
Fermilab

Galaxy Clustering with LSST: Effects of Number Count Bias from Blending

FERMILAB-PUB-24-0864-V

arXiv:2411.14564

This manuscript has been authored by Fermi Research Alliance, LLC

under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,

Office of Science, Office of High Energy Physics.



Version November 25, 2024
Preprint typeset using LATEX style openjournal v. 09/06/15

GALAXY CLUSTERING WITH LSST: EFFECTS OF NUMBER COUNT BIAS FROM BLENDING

Benjamin Levine,∗,1,2 Javier Sánchez,†,3,4,5 Chihway Chang,2,4 Anja von der Linden,1

Eboni Collins,6 Eric Gawiser,7 Katarzyna Krzyżańska,8 Boris Leistedt,9
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Abstract

The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will survey the southern
sky to create the largest galaxy catalog to date, and its statistical power demands an improved
understanding of systematic effects such as source overlaps, also known as blending. In this work we
study how blending introduces a bias in the number counts of galaxies (instead of the flux and colors),
and how it propagates into galaxy clustering statistics. We use the 300 deg2 DC2 image simulation
and its resulting galaxy catalog (LSST Dark Energy Science Collaboration et al. 2021) to carry out
this study. We find that, for a LSST Year 1 (Y1)-like cosmological analyses, the number count bias
due to blending leads to small but statistically significant differences in mean redshift measurements
when comparing an observed sample to an unblended calibration sample. In the two-point correlation
function, blending causes differences greater than 3σ on scales below approximately 10′, but large
scales are unaffected. We fit Ωm and linear galaxy bias in a Bayesian cosmological analysis and find
that the recovered parameters from this limited area sample, with the LSST Y1 scale cuts, are largely
unaffected by blending. Our main results hold when considering photometric redshift and a LSST
Year 5 (Y5)-like sample.

Subject headings: cosmological parameters – large-scale structure of the universe

1. INTRODUCTION

The Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST, Ivezić et al. 2019) is projected
to begin its 10-year survey of the southern hemisphere
sky in late 2025. Both the depth and sky coverage of
LSST are significantly enhanced with respect to Stage-
III dark energy experiments (Albrecht 2006) such as the
Dark Energy Survey (DES, Flaugher 2005), the Kilo-
Degree Survey (KiDS, de Jong et al. 2015) and the Hy-
per Suprime-Cam Subaru Strategic Program (HSC-SSP,
Aihara et al. 2018). These improvements are expected to
lead to the detection of approximately 20 billion galax-
ies, improving the statistical power from a variety of dark
energy probes (see the LSST Dark Energy Science Col-
laboration Science Requirement Document, The LSST
Dark Energy Science Collaboration et al. 2018, hereafter
“DESC SRD”). However, the improved statistical power
will also lead to an increased sensitivity to systematics
as previously-subdominant effects become relevant.
One systematic effect of particular interest to static

probes of cosmology is blending systematics, an effect
in which the detection and/or measurement algorithms
mischaracterize—or fail to detect entirely—overlapping
luminous sources. This effect is especially prominent

∗benjamin.c.levine@stonybrook.edu
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in faint galaxy populations, as the number density of
objects increases steeply with fainter magnitude, mean-
ing that the likelihood of overlapping another source
with similar brightness also increases steeply. Blend-
ing can bias the centroid position, color, and shape
of sources—all quantities that are used in cosmological
probes of the large-scale structure (e.g., Abbott et al.
2018; Heymans et al. 2021). In the HSC-SSP, more than
50% of detected objects were “deblended” (Bosch et al.
2018); in image simulations of a joint Roman Space Tele-
scope and Rubin Observatory survey, 20%–30% of Ru-
bin single detections were identified as multiple blended
objects in Roman data (Troxel et al. 2023). For a more
detailed review of blending in cosmic surveys, see Mel-
chior et al. (2021).
The effects of blending in the context of weak lensing

analyses have seen interest from the community in recent
years (e.g., Dawson et al. 2016; Sheldon & Huff 2017;
Gruen et al. 2019; Sanchez et al. 2021; Nourbakhsh et al.
2022). Various techniques have been developed to mini-
mize the impact to cosmic shear estimation (e.g., Bern-
stein et al. 2016; Sheldon et al. 2020) and photometric
redshifts (e.g., Jones & Heavens 2019; MacCrann et al.
2021). New deblending techniques are also being devel-
oped in order to mitigate the effects of blending in dif-
ferent probes (e.g., Merlin et al. 2015; Joseph et al. 2016;
Melchior et al. 2018; Arcelin et al. 2021). However, the
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impact of blending in the study of two-point statistics of
galaxy positions (i.e., galaxy clustering) has not received
such attention. This lack of interest is partially due to
the fact that blending is mostly thought to be important
on very small scales where the separation between galax-
ies is comparable to the size of the galaxies themselves,
and these spatial scales are usually not used in cosmolog-
ical analyses. In addition, the effect is not seen in most
current datasets due to the lower galaxy number density.
However, as we approach the era of LSST, it is impor-
tant to revisit the question of whether and how blending
could affect galaxy clustering measurements in Stage-IV
surveys.
In principle, blending will have three main effects on

galaxy clustering measurements: 1) Unrecognized blends
cause us to “lose” galaxies from the catalog; we thus
count fewer pairs on the scales at which blending occurs,
as well as the characteristic clustering scales of galaxies
that cause blending and galaxies that are susceptible to
blending. 2) Blending can cause errors in the brightness
measurements of a galaxy, causing it to scatter into or out
of a magnitude-selected sample. 3) Blending can cause
errors in the color measurements of a galaxy, resulting in
incorrect photometric redshift estimation.
The third effect is both complex to measure and highly

algorithm-dependent (MacCrann et al. 2021); in addi-
tion, characterizing it would require very high accuracy
and precision in simulating the galaxy population, which
is hard to achieve. There are, however, ongoing efforts
to produce reliable photometric redshifts for LSST (e.g.,
Schmidt et al. 2020). In Appendix A we explore a pho-
tometric redshift scenario using Bayesian Photometric
Redshift (BPZ, Beńıtez 2000) redshift estimates from
simulated photometry. However, due to the aforemen-
tioned complications, we leave a thorough examination
of photometric redshift impacts for future study.
The first two effects are easier to assess and are the

focus of this work. The LSST Data Challenge 2 (DC2,
LSST Dark Energy Science Collaboration et al. 2021) im-
age simulations allow us to implicitly capture both effects
by comparing the “observed”1 DC2 Year 1 (Y1) corre-
lation function to the corresponding correlation function
in the truth catalog, without needing to quantify some of
the details (e.g., measuring how much the magnitudes are
typically biased, or deciding how to identify a blend in
detail). Then, to track down the specific effects of blend-
ing on galaxy clustering (as opposed to any other sys-
tematics introduced by the image processing pipeline),
we choose a relatively simple definition to approximately
distinguish between blended and unblended objects.
We emphasize here that, although we will spend

considerable time describing our selected definition of
blended and unblended objects, many of our results—in
particular those concerning any shifts in the cosmol-
ogy inference—are independent of this definition because
they rely only on a comparison between the truth and ob-
served catalogs. The definition of blends serves mainly to
distinguish between biases that arise from blending and
biases that arise from some other source.
We focus particularly on the effect on the redshift dis-

1 Throughout this work we will refer to the simulated DC2 pho-
tometric catalog as “observed” data, since it corresponds directly
to what we expect to observe with LSST.

tribution and inferred values of matter density Ωm and
linear galaxy bias b(z̄). We will not investigate any ad-
ditional related issues (including color shifts, shape mea-
surements, and centroid offsets), but future studies could
in principle adopt the same tools and methodology to an-
alyze them.
This work is structured as follows: in Section 2 we

present the DC2 samples used for our analysis, as well
as the methodology followed. In Section 3 we show the
results regarding the bias to the redshift distributions
of our samples. In Section 4 we present the clustering
results obtained for the different samples considered in
this work. In Section 5 we discuss the limitations of
our analysis. Finally, in Section 6 we present concluding
remarks.

2. ANALYSIS FRAMEWORK

2.1. Data

It is challenging to infer the impact of blends in LSST
using existing survey data: some existing ground-based
datasets are deep enough to achieve the required num-
ber densities to evaluate the impact of blending (such
as the HSC-SSP deep and ultra-deep fields), but their
small area is inadequate to test the full cosmological pa-
rameter space to the precision required by LSST. Us-
ing larger but shallower data (such as HSC-SSP wide)
does not guarantee mapping the full parameter space rel-
evant to blending (e.g., morphology, size, surface bright-
ness, and clustering amplitude). One solution is to sup-
plement shallower surveys with overlapping data from
deeper, better-resolved images, e.g., with existing space-
based imaging from HST; or very large telescopes with
adaptive-optics systems. However, this approach quickly
becomes limited by the expense of telescope time given
the large number of galaxies we wish to study. In ad-
dition, there is no guarantee that there are no sources
below the noise level that contribute to the measured
flux of our detected sources. Future space-based sur-
veys such as Roman (Spergel et al. 2015; Akeson et al.
2019) and Euclid (Laureijs et al. 2011) will provide the
required data, but their data products will not be avail-
able in time to prepare for LSST. To this end, realistic
end-to-end image simulations offer a unique opportunity
to study the blending problem because we have access
to both the catalog produced by our detection and de-
blending algorithms and, most importantly, the truth.
In particular, the DESC DC2 simulations are developed
specifically for LSST. Despite their limited area (approx-
imately 300 deg2) compared to the full planned area for
LSST (approximately 18000 deg2), the access to ground
truth and their underlying number density makes them
extremely useful tools with which to study the effects of
blending.
DC2 is to an end-to-end photometric catalog based on

the Outer Rim simulation (Heitmann et al. 2019). It in-
cludes a 440 deg2 cosmological mock galaxy catalog (Cos-
moDC2) and a synthetic stellar catalog, simulated single-
epoch and coadd images and their corresponding cata-
logs in six bands (u, g, r, i, z, y), and a combined forced-
photometry catalog. A detailed description of the dif-
ferent data products from DC2 can be found in LSST
Dark Energy Science Collaboration et al. (2021). We
focus on the Wide-Fast-Deep (WFD) area shown in Fig-
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Fig. 1.— Left : map of the input (truth) galaxies from the CosmoDC2 simulation. Right : map of detected sources in the DC2 DR6 object
catalog. The maps are shown using the McBryde projection.

ure 1. We use the dc2 run2.2i object dr6 5-year LSST
depth “object catalog,” produced by detecting sources in
the coadded images, for our observed data. Using this
5-year depth catalog guarantees a high completeness for
the Y1-like subsample that we analyze here, minimizing
potential impacts of incompleteness that may dominate
over blending effects. This catalog is processed with ver-
sion 19.0.0 of the Rubin Science Pipelines2 (Jurić et al.
2017), and is designed to resemble the catalogs that will
be produced during the operations of LSST. Detailed val-
idation tests were carried out on the DC2 products as
described in Kovacs et al. (2022), and additional vali-
dation is shown in Appendix B. To avoid contamination
and systematic impacts on the sample by bright stars, we
apply the star mask developed by Du (2023). Excluding
this mask does not significantly affect our results.
The end-to-end simulation framework of DC2 offers us

the unique opportunity to study blending in a realistic
yet controlled way: we can match the galaxy catalog
as detected by the Rubin software to the input “true”
galaxy sample, in principle allowing us to determine the
effects of blending on any given object. It is important
to note that some of the effects of blending are tied to
the choice of detection and deblending algorithm used
for the analysis.3 When we measure properties based
on the truth catalog, such as the intrinsic redshift dis-
tribution of isolated vs. blended objects (Section 3), any
observed biases will be present independently of the de-
tection and deblending algorithms, since our definition of
isolated and blended objects is independent of these algo-
rithms. However, for properties based on derived quan-
tities in the observed catalog, such as flux and position
(both of which propagate into the two-point correlation
function; Section 4), the bias will be dependent on the
specifics of the detection and deblending algorithms.

2 For additional details on the Rubin Science Pipelines see
pipelines.lsst.io.

3 Additional details about the detection and deblending algo-
rithms that we use can be found in Bosch et al. (2018).

2.2. Matching truth and observed catalogs

The information of which photon was emitted by which
source is not propagated through to the simulated im-
ages, and therefore there is no straightforward way to
determine which truth objects were blended together
into a single detection. As a consequence, we match
objects in the observed catalog to objects in the truth
catalog by selecting the truth object closest in r-band
magnitude within a given radius Rmax, making the as-
sumption that only objects within Rmax will likely be
blended. We match in the r band because it is the
deepest photometric band. The radius size Rmax = 1′′

is chosen to be approximately the size of the typical
point-spread function (PSF) of LSST images (estimated
to be approximately 0.7′′ for the r band, Ivezić et al.
2019). We select galaxies with an observed magni-
tude of i < 24.1, which follows the LSST Y1 Gold
sample magnitude cut as specified in the DESC SRD.
We also require the selected objects to be measured
as extended in each one of the g, r, i, and z bands
(<band> base ClassificationExtendedness value >
0.5), which removes the majority of bright stars
that are incorrectly identified as galaxies by a simple
extendedness cut.
Figure 2 shows that nearly 100% of our selected ob-

served objects in DC2 are within 0.4′′ from their best
truth match, suggesting that the pipeline adequately
distinguishes between centroid separations greater than
1′′—if not, we would expect to see more matches at larger
radii. Rmax = 1′′ is therefore a conservative choice of
matching radius. Figure 2 also shows that over 95% of
our observed objects are within 0.25 magnitudes of their
best match in the truth catalog, providing further evi-
dence for the reliability of our matching process.
We use a KDTree algorithm from scikit-learn (Pe-

dregosa et al. 2011) to count the number of neighbors
within Rmax in the truth and observed catalogs for each
observed detection. Our definition of neighbor includes
the centered object; i.e., an isolated observed object with
no other detections within Rmax will have one observed

pipelines.lsst.io
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Fig. 2.— Left : histogram of the distance between an observed
object and its best truth match. Right : histogram of the dif-
ference between the i-band magnitude of an observed object and
its best truth match. For the right plot we use objects from
cosmoDC2 v1.1.4 small, a representative subset of CosmoDC2. For
both, the best match is defined as the truth object nearest in r-
band magnitude to the detection within 1′′.

neighbor (itself). Then, we sort the matches into three
broad categories (see Figure 3 for an illustration).

• One-to-one matches: all sources in the observed
catalog that have only one neighboring source in
the truth catalog within a radius Rmax = 1′′,
and one neighboring source within Rmax = 1′′

in the observed catalog. These sources will most
likely be unaffected by flux from any other objects
(i.e., we can consider them isolated). The tails of
very bright sources could in principle extend be-
yond Rmax and influence the determination of other
sources of interest (Gawiser et al. 2006). How-
ever, we expect that the majority of the sources
impacted by these effects will be masked by the
bright star mask and thus excluded from the sam-
ple. Approximately 42% of observed galaxies in
our sample are one-to-one matches.

• Multiple-to-one matches: all sources in the ob-
served catalog that have more than one neighboring
source within Rmax = 1′′ in the truth catalog and
one neighboring source within Rmax = 1′′ in the ob-
served catalog. The photometry and astrometry of
these sources could be biased and the uncertainties
may be correlated with neighboring sources. These
detections are considered to be blended. Approxi-
mately 57% of observed galaxies in our sample are
multiple-to-one matches.

• Ambiguous matches: all sources in the observed
catalog which have more than one neighbor in the
observed catalog. This category may also include
shreds, in which a single true object may lead to
multiple detections in the observed catalog. We
leave the analysis of this category to future work.4

Given their rarity (approximately 1% of our sam-
ple) we do not expect ambiguous blends to signif-
icantly affect the results of this study. In addi-
tion, an analysis of this category would require a
more sophisticated matching algorithm that takes
into account the physical overlap of the measured
shapes of objects; such algorithms are currently in

4 Note that the nomenclature for categories of blends is not stan-
dardized. The so-called “ambiguous blends” described in Dawson
et al. (2016) correspond to our multiple-to-one matches; Mandel-
baum (2018) uses “unrecognized blends” to refer to the same.

Fig. 3.— The selection criteria for matching objects between
the observed and truth catalogs. We perform a search within 1′′

of the observed object. One-to-one matches (left) are defined as
Ntruth = Nobserved = 1 and multiple-to-one matches (center) are
defined as Ntruth > Nobserved = 1. Ambiguous matches (right)
are defined as Nobserved > 1.

development (e.g., Ramel et al. 2023; Liang, Adari
et al. in prep.).

We count all neighbors in the truth and observed cat-
alogs, up to a magnitude i < 30. In practice, there will
not be significant bias to a galaxy blended with an object
many magnitudes fainter than itself. However, determin-
ing what magnitude cutoff should be used to identify a
“significant” or “strong” blend is nontrivial. Rather, the
work here should be interpreted as the worst-case sce-
nario—i.e., that almost every blended galaxy has unreli-
able photometry. We also reiterate that the exact defini-
tion of our one-to-one and multiple-to-one samples serves
mainly to identify which biases are related to blending
and which are not. The majority of our results are inde-
pendent of this definition.
A benefit of using these distance-based categories com-

pared to other criteria based, for example, on the degree
of blending (such as blendedness; Bosch et al. 2018) is
that they do not depend as strongly on the choice of
detection and deblending algorithms.
It should be noted that it is extremely challenging to

identify these three categories in real (unsimulated) data
(though, as we will discuss in Section 3, a subsample
of bright, isolated galaxies, such as those used for spec-
troscopic redshift calibration, should be close to a one-
to-one sample). To emulate the expected LSST Y1 ob-
servations, we also present results for the “all observed”
category, which consists of all galaxies detected in the
DC2 observed catalog (the union of the three categories
of blending described above).
We introduce a final category, defining “lost” objects as

truth objects that are not a nearest match for a detection
in the observed catalog. Note that the objects in this
category do depend on the particular choice of detection
and deblending algorithms.
In Figure 4 we show the distribution of observed

sources as a function of the number of neighbors in the
truth and observed catalogs. The histogram cells above
the diagonal are spurious detections due to source shred-
ding or poor pixel masking. The cells on the diago-
nal are sources that have been “correctly” detected, i.e.,
there are no biases between the input and output number
of sources. The cells below the diagonal correspond to
sources that have undetected neighbors. Approximately
42% of the sources are one-to-one matches, i.e., are most
likely not blended, and approximately 57% of the de-
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Fig. 4.— Distribution of neighbors in the truth and observed
catalogs for each detected object, with a magnitude cut of i < 24.1.
Cells corresponding to our one-to-one and multiple-to-one samples
are highlighted.

Fig. 5.— Top: number of objects in our samples at a given i-band
magnitude. For the observed samples, we plot the observed magni-
tudes derived from the Rubin Science Pipelines. For the truth and
lost samples, we plot the true magnitudes from the CosmoDC2 sim-
ulation. Bottom: deviation of the one-to-one and multiple-to-one
samples from the all observed sample.

tected sources have more than one truth neighbor within
1′′, meaning that these sources likely present some de-
gree of blending. This means that more than half of the
detected objects in DC2 Data Release 6 (DR6) present
some degree of blending (Melchior et al. 2021).
Note that this fraction is substantially higher than that

found by Troxel et al. (2023), which is likely due the fact
that we match to fainter objects and have a different def-
inition of blends. Indeed, when we cut our truth catalog
at i < 27 before matching, we find that only 17.5% of
objects exhibit blending. Nonetheless, note that Figure
10 in Troxel et al. (2023) is qualitatively similar to our
Figure 4.
In Figure 5 we show the i-band magnitude distribution

of the one-to-one matches, multiple-to-one matches, and
lost samples. For reference, we also plot the magnitude
distribution of the truth catalog. Both detected samples
closely follow the true distribution, while the lost objects
remain comparatively-rare up to i = 23. Fainter objects
are more difficult to detect, even if isolated, and are more
sensitive to the presence of nearby luminous sources.

3. BIAS IN REDSHIFT DISTRIBUTION

Cosmological analyses that rely on properties of ensem-
bles of galaxies, such as galaxy clustering and weak lens-
ing shear, require an accurate description of the overall
redshift distribution of the sample of galaxies involved.
In this section, we test whether blending affects the cal-
ibration of these distributions using reference spectro-
scopic samples, such as in the DIR method (Lima et al.
2008), in a measurable way. We limit our analysis to
testing for changes in the ensemble redshift distributions
knowing the underlying truth redshifts and colors. How-
ever, blending can affect photometric redshift calibra-
tion in other ways (e.g., using unrecognized blends in
the calibration sample, which can lead to biased redshift
estimates). These effects, which are dependent on the
calibration method used, are left for future work.
Figure 6 shows the probability density of each of our

samples as a function of redshift. For the observed cat-
alog, we use the true redshift of the best match in the
truth catalog (as described in Section 2.2). The red-
shift of the multiple-to-one and lost samples are skewed
to higher redshifts (to an extreme degree for the lost
sample) compared to the one-to-one, all observed, and
truth samples; i.e., blending tends to affect objects at
higher redshifts. Given our definition of blends, one
would naively expect blending to occur independently of
both redshift and magnitude, since neither the redshift
nor magnitude of objects ever enter into our 1′′ match-
ing scheme. There are two factors which contribute to
the observed bias. First, at higher redshifts, the angular
diameter distance becomes smaller, meaning that phys-
ical clustering within a halo occurs at smaller angular
scales. When the separation between halo members be-
comes smaller than 1′′, these high redshift galaxies will
be identified as blends by our algorithm. Second, blend-
ing increases the measured flux of dim objects close to
our magnitude cutoff, causing objects that would other-
wise be excluded from our sample to be falsely included.
Since these faint objects tend to lie at higher redshifts,
we expect the high redshift end of our sample to be pref-
erentially blended. These effects combined qualitatively
explain the effect observed, though we will not attempt
any explicit forward-modeling in this paper.
The mean and median redshifts of each observed dis-

tribution are shown in Table 1. The uncertainties are
computed via jackknife with 10 bins, and are order
O(10−6)—much smaller than the errors on the photo-
metric redshifts that will be used in the LSST cosmolog-
ical analysis. The measurements show small but signifi-
cant differences between each sample, with the multiple-
to-one sample having the highest mean redshift.
One consequence of this difference is that redshift cal-

ibration methods that rely on the characterization of
isolated (one-to-one) galaxies may produce biased esti-
mates of N(z) in the presence of blends. Indeed, Figure 6
demonstrates that a one-to-one calibration sample over-
estimates the normalized N(z) of the all observed sam-
ple by 2.27% for z < 0.4, and underestimates N(z) by
5.92% for z > 1.0. These biases are statistically signifi-
cant in DC2, and therefore will also be significant at the
statistical level of LSST when trying to characterize the
whole ensemble of galaxies at once. This means that the
inclusion of nuisance parameters to allow certain pertur-
bations in shape or mean of the N(z), and/or alternative
methods to cross-check the overall N(z) will become even
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Fig. 6.— Top: number of objects in our samples at a given
redshift, normalized such that the integral over all bins is equal to
unity. For the observed samples, the redshift is given by the true
redshift of the best truth match. Bottom: deviation from the all
observed sample.

TABLE 1
Mean and median redshift values of our samples. For the
observed catalog, we use the true redshift of the best
match in the truth catalog (as described in Section 2.2).

Uncertainties are negligible.

Sample Mean z Median z

One-to-One 0.6982 0.7092

Multiple-to-One 0.7092 0.7220

All Observed 0.7042 0.7160

Truth 0.7021 0.7141

more important (e.g., Cawthon et al. 2022; Garćıa-Garćıa
et al. 2023; Ruiz-Zapatero et al. 2023, among others).
We subdivide our samples into 5 different redshift top-

hat bins with 0.2 bin width, between z = 0.2 and z = 1.2,
to estimate the effects on a tomographic analysis. This
follows the Y1 analysis choices described in the DESC
SRD. The mean redshifts for each bin, as well as the
differences between the one-to-one and all observed sam-
ples, are shown in Table 2. The deviations in redshift
between the tomographically-binned samples are smaller
than in the unbinned case, but still statistically signif-
icant (except for the case of the 0.4 < z < 0.6 bin, in
which the one-to-one sample is consistent with the all
observed sample).
The DESC SRD specifies the maximum uncertainty on

the mean tomographic redshift to be σz̄ < 0.005(1 + z̄).
Our observed deviations between the one-to-one and all
observed samples are about 10% of the upper bound on
σz̄. Biased estimates of N(z) due to an isolated calibra-
tion sample may therefore contribute several percent of
the DESC SRD redshift error budget. Numerous other
systematic effects are also expected to bias N(z), such
as photometric redshift uncertainties and survey non-
uniformity. If these effects correlate with blending, the
impact could increase even further, but such analysis is
beyond the scope of this work. Our results demonstrate
the importance of minimizing and/or mitigating the im-
pact of blending in cosmological analyses of LSST.

4. BIAS IN GALAXY CLUSTERING

4.1. Measuring the galaxy clustering signal

In LSST, two-point measurements of galaxy cluster-
ing are planned to be a pillar of the so-called “3 × 2-
point” cosmology analyses (Heymans et al. 2021; Abbott
et al. 2022; Sugiyama et al. 2023), along with galaxy-
galaxy lensing (two-point correlation of galaxy position
and galaxy weak lensing) and cosmic shear (two-point
correlation of galaxy weak lensing).
In this work we use the Landy & Szalay estimator

(Landy & Szalay 1993) to estimate the two-point cor-
relation function of the galaxy density field:

w(θ) =
DD(θ)− 2DR(θ) +RR(θ)

RR(θ)
, (1)

where D stands for “data”, or the galaxy sample that
traces large-scale structure, and R stands for “ran-
dom”, a sample of random points that occupy the
same footprint as D but are spatially randomly dis-
tributed. DD(θ) are the number of data-data pairs sep-
arated by an angle θ, DR(θ) is the number of data-
random pairs, and RR(θ) is the number of random-
random pairs. The correlation functions are estimated
using TreeCorr (Jarvis et al. 2004) and are computed
in 12 log-spaced angular bins between 0.1′ and 250′.
For our nominal analysis we will focus on scales where
k < 0.3hMpc−1, following the DESC SRD.
The covariance matrices are estimated via jackknife re-

sampling on the larger SkySim5000 simulation5, which
expands the footprint of the CosmoDC2 catalog to
5000 deg2. We use 150 jackknife patches. SkySim5000
is not an end-to-end image simulation, but it is a direct
extension of the truth catalog; therefore, it allows us to
obtain a covariance estimate that is as close as possible
to the truth covariance. This estimate also has lower
statistical noise thanks to SkySim5000’s larger footprint.
We rescale the SkySim5000 covariances by the area ratio
between the simulations in order to obtain the final DC2
covariance, using the so-called fsky approximation (Knox
1995). Due to the conservative nature of the dataset in
this analysis and the simplistic geometry of our footprint,
the contributions to the covariance matrix in our analy-
sis are dominated by the cosmic variance component, and
therefore SkySim5000 provides a good approximation to
the covariance matrix for the analysis.

4.2. Bias in the correlation function

We shift our focus to analyze and compare the two-
point correlation functions obtained for the different
galaxy samples (one-to-one, multiple-to-one, all ob-
served, and the underlying truth galaxy catalog) that
we introduce in Section 2.1, across the five tomographic
bins described in Section 3. The results are shown in
Figure 7.
The multiple-to-one sample has a larger amplitude

than the one-to-one sample. The correlation function
of the all observed sample lies in between, as expected
given that it is a superset of the two. These differences
are expected given our definition of the multiple-to-one

5 For additional information on SkySim5000 we refer the reader
to github.com/LSSTDESC/gcr-catalogs.

github.com/LSSTDESC/gcr-catalogs
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TABLE 2
Mean redshift values for our tomographically-binned samples. For the observed catalog, we use the true redshift of the
best match in the truth catalog (as described in Section 2.2). Uncertainties are negligible. We also show the deviation of

the one-to-one sample from the all observed sample.

Mean Redshift

Redshift One-to-One Multiple-to-One All Observed Truth zall − z1-to-1
0.2-0.4 0.3078 0.3079 0.3080 0.3080 0.0002

0.4-0.6 0.5036 0.5037 0.5036 0.5036 0.0000

0.6-0.8 0.7037 0.7039 0.7038 0.7037 0.0001

0.8-1.0 0.8936 0.8947 0.8943 0.8939 0.0007

1.0-1.2 1.0890 1.0908 1.0901 1.0897 0.0011

Fig. 7.— Top: angular autocorrelation function measurements for each of our samples. Bottom: deviation from the true correlation
function. Error bars are computed as the square root of the covariance matrix diagonal, with the covariance matrix estimated from
SkySim5000 as described in Section 4.1. Gray shaded regions denote small scales ignored in cosmological analyses, as specified by the
DESC SRD (k < 0.3hMpc−1). Note that the apparent redshift dependence on the bias in the bottom panel is largely dominated by the
improved statistics in the higher redshift bins, which lead to reduced uncertainties.

sample: projected alignments between objects will oc-
cur more often in environments with a higher clustering
bias, resulting in a higher correlation function. The one-
to-one sample, which selects isolated objects, should have
a comparatively lower correlation function.
At small scales (< 10′), all three observed samples ex-

hibit less clustering than the truth; for the all observed
sample (what we will measure in LSST) the deviation
can be beyond 3σ as measured in DC2.
At larger scales, the observed samples are mostly con-

sistent with the truth but show deviations on the order
of 0.5σ in the higher two redshift bins. However, these
deviations at large scales are consistent between the one-
to-one and multiple-to-one samples, suggesting that the
origin is likely not blending.
We extrapolate these DC2-based results to the full

LSST area by rescaling the uncertainties by the area
ratio, Aratio =

√
ALSST/ADC2 ≈ 7.8, where ALSST =

18000 deg2 and ADC2 = 294 deg2. On small scales, this
may translate into deviations of up to 21σ or larger.
These deviations may complicate efforts to measure and
model nonlinear galaxy bias (Nicola et al. 2024) and
other small scale effects (e.g., Chisari et al. 2019a).

4.3. Bias in inferred cosmology

We perform a cosmological analysis on our measured
correlation functions following the analysis choices from
the DESC SRD. We model the correlation function using
the Core Cosmology Library (CCL, Chisari et al.
2019b) with a linear galaxy bias for each redshift bin.
First, we obtain the angular power spectrum:

Cℓ = b2(z̄)
2

2ℓ+ 1

∫
dz

(
dn

dz

)2

H2(z)P

(
k =

ℓ+ 1

r(z)
, z

)
,

(2)
where b(z̄) is the galaxy bias at the mean redshift of the
sample, dn/dz is the redshift distribution, H(z) is the
Hubble parameter, and P (k) is the matter-power spec-
trum as computed by CAMB (Lewis et al. 2000). An
inverse Fourier transform yields the correlation function:

w(θ) =
∑
ℓ≥0

(
2ℓ+ 1

4π

)
Pℓ(cos θ)Cℓ, (3)

where Pℓ is the Legendre polynomial of order ℓ.
We obtain the posterior probability for the cosmologi-

cal analysis by evaluating the Bayesian likelihood:

logL = −0.5
∑
i

∑
j,k

(
wi(θj)− wth

i (θj)
)
C−1

i,jk

(
wi(θk)− wth

i (θk)
)
,

(4)
where i runs over the redshift bins and j, k each run over
the angular bins. C−1

i,jk is the inverse covariance matrix
for the bin i. We ignore the correlations between redshift
bins given that we are using top-hat bins in true redshift.
However, we do not expect the conclusions from this work
to be affected by these approximations. This is due to
the fact that we are ignoring the effects in photometric
redshifts, and that in a typical cosmological analyses the
information comes from both the auto- and cross-power



8 Levine, Sánchez et al.

TABLE 3
Top: priors used for our likelihood estimation. U(a, b)
represents a uniform (top-hat) prior between a and b.
N (µ, σ) represents a Gaussian prior with mean µ and

standard deviation σ. Bottom: fixed values for
cosmological parameters used in our model. The

parameters are set to their DC2 input values (Korytov
et al. 2019).

Parameter Prior/Value

Ωm U(0.1, 0.5)×N (0.2648, 0.2)

bi U(0.3, 4.0)×N (1.9, 0.9)

Ωb 0.0448

σ8 0.8

h 0.71

ns 0.963

spectra; however, for the case of top-hat bins the same
information is encoded in the auto spectra.
Using the package emcee (Foreman-Mackey et al.

2013), we run a Markov Chain Monte Carlo process
(MCMC) to estimate the posterior distributions for Ωm

and the galaxy bias parameters bi(z̄). We set truncated
Gaussian priors for Ωm and bi; the parameters of the
Gaussian are as specified by the DESC SRD, while the
truncation boundaries are set so as to prevent walk-
ers from wandering beyond physically meaningful values.
These priors are shown in Table 3. The free parameters
in our model are those to which galaxy clustering is the
most sensitive (Percival et al. 2001). All other cosmo-
logical parameters are set to their DC2 simulation input
values for the purposes of modeling the correlation func-
tion.
Our likelihood function is given in Equation 4. For

each chain we use gradient minimization to set starting
values, run 32000 samples, and discard 100 samples for
burn-in. We confirm that the burn-in period is adequate
and that the chains converge by visually inspecting the
sample distributions to check that there is no evolution
in mean and variance over time. To visualize the pos-
teriors we use the Kernel Density Estimator function of
ChainConsumer (Hinton 2016).
The MCMC posteriors are shown in Figure 8. The

cosmological constraints obtained for all of our observed
samples are consistent with those obtained for the truth
sample within 1σ. Additionally, all of the constraints
obtained for the galaxy samples considered here are con-
sistent with the DC2 input (Ωm = 0.265) within < 2σ,
although we find a small preference towards higher than
expected Ωm values. In Appendix B we explore this devi-
ation, finding that this preference is due to sample vari-
ance. The most significant differences in the inferred
parameters between the samples are found in the galaxy
biases, particularly in the one-to-one sample at high red-
shifts. This is expected, as the one-to-one sample is se-
lected in a way that is naturally less clustered than the
other two observed samples. We show the fractional un-
certainty for the biases for each sample in Table 4. From
the posterior distributions in Figure 8 we conclude that
blending has no measurable impact on the inferred cos-
mology using the DC2 footprint with LSST Y1 fiducial
analysis choices.
As discussed in Section 4.2, the deviation between the

truth and observed samples is amplified at smaller scales
which are not used in the cosmological analysis. To test

TABLE 4
Fractional deviation from the truth sample for each of
the cosmological parameters (∆X = XTruth −XSample).

One-to-One Multiple-to-One All Observed

∆Ωm/σ 0.355 0.253 0.224

∆b1/σ 0.162 0.212 0.135

∆b2/σ 0.330 0.161 0.139

∆b3/σ 0.571 0.064 0.160

∆b4/σ 0.709 0.278 0.439

∆b5/σ 0.425 0.100 0.201

how the choice of small-scale cut could impact the in-
ferred cosmology, we compute the best-fit Ωm for various
scale cutoffs using gradient descent minimization. The
results are shown in Figure 9; we find that the best-fit Ωm

value at smaller scale cuts is compatible with our fiducial
analysis within 1σ for all but the most conservative scale
cut (20Mpc). Note, however, that the increased uncer-
tainty on the inferred cosmology for the 20Mpc scale cut
would likely bring it into 1σ concordance with our fidu-
cial analysis as well.

5. LIMITATIONS

Our fiducial analysis includes two major simplifications
to the data set. First, we use the true redshifts of each ob-
served galaxy, generated by matching the observed cat-
alog to the true catalog. Photometric redshifts will add
a further complication to the measurements. Second, we
perform a magnitude cut at the Y1 Gold limit, despite
the fact that DC2 is measured at a Y5 depth.
To test whether these simplifications affect our conclu-

sions, we re-run the analysis using the LSST Y5 magni-
tude cut (i < 24.92) and a BPZ photometric redshift cat-
alog for DC2. Our main results hold in these secondary
analyses. The procedure and results of these tests are
described in detail in Appendix A.
These tests provide evidence that blending will not sig-

nificantly impact Ωm measurements from galaxy cluster-
ing analyses in the context of a Y5 analysis with pho-
tometric redshift effects. However, for the reasons dis-
cussed in Section 1, it is difficult to isolate the exact
impact of blending in these measurements as opposed to
the effects of incompleteness and biases introduced by
the photometric redshift algorithm itself.
In addition to these simplifications, we also highlight

three additional areas for future study. First, most cos-
mological analyses performed to date limit the usage of
galaxy-clustering results to linear scales (e.g., Heymans
et al. 2021; Abbott et al. 2022) on their baseline analyses.
However, there are significant efforts in the community to
improve our understanding of small scales (Nicola et al.
2024) and unlock additional cosmological information.
In our baseline analysis we focus on linear scales and
the impact of blending on the linear bias. However, Fig-
ure 7 clearly shows that the impact of blending is more
significant at small (non-linear) scales. Thus, beyond im-
provements in modeling non-linearities, additional work
understanding and modeling the impact of blending at
these scales will be required in order to push further into
the non-linear regime using LSST data.
Second, we consider galaxy clustering in isolation and

do not address the effect of blending in the full 3 × 2pt
analyses. Nourbakhsh et al. (2022) find significant im-
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Fig. 8.— Contours for cosmological parameters assuming ΛCDM model with Ωm and galaxy bias bi freed, computed for each of our
samples. We use DESC SRD priors and show the simulation input value of Ωm = 0.265 as a vertical dashed line.

pact in cosmic-shear-only analyses, and our results point
to significant impact in clustering-only analyses for the
full LSST area (though not in the smaller footprint of
DC2), which motivates a deeper study of the impact in
3× 2pt analyses.
Finally, we note that the galaxies used for the cluster-

ing analysis are detected and deblended using a partic-
ular detection and deblending algorithm (those included
in the Rubin Science Pipelines v19.0.0), and the specifics
of the effect of blending found in the two-point correla-
tion function do depend ultimately on these. However,
potential improvements in these algorithms and/or com-
binations with space-based higher-resolution imaging can

mitigate the impact of blending in galaxy clustering mea-
surements found in our work.

6. SUMMARY & CONCLUSIONS

In this work we study the impact of the number count
bias from blending in two-point galaxy clustering analy-
ses for the Vera C. Rubin Observatory LSST.6

Using data from the DC2 simulated sky survey gives
us the opportunity to analyze LSST-like data while still
having access to the ground truth, which provides an

6 The code used for our analysis of catalogs, correlation func-
tions, and cosmology, as well as plotting routines, is available at
github.com/bclevine/BLxClustering.

github.com/bclevine/BLxClustering
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Fig. 9.— Relative deviation of best-fit Ωm from our fiducial cos-
mological analysis (∆Ωm = Ωm,best−fit − Ωm,SRD) compared to
the uncertainty at our fiducial scale cut (σSRD), as a function of
scale cut. The gray shaded region shows the 1σ range. The DESC
SRD scale cut used in our cosmological analysis is shown with a
gray dotted line.

ideal scenario to test the effects of blending. After com-
paring and matching with the truth catalog we subdi-
vide the observed galaxies into two main samples: the
one-to-one matches, i.e., observed galaxies that have a
single neighbor in the truth catalog within a Rmax = 1′′

radius; and the multiple-to-one matches, i.e., those ob-
served galaxies that have more than one neighbor in the
truth catalog within a Rmax = 1′′ radius. These two
categories roughly correspond to likely-not-blended and
likely-blended galaxies, respectively. By using a distance-
based classification criterion we attempt to make our con-
clusions as deblender-independent as possible.
We follow the fiducial Y1 analysis presented in the

DESC SRD and analyze potential differences between
the one-to-one sample, the multiple-to-one sample, and
the combination of both (the all observed sample), as
well as the underlying truth. We first look for differ-
ences in the ensemble redshift distributions, finding that
the one-to-one sample has a different mean redshift than
the multiple-to-one and the all observed samples. These
biases, while statistically significant, will likely be sub-
dominant compared to other sources of mean redshift
bias such as photometric redshift errors. Further study
of how different redshift calibration algorithms interact
with blending will be required in order to quantify the
full impact to N(z) measurements.
Second, we compare the two-point correlation func-

tions obtained for the one-to-one, multiple-to-one, all ob-
served, and truth galaxies. We find that at small, non-
linear scales the differences between the observed and
truth correlation functions are highly significant (> 3σ),
but at linear scales we do not find any measurable sys-
tematic biases due to blending. When extrapolating
these results to the full LSST area, these differences at
small scales become extremely significant (> 21σ). These
differences advise for caution when pushing to the small-
scale regime using galaxy clustering two-point measure-
ments in future cosmological analyses, as systematic bi-
ases may arise if the effect of blending is not accounted
for properly. We find some mild deviation in the mea-
sured correlation functions between the observed galaxies
and the truth at linear scales. However, these are most
likely not due to blending, but rather to other observa-
tional effects, as the three observed samples (one-to-one,

multiple-to-one, and all observed) all exhibit the same
effect.
We use the measured two-point data vectors to obtain

constraints on the combination of Ωm and galaxy bias
parameters. We find that the inferred posterior distri-
butions for Ωm for all samples (one-to-one, multiple-to-
one, all observed, and truth) are statistically compatible.
Furthermore, we obtain best-fit Ωm values statistically
compatible with the input Ωm = 0.265 used for DC2.
The inferred best-fit Ωm values are slightly higher than
the simulation input, but we confirm that this is due to
sample variance present in the DC2 area. We obtain the
same results from cosmology analyses using a Y5 magni-
tude cut and photometric redshifts.
Our results provide evidence that, for the LSST Y1

Gold sample with the fiducial scale cuts, the number
count bias from blending will not significantly impact
the results of galaxy clustering analyses. However, for
cosmology beyond the fiducial Y1 analysis, it will be im-
portant to 1) measure the correlation of blending with
other sources of redshift bias to confirm that blending
remains subdominant; and 2) study and model the im-
pact of blending on angular scales smaller than our cutoff
of k = 0.3hMpc−1, allowing us to take advantage of the
statistical power of the correlation function on nonlinear
scales.
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APPENDIX

A. RESULTS USING YEAR 5 MAGNITUDE CUTS AND
PHOTOMETRIC REDSHIFTS

In the main text we assert that the use of Y1 magnitude
cuts and true redshifts does not significantly affect our
final conclusions (see Section 5). Here, we describe in
detail our results when using Y5 depth and photometric
redshifts. Note that the DESC SRD only contains Y1
and Y10 cuts, so to obtain the Y5 magnitude cut we
interpolate between the Y1 and Y10 cuts, using

√
time

to scale the flux density, to obtain i < 24.92.
We exactly repeat our fiducial analysis using the LSST

Y5 magnitude cut and a BPZ photometric redshift cata-
log for DC2. The latter can enter into the pipeline in two
ways: first through the binning of galaxies when com-
puting the correlation functions, and second through the
N(z) provided to CCL. For this test, we bin galaxies in
the correlation functions according to their photometric

redshifts (determined as the mean of the BPZ probabil-
ity density function), and then feed the true N(z) dis-
tribution for each of these photometric-redshift-selected
bins into CCL. This corresponds to a scenario where we
assume that we still have access to the true redshift dis-
tribution (i.e., we ignore any blending-related biases in
the N(z) distribution), since trying to estimate the im-
pact of blending on N(z) depends on the choice of N(z)
estimation method and is therefore beyond the scope of
this paper. It is possible that blending-related errors in
the calibrated N(z) due to an imperfect estimator may
lead to larger overall biases than we measure in this sec-
tion. The 1σ confidence intervals we obtain are shown in
Figure 10.
Our main conclusions from the fiducial analysis are also

apparent in these Y5 and photometric redshift tests. In
all cases, the true value of Ωm is recovered within < 2σ,
and the fits to the observed data are consistent with the
fits to the truth data within 1σ. The inferred values
of galaxy bias are slightly lower than the fiducial anal-
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Fig. 10.— 1σ ranges for the inferred cosmological parameters of each sample, using different combinations of magnitude cutoff (Y1/Y5)
and binning redshift (true redshift/photometric redshift). The first three samples (“observed all,” “one-to-one,” and “multiple-to-one”)
are drawn from the DC2 catalog as described in Section 2.2. The magenta “truth” sample is drawn from the CosmoDC2 truth catalog.
The green sample in the bottom row corresponds to the SkySim5000 catalog, which we detail in Appendix B. The simulation input value
of Ωm = 0.265 is shown as a vertical dashed line. The magenta shaded regions show the 1σ range for the truth data in our fiducial (Y1)
analysis.

Fig. 11.— Distribution of neighbors in the truth and observed
catalogs for each detected object, with a Y5 magnitude cut of i <
24.92. Cells corresponding to our one-to-one and multiple-to-one
samples are highlighted.

ysis for the Y5 tests by up to 1σ. However, since these
shifts are consistent between all three of our observed
samples, they are unlikely to be caused by blending. We
do not attempt further analysis to determine the source
of the shifts in galaxy bias, but they are expected: using
the Y5 magnitude cut introduces to the sample fainter
galaxies that are less massive and less clustered, lowering
the overall bias.
We now describe the characteristics of the blended

samples in the Y5 and photometric redshift analyses and
compare them to our main analysis. When using Y5
depth, the number of galaxies in our analysis between
0.2 < ztrue < 1.2 nearly doubles from 13.1 million to 22.1
million. The fraction of blended objects remains approx-
imately the same (Figure 11), due to the fact that our
definition of blends is independent of the sample magni-
tude cut and the blending rate is nearly uniform across
magnitudes (Figure 5). The N(z) distribution within the
defined redshift bins is not significantly affected by the
use of the Y5 cut. The qualities of the distribution are
consistent with those we find in Y1: the multiple-to-one
sample remains skewed to higher redshifts as compared
to the one-to-one sample. In addition, the proportion
of lost objects significantly increases (as expected, given
that incompleteness has a larger effect for Y5).
For the case of photometric redshifts, we use a cata-

log of redshifts estimated via BPZ using the measured
photometry from the DC2 coadded images. Using these
data, the overabundance at high redshifts of multiple-to-
one objects as compared to one-to-one objects is reduced
(Figure 12) as compared to the fiducial analysis (Figure
6). The N(z) bias due to photometric redshift calibra-
tion with an isolated one-to-one sample is therefore be-
low the N(z) bias due to true (spectroscopic) calibration
found in our fiducial analysis, so our main results pro-
vide an upper bound for the redshift bias in Y1. It is
noteworthy that the one-to-one and multiple-to-one red-
shift distributions are similar when using photometric
redshifts, given that every object in the multiple-to-one
distribution has contaminated flux. Our results suggest
that either the particular photometric redshift algorithm
used here is robust to such contaminants, or that the ma-
jority of contaminants are too faint to significantly bias
the measured redshift.
One feature of interest in Figure 12 is the periodic off-

set between the true redshift distribution and the photo-
metric distribution. This offset is a consequence of the
photometric redshift algorithm and results in incorrect
bin assignment when computing the correlation func-
tions. This offset is consistent between the one-to-one
and all observed samples. Figure 13 shows the true red-
shift distribution of galaxies in each of our five tomo-
graphic bins, with bins assigned using photometric red-
shift. The true redshift distributions of the all observed
and one-to-one samples are extremely similar. As shown
in Figure 10, incorrect bin assignment does not signif-
icantly impact the inferred value of Ωm for any of our
samples.
All the results stated above are qualitatively the same

when applying photometric redshifts to the Y5 catalog.

B. VALIDATION USING THE SKYSIM5000
COSMOLOGICAL SIMULATION

The truth catalog used in this analysis (CosmoDC2) is
a subset of the SkySim5000 simulated sky catalog, which
has a footprint of one eighth of the sky. An illustra-
tion of CosmoDC2 and SkySim5000 (as well as the DC2
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Fig. 12.— Top: number of objects in our Y1 samples at a given
redshift, normalized such that the integral over all bins is equal
to unity. For the observed samples, the redshift is given by the
photometric redshift. For the truth and lost samples, the redshift is
given by the true redshift. Bottom: deviation from the all observed
sample.

Fig. 13.— True redshift distribution of Y1-selected galaxies in
each of our five tomographic bins, with bins assigned using pho-
tometric redshift. Each histogram is normalized such that the
integral over all its bins is equal to unity. The shaded regions
correspond to the selections for each tomographic bin. The over-
densities at z = 0 correspond to stars that are misidentified in the
DC2 catalog and are not removed by our cuts.

observed catalogs) is shown in Figure 14. The two simu-
lations use the same physics and differ only by their sizes,
meaning that the measured correlation functions and in-
ferred cosmological parameters should agree up to the
level of statistical variance. We validate our measure-
ments by comparing the aforementioned measurements
in CosmoDC2 to those of skysim5000 v1.1.2.

The angular correlation function for galaxy clustering
is shown in Figure 15. The CosmoDC2 measurements are
statistically compatible within 1σ of SkySim5000 for all
but the second redshift bin, which differs significantly. In
order to confirm that the discrepancy is likely due to cos-
mic variance, we randomly select 12 patches of sky from
SkySim5000 with areas matching that of CosmoDC2.
The 1σ distribution of correlation functions from these
patches is plotted in Figure 15. CosmoDC2 lies within
2 − 3σ of the patches for the second redshift bin, and
well within 1σ for the other bins. It is likely that the
deviations in CosmoDC2 are simply an effect of cosmic

Fig. 14.— Footprints of the observed galaxies from the DC2
catalog (yellow), truth galaxies from the CosmoDC2 simulation
(gray), and truth galaxies from SkySim5000 (blue). The footprints
are shown using the Hammer-Aitoff projection.

variance, rather than a systematic issue with the catalog.
We repeat the MCMC analysis described in Section 4.3

for SkySim5000 and show the results in Figure 16. The
contours for SkySim5000 are more precise than for Cos-
moDC2 thanks to the greater statistical power, and we
recover the simulation input Ωm within 1σ. The contours
agree with those of CosmoDC2 within 2−3σ, resembling
the level of statistical deviation in the correlation func-
tion’s second redshift bin.

This paper was built using the Open Journal of As-
trophysics LATEX template. The OJA is a journal which
provides fast and easy peer review for new papers in the
astro-ph section of the arXiv, making the reviewing pro-
cess simpler for authors and referees alike. Learn more
at http://astro.theoj.org.
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Fig. 15.— Top: angular correlation function measurements for CosmoDC2 (magenta) and SkySim5000 (green). The 1σ distribution for
12 randomly-selected DC2-sized patches of SkySim5000 is shaded in light green. Bottom: deviation from the full SkySim5000 correlation
function. Gray shaded regions denote small scales ignored in cosmological analyses, as specified by the DESC SRD (k < 0.3hMpc−1).

Fig. 16.— Contours for cosmological parameters assuming ΛCDM model with Ωm and galaxy bias bi freed, computed for CosmoDC2
(magenta) and SkySim5000 (green). We use DESC SRD priors and show the simulation input value of Ωm = 0.265 as a vertical dashed
line.


