
R( t2 ,

t
2 ), t even

1
2

[
R( t+1

2 , t−1
2 ) +R( t−1

2 , t+1
2 )
]
, t odd

(77)
and summation-method [35–38] effective matrix elements
as

Σ∆τ
(tf ) =

tf−∆τ∑
τ=∆τ

R(tf − τ, τ),

JΣ
00,∆τ

(tf ) = Σ∆τ
(tf + 1)− Σ∆τ

(tf )

= J00 + (excited states) .

(78)

Each may be applied to any individual element a, b of
a three-point correlator matrix C3pt

ab (t). As visible in

Fig. 4, while analysis of C3pt
00 provides estimators which

converge near J00 quickly, those for C3pt
11 neither con-

verge to J00—each initially “anti-converges” away from
its asymptotic value—nor provide an accurate estimator
of J11 with which the overlap is larger. The estimators
for off-diagonal C3pt

ab show large oscillations at early t and
poor convergence in the available range 0 ≤ t < 32. Con-
sidered collectively, these estimators do not provide any
convincing estimate of any matrix element.

Figure 4 compares the same estimators against the
block Lanczos extractions of the diagonal matrix ele-
ments for the ground and first excited state, J00 and
J11. In contrast to the confused and incoherent behavior
of the effective estimators, block Lanczos estimates con-
verge quickly and reliably to the true values, providing a
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FIG. 5. For the noiseless example Eq. (75), relative errors in
(absolute values of) estimates of operator matrix elements Jii
involving the lowest-lying three states, as computed by block
Lanczos (blue) and scalar Lanczos applied to C00 (purple) and
C11 (red). Solid lines connect points for relative errors defined
with respect to ith and fth largest Ritz values. To check
for the effects of state misidentification, dashed lines connect
points for the scalar results where the error is defined with
respect to matrix elements for the states with true energies
nearest to the initial- and final-state Ritz values. In most
cases, these coincide with the other points. Block Lanczos
solves for all matrix elements exactly after m = Nt/4 = 8
steps. Scalar Lanczos solves after m = Nt/2 = 16 steps, but
in some cases is off by an overall sign, as discussed in the text.

clear picture. This improvement is just as observed for
scalar Lanczos over effective estimators in Ref. [2]. Com-
parisons with improved GEVP estimators for J in Sec. VI
are similar. While we have not repeated the adversarial
exercise of Ref. [2] in the block case, we expect block
Lanczos to inherit the same robustness against patholog-
ical cases observed for scalar Lanczos.

Fig. 5 compares the convergence of block and scalar
Lanczos estimates for low-lying diagonal and transition
matrix elements. The improvement is similar as with
energies and overlaps: block Lanczos provides a better
estimator than scalar Lanczos applied to either diago-
nal correlator, even allowing for state misidentification
in scalar Lanczos where the spectrum is extracted non-
monotonically. However, the advantage is not as obvious
as over the effective estimators.

A critical improvement over scalar Lanczos is not re-
flected in Fig. 5: block Lanczos allows self-consistent de-
termination of the relative phases between transition ma-
trix elements for states probed by different interpolators.

The formalism presented in both Sec. II and Ref. [2] pro-
vides self-consistent determinations of relative signs be-
tween transition matrix elements. In the scalar case, this
means that the phases of operator matrix elements are
defined relative to the overlap factors—for which it pro-
duces real and positive values by convention. In this ex-
ample, this results in scalar Lanczos applied to C11 yield-
ing ground-excited matrix elements off by a sign from the
definitions in the problem. In contrast, because block
Lanczos is able to resolve the relative phases of over-
laps as discussed above, it is thereby able to consistently
determine relative phases of other transition matrix ele-
ments as well. This may be useful for e.g. lattice studies
of electroweak transitions involving resonances [39, 40].

IV. CONVERGENCE AND BOUNDS

The same formal frameworks use to quantify and
bound convergence in scalar Lanczos can be extended
to the block case as well. In this section, we first review
the block extension of Kaniel-Paige-Saad (KPS) conver-
gence theory [21, 41, 42] and discuss its implications for
correlator matrix analyses. We then derive the block gen-
eralization of the oblique Lanczos residual bounds origi-
nally presented in Ref. [1]. In each case, we demonstrate
the validity of the bounds using the noiseless examples
of Sec. III.

A. KPS Bound

In finite-dimensional linear algebra applications of the
Lanczos algorithm, the convergence of Ritz values and
vectors to the eigenvalues and eigenvectors of a matrix is
described by KPS convergence theory. The KPS bound
not only quantifies the asymptotic converge rates of Ritz
values and vectors, it also provides two-sided bounds on
differences between Ritz values and true eigenvalues after
finitely many iterations. The KPS bound for applications
of scalar Lanczos to infinite-dimensional transfer matri-
ces in LQCD is discussed in Refs. [1, 2].
Two important limitations arise for LQCD applica-

tions of the KPS bound. First, the KPS bound depends
on the full spectrum of T and cannot be directly com-
puted only from the matrix elements of T (m) available
after finitely many steps of Lanczos. Second, the KPS
bound only applies to non-oblique Lanczos and therefore
only to LQCD results for diagonal correlator matrices in
the infinite-statistics limit. For these reasons, the KPS
bound should be thought of as a theoretical bound on
the convergence rate of Lanczos applications to LQCD
at infinite statistics, rather than as a directly computable
measure of finite-iteration effects in a given calculation.
In the remainder of this subsection, L/R superscripts will
therefore be omitted.
The block Lanczos extension of Kaniel-Paige-Saad

(KPS) convergence theory [21, 41, 42] was developed by
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Saad and reported along with results for standard Lanc-
zos in Ref. [21],

0 ≤ λn − λ
(m)
n

λn − λ∞
≤

[
K

(m)
n tan θn

Tm−n−1(Γr
n)

]2
, (79)

where r = dim[Cab(0)] is the size of the initial Lanczos
block, the Tk(x) are Chebyshev polynomials of the first
kind defined by Tk(cosx) = cos(kx),

Γr
n ≡ 1 +

2(λn − λn+r)

λn+r − λ∞
= 2eEn+r−En − 1, (80)

and

K(m)
n ≡

n−1∏
l=0

λ
(m)
l − λ∞

λ
(m)
l − λn

, n > 0, (81)

with K
(m)
0 ≡ 1 and λ∞ the smallest eigenvalue of T—

for a bounded infinite-dimensional operator T it must
be that λ∞ = 0. The remaining ingredient in the KPS
bound is the angle θn between the vector |n⟩ and the
subspace K1 spanned by the initial Lanczos vectors. It
can be expressed as

tan2 θn = || |n⟩ − |x̂n⟩ ||2, (82)

where |x̂n⟩ is the vector whose orthogonal projection onto
K1 is equal to |n⟩. The explicit construction of this vector
is discussed in Ref. [21] and summarized in Appendix B,
where it is shown that this can be expressed as

tan2 θn = [X(n,r)]
−1
nn − 1, (83)

where X(n,r) is the r × r block of the matrix

[X]n′,n′′ ≡
∑
ab

Zn′aC
−1
ab (0)Z

∗
n′′b, (84)

where n′, n′′ ∈ [n, n + r − 1]. For the ground state this
simplifies to

0 ≤ λ0 − λ
(m)
0

λ0
≤ tan2 θ0
Tm−1(2eδr − 1)2

, (85)

where δr = Er−E0 and, with Z the r×r matrix defined
by Zna with n ∈ [0, r − 1],

tan2 θ0 =
[
ZC(0)−1Z†]−1

00
− 1. (86)

For large m, Tm(x) ≈ 1
2 (x +

√
x2 − 1)m, so this further

simplifies to

0 ≤ λ0 − λ
(m)
0

λ0
≲ 4 tan2 θ0 ×

{
e−2(m−1)δr δr ≫ 1

e−4(m−1)
√
δr δr ≪ 1

.

(87)
For r = 1 these results reduce to scalar Lanczos results,
while for r > 1 block Lanczos converges exponentially
faster than scalar Lanczos because δr > δ1.
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FIG. 6. Convergence of block (blue) and scalar (orange,
red) extractions of the two largest eigenvalues for the noiseless
example of Sec. III (Eq. (72)), alongside corresponding KPS
bounds. Markers connected by dashed lines indicate the true
relative error, while solid lines indicate the bound. The block
KPS curve beyond m = 8 is an extrapolation computed by

taking K
(m)
n = K

(8)
n .

The convergence of block and scalar Lanczos and the
corresponding KPS bounds are compared in Fig. 6. For
the ground state, block Lanczos shows nearly identical
convergence as for scalar Lanczos applied to C00 until
the last few iterations before solving the system exactly.
Convergence for scalar Lanczos applied to C11 parallels
that of C00 after an initial pause due to the delay in
resolving the true ground state. Figure 6 further demon-
strates the validity of the block and scalar KPS bounds
in comparisons with relative errors of eigenvalue esti-
mates computed for the noiseless example of Sec. III.
Each bound is satisfied, although the bound is not well-
saturated in any case and especially not for the excited
state; it becomes increasingly less-saturated for higher
states not shown. More positively, observed convergence
is substantially faster than guaranteed. The same bounds
predict block Lanczos will converge exponentially faster
than scalar Lanczos. This is clearly reflected in empir-
ical convergence for the excited state, for which block
Lanczos’s improved extraction is especially apparent, as
expected for a method which analyzes correlator matrices
rather than individual correlators.

B. Residual bounds

The residual bound provides a distinct and comple-
mentary two-sided bound on the minimum distance be-
tween a Ritz value at finite m and a true eigenvalue of T
for scalar Lanczos [22, 42–44]. Unlike the KPS bound, it
can be calculated directly from matrix elements of T (m)
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and therefore provides a practically computable bound
on the size of excited-state effects at finite m. However,
also unlike the KPS bound, it is noteworthy that the
residual bound applies to the difference between a given
Ritz value and the closest true eigenvalue, as opposed to
a particular true eigenvalue such as λ0. It was shown in
Ref. [1] that the residual bound applies to oblique Lanc-
zos assuming T = T †, even when T (m) ̸= [T (m)]†. We
discuss the block generalization next.

The derivation proceeds by comparing the matrix-
element expression for a Ritz-vector residual norm with
its spectral expansion. Right and left Ritz-vector residual
norms are defined by

R
R/L(m)
k ≡

〈
y
R/L(m)
k

∣∣∣ |T − T (m)|2
∣∣∣yR/L(m)

k

〉
, (88)

and quantify the difference between the action of the ex-
act transfer matrix T and the Krylov-space approxima-
tion T (m) on Ritz vectors. For oblique block Lanczos,
the right residual norms can be computed by noting that
Eq. (63) implies

[T − T (m)]
∣∣∣yR(m)

k

〉
= N (m)

k

∑
ab

∣∣∣vR(m+1)b

〉
γ(m+1)baω

(m)
mak,

(89)
i.e., that the action of T on a Ritz vector is a rescaling
within rm-dimensional Krylov space by its Ritz value
plus the addition of a term orthogonal to this space. It
is then straightforward to derive

R
R(m)
k = |N (m)

k |2
∑
abcd

ω
(m)∗
mak γ

∗
(m+1)ba

×
〈
vR(m+1)b

∣∣∣vR(m+1)c

〉
γ(m+1)cdω

(m)
mdk.

(90)

An analogous calculation for left residual norms gives

R
L(m)
k =

1

|N (m)
k |2

∑
abcd

(ω−1)
(m)
kmaβ(m+1)ab

×
〈
vL(m+1)b

∣∣∣vL(m+1)c

〉
β∗
(m+1)dc(ω

−1)
(m)∗
kmd .

(91)

These expressions differ from the scalar Lanczos analogs
only by the presence of block indices.

The derivation of the spectral representation of the
residual bound in Ref. [1] applies here without modifica-
tion, under the same assumption that T is Hermitian—

the Ritz vectors
∣∣yR/L(m)

k

〉
can be expanded as linear

combinations of true energy eigenstates regardless of
whether they are obtained from scalar or block Lanczos.
This provides the inequalities

min
λ∈{λn}

∣∣∣λ(m)
k − λ

∣∣∣2 ≤ B
R/L(m)
k , (92)

where

B
R/L(m)
k ≡

∣∣∣∣∣∣ RR/L(m)〈
y
R/L(m)
k

∣∣∣yR/L(m)
k

〉
∣∣∣∣∣∣ , (93)
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FIG. 7. Demonstration of block Lanczos residual bounds
for the noiseless example Eq. (72). Error bars are not sta-
tistical, but rather represent the extent of values allowed by
the residual bound Eq. (92). The window of allowed values is
computed for Ritz values and mapped through the logarithm,
and thus asymmetric for energies.

can be conveniently expressed as

B
R(m)
k =

∣∣∣∣∣∑
ab

ω
(m)∗
mak [γ

†
(m+1)V

R(m)
k γ(m+1)]abω

(m)
mbk

∣∣∣∣∣ ,
B

L(m)
k =

∣∣∣∣∣∑
ab

(ω−1)
(m)
kma[β(m+1)V

L(m)
k β†

(m+1)]ab(ω
−1)

(m)∗
kmb

∣∣∣∣∣ ,
(94)

in terms of the matrices

V
R(m)
kab ≡

|N (m)
k |2

〈
vR(m+1)a

∣∣∣vR(m+1)b

〉
〈
y
R(m)
k

∣∣∣yR(m)
k

〉
=

〈
vR(m+1)a

∣∣∣vR(m+1)b

〉
∑

ijcd ω
(m)∗
ick

〈
vRic

∣∣∣vRjd〉ω(m)
jdk

,

V
L(m)
kab ≡

〈
vL(m+1)a

∣∣∣vL(m+1)b

〉
|N (m)

k |2
〈
y
L(m)
k

∣∣∣yL(m)
k

〉
=

〈
vL(m+1)a

∣∣∣vL(m+1)b

〉
∑

ijcd(ω
−1)

(m)
kic

〈
vLic

∣∣∣vLjd〉 (ω−1)
(m)∗
kjd

.

(95)

Given a symmetric choice of oblique convention βj =

γj , the matrices V
R/L(m)
kab are equal to δab in the noise-

less limit where
∣∣vRj 〉 =

∣∣vLj 〉 and the oblique algorithm
reduces to the standard symmetric one. However, they
are non-trivial and must be computed explicitly in appli-
cations to noisy data where the oblique formalism is re-
quired. This may be accomplished straightforwardly us-
ing Eq. (47) once Krylov coefficients have been computed.



16

Thus, two-sided Ritz value error bounds can be computed
in practical applications for all m where Lanczos results
with m + 1 iterations are available using Eqs. (92)-(95)
and Lanczos-vector norms in Eq. (47), i.e., for all itera-
tions but the last one, m = Nt/2. These bounds hold for
oblique block Lanczos with Hermitian T , regardless of
whether T (m) is Hermitian. The explicit absolute values
in Eqs. (93) and (95) are not required for noiseless ap-
plications but are helpful for regulating negative values
that can arise in applications to noisy data.

Figure 7 demonstrates the validity of the residual
bound for Ritz values extracted by applying block Lanc-
zos to the noiseless example of Sec. III; App. C exam-
ines the residual bounds for scalar Lanczos applied to
the same example. In the figure, each Ritz value is shown
with an error bar representing the extent of the window of
values allowed by the bound. For all points, the error bar
crosses at least one line representing a true eigenvalue, in-
dicating the bound is satisfied for all values. A separate
question is whether the bounds are sufficiently tight to
be useful in practice. As can be observed in Fig. 7, as a
Ritz value converges, its residual bound shrinks as well,
with each Ritz value quickly becoming consistent with
only a single true value. For the lower-lying states, the
bounds rapidly become smaller than visible on the plot.

V. NOISE

Block Lanczos applied to noisy correlator data exhibits
an analogous version of the “Lanczos phenomenon” [45,
46] as the scalar case: some Ritz vectors consistently
describe physical states that have all the properties ex-
pected at infinite statistics, while other Ritz vectors de-
scribe states that have manifestly unphysical properties
and must arise from noise. This section describes tech-
niques for identifying and removing such spurious states
from Lanczos results, including the construction of a sim-
ple physical picture that is equivalent to the Cullum-
Willoughby (CW) test for scalar Lanczos. This pic-
ture, based on the identification of Ritz vectors that have
pathologically small overlaps with all of the initial states
(∼ interpolating operators) considered, is used to define
a physically motivated block Lanczos generalization of
the CW test. This is the first generalization of the CW
test to block Lanczos, as far as we are aware.

Proof-of-principle results are demonstrated for the ex-
traction of energies and overlap factors from a 2× 2 ma-
trix of nucleon correlation functions. Comparisons are
made between block and scalar results for this dataset,
as well as scalar Lanczos results from the higher-statistics
dataset with identical physical parameters studied in
Ref. [2]. Comparisons with GEVP are deferred to
Sec. VI. We focus on exploring how block versus scalar
Lanczos affects the spurious eigenvalue filtering and state
identification that arise during spectroscopy; once Ritz
coefficients have been computed for a given state, the
subsequent evaluation of matrix elements for external
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FIG. 8. Effective energies Eeff
ab = − lnCab(t)/Cab(t − 1) for

the diagonal elements of the correlator matrix, a = b = T
(purple, TT ) and a = b = W (red, WW ) with a horizontal
offset for clarity. Recall a = T indicates the interpolator with
“thin” smearing and a = W the “wide” one. Uncertainties
are computed using bootstrap confidence intervals. The black
line is the fit from Refs. [38, 47], 0.4169(18); its uncertainties
are not visible on the scale of the plot.

currents only involves matrix multiplication of three-
point functions and proceeds identically for block and
scalar Lanczos.

A. Problem setup & data

For the demonstration, we use data computed
for the same ensemble with a ≈ 0.091 fm and
mπ ≈ 170 MeV [48–50] as used for demonstrations
in Refs. [1, 2]. Configurations were generated by the
JLab/LANL/MIT/WM groups [51] using the tadpole-
improved Lüscher-Weisz gauge action [52] and Nf =
2 + 1 flavors of clover fermions [53] defined with stout
smeared [54] links on a 483 × 96 lattice volume. Quark
propagators and nucleon correlator matrices were com-
puted by the NPLQCD Collaboration.

The data for the block Lanczos example are a 2 × 2
matrix of nucleon two-point functions projected to zero
momentum, computed on Ncfg = 80 configurations inde-
pendently from and on a (partially) different subensem-
ble than the data used in Refs. [1, 2]. The two interpo-
lators differ only in the quark smearing, and are labeled
by a ∈ {T,W} where T is for “thin” and W for “wide”.
Each is of the form

ψa(x) = ϵijk[uSj (x)
TCγ5d

S
k (x)]u

S
i (x), (96)

where C is the charge conjugation matrix, and uS(x)
and dS(x) are up- and down-quark fields smeared using
gauge-invariant Gaussian smearing, with radius 3.0 for
ψT and 4.5 for ψW . The measurement for each configu-
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ration is obtained by evaluating the correlator

Cab(t;x0) =
∑
x⃗

Tr
[
Γ±
〈
ψa(x⃗, t+ t0)ψb(x0)

〉]
, (97)

where

Γ± = P+(1± γxγy) with P+ =
1

2
(1 + γt) . (98)

on an 83 grid of Nsrc = 512 source positions all on a
single random timeslice, then summing over sources and
averaging both signs of Γ±, i.e. over the up-up and down-
down channels. This source- and spin-averaged correlator
matrix is denoted C̄ab(t). The ψa will also sometimes
be denoted N+

a below in order to distinguish them from
interpolating operators N−

a obtained by replacing P+ =
1
2 (1 + γt) with P− = 1

2 (1− γt) in all expressions above.
It is essential for the spurious state filtering methods

described below to explicitly take the real and symmetric
part of the correlator matrix, denoted

C ′
ab(t) =

1

2
Re
[
C̄ab(t) + C̄ba(t)

]
. (99)

As with the imaginary part of a scalar correlator, the
imaginary and antisymmetric parts of the correlator ma-
trix are zero in expectation, and we are free to set
them to their known infinite-statistics values. Hermitic-
ity follows immediately from the symmetric definition
Cab(t) = ⟨ψa|T t |ψb⟩ and the underlying Hermiticity of
the transfer matrix. The stronger assumption of a real,
symmetric correlator matrix is valid for any interpolating
operators that are complex conjugated by a CP transfor-
mation and a 2π rotation, as shown in Appendix D. This
includes the interpolators used here as well as all com-
monly used single- and multi-hadron interpolating oper-
ators with plane-wave spatial wavefunctions built from
products of (momentum-)smeared [55–57] quark fields.

To compare overlap factors between different opera-
tors, it is convenient to work directly with interpolating

operators ψ̂a creating unit-normalized states such that

⟨|ψ̂a|2⟩ = 1. The corresponding correlator matrix built
from unit-normalized interpolating operators is

Cab(t) =
C ′

ab(t)√
C ′

aa(0)C
′
bb(0)

, (100)

and satisfies Caa(0) = Cbb(0) = 1. This is not a necessary
precursor to applying the Lanczos analysis, which may
treat correlators with arbitrary norms, but instead sim-
ply to render the overlap factors for the different smear-
ings of comparable magnitude. This normalization is
not included in the error propagation.9 This further-
more does not affect the value of the ZCW cut quantity

∆
ZCW(m)
k defined and discussed in Sec. VC below.

9 That is, it is computed from the mean of Cab(0) and this common
value is applied for all bootstrap draws.

We employ bootstrap resampling to study the effects
of noise on the analysis and propagate uncertainties. In
particular, we construct 200 bootstrap ensembles (boot-
straps) by drawing 80 samples with replacement from the
original dataset of 80 and apply Lanczos to the ensemble
average within each bootstrap. We further study the ef-
fects of a nested bootstrap procedure in which these 200
(outer) bootstrap ensembles are resampled again, gen-
erating 200 (inner) bootstrap ensembles for each outer
ensemble by again drawing 80 samples with replacement
from the 80 (non-unique) samples of the outer ensemble.
We then apply Lanczos to the ensemble average of each
inner bootstrap. As discussed below, this enables the
calculation of an outlier-robust bootstrap-median based
estimator and its uncertainties.
For some tests below, we also use the same high-

statistics dataset of Ncfg = 1381 configurations employed
in Ref. [2], generated in the course of the studies in
Refs. [38, 47]. This scalar nucleon correlator is defined
similarly to the WW channel of the 2 × 2 matrix, us-
ing the same interpolator ψW with smearing radius 4.5.
Two-point functions are computed and summed over two
offset 43 × 8 grids of 512 source positions with an overall
random offset, for a total of 1024 positions per configu-
ration. It is similarly projected to zero momentum, av-
eraged over both signs of Γ±, and the real part is taken.
The correlator is normalized to equal unity at t = 0,
which is similarly not included in the error propagation.

B. Hermitian subspace filtering

As in the scalar case, a subset of block Lanczos out-

puts (states) are real Ritz values λ
(m)
k = λ

(m)∗
k with cor-

responding degenerate left/right Ritz vectors
∣∣yR(m)

k

〉
=∣∣yL(m)

k

〉
. These obey the physical properties that follow

from Hermiticity of T in the infinite-statistics limit and
define a Hermitian subspace of Krylov space in the sense
made precise below. We denote10 this subset of Ritz val-
ues and vectors by k ∈ H whereH ⊂ {0, 1, 2, . . . , rm−1}.
The objective of Hermitian subspace filtering is to iden-
tify and retain the physically interpretable states in H
and discard those in its complement H.
Sorting the Ritz values and vectors into sets labeled by

H and H provides the operator-level decomposition

T (m) = T
(m)
H + T

(m)

H , (101)

where T
(m)
H = T

(m)†
H acts on states in the Hermitian sub-

space as

T
(m)
H ≡

∑
k∈H

∣∣∣y(m)
k

〉
λ
(m)
k

〈
y
(m)
k

∣∣∣ , (102)

10 The definition of H necessarily differs for different m and could
more explicitly be denoted H(m). We leave this m dependence
implicit to improve readability.
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with λ
(m)
k = λ

(m)∗
k and L/R labels omitted because∣∣yR(m)

k

〉
=
∣∣yL(m)

k

〉
. Distinctions between left and right

quantities only arise for states in the non-Hermitian sub-
space where the action of T (m) is governed by

T
(m)

H ≡
∑
k∈H

∣∣∣yR(m)
k

〉
λ
(m)
k

〈
y
L(m)
k

∣∣∣ . (103)

The associated Hermitian and non-Hermitian subspaces
of Krylov space can be explicitly defined as

K(m) ≡ span{
∣∣y(m)

k

〉
, k ∈ H},

KL(m) ≡ span{
∣∣yL(m)

k

〉
, k ∈ H},

KR(m) ≡ span{
∣∣yR(m)

k

〉
, k ∈ H}.

(104)

Ritz vector orthogonality
〈
y
L(m)
k |yR(m)

l

〉
= δkl is exact

even for noisy applications because
〈
vLia|vRjb

〉
= δijδab

follows identically from the recursion relations. This
means that these spaces provide an exact decomposition
of Krylov space of the form

KL(m) = K(m) ⊕KL(m)
,

KR(m) = K(m) ⊕KR(m)
.

(105)

We define all non-spurious states to include only elements
of the Hermitian subspace K(m) ⊂ (KL(m) ∩ KR(m)).

The features of the remaining states with labels H
clearly identify them as noise artifacts (or at least noise-
contaminated). This can be seen by noting their role in
the correlator decomposition (cf. Sec. II H),

Cab(t) =
∑
k

Z
R(m)∗
ka Z

L(m)
kb [λ

(m)
k ]t, (106)

which holds exactly for all t ≤ 2m − 1. Reproduc-
ing noisy data generically requires states with complex
and/or negative Ritz values that make oscillatory con-
tributions, since noise does not preserve the existence
of a convex spectral representation. Complex-eigenvalue
states necessarily come in conjugate pairs when C(t) is

real. Other states have real λ
(m)
k > 0 but distinct L/R

overlaps
〈
y
R/L(m)
k |ψa

〉
, allowing them to make unphysi-

cal negative contributions to diagonal correlators.
One may also separately filter on the positivity of Ritz

values, i.e. discard any λ
(m)
k < 0, on the grounds that in

the infinite-statistics limit the underlying transfer matrix
is positive-definite. However, it remains unclear whether
this is the best option in practical analyses of noisy data.
While such states make oscillatory contributions that are
clearly associated with noise, it is not unreasonable for
a small eigenvalue to fluctuate negative, and clipping
the distribution at zero may complicate error analysis.
The results below do not filter explicitly on positivity
and instead rely on subsequent filtering by the Cullum-
Willoughby test to define which are spurious.

The practical Hermitian subspace filtering prescription
proceeds similarly as in the scalar case. States with com-
plex Ritz values may be immediately sorted into H, defin-
ing reality at working precision as∣∣∣∣∣ Im[λ

(m)
k ]

λ
(m)
k

∣∣∣∣∣ = ∣∣∣sin arg λ(m)
k

∣∣∣ > εfloat, (107)

where εfloat ∼ 10−8 is often appropriate. Further filter-
ing on non-degenerate right and left Ritz vectors may be
accomplished with the block version of the “norm trick”

introduced in Ref. [2], by attempting to compute |N (m)
k |2

per Eq. (55) as ∑
b(ω

−1)
(m)
k1b γ1ba[∑

c β1acω
(m)
1ck

]∗ , (108)

yielding for each state k a set of r values indexed by a.

As in the scalar case, equality with real |N (m)
k |2 > 0 re-

quires that these values all be real and positive; states

are thus sorted into H for which arg[N
(m)
ka ] > εfloat for

any a. As advertised in Sec. II F, in the block case we
also impose an additional criterion—that the normaliza-

tion of a Ritz vector
∣∣y(m)

k

〉
can be computed consistently

from its overlap with any |ψa⟩. In practice, this amounts
to requiring that the value computed by Eq. (108) is nu-
merically identical for all a at the level of εfloat. We note
that this last condition fails to hold for any state if the
correlator matrix is not taken to be real, even if it is
Hermitian. It is essential to apply oblique block Lanczos
to the real, symmetric part of a noisy correlator matrix
Re[C(t) +C(t)T ]/2 rather than the complex, Hermitian
part (C(t) + C(t)†)/2 in order for this part of the Her-
mitian subspace filter to be valid.
Following this filtering, we find that left and right Ritz

coefficients of the surviving states coincide within numer-
ical precision, i.e.,∑

b

γ−1
1abP

R(m)
ktb =

∑
b

P
L(m)∗
ktb β−1

1ba , (109)

where the factors of β−1
1 and γ−1

1 give a convention-
independent definition. This is sufficient to guarantee
that all left and right estimators of physical quantities
will be identical.

C. The Cullum-Willoughy test

In the context of numerical linear algebra, procedures
like the Cullum-Willoughby (CW) test [45, 46] and selec-
tive reorthogonalization [43] are motivated by the ob-
servation that numerical noise (i.e. errors from finite-
precision arithmetic) causes a loss of (bi)orthogonality
in the Lanczos vectors after many iterations. In prac-
tice, this results in an artificial expansion of Krylov space
outside what would be obtained in the noiseless case and
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thus the seeding of spurious Ritz vectors which must be
diagnosed and removed. Intuitively speaking, the effect
of noise is to mix new information into the Lanczos vec-
tors which is independent of the initial vectors

∣∣vR1 〉 and〈
vL1
∣∣. The observation motivates the CW test, which

diagnoses spuriosity by examining sensitivity of Ritz val-
ues to the removal of the initial vectors from the Krylov
space. As discussed in detail below, this same observa-
tion motivates an alternative “ZCW test” that diagnoses
spuriosity by directly computing the overlaps of Ritz vec-
tors with the initial vectors.

Figure 9 schematically illustrates the line of argumen-
tation of this subsection, whose goal is to provide a block
generalization of CW filtering. As discussed in detail
below, the original CW test is challenging to general-
ize to the block case directly; in contrast, the ZCW test
generalizes naturally on physical grounds. Separately,
we find the CW and ZCW tests are closely related by
the eigenvalue-eigenvector identity [58] and functionally
equivalent in practice. This finally allows an indirect
derivation of block CW, although we find the resulting
prescription is practically equivalent to block ZCW and
more expensive.

1. The CW test

As presented in its original formulation [45, 46] and
employed in Refs. [1, 2], the CW test compares the Ritz

values with the eigenvalues λ̃
(m)
k of the matrix T̃ (m) con-

structed by removing (“knocking out”) the first row and

column from T (m). The matrix T̃ (m) corresponds to the
projection of T to a Krylov space with the initial states
removed. Thus, by the reasoning above, Ritz values in-
sensitive to this removal must have been seeded by noise
and can be identified as spurious, where “insensitive” is
defined as

∆
CW(m)
k ≡ min

l

∣∣∣λ(m)
k − λ̃

(m)
l

∣∣∣ < εCW, (110)

i.e., whether any eigenvalue of T̃ (m) is equal to a given
Ritz value within a chosen threshold εCW. In numerical
applications where noise is due to finite-precision arith-
metic, εCW may be taken to be machine precision. Where
noise is statistical, as in analysis of lattice correlator data,
εCW must be set accordingly larger. Refs. [1, 2] propose
different adaptive procedures to set this threshold. Be-
low, we propose a simpler alternative to these procedures
which follows naturally from the reformulation of the CW
test in more physically intuitive terms.

As already advertised, our new physical perspective
presents a straightforward path to a block generaliza-
tion of the CW test not offered by its original moti-
vating argument. The original argument [45, 46] re-
lies on an identity relating the (scalar) residual bound
(Eq. (93) with r = 1) to the characteristic polynomials

of T̃ and T (m−1), defined as ãm(µ) ≡ det(T̃ (m)−µ1) and

FIG. 9. Schematic depiction of the line of argumentation
used to construct block generalizations of the CW test in
Sec. VC.

am−1(µ) ≡ det(T (m−1) − µ1):

B
(m)
k =

∏m+1
j=2 |βj |2

ãm

(
λ
(m)
k

)
a′m−1

(
λ
(m)
k

) , (r = 1), (111)

where a′m(µ) denotes the derivative of am(µ). This iden-
tity was derived for symmetric Lanczos; we have nu-
merically verified that it remains true for oblique Lanc-
zos applications to noisy LQCD data. This identity

shows that B
(m)
k has a pole whenever ãm(λ

(m)
k ) = 0,

i.e. whenever λ
(m)
k is also an eigenvalue of T̃ (m) and thus

∆
CW(m)
k = 0. This directly associates ∆

CW(m)
k = 0 with

non-convergence of λ
(m)
k to a true eigenvalue, as indicated

by a diverging residual bound. As noted in Eq. (111), this
identity is only valid for scalar Lanczos (r = 1) and we
are not aware of a simple generalization that is valid for
block Lanczos with r > 1. The perspective that a cut on

small ∆
CW(m)
k removes eigenvalues with spuriously large

residuals that therefore do not place useful constraints
on physical eigenvalues is a valid description for scalar
Lanczos but does not generalize straightforwardly to the
block case.

2. CW in terms of overlaps (ZCW)

The original motivation for the CW test—
independence of the starting vectors as a characteristic
property of spurious Ritz vectors—suggests an alter-
native and more literal procedure: directly compute
and examine the overlaps of Ritz vectors with the
starting states ∼ ⟨v1|yk⟩, with a small (i.e. zero up to
noise) overlap indicating a spurious state. These are
simply the usual overlap factor estimators Z(m), up to
normalization (and, in the block case, choice of basis,
as discussed further below). Specifically, restricting
initially to scalar Lanczos, we consider the normalized
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FIG. 10. Comparison of ∆
CW(m)
k and ∆

ZCW(m)
k for scalar

Lanczos results using the high-statistics nucleon correlator
analysis of Ref. [2]. Each marker corresponds to a pair of val-
ues for some m, k, for all m ∈ [2, 48] and all k, as computed
on the central-value correlator. No graphical distinction is
made between different m and k. Blue dots (orange Xs) are
states within (without) the Hermitian subspace. The top and
bottom panels show the same data with log and linear axes.
The vertical line indicates the cut εCW ≈ 1.4× 10−2 selected
using the bootstrap histogram procedure of Ref. [1], while the
horizontal line indicates the cut εZCW ≈ 2.2 × 10−2 selected
by Eq. (117).

overlap factor product as our test quantity,

∆
ZCW(m)
k =

∣∣∣〈vL1 ∣∣∣yR(m)
k

〉〈
y
L(m)
k

∣∣∣vR1 〉∣∣∣
=

∣∣∣∣∣ZR(m)∗
k Z

L(m)
k

C(0)

∣∣∣∣∣ = ∣∣∣ω(m)
1k (ω−1)

(m)
k1

∣∣∣ , (112)

and define the ZCW test for spuriosity as

∆
ZCW(m)
k < εZCW . (113)

How to choose the cut εZCW is discussed in the next
subsection.

Figure 10 illustrates a practical comparison of the CW

and ZCW tests using results for ∆
CW(m)
k and ∆

ZCW(m)
k

computed for the high-statistics scalar nucleon correlator

of Ref. [2]. The relation between ∆
ZCW(m)
k and ∆

CW(m)
k

is remarkably linear for the range of ∆
CW(m)
k correspond-

ing to spurious eigenvalues when εCW is defined using the
bootstrap histogram method from Ref. [1]. This demon-
strates that an appropriate choice of εZCW will lead to
ZCW test results that are completely equivalent to those
from the CW test with this choice of εCW.
The close relationship between the CW and ZCW

tests may be understood in terms of the “eigenvalue-
eigenvector identity”, first derived by Jacobi in 1834 [59]

and re-discovered many times since [58]. For T̃ (m) specif-
ically,11 it reads∏

l̃

[
λ
(m)
k − λ̃

(m)

l̃

]
= ω

(m)
1k (ω−1)

(m)
k1

∏
l ̸=k

[
λ
(m)
k − λ

(m)
l

]
.

(114)

For any state, ∆
CW(m)
k appears in the product on the

LHS. Dividing the RHS by the remaining terms and rec-

ognizing ∆
ZCW(m)
k allows ∆

CW(m)
k to be expressed as

∆
CW(m)
k = ∆

ZCW(m)
k

∏l ̸=k

∣∣∣λ(m)
k − λ

(m)
l

∣∣∣∏
l̃ ̸=c̃

∣∣∣λ(m)
k − λ̃

(m)

l̃

∣∣∣
 , (115)

where c̃ = argminl̃

∣∣∣λ(m)
k − λ̃

(m)

l̃

∣∣∣ indexes the closest

eigenvalue of T̃ (m) to λ
(m)
k .

Equation (115) implies that if ∆
ZCW(m)
k is small then

so must be ∆
CW(m)
k , and vice versa, and thus that they

are equivalent quantities for filtering. The key feature of
Eq. (115) is that the factor in parentheses correspond-

ing to ∆
CW(m)
k /∆

ZCW(m)
k is necessarily non-zero and fi-

nite. To see this, note first that the eigenvalues of any
tridiagonal matrix are non-degenerate [22]. This means

λ
(m)
l ̸= λ

(m)
k for l ̸= k and therefore the numerator∏

l ̸=k

∣∣∣λ(m)
k − λ

(m)
l

∣∣∣ has no zeros. It is possible to have

λ
(m)
k = λ̃

(m)

l̃
, but only for one choice of l̃ because T̃

(m)
ij is

tridiagonal. This means that it is only possible to have

λ
(m)
k = λ̃

(m)

l̃
when l̃ = c̃, so the denominator—defined

as a product over l̃ ̸= c̃, which excludes the one possi-
ble zero—has no zeroes. The finiteness of the numerator
and denominator follow immediately from the fact that
they are finite products of finite factors. It follows that

∆
CW(m)
k = 0 can occur if and only if ∆

ZCW(m)
k = 0.

Since both ∆
CW(m)
k and ∆

ZCW(m)
k are smooth functions

of λ
(m)
k , Ritz values within a sufficiently small neighbor-

hood of ∆
CW(m)
k = 0 are in one-to-one correspondence

with the Ritz values within some small neighborhood of

∆
ZCW(m)
k = 0. Therefore, the CW test ∆

CW(m)
k < εCW

for sufficiently small εCW is formally equivalent to a ZCW

test ∆
ZCW(m)
k < εZCW for some εZCW.

3. Physical interpretation and choice of εZCW

Rephrasing the CW test in terms of overlaps suggests
a clear physical (re)interpretation. Specifically, filtering

11 Similarly to how Cullum & Willoughby use Eq. (111) to relate

B
(m)
k to eigenvalues of a minor of T (m) (i.e., T̃ (m)), the general

eigenvalue-eigenvector identity relates products of eigenvector el-

ements ω
(m)
ik (ω−1)

(m)
kj to eigenvalues of the minor of T (m) with

row i and column j knocked out.
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with the CW test corresponds to restricting to the phys-
ical subspace of states to those with the correct quan-
tum numbers. In practice, for any interpolating operator,

the eigenexpansions of the initial states
∣∣vL/R

1

〉
have sup-

port over all states with the desired quantum numbers,
and noiseless time evolution preserves quantum numbers.

Thus, any Ritz vector
∣∣yL/R(m)

k

〉
corresponding to a phys-

ical state must have a finite overlap with the initial state,
i.e. ∆ZCW > 0. By the same logic, a state with zero
overlap cannot have the correct quantum numbers. Such
states are necessarily noise artifacts arising from artifi-
cial expansion of Krylov space by noise, do not admit a
physical interpretation, and should be disregarded.12

In practice, the overlaps and thus ∆
ZCW(m)
k can only

be measured noisily, and the formal spuriosity crite-

rion
〈
ψ|yR(m)

k

〉
= 0 must be replaced by the practi-

cal ZCW test, ∆
ZCW(m)
k < εZCW. However, physical

intuition about overlaps can be used to guide the se-

lection of εZCW. For physical states, ∆
ZCW(m)
k corre-

sponds to the absolute, normalized squared overlap fac-

tor, such that 0 ≤ ∆
ZCW(m)
k ≤ 1. A simple choice of

εZCW = 10−2 or 10−3 is sufficient for analyses of typical
datasets where available precision allows extraction of

states with ∆
ZCW(m)
k ∼ O(0.1). Estimates for any physi-

cal state with overlaps above the cut will converge in the
limit of infinite statistics, while physical states below the
cut will not be extracted. However, small-overlap states
are difficult to resolve from noise; studies targeting such
states will necessarily require higher statistical precision,
allowing smaller values of εZCW to be chosen.
Although simple and practical, a fixed choice of εZCW

recovers only a subset of the full spectrum of Ritz values
in the infinite-statistics limit. It is thus desirable to define
a procedure with a better approach to this limit. The
same line of physical reasoning provides a simple and
natural definition. First, note that results with small m
are least impacted by noise and for at least some range
of m will have all Ritz vectors in the Hermitian subspace

and all Ritz values satisfying 0 < λ
(m)
k < 1. Define mH

to be the largest iteration where this holds, that is

mH ≡ max{m | [k ∈ H & 0 < λ
(m)
k < 1] ∀k}. (116)

The minimum value of ∆
ZCW(mH)
k provides a natural cut-

off for the smallness of overlap factors that can be unam-
biguously associated with physical states. For subsequent
iterations m > mH, Ritz values can be safely labeled
as spurious if the overlap factors are “much smaller”

12 In some cases, such as sectors where finite-volume analogs of
multi-particle scattering states are present at low energies, there
can be physical states that are approximately orthogonal due
e.g. to approximate symmetries that emerge at low energies.
Noise contributions then implicitly include contributions from
any approximately orthogonal physical states whose overlaps are
too small to be resolved from zero at a given level of statistics.

than this minimum value. This provides the cutoff εZCW

needed to define the ZCW test can then be defined as

εZCW ≡ 1

FZCW
min

k∈{1,...,mH}
∆

ZCW(mH)
k . (117)

For sufficiently noisy data, spurious states can arise as
early as m = 2 leading to mH = 1; this results in mH =

1 where by definition ∆
ZCW(1)
k = 1. For the mH = 1

case in particular it is preferable to impose a simple cut
εZCW = 10−2 or 10−3 since the data does not provide
additional information on the sizes of physical overlaps.
The only hyperparameter that enters Eq. (117) is the

factor FZCW, which simply quantifies the “much” in
“much smaller.” All numerical results below apply this
procedure with a default value of FZCW = 10; we find
results to be broadly insensitive to other choices in the
range FZCW ∈ [2, 20]. When applying bootstrap resam-
pling, mH and εZCW can be computed independently for
each bootstrap sample to provide idiomatic bootstrap es-
timators.
One important edge case that must be considered sep-

arately is the appearance of exponentially growing modes
associated with thermal effects on Euclidean lattices with
finite temporal extent. Exponentially growing modes
have effective overlaps suppressed by O(e−βE/2), and for
practical analyses where this is much smaller than εZCW

their identification requires a separate thermal ZCW test
as discussed in Sec. VF below.

4. Block ZCW

The physical perspective of ZCW as filtering on the
overlaps between Ritz vectors and the initial state gen-
eralizes immediately to block Lanczos. Specifically,
Eq. (112) generalizes naturally to define a separate test
quantity for each initial state |v1a⟩,

∆
ZCW(m)
ka ≡

∣∣∣〈vL1a∣∣∣yR(m)
k

〉〈
y
L(m)
k

∣∣∣vR1a〉∣∣∣
=
∣∣∣ω(m)

1ak (ω
−1)

(m)
k1a

∣∣∣ . (118)

The same logic as above—states that have vanishingly
small overlap with the initial state cannot arise from
physical transfer matrix evolution and must be due to
noise—applies in the block case to Ritz vectors that have
vanishingly small overlap with all interpolating opera-
tors present. This suggests a particular construction of
the “block ZCW test”

εZCW > ∆
ZCW(m)
k ≡

∑
a

∆
ZCW(m)
ka

=
∑
ab

∣∣∣ZR(m)∗
ka [C(0)−1]abZ

L(m)
kb

∣∣∣ ,
(119)

where the sum over a encodes that all overlaps must be
small and provides a choice independent of block oblique
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FIG. 11. Comparison of ∆
ZCW(m)
ka and ∆

CW(m)
ka for block

Lanczos results, computed on the central-value correlator of
the 2×2 nucleon example. Each marker corresponds to a pair
of values for some m, k, a, for all smearings a ∈ {T,W} and k
for all m ∈ [2, 48]. No graphical distinction is made between
different m and k. Blue and orange markers indicate results
for a = T , while green and red are for a = W . Blue and
green dots (orange and red Xs) are states within (without)
the Hermitian subspace. The top and bottom panels show
the same data with log and linear axes.

convention, as made clear by the re-expression in terms of
convention-independent quantities in the second equality.
The exact same prescription for choosing a physically
motivated εZCW using Eq. (116)-(117) can be used for
the block case.

5. Block CW

The eigenvalue-eigenvector identity can be applied to
T (m) exactly as in the scalar case to give∏

l̃

[
λ
(m)
k − λ̃

a(m)

l̃

]
= ω

(m)
1ak (ω

−1)
(m)
k1a

∏
l ̸=k

[
λ
(m)
k − λ

(m)
l

]
,

(120)

where λ̃
a(m)

l̃
denotes the l̃-th eigenvalues of the ma-

trix obtained by removing the a-th row and column of
T (m). Similar reasoning as in the scalar case gives the
a-dependent relation

∆
CW(m)
ka = ∆

ZCW(m)
ka

 ∏l ̸=k

∣∣∣λ(m)
k − λ

(m)
l

∣∣∣∏
l̃ ̸=c̃

∣∣∣λ(m)
k − λ̃

a(m)

l̃

∣∣∣
 , (121)

with c̃ = argminl̃

∣∣∣λ(m)
k − λ̃

a(m)

l̃

∣∣∣ and
∆

CW(m)
ka ≡ min

l̃

∣∣∣λ(m)
k − λ̃

a(m)

l̃

∣∣∣ . (122)
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FIG. 12. Comparison of ∆
ZCW(m)
k and ∆

CW(m)
k for block

Lanczos results. Details are as in Fig. 10, but for the block
generalizations Eq. (119) and Eq. (123). The data is the same
as shown in Fig. 11 but summed over a. The vertical line in-
dicates the cut εCW ≈ 1.5×10−2 selected using the bootstrap
histogram procedure of Ref. [1], while the horizontal line in-
dicates the cut εZCW ≈ 1.7× 10−2 selected by Eq. (117).

The same reasoning leading to Eq. (119) motivates con-
sidering

∆
CW(m)
k ≡

∑
a

min
l

∣∣∣λ(m)
k − λ̃

a(m)
l

∣∣∣ , (123)

i.e. the sum of the minimum distances between a Ritz
value and the eigenvalues obtained after knocking out
the first r rows and columns. This provides a quantity

that vanishes if and only if ∆
ZCW(m)
k vanishes and so pro-

vides a physically motivated starting point for a “block

CW” test ∆
CW(m)
k < εCW based on the sum of minimum

knockout distances. Numerical tests on the 2×2 nucleon
correlator matrix shown in Figs. 11 and 12 illustrate clear

proportionality between ∆
CW(m)
ka and ∆

ZCW(m)
ka , as well

the same quantities Eqs. (119) and (123) summed over a.
Unlike the scalar case, proportionality breaks down for
Ritz values where both are O(1).
Several other plausible extensions of the CW test could

be imagined, for example based on knocking out the first
block of rows/columns collectively. Ones we have ex-
plored tend to provide roughly similar levels of spurious
eigenvalue filtering as the block ZCW / block CW tests
defined above. Unsurprisingly, they show slightly worse

correspondence with ∆
ZCW(m)
k than this definition.

At a practical level, the block ZCW test provides al-
most identical spurious eigenvalue filtering as the block
CW test as seen in Fig. 12. The block ZCW test is com-
putationally more efficient, since it only requires calcula-

tion of ω
(m)
1ak (ω

−1)
(m)
k1a , which must already be computed
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to evaluate residual bounds, overlap factors, and/or ma-
trix elements. In contrast, the block CW test requires
r additional eigensolves at every iteration. Eigensolves
of T (m) are one of the dominant computational costs of
Lanczos analyses, and so the need to perform r+1 times
as many amounts to a significant overall increase.

It is interesting to note that, as visible in both the
scalar and block cases in Figs. 10 to 12, states in and
out of the Hermitian subspace are well-separated such
that—although there is no reason not to use the Hermi-
tian subspace test, which introduces no ambiguities or
additional hyperparameters—in principle, an appropri-
ate choice of εCW or εZCW is a sufficient state filtering
scheme by itself.

6. Results of filtering

Our final prescription for spurious state identification
used below is application of the Hermitian subspace test,
as described in Sec. VB, followed by application of the
ZCW test, Eq. (119). Figure 13 summarizes the re-
sults. After the initial few iterations, there are a gradu-
ally increasing number of real Ritz values, but typically
∼ 8− 10. Roughly 80% of real Ritz values correspond to
states in the Hermitian subspace, with a decreasing frac-
tion at late m, and a similar fraction of Hermitian states
survive additional ZCW filtering. The average number
of states in the Hermitian subspace is nearly constant at
≈ 7 after m ∼ 5 − 10. More sharply, the total number
of states identified as physical is nearly constant at ≈ 6
after m = 4. However, these figures represent averages,
and will vary from bootstrap to bootstrap.

D. Assessing state identification

Providing estimates and uncertainties for energy levels
requires state identification, i.e., labeling the Ritz values
within each bootstrap as the ground state n = 0, first
excited state n = 1, etc. In this work, we restrict to the
maximally simple “filter and sort” method where, after
filtering using Hermitian subspace and ZCW tests, we as-
sociate the largest surviving eigenvalue with the ground
state, the second-largest with the first excited state, etc.
However, the cautious analysis below finds some ambigu-
ities in this scheme, likely due to the low statistics used
for the demonstration. State identification is significantly
more challenging for states beyond the lowest-lying two,
i.e. those with n ≥ r, and future work on improved state
identification methods may be useful for improving the
precision of excited-state energy determinations.

However, to begin, we can demonstrate the advantage
of block over scalar Lanczos without the need to dis-
cuss state identification. Figure 14 shows histograms of
the overall distributions of Ritz values, comparing those
extracted by block Lanczos with those found by scalar
Lanczos applied to the diagonal correlators CTT or CWW .
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FIG. 13. Census of states surviving the various stages of spu-
riosity filtering, computed as a mean over Nboot = 200 (outer)
bootstraps on the 2×2 nucleon correlator matrix example. In
the legend, R denotes states with numerically real Ritz values
per Eq. (107), H denotes states in the Hermitian subspace,
and S denotes non-spurious states which survive both Her-
mitian subspace and block ZCW filtering. H|R indicates the
fraction of states which are in the Hermitian subspace, given
their Ritz values are real. S|H indicates the fraction of states
which are non-spurious, given they are in the Hermitian sub-
space.

The histograms are restricted to Ritz values that survive
spurious state filtering and to m ≥ 6 to remove pre-
convergence behavior, but then all remaining values for
allm, k over all bootstraps are binned together. All three
procedures produce similar-shaped peaks for the ground
state at right, as well as a mass of Ritz values near λ = 0
corresponding to very high-energy states.

The important difference lies in the intermediate part
of the spectrum: block Lanczos yields two clearly distinct
peaks, while each scalar Lanczos analysis yields only one.
Qualitatively, this suggests exactly the improvement in
ability to distinguish nearby states expected when ana-
lyzing correlator matrices instead of scalar ones. Com-
plicating this interpretation is that, as found in Ref. [2],
when scalar Lanczos is applied to a higher-statistics mea-
surement of CWW , it similarly finds two states in the
intermediate regime (as reproduced in Fig. 15). This
demonstrates that scalar Lanczos with sufficiently large
statistics can sometimes achieve similar energy resolution
as block Lanczos.

Figure 15 assesses the performance of filter-and-sort
state labeling by decomposing the total Ritz value his-
tograms into separate histograms for each state label.
The figure shows results for both the block Lanczos anal-
ysis, as well as a scalar Lanczos analysis of the high-
statistics CWW data for comparison. Interestingly, de-
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FIG. 14. For the nucleon correlator matrix, distributions of
Ritz values for all m ≥ 6 over Nboot = 200 (outer) bootstraps
as extracted by block Lanczos or scalar Lanczos applied to
either diagonal correlator, after removing spurious eigenvalues
with Hermitian subspace and ZCW tests.

spite the much lower statistics, the block Lanczos analy-
sis appears to resolve an intermediate state not seen by
the high-statistics scalar analysis. The peak for this state
is wide and thus not apparent in the total histograms of
Fig. 14.

The reduced statistics in the block example cause dif-
ficulties with state identification. In the high-statistics
setting, each of the four peaks is clearly associated with
a single state, up to some minor confusion between the
second and third excited state (i.e., the small green sub-
peak under the mostly-red leftmost peak). In the block
example, the validity of the labeling is less obvious. In
several instances, the labeling for a single state includes
density from multiple peaks (e.g. red, especially). While
unambiguous peak-state association in such a plot is not
necessary, it does raise suspicion.

Comparison with the noiseless demonstration of
Sec. III provides a mechanistic picture of the issue: the
spectrum is not extracted in monotonic order, and rather
states with large overlaps tend to be resolved earlier.
The apparent mislabelings can be explained as a signal-
dependent version of this same effect, which gives rise to
dislocations in the indexing of the spectrum due to in-
termediate states being resolved in some bootstraps but
not others. These labeling ambiguities motivate our use
of outlier-robust estimators based on bootstrap medians
discussed in the next subsection.

Before proceeding, we caution against overinterpret-
ing histograms like those of Figs. 14 and 15. These are
intended only to give a simple, global view of the dis-
tribution of Ritz values extracted by Lanczos analyses.
They do not admit a clean statistical interpretation in
terms of uncertainties or confidence about the location of
true eigenvalues. However, exploring state-identification-
agnostic constructions which may admit such interpreta-
tions could be an interesting topic for future work.
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FIG. 15. Distributions of Ritz values for all m ≥ 6 over
Nboot (outer) bootstraps after removing spurious eigenvalues
with Hermitian subspace and ZCW tests, for scalar Lanczos
on the high-statistics dataset of Ref. [2] (top) and block Lanc-
zos on the 2×2 nucleon correlator example (bottom). In each
panel, the gray filled histogram indicates all Ritz values, while
colored histograms indicate associations of Ritz values with
different states, with state identification made simply by sort-
ing Ritz values after filtering. The colored histograms sum to
the gray ones.

E. Bootstrap median with nested bootstrap
confidence intervals

The state-identification challenges above underscore
the fact that noise affects the spectra of Ritz values ob-
tained from Lanczos in non-trivial ways, even after spu-
rious state filtering. Moreover, filtering is imperfect in
practice, introducing additional difficulties. The combi-
nation of bootstrap resampling and outlier-robust esti-
mators provides a natural means to work past these dif-
ficulties, giving reliable results as long as the imperfect
filtering and labeling are not too imperfect. In particular,
we find that the median of Ritz values over bootstraps
provides a more reliable energy estimator than the sam-
ple mean. This can be intuitively understood from the
fact that state misidentification is a finite-statistics ar-
tifact that can lead to large effects in comparison with
statistical fluctuations of a particular Ritz value; outlier-
robust estimators that remove these large effects can be
expected to provide more accurate as well as more precise
estimators at finite statistics.

The statistical uncertainties of the bootstrap median
may be computed by bootstrap resampling and then re-
peating the entire analysis, including a second (nested)
step of bootstrap resampling and then taking the me-
dian. To calculate uncertainties, outer and inner boot-
strap ensembles are constructed as detailed in Sec. VA.
To define a Ritz-value estimator for a given outer ensem-
ble, compute (filtered and labeled) Ritz values for each of
the Nboot inner ensembles resampled from the outer one,
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then take the median over the inner estimates. Uncer-
tainties are computed simply from the variance over outer
bootstraps: for any quantity X with bootstrap samples
X(b) the uncertainty δX is defined as [60–62]

δX2 =
1

Nboot

∑
b

(X(b))2 −

(
1

Nboot

∑
b

X(b)

)2

. (124)

This formula provides an asymptotically unbiased esti-
mator for the variance of any random variable; in partic-
ular we apply it to the case where the random variable
X is

E(m)
n ≡ − lnmedian

b∈S(m)
n
λ(b,m)
n . (125)

where S(m)
n is the subset of bootstrap draws b that contain

at least n non-spurious Ritz values for iteration m—i.e.,
the median over draws where an estimate is available.
The bootstrap samples X(b) are then

E(b,m)
n ≡ − lnmedian

b′∈S(b,m)
n

λ(b,b
′,m)

n , (126)

where S(b,m)
n is the subset of inner bootstrap draws b′

from the outer ensemble b that contain at least n non-
spurious Ritz values for iterationm, from which the boot-

strap variance δE
(m)
n can be computed using Eq. (124).

Note that in noisy data applications below, E
(m)
n will al-

ways refer to the bootstrap median estimator, Eq. (125),

rather than the sample mean estimator − lnλ
(m)
n unless

explicitly specified.
To define the overall number of non-spurious states

N
(m)
max below, we first define N

(b,m)
max for each outer boot-

strap as the maximum n for which at least n non-spurious

Ritz values exist in 95% of the {λ(b,b
′,m)

n }, or in other

words the largest n for which S(b,m)
n contains at least

0.95Nboot elements.13 Applying Eq. (124) requires that

E
(b,m)
n is defined for each outer bootstrap,14 and therefore

N
(m)
max = minN

(b,m)
max is the maximum number of states for

which consistent error quantification is possible.

Both E
(m)
n and δE

(m)
n are asymptotically unbiased but

include finite-statistics bias suppressed by O(1/N). Bias
correction factors that reduce this bias to O(1/N2) are
well known [63]. However, as N → ∞ the correlation
function for t ≤ 2m− 1 will approach a convex form and
(assuming numerical precision is also taken to infinity ap-
propriately) there will be no spurious eigenvalues at itera-
tionm. Outlier-robust estimators will eventually become

13 The choice of 95% is arbitrary; any choice ≳ 50% will lead to
identical results in this case. Note that demanding 100% inclu-
sion would lead to pathological behavior in the Nboot → ∞ limit
since outliers due to (spurious or non-spurious) state misidenti-
fication occur with non-zero probability.

14 The pathological behavior of the Nboot → ∞ limit for inner boot-
straps with a 100% acceptance cut does not apply here because
the inner bootstrap median is already an outlier-robust quantity.
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FIG. 16. Distributions of Ritz values estimated over all N2
boot

inner bootstraps (top), and of the Nboot outer bootstrap sam-

ples of the median estimator E
(b,m)
n constructed from them

(bottom), as extracted by block Lanczos applied to the 2× 2
nucleon correlator matrix, for all m ≥ 6 after removing spu-
rious eigenvalues with Hermitian subspace and ZCW tests.
The colored histograms sum to the gray ones.

unimportant in the asymptotic regime where N → ∞
at fixed m. Iterations where the variance of bootstrap-
median estimators is significantly smaller than that of
sample-mean estimators are therefore in a qualitatively
different regime than the asymptotic regime, and it is not
obvious that 1/N bias correction will produce a more ac-
curate estimator. Since there are additional 1/

√
Nboot

statistical uncertainties introduced by the bias correc-

tion to E
(m)
n and taking Nboot arbitrarily large becomes

computationally expensive for nested median estimators,

we expect E
(m)
n to be a preferable estimator to the bias-

corrected analog 2E
(m)
n − 1

Nboot

∑
bE

(b,m)
n .

Figure 16 illustrates how this scheme regulates the is-
sues with state identification noted in the previous sub-
section. Note that the median is only defined after state
labeling, and thus the median estimator necessarily de-
pends on the precise choice of state identification scheme.
The distributions of Ritz values for states n ∈ {1, 2, 3} are
clearly more well-separated in the bootstrap median case
and show better resolved peaks. These peaks qualita-
tively resemble log-normal distributions that would cor-

respond to Gaussian E
(b,m)
n . As detailed in App. F, boot-

strap median Lanczos energy estimators are much closer
to Gaussian distributed than sample-mean versions of the

estimators; however, E
(b,m)
0 and E

(b,m)
3 still have observ-

able departures from Gaussianity as quantified by the
Kolmogorov-Smirnov and Shapiro-Wilk tests.

Eq. (124) provides an asymptotically unbiased esti-
mate of the variance of any random variable; how-

ever, sδE
(m)
n can only be interpreted as an sσ confi-

dence interval under the stronger assumption that the

E
(b,m)
n are Gaussian distributed. Given these observed
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FIG. 17. Lanczos energy estimators for the lowest-lying four states in the nucleon spectrum extracted using block Lanczos.

Errors are computed for E
(m)
n using bootstrap-median estimators as described in the text. Dotted vertical lines are placed just

after mH as defined in Eq. (116), the last iteration when all Ritz values/vectors satisfy all the physical constraints that arise
in the infinite-statistics limit, which is used to determine εZCW for the ZCW test. For m = 1 there are only two Ritz values;
for m = 2 the higher pair of energies are much above the plot range.

departures from Gaussianity, it is important to test

how accurately sδE
(m)
n approximates sσ confidence in-

tervals. These Gaussian approximations are compared
with direct confidence-interval calculations using empiri-
cal bootstrap confidence intervals in App. F. Despite the
departures from Gaussianity visible in Shapiro-Wilk test
results for E0, results for n ∈ {0, 1} at the largest m

show that Gaussian confidence interval estimates sδE
(m)
n

are within 10% of the empirical bootstrap confidence in-
tervals for sσ with s ∈ {1, 2, 3}. For n ∈ {2, 3} the
differences are somewhat larger but still less than 20%
in all cases. This quantifies the systematic uncertainties

associated with identifying sσ ≈ sδE
(m)
n .

Figure 17 shows the spectrum as extracted by the block
analysis using the Hermitian subspace test, ZCW test,

and bootstrap-median estimators. Energies E
(m)
n of the

cleanly identified Ritz values, n = {0, . . . , 3}, converge af-
ter 5-10 iterations and then fluctuate about stable values
with roughly constant uncertainties. The corresponding

residual bounds B
(m)
n are shown in Figure 18.

Using bootstrap-median estimators allows simply tak-
ing the estimates at the last iteration where residual
bounds can be computed, mmax = Nt/2− 1, as the final
output of the analysis. As observed in the initial ap-
plication of bootstrap-median estimators to scalar Lanc-
zos results in Ref. [1], correlations between Ritz values
at large m emerge for bootstrap-median estimators that
are obscured by additional uncorrelated noise present
in sample-mean estimators.15 This holds similarly for

15 These differences between sample mean and nested median es-
timators only appear after 10s of iterations, when many spu-
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FIG. 18. Residual bounds corresponding to the energy esti-
mators shown in Fig. 17. Note the uncertainties are defined
symmetrically but appear asymmetric due to the logarithmic
y axes.
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Lanczos Analysis E0 E1 E2 E3

Block 0.4122(72) 0.792(30) 1.14(7) 1.50(8)

Scalar TT 0.4240(91) 0.937(67) − −
Scalar WW 0.4217(69) 0.891(38) − −

High-stats WW 0.4170(22) 0.735(25) 1.31(7) −
High-stats WW [2] 0.4175(17) 0.736(34) 1.30(8) −

TABLE I. Comparison of E
(mmax)
0 and E

(mmax)
1 from block

and scalar Lanczos on the 2×2 matrix of {ψW , ψT } operators
described in Sec. VA, its diagonals, and the high-statistics
superset of this data analyzed in Ref. [2]. The row labeled
“High-stats WW [2]” quotes fits results to the estimators
without nested bootstrap used in that work.

Lanczos analysis Z0W Z0T Z1W Z1T

Block 0.366(15) 0.238(11) 0.535(21) 0.437(23)

Scalar TT − 0.261(15) − 0.642(58)
Scalar WW 0.392(16) − 0.650(13) −

High-stats WW 0.375(4) − 0.486(15) −
High-stats WW [2] 0.376(7) − 0.482(29)

TABLE II. The corresponding overlap factors, details as in
Table I. Note that Ref. [2] uses non-unit-normalized interpo-
lating operators whose overlaps differ from those shown here
by a normalization factor

√
CWW (0) ≈ 6.2801× 10−4.

block Lanczos analyses; as shown in Fig. 19, large cor-
relations (≳ 0.7) between energy estimators at large m
arise for block Lanczos results using bootstrap-median
estimators but not for results using sample-mean estima-
tors. These correlations signal that most of the useful
statistical information found in block Lanczos analysis of
C(t) considered over all m is captured by energy esti-
mators at any single large value of m. There is there-
fore little gain in precision from e.g. fitting the large-m
points to a constant, which moreover comes at the cost
of rigor. Such fitting processes require estimating the co-
variance matrix of many strongly correlated data points,
which requires statistical techniques to regulate numeri-
cal ill-posedness that often introduce additional subjec-
tive analysis choices and/or hyperparameters.

It is interesting to note that, as apparent from compar-
ison of Fig. 19 and Fig. 20, correlations ≳ 0.7 appear at
smaller m ≳ 8 in the block case than for scalar Lanczos
applied to either diagonal correlation function, which do
not stably display similar correlations until m ≳ 20 for

WW and m ≳ 25 for TT . The faster approach of E
(m)
0

to values strongly correlated with the large-m asymptotic
result could be related to the faster convergence of block
than scalar Lanczos for noiseless data. However, from
this example alone it is not clear whether this behav-
ior is generic or what features of the Lanczos algorithm

rious eigenvalues are present. In contrast, the uncertainties of
the effective mass are effectively identical when calculated using
bootstrap median and sample-mean estimators.
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FIG. 19. Correlations between Lanczos energy estima-
tors at different iteration counts for determinations using
sample-mean Ritz values (top) and bootstrap-median Ritz
values with idiomatic bootstrap uncertainties (bottom). The
bootstrap-median case corresponds to the (Pearson) correla-
tion matrix of the “outer bootstrap” samples of the “inner
bootstrap” medians.

(e.g. loss of biorthogonality after convergence of particu-
lar Ritz vectors [22, 42]) give rise to these differences.
Figure 21 compares block Lanczos energy estimators

with their scalar Lanczos counterparts for both of the
diagonal correlators. The strictly faster converge of block
than scalar Lanczos is manifest but not large, particularly
for the ψW operator with larger ground-state overlap.
The block Lanczos andWW scalar Lanczos energies both
converge within uncertainties for the ground state atm =
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FIG. 20. Correlations between scalar Lanczos energy esti-
mators using bootstrap-median Ritz values estimators; details
are as in Fig. 19.

3 (t = 5), while the TT correlation function converges
within uncertainties at around m = 7 (t = 13). Results
and uncertainties for the ground state are very similar
between block and both scalar analyses.

More significant differences between block and scalar
Lanczos are seen in the determination of E1. Here, block
estimates have significantly smaller uncertainties than ei-
ther WW or TT scalar estimates. Block Lanczos con-
verges more quickly and stably to a 2-3σ lower value than
the E1 determined from either TT orWW scalar Lanczos
analyses.

As already discussed, the last iteration where residual
bounds can be computed, mmax = Nt/2 − 1, provides
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FIG. 21. Comparisons of block Lanczos energy estimators
with scalar Lanczos estimators for the corresponding diagonal
correlators. Details are as in Fig. 17.

an estimator E
(mmax)
n that uses the maximum amount of

information in the correlation function to constrain the
spectrum. Table I compares these estimates with results
from the scalar Lanczos analysis of the high-statistics
WW correlator, showing statistical consistency between
all methods for E0. It is noteworthy that the E1 ob-
tained from block Lanczos is in 1σ agreement with the
high-statistics E1 result.
The power of block Lanczos to resolve higher-energy

excited states is visible in determinations of E2 and
E3, both of which have comparable precision to high-
statistics scalar results for E2. It is noteworthy that the
high-statistics E2 results are in between the two block
results and consistent with each within 2σ (and the cor-
responding residual bounds overlap at 1σ, see Sec. VI be-
low), but it is difficult to conclude from this data alone
which determination is more accurate.
As presented in Sec. II F, block Lanczos provides an

estimator for the overlap factors. Figure 22 shows the re-

sulting estimates, Z
(m)
na ,16 for each interpolator ψW and

16 For states in the Hermitian subspace, the R and L estimators
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FIG. 22. For the nucleon correlator matrix example, overlap

factors Z
(m)
na as estimated by m steps of block Lanczos for

states n ∈ {0, 1} and smearings labeled by a ∈ {W,T}. Un-
certainties are computed using bootstrap-median estimators
with idiomatic bootstrap confidence intervals.

ψT and the lowest two states n ∈ {0, 1}. As with the
spectrum, the overlap estimators converge rapidly and
provide clean signals with no SNR degradation with in-
creasing m. Predictably, the signal is cleaner for the
ground-state overlaps than for the excited state.

As with the spectrum, the block Lanczos extraction
of the overlaps demonstrates clear advantages over those
made by scalar Lanczos applied to the diagonal corre-
lators CWW and CTT , as compared in Figs. 23 and 24.
While the block and scalar estimators for the ground-
state overlaps Z0a are similar in value and uncertainty,
the excited-state estimates differ substantially. Each
scalar estimate for Z1a is shifted upwards versus its
block equivalent; this is likely associated with the down-
ward shift of the corresponding peaks in the scalar-
extracted Ritz value histograms of Fig. 14 versus the
block-extracted one. The scalar estimator for Z1T is sig-
nificantly noisier than the block one, which may again be

necessarily become identical, thus no distinction is necessary.
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FIG. 23. Comparisons of the block Lanczos overlap factors
for the “wide” ψW interpolator with those obtained using
scalar Lanczos, details as in Fig. 22.

associated with the relatively broader (orange) peak in
Fig. 14.

To summarize, in comparison with scalar Lanczos,
block appears most advantageous for excited-state en-
ergy and overlap determinations. These advantages—
in terms of both signal-to-noise and control of excited-
state effects—are clear but do not qualitatively change
the results for the lowest-energy states. However, it is
important to note that the two interpolators ψT and ψW

used in these example are very similar, differing only by
the choice of quark smearing radius. This is dissimi-
lar to the most important use-case for correlator matrix
data, wherein qualitatively different operators are used to
probe different single- and multi-particle channels. Com-
parisons between block and scalar analyses in this setting
are a critical topic for future work. Separately but no less
importantly, as explored in Sec. VI below, the advantages
offered by block Lanczos over GEVP are qualitative and
readily apparent even in this example.



30

■

■

■ ■
■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◇

◇

◇ ◇
◇ ◇

◇
◇ ◇ ◇ ◇ ◇ ◇ ◇

◇
◇ ◇

◇ ◇ ◇
◇ ◇ ◇

◇

■ ◇

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

■

■

■
■

■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■
■

■
■ ■

■ ■ ■

◇
◇ ◇

◇
◇

◇

◇ ◇ ◇ ◇

◇ ◇

◇

◇

◇ ◇

◇ ◇ ◇

◇
◇

◇

◇

■ ◇

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 24. Comparisons of the block Lanczos overlap fac-
tors for the “thin” ψT interpolator with those obtained using
scalar Lanczos, details as in Fig. 22.

F. Thermal states

The ZCW test proposed in Sec. VC and employed to
produce the results above is based on the assumption that
states with sufficiently small overlaps with all |ψa⟩ must
be spurious noise artifacts. However, as already noted,
there is a physically motivated counter-example to this
assumption: thermal effects lead to a modification of the
spectral representation

C(t) =
∞∑

n=0

[
|Zn|2e−Ent + |ZT

n |2e−ET
n (Nt−t)

]
, (127)

where the ET
n are the energies associated with states

that have time-reversed quantum numbers compared to
those of the |ψa⟩. For the (positive-parity) nucleon exam-
ple, ET

n corresponds to the energy spectrum of negative-
parity nucleon states—i.e. states with baryon-number 2,
isospin 1/2, and G−

1 cubic transformation properties,
describing negative-parity spin-1/2 finite-volume states.
Rearranging this expression gives

C(t) =
∞∑

n=0

[
|Zn|2e−Ent + |ZT

n |2eE
T
n t
]
, (128)

defining “apparent overlaps” ZT
n ≡ e−ET

n Nt/2ZT
n . Ther-

mal states therefore enter the spectral expansion of C(t)
as growing exponentials with very small overlap factors
ZT

n ∼ O(e−NtE/2).
As discussed in Ref. [1], applying Lanczos to a thermal

field theory correlator C(t) provides approximations to
both the transfer-matrix eigenvalues λn = e−En and also

the thermal modes λTn = eE
T
n . Thermal states can be ex-

pected to have physically reasonable overlaps ZT
n > εZCW

with the time-reversed initial state, but contribute to the
correlator with apparent overlaps ZT

n ≪ 1 likely much
smaller than εZCW for realistic lattice sizes and statis-
tical precision. Nevertheless, Lanczos should in princi-
ple be able to compute accurate approximations to these
modes from correlation functions at large t, where their
contributions grow exponentially and statistically precise
signals dominated by these modes are visible.

Accessing these exponentially growing modes requires
an adapted “thermal ZCW test” analogous to Eq. (113),
which defines states as non-spurious if

1 < [λ
(m)
k ]Nt∆

ZCW(m)
k < εZCW. (129)

Here, scaling ∆
ZCW(m)
k by [λ

(m)
k ]Nt = eNtE

(m)
k is equiva-

lent to applying the ZCW test to the physical overlaps
ZT
n rather than the apparent overlaps ZT

n .
To study the practical utility of this prescription, we

apply the thermal ZCW test to the Ritz values obtained
from analyzing the high-statistics nucleon correlator from
Ref. [2]. For iterations m < 44, no Ritz values pass the
thermal ZCW test. For m ∈ [44, 46], a single Ritz value
passes the thermal ZCW test. For m = mmax = 47, two
Ritz values pass the ZCW test with energies 0.632(7) and
1.128(23).17 These states, which can be interpreted as
part of the spectrum of negative-parity nucleon states,
have thermally suppressed overlap factors which after
rescaling by eEnNt/2 predict physical overlaps of 0.277(7)
and 0.545(4).

These energies and overlap factors can be compared
with the results for negative-parity states obtained by an-
alyzing the time-reversed correlator Crev(t) ≡ C(Nt − t)
with C(Nt) ≡ C(0) using the (non-thermal) ZCW test.
As illustrated in Tabs. III and IV, the negative-parity
energies and overlap factors extracted from thermal and
non-thermal modes are in excellent agreement. It is note-
worthy that almost identical precision is achieved using
the time-reversed correlator where the negative-parity
modes are visible for small m and the non-time-reversed
correlated where negative-parity modes are only visible
for the last few iterations.

17 In practice, finding any thermal modes passing both the ZCW
test and the Hermitian subspace test with εfloat = 10−8 requires
performing T (m) eigensolves using high-precision arithematic (in
addition to the Lanczos recursions). In contrast, all analyses of
non-thermal modes presented herein use double-precision eigen-
solves and find negligible differences with results obtained using
high-precision eigensolves.
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State Parity Spurious eval test E0 E1

+ ZCW 0.4170(22) 0.735(25)

+ Thermal ZCW 0.4186(23) 0.756(32)

− ZCW 0.638(10) 1.164(37)
− Thermal ZCW 0.632(7) 1.128(24)

TABLE III. Comparison of E
(mmax)
0 and E

(mmax)
1 deter-

mined with the usual ZCW test with those determined from
exponentially growing modes using the thermal ZCW test.
The parity of the state corresponds to the (opposite of the)
interpolating-operator parity for the ZCW (thermal ZCW)
test. The correlator analyzed to produce the results of the
second and third rows is the (time-)reverse of the correlator
analyzed for the first and fourth rows, Crev(t) = C(Nt − t).

State Parity Spurious eval test Z0W Z1W

+ ZCW 0.375(4) 0.486(15)

+ Thermal ZCW 0.379(5) 0.509(21)

− ZCW 0.284(9) 0.542(6)
− Thermal ZCW 0.277(7) 0.545(4)

TABLE IV. The corresponding overlap factors, details as in
Table III.

The thermal ZCW test can also be applied to the
Ritz values from the time-reversed (and thus negative-
parity) correlator analysis. In this case thermal modes
correspond to positive-parity states, and should there-
fore be consistent with the precise determinations of the
positive-parity spectrum from the non-reversed correla-
tor presented above. This is indeed the case; as shown
in Tabs. III and IV the energy and overlap results deter-
mined from thermal effects on negative-parity correlators
are in 1σ agreement with the standard determination of
the positive-parity spectrum. Again, the uncertainties of
the thermal and non-thermal determinations are almost
identical.

The nearly identical precision of results from reversed
and non-reversed correlators is unsurprising from the
point of view that, with m = mmax, the Krylov spaces
appearing in both cases should have almost the same
physical content only differing by the inclusion of states
for t very close to either end of the correlator. Since the
Ritz values are uniquely defined, optimal eigenvalue ap-
proximations in Krylov space [22], the same Ritz values
ought to be determined from reversed and non-reversed
correlators. The fact that this expectation is borne out
in practice even in the presence of noise suggests that
the spurious eigenvalue filtering described enough is suf-
ficient to provide a physical subspace of states that obey
the expected properties of Krylov-space estimators.

Although a detailed study of nucleon resonances re-
quires extraction of a range of finite-volume energy levels
including those overlapping with multi-particle (e.g. Nπ)
interpolating operators, it is interesting to note that in

the positive parity sector E+
1 /E

−
0 = 1.76(6) is nearly

consistent with the experimental ratio MN∗(1710)/MN ≈
1.823, while E−

0 /E
+
0 = 1.53(3) is reasonably close to

the experimental ratio MN∗(1535)/MN ≈ 1.636. The
deviations from the physical ratios may easily be ac-
counted for by the slightly heavier quark masses used
here (mπ ≈ 170 MeV) than in nature and finite lattice-
spacing effects. This underscores the fact that Lanczos
converges to genuine energy levels in the spectrum; how-
ever, they are not necessarily the lowest energy levels.
In particular, it is noteworthy that this Lanczos anal-
ysis does not reveal an energy level close to the ex-
pected position of the positive-parity Roper resonance,
MN∗(1440)/MN ≈ 1.535. Further, there are no energy
levels obtained by this Lanczos analysis that are close to
the energies of non-interacting P -wave Nπ and S-wave
Nππ states, which for this volume give ENπ/MN ≳ 1.26
and ENππ/MN ≳ 1.24. Block Lanczos analysis of corre-
lator matrices involving N , Nπ, and Nππ are likely to
be required in order to obtain a complete picture of the
low-energy spectrum at finite statistics.

VI. COMPARISON WITH GEVP

The block Lanczos formalism and numerical results
above can be compared with the state-of-the-art method
to date for analyzing LQCD correlator matrices Cab(t),
which starts by considering the right18 GEVP [5],∑

b

Cab(t)Gbk(t, t0) = λk(t, t0)
∑
b

Cab(t0)Gbk(t, t0),

(130)
where λk(t, t0) and Gbk(t, t0) are the k-th generalized
eigenvalues and eigenvectors, respectively. For Hermitian
C(t) = C(t)†, the λk(t, t0) provide upper bounds on the
largest eigenvalue λ0 of T [3–5]. Further, if the λk(t, t0)
are ordered such that λ0(t, t0) ≥ . . . ≥ λr−1(t, t0), then
Cauchy’s interlacing theorem guarantees that there are at
least k transfer matrix eigenvalues satisfying λ0 ≥ . . . ≥
λk ≥ λk(t, t0) for all k ∈ {0, . . . , r − 1} [7]. That is,
λk(t, t0) provides a lower bound on the kth true eigen-
value λk. Moreover, λk(t, t0) and Gbk(t, t0) may be used
to construct estimators for energies, overlap factors, and
matrix elements as described below.

A. Block Lanczos generalizes GEVP

Before proceeding, we may demonstrate immediately
that GEVP coincides with a single step of block Lanc-
zos. Noting that, in numerical applications, correlator
matrices C(t) are always invertible for all t permits re-
working the GEVP into an equivalent (non-generalized)

18 See Appendix E for discussion of the corresponding left GEVP.
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eigenproblem,∑
b

[C(t0)
−1C(t)]abGbk(t, t0) = Gak(t, t0)λk(t, t0) .

(131)
Thus, the GEVP eigenvalues and eigenvectors are simply
those of C(t0)

−1C(t). Meanwhile, the Ritz values after a
single step of block Lanczos are obtained by diagonalizing
Eq. (17),

T
(1)
11 = α1 = β−1

1 C(1)γ−1
1 . (132)

Eigenvalues are invariant under conjugation by an arbi-
trary matrix and its inverse; conjugating by γ1 and using
C(0) = β1γ1 per Eq. (15) gives

γ−1
1 T

(1)
11 γ1 = γ−1

1 β−1
1 C(1)

= C(0)−1C(1) .
(133)

Therefore the Ritz values from one step of block Lanczos
and the GEVP eigenvalues for t0 = 0 and t = 1 are
both equal to the eigenvalues of C(0)−1C(1) and thus
identical to each other,

λk(1, 0) = λ
(1)
k . (134)

Alternately, one may simply observe that a valid choice
of oblique convention is β1 = C(0) and γ1 = 1, for which

T
(1)
11 = C(0)−1C(1) identically.
The coincidence applies not only for eigenvalues, but

also eigenvectors and the problem in abstract. Rear-

ranging Eq. (133) gives T
(1)
1a1b = [γ1C(0)−1C(1)γ−1

1 ]ab
which, in conjunction with the eigenvector relation∑

b T
(1)
1a1bω

(1)
k1b = ω

(1)
1akλ

(1)
k for m = 1, gives∑

b

[γ1C(0)−1C(1)γ−1
1 ]abω

(1)
1bk = ω

(1)
1akλ

(1)
k . (135)

Left multiplying both sides by C(0)γ−1
1 yields the equiv-

alent GEVP,∑
bc

Cab(1)
(
γ−1
1bcω

(1)
1ck

)
= λ

(1)
k

∑
bc

Cab(0)
(
γ−1
1bcω

(1)
1ck

)
.

(136)
This is precisely the form of Eq. (130), allowing the
GEVP eigenvectors to be identified as

Gbk(1, 0) =
∑
c

γ−1
1bcω

(1)
1ck . (137)

The exact relation between the two methods holds in
full generality, not only for t0 = 0 and td = 1: a single
step of block Lanczos applied to the reindexed correlation
function

C̃ab(t) = Cab(t0 + t td), (138)

will result in an eigenproblem for C̃(0) = C(t0) and

C̃(1) = C(td) equivalent to the GEVP for any t0, td.

The Ritz values λ̃
(1)
k , eigenvectors ω̃

(1)
1bk, and γ̃−1

1 obtained
from this reindexed correlation function are therefore re-
lated to the GEVP eigenvalues and eigenvectors by

λk(td, t0) = λ̃
(1)
k ,

Gak(td, t0) =
∑
b

γ̃−1
1abω̃

(1)
1bk.

(139)

Formally, this may be understood as applying a sin-
gle step of block Lanczos to estimate the eigenvalues
of the operator T td−t0 with redefined initial states. For
even t0 ̸= 0, the initial states may be taken as ⟨χa| →
⟨χa|T t0/2 and |ψb⟩ → T t0/2 |ψb⟩. For odd t0, it must
instead be viewed as applying a single step of oblique
block Lanczos with distinct initial and final states, e.g.
⟨χa| → ⟨χa|T (t0−1)/2 and |ψb⟩ → T (t0+1)/2 |ψb⟩.
Block Lanczos can therefore be viewed as a generaliza-

tion of GEVP that uses an m-times larger-dimensional
Krylov space to approximate the transfer matrix after
m iterations. This is analogous to how scalar Lanczos
generalizes the power-iteration algorithm (i.e. standard
effective estimators for energies, overlaps, and matrix el-
ements [1, 2]). Since both GEVP and block Lanczos
construct optimal Krylov-space approximations to the
transfer-matrix eigensystem by explicitly diagonalizing
their respective approximations of the transfer matrix,
the larger Krylov space explored by block Lanczos nec-
essarily leads to faster convergence than GEVP. Indeed,
for systems with small gaps (in lattice units) such that
Er − E0 ≪ 1, where achieving fast convergence is most
important, block Lanczos converges to the ground state

at a rate of e−2t
√
Er−E0 afterm iterations with t = 2m−1

according to Eq. (87), while GEVP converges at an ex-
ponentially slower rate of e−t(Er−E0) [5, 6].

B. Numerical comparisons

To demonstrate that block Lanczos not only extends
but improves upon GEVP methods, we compare the two
in applications to both the noiseless mock-data exam-
ples of Sec. III and the noisy nucleon example of Sec. V.
Comparisons are complicated by the many different vari-
ations in precise definitions of GEVP estimators for en-
ergies, overlap factors, and matrix elements. For the
sake of demonstration, we define and apply two differ-
ent sets of estimators—specifically, one “moving pivot”
scheme and another with a “fixed pivot”, as defined pre-
cisely below. In the noiseless applications, in extractions
of the spectrum, overlap factors, and matrix elements,
we demonstrate the improved convergence properties of
block Lanczos over both GEVP and scalar Lanczos. In
determinations of the spectrum and overlap factors in
the noisy case, we demonstrate not only improved con-
vergence but also an advantage in SNR properties, ex-
tending the success of scalar Lanczos to the block case
as well. While different variations on the GEVP anal-
yses may perform slightly differently, the demonstrated
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advantages of block Lanczos should be expected to hold
generically.

1. GEVP definitions

Rather than using GEVP eigenvalues directly, it is
common practice to define an effective energy estima-
tor [5, 6],

Ek(t, t0) ≡ − ln

(
λk(t, t0)

λk(t− 1, t0)

)
, (140)

resembling but with distinct properties from the usual
effective energy, as discussed further below. Different
“moving pivot” (MP) schemes to choose t0 as a function
of t are employed in practice. For large t, choosing19

t0 = ⌊t/2⌋ to define

EMP
k (t) ≡ Ek(t, ⌊t/2⌋) (141)

guarantees that EMP
0 (t) converges to E0 exponentially

quickly with excited-state contamination suppressed by
O(e−t(Er−E0)) [5, 6]. At finite t, the inequalities above
guarantee that there exist k energies with E0 ≤ . . . ≤
Ek ≤ EMP

k (t) for all k ∈ {0, . . . , r − 1}. This allows
GEVP solutions to provide rigorous one-sided bounds on
LQCD energy levels as emphasized in Refs. [7, 64, 65].

A downside of the moving-pivot approach is that
λk(t, t0) does not possess an exact spectral representa-
tion as a sum of exponentials even for fixed t0, because
the relative contributions of different energy eigenstates
to λk(t, t0) depend on both t and t0. This can some-
times complicate the analysis of excited-state effects. A
widely used approach for circumventing this issue are
“fixed pivot” (FP) schemes, wherein one defines fixed-
pivot correlation functions [3–5]

Ĉk(t; td, t0) ≡
〈
Ψk(t; td, t0)Ψ

†
k(0; td, t0)

〉
, (142)

using optimized interpolators

Ψk(t; td, t0) ≡
∑
a

ψa(t)G
∗
ak(td, t0) (143)

defined from the generalized eigenvectors or “GEVP
weights” Gak(td, t0) at pivot time t0 and “reference time”
td. Such fixed-pivot correlation functions possess convex
spectral representations as functions of t [66, 67],

Ĉk(t; td, t0) =
∞∑
n=0

|Ẑkn(td, t0)|2e−tEn , (144)

19 Where ⌊·⌋ indicates the integer floor operation, i.e. rounding
down to the nearest integer.

where Ẑnk(td, t0) =
〈
n
∣∣Ψk(0; td, t0)

†
∣∣Ω〉. These can be

used to define an effective energy

EFP
k (t; td, t0) ≡ − ln

(
Ĉk(t; td, t0)

Ĉk(t− 1; td, t0)

)
, (145)

which shares all the properties of the usual effective en-
ergy defined on a scalar correlator due to Eq. (144).
Explicit effective estimators can also be defined for

overlap factors by generalizing simpler constructions
from scalar correlator analyses [67]. For example, the
moving-pivot effective overlap employed here is

ZMP∗
ak (t, t0) ≡

∑
b Cab(t)Gbk(t, t0)

λk(t, t0)
1
2 t/(t−t0)

√
Ĉk(t; t, t0)

(146)

where Ĉk(t; t, t0) is as in Eq. (142); we take t0 = ⌊t/2⌋ in
all demonstrations below. We use an analogous definition
for the fixed-pivot estimator,

ZFP∗
nk (t; td, t0) ≡

∑
b Cab(t)Gbk(td, t0)

e−
1
2 tE

FP
k (t;t0,td)

√
Ĉk(t; td, t0)

(147)

where EFP
k (t; t0, td) is the effective energy estimator of

Eq. (145).
Explicit GEVP estimators can be defined for operator

matrix elements Jfi = ⟨f ′| J |i⟩ in terms of the three-
point function matrix C3pt(σ, τ) and two-point matri-
ces C(t) and C ′(t) with initial- and final-state quantum
numbers, respectively. In demonstrations below, we use
the moving-pivot effective estimator [6]

JMP
fi (t,m) =

∑
ab

G′∗
af (t, 2m)C3pt

ab (m,m)Gbi(t, 2m)

(148)
where G and G′ have been computed from C and C ′,
respectively. This expression directly generalizes the
power-iteration estimator for the effective matrix element
derived in Ref. [2]. Note that only a single point of three-
point function data at σ = τ = m is incorporated, and
varying t only changes how G and G′ are derived from
the two-point data. An analog of the t0 = ⌊t/2⌋ MP
scheme can be obtained by taking m = ⌊t/4⌋.

Fixed-pivot approaches are more commonly employed
in GEVP matrix element analyses. Using GEVP inter-
polators as in Eq. (143), one may define [68]

Ĉ3pt
fi (σ, τ ; td, t0) ≡

〈
Ψ′

f (σ + τ ; td, t0)J(τ)Ψ
†
i (0; td, t0)

〉
=
∑
ab

G′∗
af (td, t0)C

3pt
ab (σ, τ)Gib(td, t0) .

(149)
As with the FP two-point function, the elements of the
resulting FP three-point matrix admit good spectral ex-
pansions and thus can be analyzed as with any other
three-point function. While this is often accomplished
by fitting, to reduce the complexity of comparisons we
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FIG. 25. The lowest two energies in the spectrum of the
noiseless example Eq. (72) (top) and their relative errors ver-
sus the true value (bottom) as extracted by block Lanczos
(blue), GEVP with a moving pivot at t0 = ⌊t/2⌋ (orange),
and GEVP with a fixed pivot at t0 = 5 and td = 10 (green).
For each k, the two GEVP estimates closely coincide at all
t. In the bottom panel, the relative errors for both k = 0
and 1 collapse into two curves, one for block Lanczos and one
for the GEVP estimators. Block Lanczos solves for the true
eigenvalues exactly after m = Nt/4 = 8 steps.

instead restrict to explicit effective estimators applied to
the individual correlators in Ĉfi(t). Specifically, we em-
ploy summation (Eq. (78)) and power-iteration (Eq. (77))
effective matrix elements as in Sec. III C.
Some additional GEVP definitions are required for

analysis of noisy data. Rather than filtering and treat-
ing the resulting partial data missingness as in a Lanczos
analysis, we take the more standard approach of fully
discarding GEVP estimates for t0, td where any complex
eigenvalues arise. Separately, the FP scheme requires
some choice of t0 and td to define the pivot; here, we
use t0 = 12 and td = 19 as selected using the automated
procedure of Ref. [65].20 The FP scheme is defined tak-
ing a common pivot matrix Gak across all bootstraps,
computed from the central-value expectation of C(t)—
i.e., the change of operator basis is not included in the
error propagation. The same definitions are used below
for overlaps and matrix elements.

20 Contributions to Gak(td, t0) from states with energies above Er

are exponentially suppressed for large t0 and td. For large enough
t0 and td where these contributions are negligible, EFP

k (t, t0, td))

will be identical to EMP
k (t) up to statistical uncertainties. In this

regime, the positive features of both moving- and fixed-pivot
GEVP effective mass estimators, including monotonicity with t
and the interlacing theorem, apply to either definition. However,
statistical noise increases with t0 and td and results will become
unreliable if t0 and td are taken too large at finite statistics.
The algorithm of Ref. [65] selects the largest t0 and td where
there is statistical agreement between fixed- and moving-pivot
estimators.

2. Spectrum

We first compare block Lanczos with GEVP in appli-
cation to the noiseless mock-data example from Sec. III,
Eq. (72). The faster convergence of block Lanczos over
GEVP extractions of the spectrum is unambiguous, as
shown in Fig. 25, which compares block Lanczos with
both the moving-pivot scheme with t0 = ⌊td/2⌋ as well
as a fixed-pivot GEVP with t0 = 5 and td = 10 (note
FP results are only weakly sensitive to the choice of t0
and td in the noiseless case). With m = 1, block Lanc-
zos and both GEVP schemes give identical results as
expected,21 and for a few iterations, GEVP and block
Lanczos provide comparable extractions. However, with
increasing iterations, block Lanczos converges exponen-
tially faster, as predicted by comparison of the block KPS

bound of Sec. IV leading to e−2t
√
Er−E0 convergence in

comparison to the e−t(Er−E0) convergence provided by
GEVP [5, 6]. Besides improving convergence on the low-
est r = 2 states shown in Fig. 25, block Lanczos yields
additional energy estimates for (m − 1)r higher states
that are unconstrained by GEVP, as explored in Sec. III.
Proceeding to the noisy nucleon example, Fig. 26 com-

pares the block Lanczos extraction of the ground and
first excited states with estimates made with two differ-
ent GEVP schemes: the FP scheme noted above and
the moving-pivot (MP) scheme with t0 = ⌊t/2⌋. The
improved convergence and signal-to-noise properties of
block Lanczos over either GEVP scheme are apparent.
At t = 1, the block Lanczos and MP GEVP estimators
are (statistically) identical; the FP estimators as defined
here differ nontrivially in the noisy case. However, exam-
ining t > 1, energy estimates by block Lanczos reach their
steady-state values earlier than those of either GEVP
scheme; this is especially clear for the excited-state en-
ergy E1. At early times before convergence, the GEVP
estimates are more precise than the Lanczos ones, similar
as observed in analogous scalar correlator analyses [1, 2].
However, signal-to-noise for the Lanczos extractions re-
mains constant (up to fluctuations) after the estimates
have converged, while SNR for both GEVP schemes de-
creases exponentially. The Lanczos estimate of E0 is con-
sistent with the plateaus observed in each GEVP estima-
tor, but for E1, SNR degrades in the GEVP estimates
before any convincing plateau is achieved.
Block Lanczos results from the last iteration where

residual bounds can be computed, mmax = 47, are com-
pared to multi-state fits to FP GEVP results as well as
other scalar Lanczos results in Figs. 27 and 28. The only
block Lanczos hyperparameter is FZCW = 10, parame-

21 For GEVP estimators defined as effective energies, Eqs. (141)
and (145), this holds for the MP definition because λ(0, 0) = 1.
This alignment of definitions is intentional, to reflect the deeper
underlying coincidence between GEVP eigenvalues and Ritz val-
ues discussed above. For FP schemes the alignment is not exact,
see noisy results below.
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FIG. 26. Energy estimates for the two lowest-lying states in
the nucleon spectrum as extracted by block Lanczos (blue),
GEVP with a moving pivot t0 = ⌊t/2⌋ as in Ref. [6] (orange),
and GEVP with a fixed pivot with t0 = 11 and td = 18 chosen
using the algorithm of Ref. [65] (green). Bootstrap-median es-
timators are used for block Lanczos. In all cases, uncertainties
are computed using idiomatic bootstrap confidence intervals.

terizing how much smaller overlaps must be than ones at
smallm to be labeled spurious. This amounts to an enor-
mous practical reduction in complexity versus the fits to
the FP correlation functions, which are performed using
the strategy summarized in Fig. 16 of Ref. [69]: in brief,
fits are performed for all possible tmin ∈ [2, tmax−6] where
tmax is chosen as the largest t where the SNR of EFP

k (t)
is greater than 0.2. Linear shrinkage [70, 71] is used to
regulate numerical instabilities in covariance matrix in-
version. One-, two-, three-, ... state fits are performed
until adding states does not lower the Akaike information
criterion [72] (AIC) by more than a threshold of 0.5Ndof .
Various checks on the consistency of numerical optimiza-
tion detailed in Ref. [69] are then performed. A weighted
average of the AIC-preferred fits for each tmin passing
these checks is then taken, where the weights are pro-
portional to the p-value divided by the variance of each
fit [73]. Hyperparameters enter this scheme through the
numerical values specified above and others detailed in
Ref. [69], as well as the hyperparameters for choosing t0
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FIG. 27. Block Lanczos results for E
(mmax)
0 (top) and

E
(mmax)
1 (bottom) with mmax = 47, shown in Fig. 17, are

compared with FP GEVP fits performed as described in
Refs. [64, 65, 69] as well as scalar Lanczos results from
the corresponding diagonal correlator matrix entries, higher-
statistics scalar Lanczos analysis. Results with bootstrap un-
certainties are shown as points with error bars in all cases.
Dotted arrows indicate variational bounds. Residual bounds
for Lanczos results are shown as intervals whose upper and
lower edges are marked by error bars showing bootstrap un-
certainties on − ln(λk ±

√
Bk).

and td summarized in Fig. 16 of Ref. [65] that here lead
to t0 = 11 and td = 18. For n = 0, the fits with weights
above 0.1 that result from this procedure are one-state
fits with tmin ∈ [9, 12] and two-state fits for tmin = 4. For
n = 1, the only fits with weights above 0.1 are two-state
fits with tmin ∈ [2, 3].

Note that this GEVP analysis prescription is far from
unique. The GEVP formalism admits many other possi-
ble analyses of the same data, all of which ideally should
give statistically compatible results. Tables V and VI
tabulates multi-state fit results for various tmin and num-
bers of states included in the fit.
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Nstates tmin E0 χ2/Ndof Ndof

3 2 0.403(12) 1.0 13

3 3 0.4221(50) 1.7 12
3 4 0.466(27) 29 11
3 5 0.4025(93) 1.3 10
3 6 0.4331(20) 4.1 9
3 7 0.4288(84) 4.0 8
3 8 0.4139(60) 1.1 7
3 9 0.4157(40) 1.4 6
3 10 0.4143(42) 1.6 5
3 11 0.4138(71) 1.9 4
3 12 0.416(10) 2.5 3
3 13 0.42(21) 3.7 2
3 14 0.422(12) 7.1 1
2 2 0.4293(30) 2.0 15
2 3 0.5213(51) 129 14
2 4 0.4146(59) 1.2 13
2 5 0.4448(26) 7.2 12
2 6 0.4331(50) 3.4 11
2 7 0.410(11) 1.0 10
2 8 0.4233(49) 2.3 9
2 9 0.4157(40) 1.0 8
2 10 0.4143(54) 1.1 7
2 11 0.4139(62) 1.3 6
2 12 0.4159(69) 1.5 5
2 13 0.4173(94) 1.9 4
2 14 0.42(21) 2.4 3
2 15 0.41(21) 3.1 2
1 2 0.8147(84) 260 17
1 3 0.5213(51) 110 16
1 4 0.4658(30) 21 15
1 5 0.4448(26) 6.2 14
1 6 0.4331(30) 2.9 13
1 7 0.4289(34) 2.7 12
1 8 0.4233(36) 1.9 11
1 9 0.4157(40) 0.83 10
1 10 0.4143(42) 0.87 9
1 11 0.4138(61) 0.97 8
1 12 0.4158(69) 1.1 7
1 13 0.417(10) 1.2 6
1 14 0.422(11) 1.4 5
1 15 0.411(16) 1.5 4

TABLE V. Multi-state fit results for the n = 0 FP GEVP
correlator with tmax = 19; see the main text for details.

Nstates tmin E1 χ2/Ndof Ndof

3 2 0.86(10) 0.60 3

3 3 0.862(25) 0.92 2
3 4 1.09(13) 290 1
2 2 0.892(12) 1.1 5
2 3 0.862(20) 0.46 4
2 4 0.84(14) 0.44 3
2 5 1.01(10) 36 2
1 2 1.2561(17) 500 7
1 3 1.1608(23) 170 6
1 4 1.0852(33) 57 5
1 5 1.0131(56) 18 4

TABLE VI. Multi-state fit results for the n = 1 FP GEVP
correlator with tmax = 9; see the main text for details.
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FIG. 28. Results as in Fig. 27 shown for E2 and E3 where
available along with E1.

A weighted average of GEVP fit results performed as
described above gives E0 = 0.4150(59). This is in excel-
lent agreement with all Lanczos results, and all analyses
of the same data give comparable uncertainty estimates.
For E1, a weighted average of GEVP fit results gives
0.879(25), which differs from the high-statistics scalar
Lanczos result 0.735(25) by 4σ, while the block Lanczos
result, 0.792(32), shows only 1.4σ tension (see Tab. I).
Other choices of GEVP fit hyperparameters lead to sim-
ilar tensions; for instance increasing the noise tolerance
to 0.5 leads to tmax = 11 instead of tmax = 9 changes the
weighted average fit for E1 to 0.879(21). Scalar Lanczos
results for the diagonal correlation functions also show
2-3σ tensions in comparison with high-statistics results.
However, the residual bounds − ln(λ1±

√
B1) provided by

scalar Lanczos results are in 1σ agreement with the cor-
responding high-statistics results. This residual-bound
consistency shows that each result could be converging
to the same true energy eigenvalue but with significant
excited-state effects still present in one or more deter-
minations. Agreement at the level of Ritz value sta-
tistical uncertainties between block Lanczos and high-
statistics scalar Lanczos suggests that the low-statistics
scalar Lanczos results for E1 still include statistically sig-
nificant excited-state effects that are effectively removed
by block Lanczos (or by going to higher statistics where
they can be resolved more easily). With only GEVP re-
sults for guidance, any interpretation of E1 as more than
a variational upper bound is therefore likely to be incor-
rect at 4σ in this example.

The residual bounds for n ∈ {2, 3} from block Lanczos
both overlap the residual bounds for n = 2 from the high-
statistics scalar analysis, making it difficult to conclude
whether block has resolved two distinct physical states or
encountered an artificial degeneracy due to the appear-
ance of multiple eigenvalues, which can generically occur
for block Lanczos states with n ≥ r [22].
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FIG. 29. Relative error in ground-state overlap factors
estimated in the noiseless example Eq. (72) by block Lanc-
zos (blue), the moving-pivot GEVP estimator Eq. (146) with
t0 = ⌊t/2⌋ (orange), and the fixed-pivot GEVP estimator
Eq. (147) with t0 = 5 and td = 10 (green). Block Lanczos
solves for the true overlap factors exactly at m = Nt/4 = 8
steps. The sign convention Zk0 > 0 has been enforced by
hand for the GEVP estimate of Z01.

3. Overlap factors

For the noiseless example of Sec. III, Figure 29 com-
pares convergence of different Lanczos and GEVP esti-
mators of overlaps with ψT and ψW for the lowest-lying
two states. As with the spectrum, while GEVP provides
a comparable-quality estimate at early times, block Lanc-
zos estimators converge exponentially more rapidly. In
practice, it is necessary to manually enforce the sign con-
vention Zk0 > 0 on the GEVP estimates.

For the noisy nucleon data of Sec. V, Fig. 30 com-
pares block Lanczos overlap estimators with the GEVP
estimators, demonstrating an even more clear advantage
than for the spectrum. Note that we find that the sign
convention Zk0 > 0 must be enforced by hand for the
GEVP results, achieved by applying an overall sign to
Zka at each t and within each bootstrap. For all GEVP
overlaps, the signal breaks down more rapidly than for
the spectrum, with SNR quickly degrading before each
estimator begins producing complex values and thus be-
coming unreliable. While the FP GEVP produces con-
sistent results for the ground state overlaps Z0a, the MP
estimator does not provide a clear plateau and passes
through the value indicated by the Lanczos estimator in
each case. For the excited state overlaps Z1a, neither
GEVP scheme produces any convincing plateau before
signal is lost; the FP GEVP scheme for Z1a presents a
brief but potentially deceptive pseudo-plateau. In con-
trast, block Lanczos provides stable results with no SNR
decay and none of the pathological behaviors observed
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FIG. 30. For the nucleon correlator matrix example, overlap
factors as computed by block Lanczos (blue) and by GEVP
with a moving pivot at t0 = ⌊t/2⌋ as in Ref. [6] (orange), and
GEVP with a fixed pivot with t0 = 11 and td = 18 chosen
using the algorithm of Ref. [65] (green). Bootstrap-median
estimators are used for block Lanczos. In all cases, uncer-
tainties are computed using idiomatic bootstrap confidence
intervals.

for the GEVP estimators.

4. Matrix elements

For the noiseless mock-data example of Sec. III, Fig. 31
compares convergence of block Lanczos estimates of the
diagonal matrix elements J00 and J11 with the moving-
pivot GEVP estimator Eq. (148), as well as different es-
timators constructed from the fixed-pivot GEVP three-
point function Eq. (149). As expected, the moving-pivot
GEVP estimator Eq. (148) with m = ⌊t/4⌋ coincides
with the block Lanczos one at t = 1. Block Lanczos pro-
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FIG. 31. For the off-diagonal noiseless example Eq. (75),
estimates of diagonal matrix elements for the ground state
J00 (top) and first excited state J11 as computed by block
Lanczos (blue), by GEVP with a moving pivot at t0 = ⌊t/2⌋
per Eq. (148), and using the summation (Eq. (78), green)
and power iteration (Eq. (77), red) estimators applied to the
diagonals of a GEVP three-point constructed per Eq. (149)
for a fixed pivot at t0 = 5 and td = 10. Block Lanczos solves
for the true J00 exactly after m = Nt/4 = 8 steps.

vides a qualitatively improved extraction of each. For
either state, the initial Lanczos estimate changes non-
smoothly—a feature advertising non-convergence—then
converges quickly to the true value. In contrast, the
GEVP estimates vary smoothly22 and converge poorly.
While the FP estimators for J00 provide a good estimate
by the final step, the MP estimator shows potentially de-
ceptive behavior: the estimate changes only slowly while
still visibly offset from the true value. For the excited-
state J11, the MP estimator clearly does not converge
before the end of the correlator. The two FP estimators
drift near the true J11 but will not provide a reliable es-
timate; in the FP scheme each will eventually converge
to J00, which behavior is suggested by the upwards turn
in each by the end of the correlator.

VII. CONCLUSIONS

We present a new method to extract energies, over-
laps, and operator matrix elements from correlator ma-
trix data based on an oblique block Lanczos algorithm
and a new physically motivated test for spurious state fil-
tering. The method extends and improves upon GEVP

22 Up to expected even-odd effects in the MP estimator due to
t0 = ⌊t/2⌋, and in the power-iteration FP estimator due to the
piecewise definition in Eq. (77).

methods—the present standard and state of the art—
in control of excited-state effects, systematic uncertainty
quantification, and signal-to-noise.

Reformulating the Cullum-Willoughby test in terms of
a cut on overlap factors provides a fully physical picture
of spurious state filtering. Noise results in an apparent
expansion of Krylov space outside the part of Hilbert
space containing the states of physical interest, and the
spurious states are a consequence of this expansion. Fol-
lowing this motivation, the ZCW test identifies spurious
states as those with “spuriously small” overlap factors,
with a physically motivated threshold for “small”. After
filtering, the remaining non-spurious Ritz values and vec-
tors provide reliable estimates for some eigenstates of the
physical transfer matrix. The resulting estimators con-
verge to the true spectrum faster than either GEVP or
scalar Lanczos estimators, have directly calculable two-
sided systematic uncertainty bounds, and have constant
signal-to-noise at large iteration count.

For spectroscopy applications, block Lanczos analysis
is immediately applicable to existing datasets and can
be adopted immediately. As in the scalar case, the data
requirements to use block Lanczos to extract operator
matrix elements require evenly-spaced three-point data
at small sink times. This is in tension with the common
strategy for sequential-source calculations where data are
generated for only a few intermediate sink times where
excited-state effects are reduced. Data generation strate-
gies should be adjusted. This is especially true where
correlator matrices are employed, as they are typically
used in matrix element analyses only when excited-state
effects (or properties) are a concern; the badly contami-
nated but well-resolved measurements at early sink times
that are not typically computed are exactly those that
Lanczos uses to control excited-state effects.

As demonstrated, filtering states, sorting on Ritz val-
ues, and using an idiomatically bootstrapped median es-
timator to define values and uncertainties provides a sim-
ple and effective analysis. However, state identification
(i.e., associating measurements between bootstraps to de-
fine the set to be averaged over) still poses some out-
standing challenges. In Sec. V, we observed that simply
sorting measurements on the Ritz values led to some ob-
vious misidentifications which complicate the analysis of
relatively high-energy excited states. Although ground-
state energies and overlaps appear to be more robust,
and there are indications that this effect is less severe
at high statistics, it is nevertheless critical to check for
such misidentification before blindly trusting the output
of a Lanczos analysis. Better schemes for state iden-
tification which can provide more reliable excited-state
extractions at finite statistics are an important topic for
further study.

The key improvements offered by Lanczos over pre-
vious methods are spurious state filtering and the abil-
ity to construct rigorous, computable two-sided bounds,
rather than just the estimators derived in Sec. II ab-
sent this additional machinery. As discussed above and
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in Refs. [1, 2, 74, 75], the unfiltered Lanczos estima-
tors of Sec. II provide numerically identical outputs to
other methods in certain cases and with appropriately
aligned definitions. This includes not only standard ef-
fective estimators and GEVP in one-step limits, but also
Prony’s method23 and its block generalization as intro-
duced in Ref. [7]. Further connections between these con-
ceptually distinct but numerically coincident methods—
and opportunities for improvements suggested by these
connections—will be explored in future work [30].

Besides correlator matrix analyses, the block Lanczos
spurious eigenvalue filtering algorithms defined in this
work may also be useful for the more traditional applica-
tion of computing eigenvalues and eigenvectors of numer-
ical matrices. To the best of our knowledge, this work
represents the first construction of the ZCW test and
its block generalization, as well as the block CW test
obtained by consideration of the eigenvalue-eigenvector
identity. (Z)CW tests provide alternatives to selective
reorthogonalization—the present standard approach to
using Lanczos methods with finite-precision arithmetic—
which do not require storage and use of converged Ritz
vectors. These may now be used with block Lanczos,
which could provide practical advantages in some appli-
cations.
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Appendix A: Lanczos vector bi-orthogonality

The orthogonality of Lanczos vectors within each block
j follows directly from the definition ∆j = βjγj (Eq. (8))
of βj and γj in terms of the residual norm ∆j ,〈

vLja
∣∣vRjb〉 =∑

cd

β−1
jac

〈
rLjc
∣∣rRjd〉 γ−1

jdb

= [β−1
j ∆jγ

−1
j ]ab

= [β−1
j βjγjγ

−1
j ]ab

= δab

(A1)

using Eq. (9) in the first equality and the definition〈
rLjc

∣∣∣rRjd〉 = ∆jcd (Eq. (7)) in the second equality.

Orthogonality between Lanzcos vectors from different
blocks follows from the definitions of αj , βj , and γj in
Eq. (5) as described next.
Starting with the orthogonality relation〈
vLja
∣∣vR(j+1)b

〉
= 0, take the induction hypothesis〈

vLia
∣∣vRi′b〉 = δii′δab for all i, i′ ≤ j. The base case j = 1

is established above. By Eqs. (6) and (9),

〈
vLja
∣∣vR(j+1)b

〉
=
∑
cd

[
δcd
〈
vLja
∣∣T ∣∣vRjd〉− 〈vLja∣∣vRjc〉αjcd

−
〈
vLja
∣∣vR(j−1)c

〉
βjcd

]
γ−1
(j+1)db.

(A2)

The third term vanishes and second term simplifies by
the induction hypothesis, giving〈
vLja
∣∣vR(j+1)b

〉
=
∑
d

[〈
vLja
∣∣T ∣∣vRjd〉− αjad

]
γ−1
(j+1)db. (A3)

The orthogonality relation
〈
vLja
∣∣vR(j+1)b

〉
= 0 is therefore

achieved by defining αjab as in Eq. (5). The same defini-
tion leads to

〈
vL(j+1)a

∣∣vRjb〉 = 0.
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The corresponding orthogonality relation involving
block j − 1 is the vanishing of

〈
vL(j−1)a

∣∣vR(j+1)b

〉
=
∑
cd

[
δcd
〈
vL(j−1)a

∣∣T ∣∣vRjd〉
−
〈
vL(j−1)a

∣∣vRjc〉αjcd

−
〈
vL(j−1)a

∣∣vR(j−1)c

〉
βjcd

]
γ−1
(j+1)db.

(A4)

The second term vanishes by the first piece of the induc-
tion step, while the third term simplifies using Eq. (A1),
which leads to〈
vL(j−1)a

∣∣vR(j+1)b

〉
=
∑
d

[〈
vL(j−1)a

∣∣T ∣∣vRjd〉− βjad

]
γ−1
(j+1)db.

(A5)

The orthogonality relation
〈
vL(j−1)a

∣∣vR(j+1)b

〉
= 0 is there-

fore achieved by defining βjab is in Eq. (5). An analogous
induction for

〈
vL(j+1)a

∣∣vR(j−1)b

〉
shows this orthogonality

relation is also achieved by Eq. (5). Orthogonality with
blocks 1, . . . , j − 2 follows automatically from the fact
that the recurrences for T

∣∣vR(j+1)a

〉
and

〈
vL(j+1)a

∣∣T only

involve Lanczos vectors from blocks j + 1, j, and j − 1.
These definitions therefore ensure〈

vLia
∣∣vRjb〉 = δijδab. (A6)

Similarly applying the recursion relation to the nor-
malization condition〈

vLja
∣∣vRjb〉 =∑

cd

[
δcd
〈
vLja
∣∣T ∣∣vR(j−1)d

〉
−
〈
vLja
∣∣vR(j−1)c

〉
αjcd

−
〈
vLja
∣∣vR(j−2)c

〉
βjcd

]
γ−1
jdb,

(A7)

and noting that the second and third lines vanish by the
orthogonality relations above gives〈

vLja
∣∣vRjb〉 =∑

d

〈
vLja
∣∣T ∣∣vR(j−1)d

〉
γ−1
jdb (A8)

This is equal to δab iff

γjab =
〈
vLja
∣∣T ∣∣vR(j−1)b

〉
. (A9)

An analogous derivation shows that

βjab =
〈
vL(j−1)a

∣∣T ∣∣vRjb〉. (A10)

These relations, along with Eq. (6) and Eq. (9), can be
used to prove the oblique block Lanczos three-term re-
currences, Eq. (4).

Appendix B: KPS bound

In this section, we reproduce the block KPS bound of
Ref. [21], suitably translated to the notation used in this
work, and derive the form provided in the main text. The
derivation of Ref. [21] applies for non-oblique block Lanc-
zos only, so no L/R distinctions are made and the result
only applies in the infinite-statistics limit where the un-
derlying Hermiticity of the transfer matrix is manifest in
the data. We thus necessarily assume an r× r Hermitian
correlator matrix〈

ψa

∣∣T t
∣∣ψb

〉
= Cab(t) = C∗

ba(t) (B1)

as in the rest of this work. In the non-oblique block
Lanczos algorithm there is no freedom of convention, so
symmetric definitions apply, i.e.:

C(0) = β1γ1 = β2
1 (B2)

and ∣∣vRj 〉 = ∣∣vLj 〉 ≡ |v1a⟩ =
∑
b

|ψb⟩β−1
1ba . (B3)

Consider the spectra of true eigenvalues λk and Ritz

values after m steps λ
(m)
k , ordered such that24

λ0 > λ1 > . . . > λ∞ , and

λ
(m)
0 > λ

(m)
1 > . . . > λ

(m)
rm−1 .

(B4)

Equation 3.10 of Ref. [21] bounds the relative deviation

of λ
(m)
k from λk as

0 ≤
λk − λ

(m)
k

λk − λ∞
≤

[
K

(m)
k

Tm−k−1(Γk)

]2
|| |k⟩ − |x̂k⟩ ||2 (B5)

where K
(m)
k and Γk are as defined in Eqs. (80) and (81)

above, Tn is an nth order Chebyshev polynomial of the
first kind, and |k⟩ is a true eigenstate satisfying T |k⟩ =
λk |k⟩. In what follows, we define and compute the final
term || |k⟩ − |x̂k⟩ ||2.
As defined in Eqs. 3.1 and 3.2 of Ref. [21], the vec-

tor |x̂k⟩ is the unique vector in the r-dimensional Krylov
space K(1) spanned by the initial states |v1a⟩ that satisfies

⟨x̂k|l⟩ = δkl (B6)

for l ∈ {k, k + 1, . . . , k + r − 1}, i.e.,

⟨x̂k|k⟩ = 1

⟨x̂k|l⟩ = 0, (k < l < k + r) .
(B7)

24 Note that our convention is that λk are zero-indexed as k =
0, 1, . . ., which differs from the one-indexed convention k =
1, 2, . . . of Ref. [21]. All expressions here have been suitably
translated to the zero-indexed convention.
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This vector may be written as25

|x̂k⟩ =
k+r−1∑
l=k

t
(k)
l π1 |l⟩ (B8)

in terms of r coefficients t
(k)
l and a projection operator

π1 onto K(1); a convenient choice is

π1 =
∑
a

|v1a⟩ ⟨v1a| (B9)

noting the lack of L/R distinction. The coefficients t
(k)
l

may be obtained as the solution to the r×r linear system

k+r−1∑
l=k

⟨j|π1 |l⟩ t(k)l = δjk (B10)

where the free index j is considered only over the range
[k, k + r − 1]. The RHS should not be thought of as
a matrix but rather a length-r vector with components
[1, 0, . . . , 0]. The matrix defining the system may be
rewritten as

⟨j|π1 |l⟩ =
∑
a

⟨j|v1a⟩ ⟨v1a|l⟩

=
∑
abc

⟨j|ψb⟩
Ω1ba√
Λ1a

Ω∗
1ca√
Λ1a

⟨ψc|l⟩

=
∑
bc

Zjb[C
−1(0)]bcZ

∗
lc

≡ Xjl

(B11)

recalling the definition Zja = ⟨j|ψa⟩ of the overlap fac-
tors. Although Xjl can be considered over the full basis
of states, Eq. (B10) only involves j, l ∈ [k, k + r − 1], so
the relevant part is the r × r block on the diagonal be-
ginning at (j, l) = (k, k). Denoting this block as X(k,r),

the coefficients t
(k)
l can be obtained by inverting

t
(k)
l =

k+r−1∑
j=k

[
X−1

(k,r)

]
lj
δjk = [X−1

(k,r)]lk (B12)

i.e., t(k) are obtained as the first column of the inverted
block X−1

(k,r), recalling that j, l in the above expression

are indexed starting at k.
Finally, we expand

|| |k⟩ − |x̂k⟩ ||2 = ⟨k|k⟩ − ⟨k| x̂k⟩ − ⟨x̂k|k⟩+ ⟨x̂k| x̂k⟩
= ⟨x̂k| x̂k⟩ − 1

(B13)

25 Note that there is a typographical error in the corresponding
expression of Ref. [21].

using ⟨k| x̂k⟩ = 1 by Eq. (B6). The remaining nontrivial
term can be simplified as

⟨x̂k| x̂k⟩ =
k+r−1∑
j,l=k

t
(k)∗
j

〈
j
∣∣π2

1

∣∣l〉 t(k)l

=
∑
jl

t
(k)∗
j ⟨j|π1 |l⟩ t(k)l

=
∑
j

t
(k)∗
j δjk = t

(k)∗
k

(B14)

using projector idempotency π2
1 = π1 in the second equal-

ity and Eq. (B10) in the third. We thus arrive at the
result used in the main text, that

t
(k)∗
k =

[
X−1

(k,r)

]
kk

, (B15)

i.e. it is the upper-leftmost element of the inverted block
X−1

(k,r) recalling the k-indexing, and that

|| |k⟩ − |x̂k⟩ ||2 =
[
X−1

(k,r)

]
kk

− 1 . (B16)

The block KPS bound reduces to the scalar version in
the limit r = 1. As presented in Refs. [2, 91], the scalar
KPS bound reads

0 ≤
λk − λ

(m)
k

λk − λ∞
≤

[
K

(m)
k tan arccos zk
Tm−k−1(Γk)

]2
(B17)

where zk = ⟨k|v1⟩ = Zk/
√
C(0) is the normalized over-

lap. The symbols K
(m)
k and Γk are identical with their

scalar-case definitions when r = 1, so it only remains to
show that[

X−1
(k,r)

]
kk

− 1
r=1−−→ [tan arccos zk]

2
. (B18)

Note that [X−1
(k,1)]kk reduces to simply the reciprocal of

the kth diagonal element of the matrix∑
bc

Zjb[C
−1(0)]bcZ

∗
lc

r=1−−→ ZjZ
∗
l

C(0)
, (B19)

trivializing block indices, and so[
X−1

(k,r)

]
kk

r=1−−→ C(0)

|Zk|2
=

1

z2k
. (B20)

The desired reduction Eq. (B18) finally follows from the
identity (tan arccos z)2 = 1/z2 − 1.

Appendix C: Pseudo-plateaus and residual bounds
for noiseless scalar Lanczos

Sec. III A compares block and scalar Lanczos extrac-
tions of the spectrum on a noiseless example defined
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FIG. 32. Demonstration of scalar Lanczos residual bounds for the noiseless example Eq. (72), similar to Fig. 7. Error bars
are not statistical, but rather represent the extent of values allowed by the residual bound Eq. (92). The window of allowed
values is computed for Ritz values and mapped through the logarithm, and thus asymmetric for energies. Lines connecting the
lowest two energies at each m are drawn to guide the eye.

as Eq. (72). The results therein for scalar Lanczos—
reproduced in the markers of Fig. 32—raise the ques-
tion of whether Lanczos can exhibit “pseudo-plateau”
behavior. This appendix addresses this concern. To be
concrete, consider two different definitions of a pseudo-
plateau:

a. An apparent but false asymptote to a value unrelated
to any energy in the true spectrum;

b. After some finite number of iterations, an energy is
converging to that of a different state than expected.

In the example of Sec. III, the two different interpola-
tors have suppressed overlaps with different (even and
odd) subsets of states. This leads to scalar Lanczos
initially yielding Ritz values which asymptote towards
states with unsuppressed overlaps, then only later pro-
viding estimates for suppressed states. For scalar Lanc-
zos applied to C11, this results in the largest Ritz value
initially converging towards the first excited state, then
later dropping to the ground state. This satisfies defini-
tion b) above, if the largest Ritz value is expected to con-
verge immediately to the ground state. The general non-
monotonicity of the scalar extractions results in various
other examples satisfying b), given appropriate choices
of expectations. As always, cautious interpretation of
results is required.

However, examination of the residual bounds shown
in Fig. 32 provides evidence that the scalar results of
Sec. IIIA do not satisfy definition a). For C11, the resid-
ual bounds for the lowest energy tighten quickly; for all
m ≥ 3, the bounds indicate that the Ritz value near E1 is
consistent with only the true E1 and not with any other

state. Similar pictures apply for various other examples
across both scalar Lanczos extractions of the spectrum.
Taken together, this suggests that the story told e.g. by
simply examining the sequence of lowest-lying energy es-
timates in the C11 analysis—that the ground-state energy
estimator initially converges to the wrong value—is not
the best interpretation of these dynamics. A better one
is simply that scalar Lanczos provides no estimate at all
for the ground-state energy until m = 6, at which point a
new, separate state which converges to the ground state
appears. Although state identification will always be an
ambiguity, the value of the estimators in this example re-
liably correspond to physical values. This is in contrast
with the potentially more dangerous behavior indicated
by definition a), wherein near cancellations result in false
asymptotes and analyses which yield values with no phys-
ical meaning.

Appendix D: Correlator matrix reality

1. C, P , and R2π symmetry

Charge conjugation (C) transformations are defined
for LQCD gauge fields as

U(C)Uµ(x)U(C)† = Uµ(x)
∗, (D1)

and for quark fields as

U(C)q(x)U(C)† = CqT

U(C)q(x)U(C)† = qTC†,
(D2)

where C = γ4γ2 satisfies CT = C† = C−1 = −C. The
Dirac-Pauli basis in which γ4 = diag(1, 1,−1,−1) is used
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throughout this section; see Ref. [92] for details. Most
LQCD actions possess a C symmetry in the sense that
the action is invariant under this transformation, and the
existence of such as symmetry will be assumed through-
out this work. For more on C transformation properties
in LQCD see Refs. [73, 93, 94]. The quark propagator
therefore transforms as

U(C)S(x, y)U(C)† = CS(y, x)TC†

= Cγ5S(x, y)
∗γ5C

†,
(D3)

where γ5-Hermiticity S(y, x) = γ5S(x, y)
†γ5 has been as-

sumed in going to the second line. This can be further
re-expressed as

U(C)S(x, y)U(C)† = (iCγ5)S(x, y)
∗(iCγ5)

†

= (iγ1γ3)S(x, y)
∗(iγ1γ3)

†,
(D4)

where γ5 = γ1γ2γ3γ4 has been used in the last line.
In this form, the action of C on quark propagators can

be recognized as complex conjugation in conjugation with
the action of a 2π rotation as follows. The spinor repre-
sentation D(ω⃗) of a rotation—an element of the double
cover of the cubic group R(ω⃗) ∈ OD

h —whose magnitude
and direction are given by the vector ω⃗ is

D(ω⃗) = exp

(
−1

8

∑
k

ωkϵijk[γi, γj ]

)
. (D5)

For more on cubic symmetry in LQCD see Refs. [64, 92,
95–102]. For the vector ω⃗ = (0, ω2, 0), this becomes

D(ω2ê2) = exp
(
−ω2

4
γ1γ3

)
= cos

(
−ω2

4

)
− iγ1γ3 sin

(
−ω2

4

)
.

(D6)

Choosing ω⃗c = (0,−2π, 0) then gives

D(ω⃗c) = −iγ1γ3. (D7)

Therefore, define R2π ∈ OD
h as the corresponding −2πê2

rotation operator and U(R) as the Hilbert space oper-
ator whose action is given by U(R2π)S(x, y)U(R2π)

† =
D(ω⃗c)S(x, y)D(ω⃗c)

†. We assume that R2π is a symme-
try of the action. The combined symmetry CR2π acts on
quark propagators as

U(CR2π)S(x, y)U(CR2π)
†

= (iγ1γ3)D(ω⃗c)S(x, y)
∗D(ω⃗c)

†(iγ1γ3)
†

= S(x, y)∗.

(D8)

Since R acts trivially on the gauge field,
U(CR2π)Uµ(x)U(CR2π)

† = Uµ(x)
∗.

The parity transformation P ∈ OD
h has the spinor rep-

resentation D(P ) = γ4 and transforms propagators by

U(P )S(x, y)U(P )† = γ4S((−x⃗, x4), (−y⃗, y4))γ4. (D9)

The action of parity on the gauge field is

U(P )Uµ(x)U(P )† = U−µ((−x⃗, x4)), (D10)

where U−µ(x) = Uµ(x− êµ)†. It will be convenient below
to denote the set of gauge fields at time t by

U(t) = {Uµ(x) |x4 = t}, (D11)

and their parity conjugates by

UP
(t) = {U(P )Uµ(x)U(P )† |x4 = t}. (D12)

Further denote the set of quark propagators starting and
ending at time t by

S(t) = {S(x, y) |x4 = y4 = t}, (D13)

and their parity conjugates by

SP
(t) = {U(P )S(x, y)U(P )† |x4 = y4 = t}. (D14)

2. Correlator matrix definitions

Consider a generic correlator matrix

Cab(t) =
〈
χa(t)ψb(0)

〉
, (D15)

with source interpolating operator

ψb(0) =
∑

y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]

× q(y⃗1, 0) · · · q(y⃗K , 0)
× q(v⃗1, 0)

T · · · q(v⃗L, 0)T

× ψb(U(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L),

(D16)

where ψb(U(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L) is a rank K + L
spin-color-flavor tensor that can depend on the gauge
field at the source timeslice, U(0). The corresponding
sink interpolating operator is

χa(t) =
∑

x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

ei[
∑

i p⃗
′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]

× χa(U(t), x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)†

× q(x⃗1, 0)
T · · · q(x⃗K′ , 0)T

× q(u⃗1, 0) · · · q(u⃗L′ , 0),

(D17)

where χa(U(t), x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)† is a rank K ′+L′

spin-color-flavor tensor that can depend on the gauge
field at the sink timeslice, U(t). Note that time trans-
lation invariance can be used to trivially generalize this
result to non-zero source times. The total momentum
carried by quark and antiquark fields in the initial and
final state is therefore given by

P⃗q =
K∑
i=1

p⃗i +
L∑

j=1

k⃗j ,

P⃗ ′
q =

K′∑
i=1

p⃗′i +
L′∑
j=1

k⃗′j .

(D18)
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The spatial translation properties of ψb and χa encode

the momenta P⃗g and P⃗ ′
g carried by gluons in the initial

and final states, respectively, and should be chosen to

ensure total momentum conservation P⃗q + P⃗g = P⃗ ′
q + P⃗ ′

g.

The total number of quark fields, F ≡ K +K ′, must
equal the total number of antiquarks, L + L′, for all
nonvanishing correlators in an R2π-symmetric theory.
Wick’s theorem allows the F quark/antiquark fields in
Cab(t) to be replaced by linear combinations of terms
with F quark propagators with coefficients given by prod-
ucts of permutation signatures. The F quark propagators
can be partitioned into sets of N quark propagators con-
necting source/sink sites, M quark propagators connect-
ing source/source sites, and M ′ propagators connecting
sink/sink sites, where N +M +M ′ = F . Different such
partitions

σ ≡ {(N,M,M ′) ∈ Z3 | N +M +M ′ = F}, (D19)

of F correspond to different linear combinations of Wick
contractions. This allows Cab(t) to be expressed as

Cab(t) =
∑
σ

sig(σ)
∑
p∈SN

sig(p)Cσp
ab (t), (D20)

where sig(σ) is the signature of the permutation required
to reorder the quark fields into the appropriate normal
ordering for N source/sink, M source/source, and M ′

sink/sink quark propagators, p ∈ SN is an element of the
permutation group of N objects, sig(p) is its signature,
and

Cσp
ab (t) =

∑
x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

× ei[
∑

i p⃗
′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]

×
〈
Ξa(U(t), S(t), x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)†

×
N⊗

i,j=1

S((x⃗i, t), (y⃗p(j), 0))

×Ψb(U(0), S(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L)
〉
,

(D21)

where the spin-color-flavor tensor indices of the quark
propagator product corresponding to the q(y⃗i) fields are
permuted into the same order as the source spatial in-
dex labels. Here, the source wavefunction including
source/source propagator factors is defined by

Ψb(U(0), S(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L)

≡
∑

p∈SM

sig(p)
M⊗
i=1

S((v⃗i, 0), (y⃗N+p(i), 0))

× ψb(U(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L),

(D22)

and the corresponding sink wavefunction is defined by

Ξa(U(t), S(t), x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)†

≡ χa(U(t), x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)†

×
∑

p∈SM′

sig(p)
M ′⊗
i=1

S((x⃗N+i, 0), (u⃗p(i), 0)).

(D23)

Since the coefficients appearing Eq. (D20) are ±1 permu-
tation signatures, it is sufficient to prove that Cσp

ab (t) ∈ R
for arbitrary σ, p in order to show that Cab(t) ∈ R.

3. Correlator matrix transformations

Applying a CR2π transformation to Cσp
ab (t) gives

U(CR2π)C
σp
ab (t)U(CR2π)

†

=
∑

x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

× ei[
∑

i p⃗
′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]

×
〈
Ξa(U

∗
(t), S

∗
(t), x⃗1, . . . , x⃗N , u⃗1, . . . , u⃗M ′)†

×
N⊗

i,j=1

S((x⃗i, t), (y⃗p(j), 0))
∗

×Ψb(U
∗
(0), S

∗
(0), y⃗1, . . . , y⃗N , v⃗1, . . . , v⃗M )

〉
.

(D24)

Further including a P transformation gives

U(CPR2π)C
σp
ab (t)U(CPR2π)

†

=
∑

x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

× ei[
∑

i p⃗
′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]

×
〈
Ξa(U

P∗
(t) , S

P∗
(t) , x⃗1, . . . , x⃗N , u⃗1, . . . , u⃗M ′)†γ4

×
N⊗

i,j=1

S((−x⃗i, t), (−y⃗p(j), 0))∗

× γ4Ψb(U
P∗
(0) , S

P∗
(0) , y⃗1, . . . , y⃗N , v⃗1, . . . , v⃗M )

〉
.

(D25)

Changing summation variables to reverse the orientations
of all momenta, e.g. x⃗i → −x⃗i, allows this to be expressed
as

U(CPR2π)C
σp
ab (t)U(CPR2π)

†

=
∑

x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

×
(
ei[

∑
i p⃗

′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]
)∗

×
〈
Ξa(U

∗
(t), γ4S

∗
(t)γ4,−x⃗1, . . . ,−x⃗N ,−u⃗1, . . . ,−u⃗M ′)†

×
N⊗

i,j=1

γ4S((x⃗i, t), (y⃗p(j), 0))
∗γ4

×Ψb(U
∗
(0), γ4S

∗
(0)γ4,−y⃗1, . . . ,−y⃗N ,−v⃗1, . . . ,−v⃗M )

〉
,

(D26)
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where γ4S
∗
(t)γ4 ≡ {γ4S(x, y)∗γ4 |x4 = y4 = t}.

To complete the proof of correlator matrix reality,
it is convenient to decompose quark propagators into
positive- and negative-parity components using the par-
ity projectors (1±γ4)/2. Propagators can be decomposed
as

S(x, y) =
∑

ρ,ρ′=±1

Sρ′ρ(x, y), (D27)

where

Sρ′ρ(x, y) ≡
(
1 + ρ′γ4

2

)
S(x, y)

(
1 + ργ4

2

)
. (D28)

Wavefunctions can similarly be decomposed as

ΞT
a =

∑
ρ⃗∈ZN

2

ΞT
aρ⃗, Ψb =

∑
ρ⃗∈ZN

2

Ψbρ⃗, (D29)

where

ΞT
aρ⃗ ≡

N⊗
i=1

(
1 + ρiγ4

2

)
ΞT
a ,

Ψbρ⃗ ≡
N⊗
i=1

(
1 + ρiγ4

2

)
Ψb.

(D30)

Since
(
1+γ4

2

) (
1−γ4

2

)
= 0, this decomposition allows the

original correlation function to be expressed as

Cσp
ab (t) =

∑
ρ⃗,ρ⃗′∈ZN

2

∑
x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

× ei[
∑

i p⃗
′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]

×
〈
Ξaρ⃗′(U(t), S(t), x⃗1, . . . , x⃗N , u⃗1, . . . , u⃗2M ′)†

×
N⊗

i,j=1

Sρ′
iρj

((x⃗i, t), (y⃗p(j), 0))

×Ψbρ⃗(U(0), S(0), y⃗1, . . . , y⃗N , v⃗1, . . . , v⃗2M )
〉
.

(D31)

Applying the same decomposition to the transformed cor-
relation function gives

U(CPR2π)C
σp
ab (t)U(CPR2π)

†

=
∑

ρ⃗,ρ⃗′∈ZN
2

∑
x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

×
(
ei[

∑
i p⃗

′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]
)∗

×
〈
Ξaρ⃗′(U∗

(t), γ4S
∗
(t)γ4,−x⃗1, . . . ,−x⃗N ,−u⃗1, . . . ,−u⃗M ′)†γ4

×
N⊗

i,j=1

Sρ′
iρj

((x⃗i, t), (y⃗p(j), 0))
∗

× γ4Ψbρ⃗(U
∗
(0), γ4S

∗
(0)γ4,−y⃗1, . . . ,−y⃗N ,−v⃗1, . . . ,−v⃗M )

〉
.

(D32)

The action of γ4 on χaρ⃗′ and ψbρ⃗ then simply results in
sign factors,

U(CPR2π)C
σp
ab (t)U(CPR2π)

†

=
∑

ρ⃗,ρ⃗′∈ZN
2

det(ρ⃗′ρ⃗T )
∑

x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

×
(
ei[

∑
i p⃗

′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]
)∗

×
〈
Ξaρ⃗′(U∗

(t), γ4S
∗
(t)γ4,−x⃗1, . . . ,−x⃗N ,−u⃗1, . . . ,−u⃗M ′)†

×
N⊗

i,j=1

Sρ′
iρj

((x⃗i, t), (y⃗p(j), 0))
∗

×Ψbρ⃗(U
∗
(0), γ4S

∗
(0)γ4,−y⃗1, . . . ,−y⃗N ,−v⃗1, . . . ,−v⃗M )

〉
.

(D33)

The same decomposition can be applied to the propaga-
tors appearing in disconnected quark loops. Defining

S ξ⃗′
˜⃗
ξ
′

(t) ≡ {Sξ′iξ̃
′
i
(x, y) |x4 = y4 = t, i = 1,M ′},

S ξ⃗
˜⃗
ξ

(0) ≡ {Sξiξ̃i
(x, y) |x4 = y4 = t, i = 1,M},

(D34)

the original correlation function can be expressed as

Cσp
ab (t) =

∑
ρ⃗,ρ⃗′∈ZN

2

∑
x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L∑

x⃗1,...,x⃗N

∑
u⃗1,...,u⃗M′

∑
y⃗1,...,y⃗N

∑
v⃗1,...,v⃗M

× ei[
∑

i p⃗
′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]

×
〈
Ξaρ⃗′(U(t), S

ξ⃗′
˜⃗
ξ
′

(t) , x⃗1, . . . , x⃗N , u⃗1, . . . , u⃗2M ′)†

×
N⊗

i,j=1

Sρ′
iρj

((x⃗i, t), (y⃗p(j), 0))

×Ψbρ⃗(U(0), S
ξ⃗
˜⃗
ξ

(0), y⃗1, . . . , y⃗N , v⃗1, . . . , v⃗2M )
〉
.

(D35)

Applying the same decomposition to the transformed cor-
relation function and simplifying the action of γ4,

U(CPR2π)C
σp
ab (t)U(CPR2π)

†

=
∑

ρ⃗,ρ⃗′∈ZN
2

∑
ξ1,...,ξM

∑
ξ̃1,...,ξ̃M

∑
ξ′1,...,ξ

′
M

∑
ξ̃′1,...,ξ̃

′
M

ΠSΠ
′
S

∑
x⃗1,...,x⃗K′

∑
u⃗1,...,u⃗L′

∑
y⃗1,...,y⃗K

∑
v⃗1,...,v⃗L

×
(
ei[

∑
i p⃗

′
i·x⃗i+

∑
j k⃗′

j ·u⃗j]e−i[
∑

i p⃗i·y⃗i+
∑

j k⃗j ·v⃗j]
)∗

×
〈
Ξaρ⃗′(U∗

(t), [S
ξ⃗′
˜⃗
ξ
′

(t) ]∗,−x⃗1, . . . ,−x⃗N ,−u⃗1, . . . ,−u⃗M ′)†

×
N⊗

i,j=1

Sρ′
iρj

((x⃗i, t), (y⃗p(j), 0))
∗

×Ψbρ⃗(U
∗
(0), [S

ξ⃗
˜⃗
ξ

(0)]
∗,−y⃗1, . . . ,−y⃗N ,−v⃗1, . . . ,−v⃗M )

〉
,

(D36)
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where the total parities of all source/sink quark propa-
gator factors are given by

ΠS =
N∏
i=i

ρi

M∏
j=1

ξj ξ̃j , Π′
S =

N∏
i=i

ρ′i

M ′∏
j=1

ξ′j ξ̃
′
j . (D37)

It is therefore sufficient for the source and sink wavefunc-
tion to satisfy

Ψbρ⃗(U
∗
(0), [S

ξ⃗
˜⃗
ξ

(0)]
∗,−y⃗1, . . . ,−y⃗K ,−v⃗1, . . . ,−v⃗L)

= ΠSΨbρ⃗(U(0), S
ξ⃗
˜⃗
ξ

(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L)
∗,

(D38)

and

Ξaρ⃗′(U∗
(t), [S

ξ⃗′
˜⃗
ξ
′

(t) ]∗,−x⃗1, . . . ,−x⃗K′ ,−u⃗1, . . . ,−u⃗L′)†

= Π′
SΞaρ⃗′(U(t), S

ξ⃗′
˜⃗
ξ
′

(t) , x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)T ,

(D39)

in order to guarantee that

U(CPR2π)C
σp
ab (t)U(CPR2π)

† = Cσp
ab (t)

∗. (D40)

Because there are path integral changes of variables
that induce CPR2π transformations and they have equal
weight by CPR2π symmetry of the action, averaging over
all quark-and-gluon field configurations leads to the av-
eraging of Cσp

ab (t) with U(CPR2π)C
σp
ab (t)U(CPR2π)

† =
Cσp

ab (t)
∗. The imaginary part of Cσp

ab (t) therefore van-
ishes, or in other words Eqs. (D38)-(D39) are sufficient
to ensure that Cσp

ab (t) ∈ R and therefore that Cab(t) ∈ R.

4. Correlator matrix reality conditions

It is straightforward to obtain corresponding re-
ality conditions for the quark-field coefficient func-
tions appearing in the interpolating operator definitions
Eqs. (D16)-(D17). Define a quark-field-parity decompo-
sition of these wavefunctions by

χT
a =

∑
τ⃗∈ZK′+L′

2

χT
aτ⃗ , ψb =

∑
τ⃗∈ZK+L

2

ψbτ⃗ , (D41)

where

χT
aτ⃗ ≡

K′+L′⊗
i=1

(
1 + τiγ4

2

)
χT
a ,

ψbτ⃗ ≡
K+L⊗
i=1

(
1 + τiγ4

2

)
ψb.

(D42)

The fact that the total fermion-field parity

Π ≡ ΠSΠS′ =
N∏
i=1

ρiρ
′
i

M∏
j=1

ξj ξ̃j

M∏
k=1

ξ′j ξ̃
′
j

=
K+L∏
i=1

τi

K′+L′∏
j=1

τ ′j ,

(D43)

is independent of how the quark fields are partitioned
into source/sink, source/source, and sink/sink propaga-
tors implies that the pair of conditions Eq. (D38)-(D39)
is equivalent to

ψbτ⃗ (U
∗
(0),−y⃗1, . . . ,−y⃗K ,−v⃗1, . . . ,−v⃗L)

= η ψbτ⃗ (U(0), y⃗1, . . . , y⃗K , v⃗1, . . . , v⃗L)
∗,

(D44)

and

χaτ⃗ ′(U∗
(t),−x⃗1, . . . ,−x⃗K′ ,−u⃗1, . . . ,−u⃗L′)

= η′ χaτ⃗ ′(U(t), x⃗1, . . . , x⃗K′ , u⃗1, . . . , u⃗L′)∗,
(D45)

where η, η′ ∈ C are any normalization factors satisfying

ηη′ = Π. (D46)

The conditions Eqs. (D44)-(D46) are sufficient to ensure
that Cab(t) = Cab(t)

∗ is real, and will be assumed for
all correlator matrices studied in this work. This means
that Hermitian correlator matrices for which χ = ψ are
real, symmetric matrices.
The use of standard source and sink interpolating oper-

ators leads to wavefunctions satisfying Eqs. (D44)-(D46).
In particular, Gaussian (momentum-)smeared [55–57]
sources and sinks are complex conjugated by replac-
ing Uµ(x) with Uµ(x)

∗ and simultaneously replacing x⃗
with −x⃗ in momentum-smearing phases. To determine
whether the spin-structure of a set of interpolating oper-
ators is compatible with Eqs. (D44)-(D46), it is helpful
to note that a sufficient (although not strictly necessary)
set of conditions for satisfying Eqs. (D44)-(D46) is

• The spin-color-flavor weights multiplying all quark
and antiquark fields in the source/sink interpolat-
ing operators are real in the Dirac-Pauli basis where
γ4 = diag(1, 1,−1,−1).

• All spatial wavefunctions (including iterative
smearing kernels) are complex conjugated by re-
placing Uµ(x) with Uµ(x)

∗ and simultaneously re-
placing all spatial coordinates x⃗ with −x⃗.

• The product of source and sink interpolating oper-
ators includes an even number of odd-parity quark-
field components.

The last condition will be true, for instance, for any cor-
relation function formed from products of nucleon fields
with (qTCγ5q)q spin structures times an even number of
total pion fields (note those involving an odd number of
pion fields vanish in an isospin- and G-parity symmetric
theory).
It is also possible to obtain real correlation functions

when there are an odd number of odd-parity quark-field
components if the spatial wavefunction is replaced by mi-
nus its complex conjugate when the spatial coordinates
are inverted, x⃗ with −x⃗. If either but not both of the net
quark-field parity or the spatial inversion parity are odd,
then a correlation function will be purely imaginary.
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Appendix E: Left GEVP

As presented in Sec. II, block Lanczos applied to noisy
correlator data involves distinct L/R quantities with po-
tentially different values. The identification of GEVP as
one step of block Lanczos in Sec. VIA makes clear that
the same L/R distinction must apply for GEVP quanti-
ties as well, even when the correlator matrices are Hermi-
tian or symmetric and real. The moving-pivot estimators
Eqs. (146) and (148) correspond to one-step block Lanc-
zos R estimators, assuming GR is real. Inequivalent L
quantities may be defined in terms of the left eigenvec-
tors GL that arise in the left GEVP∑

b

GL
kbCba(td) = λLk (td, t0)

∑
b

GL
kbC

−1
ba (t0) . (E1)

For Hermitian C(t), in the absence of statistical noise, all
λLk = λk are real, and GL

ka = (GR
ak)

∗ such that all R and
L GEVP estimators are identical. While this is known
to hold asymptotically at large t0, td, this is nontrivial to
prove algebraically from the GEVP perspective [5]; it is
obvious from the Lanczos perspective.

Statistical noise at large t may generically result in
complex eigenvalues and break the L/R coincidence, per
the discussion of Hermitian subspaces in Sec. VB. It is
clear from the Lanczos perspective that in general there is

only a single set of (complex) eigenvalues λLk = λk = λ̄
(1)
k ,

the right GEVP eigenvectors are given by Eq. (139), and
the left GEVP eigenvectors are given analogously by

GL
ak(td, t0) =

∑
b

(ω̄−1)
(1)
k1bβ̄

−1
1ba. (E2)

For complex eigenvalues, GL ̸= GR in general, but they
may also differ for real eigenvalues; in either case, this
leads to inequivalent L/R estimators for overlaps and
matrix elements. From the Lanczos perspective, this is a
clear indication of a spurious state outside the Hermitian
subspace that should be discarded.

Appendix F: Confidence interval estimation

Histograms of Lanczos energy estimators in Fig. 33
clearly show qualitative signs of non-Gaussianity that are
much larger for sample-mean estimators but still present
for bootstrap-median estimators. These deviations from
Gaussianity can be quantified using the Kolmogorov-
Smirnov and Shapiro-Wilk tests. As shown in Tab. VII,
the sample-mean estimators are highly non-Gaussian,
while the bootstrap-median estimators are much closer to
Gaussian but still display clear signs of non-Gaussianity.

Empirical bootstrap confidence intervals provide a
standard estimator for computing bootstrap uncertain-
ties that is more outlier robust than the bootstrap vari-
ance and applicable to non-Gaussian distributions [60,
62]. The empirical bootstrap formula providing sσ con-
fidence intervals δsX for any quantity X with bootstrap
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(closed) markers show results obtained using idiomatic boot-
strap uncertainties for sample-mean (bootstrap-median) esti-
mators.

samples X(b) is26

δsX =
1

2

[
Quantile

(
X(b),

1 + erf(s/
√
2)

2

)

−Quantile

(
X(b),

1− erf(s/
√
2)

2

)]
.

(F1)

Results for 1-3σ confidence intervals can be computed
using this definition; with Nboot = 200 the 3σ interval
may be significantly impacted by finite Nboot effects and
larger confidence intervals are likely to be unreliable.

26 Empirical and percentile bootstrap constructions give identical
expressions for the width of the symmetric confidence inter-
val [62].
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Sample mean

Gaussianity test E0 E1 E2 E3

Kolmogorov-Smirnov 0 0.001 10−5 0

Shapiro-Wilk 10−26 10−5 10−17 10−15

Bootstrap median

Gaussianity test E0 E1 E2 E3

Kolmogorov-Smirnov 0.350 0.191 0.501 10−4

Shapiro-Wilk 0.005 0.191 0.487 10−7

TABLE VII. Results of the Kolmogorov-Smirnov and
Shapiro-Wilk tests for Gaussianity for the bootstrap distri-
butions of bootstrap median block Lanczos energy estimators
in Fig. 33 (bottom) and their sample mean counterparts (top).

These empirical bootstrap confidence interval results
for δsX can be compared with the expectation of Gaus-
sian uncertainties: δsX ≈ sδX where δX is defined from
the bootstrap variance in Eq. (124). As shown in Fig. 34

for E
(mmax)
n , the approximate equality of these confidence

interval estimates holds within 6% for n ∈ {0, 1} states
for sσ confidence intervals with s ∈ {1, 2, 3}. These devi-
ations may be due in part to statistical fluctuations of the
bootstrap estimators, which we do not quantify here but
are proportional to 1/

√
Nboot. For n ∈ {2, 3} the agree-

ment is less good and deviations of up to 20% are seen.

Identification of sσ confidence intervals with sδE
(mmax)
n

therefore includes systematic uncertainties of these sizes.

Appendix G: Inequivalence of block Lanczos and
GEVM/PGEVM

Ref. [74] asserts that block Lanczos is equivalent to
“the block PGEVM approach introduced in Ref. [8].”
That work discusses correlator matrix analysis via GEVP
solutions, which they refer to as applications of the gener-
alized eigenvalue method (GEVM). The only discussion
of generalizing PGEVM to correlator matrices present
in Ref. [8] (in which the word “block” does not appear)
is “There is one straightforward way to combine GEVM
and PGEVM: we noted already above that the principal
correlators of the GEVM are again a sum of exponen-
tials, and, hence, the PGEVM can be applied to them.
This means a sequential application of first the GEVM
with a correlator matrix of size n0 to determine principal
correlators λk and then of the PGEVM with size n1 and
the λk’s as input, which we denote as GEVM/PGEVM.”
It was first pointed out in Ref. [1] that “the Ritz values

are numerically identical to the solutions of the Prony
generalized eigenvalue method (PGEVM) with n = m,
τ0 = 0, and ∆ = δt = 1, which by construction coincide
with the roots from Prony’s method.” Therefore, the
GEVM/PGEVM method is equivalent to applying scalar
Lanczos (without spurious state filtering) to the principal
correlators λk in Ref. [8], which according to the GEVP
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FIG. 35. Comparison of block Lanczos with the
GEVM/PGEVM method [8] applied to the 2× 2 proton cor-
relator matrix discussed in the main text. Both methods co-
incide with GEVP for m = 1. Sample-mean estimators are
shown; no spurious state filtering is performed.
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FIG. 36. Comparison of scalar Lanczos with the PGEVM
method [8] applied to theWW diagonal element of the proton
correlator matrix discussed in the main text. Sample-mean
estimators are shown; no spurious state filtering is performed.

definition in Eq. (6) of that work are simply the GEVP
eigenvalues that are also denoted λk(t, t0) here.

Applying the GEVM/PGEVM method for m steps
to a rank r correlator matrix is therefore equivalent to
separate Lanczos analysis of r Krylov spaces, each of
dimension m, generated by individually analyzing each
λk. For m = 1, both methods involve analyzing the
same r-dimensional Krylov space as GEVP, and both are
therefore equivalent to GEVP and hence one another for
m = 1. For m > 1, the rm dimensional Krylov space
analysis provided by block Lanczos is not equivalent to
(and is strictly more optimal than) the Lanczos analy-
ses of r individual m-dimensional Krylov spaces provided
by GEVM/PGEVM. This proves that GEVM/PGEVM
cannot be equivalent to block Lanczos.

To verify this result numerically, we show results for
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block Lanczos and GEVM/PGEVM applied to the cen-
tral values of the 2×2 proton correlator matrix discussed
in Secs. V and VI in Fig. 35. The results are not identi-
cal for m > 1. This can be contrasted with the identical

results for scalar Lanczos and PGEVM applied to the
central values of a single diagonal correlator matrix en-
try shown in Fig. 36.
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[27] M. Lüscher and P. Weisz, Definition and General Prop-
erties of the Transfer Matrix in Continuum Limit Im-
proved Lattice Gauge Theories, Nucl. Phys. B 240, 349
(1984).

[28] J. B. Kogut and L. Susskind, Hamiltonian Formulation
of Wilson’s Lattice Gauge Theories, Phys. Rev. D 11,

https://arxiv.org/abs/2406.20009
https://arxiv.org/abs/2406.20009
https://arxiv.org/abs/2407.21777
https://arxiv.org/abs/2407.21777
https://doi.org/10.1016/0550-3213(82)90384-4
https://doi.org/10.1016/0550-3213(82)90384-4
https://doi.org/10.1016/0550-3213(83)90674-0
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.1088/1126-6708/2009/04/094
https://arxiv.org/abs/0902.1265
https://arxiv.org/abs/2309.05111
https://arxiv.org/abs/2309.05111
https://doi.org/10.1140/epja/s10050-020-00205-w
https://doi.org/10.1140/epja/s10050-020-00205-w
https://arxiv.org/abs/2004.10472
https://arxiv.org/abs/hep-lat/0403023
https://arxiv.org/abs/0709.1902
https://doi.org/10.1103/PhysRevD.80.074506
https://doi.org/10.1103/PhysRevD.80.074506
https://arxiv.org/abs/0903.2314
https://doi.org/10.1063/1.3647217
https://arxiv.org/abs/1010.0202
https://doi.org/10.22323/1.139.0148
https://doi.org/10.1103/PhysRevD.90.074507
https://arxiv.org/abs/1404.4029
https://doi.org/10.1051/epjconf/201817506026
https://doi.org/10.1051/epjconf/201817506026
https://arxiv.org/abs/1710.07816
https://doi.org/10.1140/epja/s10050-021-00355-5
https://arxiv.org/abs/2011.12471
https://arxiv.org/abs/2011.12471
https://doi.org/10.1109/CDC.1974.270490
https://doi.org/10.1109/CDC.1974.270490
https://doi.org/10.1109/CDC.1974.270490
https://doi.org/https://doi.org/10.1016/B978-0-12-587260-7.50018-2
http://www.jstor.org/stable/2156670
http://www.jstor.org/stable/2156670
https://books.google.com/books?id=uaYXlkHVPpEC
https://doi.org/https://doi.org/10.1002/nme.1620261012
https://doi.org/https://doi.org/10.1002/nme.1620261012
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620261012
https://doi.org/https://doi.org/10.1002/nme.1620300509
https://doi.org/https://doi.org/10.1002/nme.1620300509
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620300509
https://doi.org/10.1137/S0895479897317806
https://doi.org/10.1137/S0895479897317806
https://arxiv.org/abs/https://doi.org/10.1137/S0895479897317806
https://doi.org/https://doi.org/10.1002/nla.1893
https://doi.org/https://doi.org/10.1002/nla.1893
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.1893
https://doi.org/10.1016/0550-3213(84)90270-0
https://doi.org/10.1016/0550-3213(84)90270-0
https://doi.org/10.1103/PhysRevD.11.395


50

395 (1975).
[29] Y. Saad, The Lanczos biorthogonalization al-

gorithm and other oblique projection methods
for solving large unsymmetric systems, SIAM
Journal on Numerical Analysis 19, 485 (1982),
https://doi.org/10.1137/0719031.

[30] R. Abbott, G. T. Fleming, D. C. Hackett, D. A. Pefkou,
and M. L. Wagman, In preparation .

[31] T. mpmath development team, mpmath: a Python li-
brary for arbitrary-precision floating-point arithmetic
(version 1.3.0) (2023), http://mpmath.org/.

[32] B. Parlett, Misconvergence in the Lanc-
zos algorithm, in Reliable Numerical Comm-
putation (Oxford University Press, 1990)
https://academic.oup.com/book/0/chapter/422058476/chapter-
pdf/52393581/isbn-9780198535645-book-part-2.pdf.

[33] A. B. J. Kuijlaars, Which eigenvalues are found
by the Lanczos method?, SIAM Journal on Ma-
trix Analysis and Applications 22, 306 (2000),
https://doi.org/10.1137/S089547989935527X.

[34] J. Garza-Vargas and A. Kulkarni, The Lanczos algo-
rithm under few iterations: Concentration and location
of the output, SIAM Journal on Matrix Analysis and
Applications 41, 1312–1346 (2020).

[35] L. Maiani, G. Martinelli, M. L. Paciello, and B. Tagli-
enti, Scalar Densities and Baryon Mass Differences in
Lattice QCDWithWilson Fermions, Nucl. Phys. B 293,
420 (1987).

[36] S. J. Dong, K. F. Liu, and A. G. Williams, Lattice
calculation of the strangeness magnetic moment of the
nucleon, Phys. Rev. D 58, 074504 (1998), arXiv:hep-
ph/9712483.

[37] S. Capitani, M. Della Morte, G. von Hippel, B. Jager,
A. Juttner, B. Knippschild, H. B. Meyer, and H. Wit-
tig, The nucleon axial charge from lattice QCD with
controlled errors, Phys. Rev. D 86, 074502 (2012),
arXiv:1205.0180 [hep-lat].

[38] D. C. Hackett, P. R. Oare, D. A. Pefkou, and
P. E. Shanahan, Gravitational form factors of the pion
from lattice QCD, Phys. Rev. D 108, 114504 (2023),
arXiv:2307.11707 [hep-lat].

[39] R. A. Briceño, M. T. Hansen, and A. Walker-Loud, Mul-
tichannel 1 → 2 transition amplitudes in a finite volume,
Phys. Rev. D 91, 034501 (2015), arXiv:1406.5965 [hep-
lat].

[40] L. Leskovec, Electroweak transitions involving
resonances, PoS LATTICE2023, 119 (2024),
arXiv:2401.02495 [hep-lat].

[41] S. Kaniel, Estimates for some computational techniques
in linear algebra, Mathematics of Computation 20, 369
(1966).

[42] C. C. Paige, The Computation of Eigenvalues and
Eigenvectors of Very Large Sparse Matrices, Ph.D. the-
sis, London University, London, UK (1971).

[43] B. N. Parlett and D. S. Scott, The Lanczos algorithm
with selective orthogonalization, Mathematics of Com-
putation 33, 217 (1979).

[44] B. N. Parlett, Do we fully understand the symmetric
Lanczos algorithm yet (1995).

[45] J. Cullum and R. A. Willoughby, Computing eigenval-
ues of very large symmetric matrices—an implementa-
tion of a Lanczos algorithm with no reorthogonalization,
Journal of Computational Physics 44, 329 (1981).

[46] J. K. Cullum and R. A. Willoughby, Lanczos pro-

cedures, in Lanczos Algorithms for Large Symmetric
Eigenvalue Computations Vol. I Theory (Birkhäuser
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