
Fermilab

Machine Learning for Arbitrary Single-Qubit Rotations on an Embedded Device

FERMILAB-PUB-24-0855-T

arXiv:2411.13037

This manuscript has been authored by Fermi Research Alliance, LLC

under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,

Office of Science, Office of High Energy Physics.



Machine Learning for Arbitrary Single-Qubit

Rotations on an Embedded Device

Madhav Narayan Bhat1†, Marco Russo2,3†, Luca P. Carloni1,
Giuseppe Di Guglielmo3, Farah Fahim3, Andy C. Y. Li3,

Gabriel N. Perdue3

1Columbia University, New York, NY, USA.
2Politecnico di Torino, Turin, Italy.

3Fermi National Accelerator Laboratory, Batavia, IL, USA.

†These authors contributed equally to this work.

Abstract

Here we present a technique for using machine learning (ML) for single-qubit
gate synthesis on field programmable logic for a superconducting transmon-based
quantum computer based on simulated studies. Our approach is multi-stage. We
first “bootstrap” a model based on simulation with access to the full statevector
for measuring gate fidelity. We next present an algorithm, named adapted ran-
domized benchmarking (ARB), for fine-tuning the gate on hardware based on
measurements of the devices. We also present techniques for deploying the model
on programmable devices with care to reduce the required resources. While the
techniques here are applied to a transmon-based computer, many of them are
portable to other architectures.

Keywords: Quantum Computing, Quantum Hardware, Quantum Control,
Superconducting Qubits

1 Introduction

Quantum computers may offer exponentially more efficient implementations of some
algorithms than classical computers Maslov et al (2019). One of the quantum com-
puters’ most promising technological implementations is based on superconducting
transmon qubits Koch et al (2007); Houck et al (2009). In particular, supercon-
ducting transmon-based quantum computers offer one of the more promising paths
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to fault-tolerant quantum computing Fowler et al (2012); Bravyi et al (2022); Ang
et al (2022). Nevertheless, control of quantum computers based on this technology
is challenging because qubits must be chilled to millikelvin temperatures in dilution
refrigerators. The communication latency and bandwidth between qubits and classical
control systems “in the warm” is highly constrained. In this simulation-based study,
we investigate a machine learning (ML) approach to qubit control that will be imple-
mented on field-programmable logic that runs in the refrigerator proximate to the the
qubit. We present the algorithm translation, design-space exploration, and resource
requirements; we also consider algorithm training requirements in the presence of
unstable noise sources.

Field-programmable gate arrays (FPGAs) and embedded FPGAs (eFPGAs) are
two technologies in the field of field-programmable logic. FPGAs are standalone chips
that offer programmability, enabling reconfiguration of the hardware architecture after
manufacturing for various applications, including ML. This flexibility makes FPGAs
suitable for cases where updating hardware logic post-deployment is necessary. On
the other hand, eFPGAs are integrated into System-on-Chips (SoCs) or application-
specific integrated circuits (ASICs), providing a reconfigurable logic block within a
larger device. This integration allows for the addition of programmability to static
designs, matching the performance benefits of ASICs with the flexibility of programma-
bility. eFPGAs can reduce power consumption and increase system performance by
allowing for the hardware acceleration of ML tasks directly within the SoC, enhancing
the functionality and efficiency of integrated circuits in quantum-control applications.

Transmon qubits are controlled with electromagnetic pulses, i.e., microwaves. Their
amplitude, phase, and shape parameters (that we will call coefficients from now on
to differentiate them from the neural network parameters) determine the resulting
quantum state, which is often described by rotations of the state vector over the Bloch
sphere. We call these operations quantum gates. The simplest rotation of an angle θ
about the X-axis is denoted as an operation (or gate) Rx(θ). Any arbitrary rotation
can be achieved as the sequence of Z, X, and Z rotations, so only Rz (ϕ) and Rx (θ)
gates are necessary. Furthermore, since for transmon devices Rz gates may be obtained
virtually just by varying the phase of the pulses McKay et al (2017), we may focus on
implementing only Rx gates.

Quantum gates may be thought of as analog operations. For example, the Rx (θ)
gate is parameterized by a real number. Measurements of quantum bits yield binary
results in the chosen basis, but accurate quantum computation requires that the exe-
cuted rotation closely matches the intended rotation. We use fidelity, which measures
the overlap between state vectors in Hilbert space, as the primary metric for gate
accuracy. Our problem is to find pulse coefficients that engineer operations with the
highest possible fidelity.

On a side note, any Bloch sphere rotation may furtherly be decomposed in

a sequence of Rz,
√
X,

√
X

−1
gates. Since on transmon platforms the Rz may be

achieved “virtually” by varying the phase of the pulses, another strategy is to focus
on only 2 angles for the Rx gate (−π

2 ,+
π
2 ). This simplifies the calibration costs in

exchange for longer gate sequences for achieving a single rotation (two Rx gates are
required instead of one). This is the benchmark strategy our technique must ultimately
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be compared to for the problem of qubit rotation. Our technique may offer advantages
in execution time or overall fidelity. Additionally, our technique may find application
in other control tasks, such as realizing high-fidelity parameterized gates for super-
conducting cavities Kudra et al (2022); You et al (2024), generating angle-robust
two-qubit entangling gates for trapped-ion qubits Jia et al (2023) and optimizing pulse
parameters to robustly drive neutral-atom qubits Russo et al (2023).

Tools such as Juqbox Petersson and Garcia (2022), Qiskit Pulse Alexander et al
(2020), QuTiP Johansson et al (2012, 2013), and Cirq Developers (2023) allow users to
use simulation to study the effect of a pulse on a quantum device. For the Rx (θ) gate,
simulating multiple angles produces a corresponding set of coefficients. These solutions
traditionally run on workstations in the warm, i.e., outside of the refrigerator; they are
viable for real-time control but not practically feasible as the number of qubits keeps
scaling and the communication becomes a bottleneck. Transferring those frameworks
and their traditional hardware in the refrigerator is unfeasible because of the reduced
space available and limited power budget to maintain the qubits at the operational
temperature. Another option would be to use simpler implementations based on lookup
tables. However, this is also not feasible because interpolation between table entries
is a low-accuracy strategy, and mitigation requires constructing increasingly larger
tables with more complex operations. Additionally, these tables are not flexible when
noise drifts on the hardware.

This work explores a different approach: using a neural network to infer the proper
pulse and running it on programmable devices, such as eFPGAs, in the refrigerator.
We trained our neural network on a large set of angles for an Rx (θ) gate, and the cor-
responding pulse coefficients (describing a B-spline) found by Juqbox. A preliminary
work Xu et al (2022) explored this approach using the Mean-Squared Error (MSE)
between the network-inferred coefficients and those found by Juqbox for training and
testing. However, that approach relied on utilizing quantum state vector information
which may not be observed directly on real hardware. Furthermore, it did not address
the fact that superconducting qubits present some characteristics that are not sta-
ble. For example, the qubit anharmonicity (which describes the frequency spacing of
the energy levels) varies with temperature cycles. These characteristics change if a
superconducting computer is warmed up and then cooled down again. Because these
characteristic values may not be known precisely, it is essential to have a method for
estimating fidelity based on measurements taken on the hardware directly. The method
presented in this work proposes and implements an extension of Randomized Bench-
marking (RB) Wallman and Flammia (2014) for statistically estimating the fidelity of
gates.

1.1 Prior work

A number of papers can be found in the literature proposing methods to calibrate
quantum gates. For instance, Rodionov et al (2014) and AbuGhanem (2024) use
variations of Quantum Process Tomography (QPT); however, the computational com-
plexity of QPT makes it unusable for a large set of gates to be optimized. In Li et al
(2023), instead, the system is modeled with a Hamiltonian and the gates are numer-
ically optimized, performing a simulation of the system. Such a method is certainly
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useful as a starting point, but cannot be implemented on its own on a real device, as
the actual system is inherently more complicated than the model and there is no pro-
posed method to adjust to the real qubits. Our method starts in a similar way using
Juqbox for optimizing the gates during a numerical simulation of the system, but that
is only used as a warm-up; the parameters are then fine-tuned considering physical
variations that model the differences that occur at the passage from the model to the
real system. Finally, there are also papers that apply RB to non-Clifford gates, such
as Onorati et al (2019), but they do not provide any statistical backing to the fidelity
estimates.

1.2 Our contributions

This paper builds on previous work by some of the authors Xu et al (2022). Our
primary extensions here are to adapt the algorithm to use a cost function based on
measurements from a real quantum computer. While we use simulated data in this
work, we hide unobservable “truth values” (i.e., the wavefunction) from the simulation
and only use the results of projective measurements of quantum states, as with real
quantum hardware. We develop a benchmark for assessing the fidelity of our gate
synthesis algorithm and estimate the training costs in shots on a quantum computer.

1.3 Organization of this paper

In Section 2.1 we discuss the key features of our data generation process. The entire
study presented here uses simulation of qubits and not real devices. Section 2.2 dis-
cusses the first stage of training (referred to in this work as a “bootstrap”), in which
we utilize the simulation to provide an exact value for the state fidelity. At this stage
of training our loss function is defined by the Mean-Squared Error (MSE) between
the predicted pulse and pulse computed when the data was originally generated. Then
we refine this model using simulation based training in Section 2.2.1. Next, in Section
2.3 we discuss quantization-aware training, which helps to ensure that the model
remains accurate even when deployed in a quantized format for the purpose of reduc-
ing computational resources and speeding up the inference on resource-constrained
programmable devices. Then, in Section 2.4 we discuss the process of hardware trans-
lation. Next, in Section 2.5 we discuss the adapted randomized benchmarking (ARB)
algorithm for estimating gate fidelity for non-Clifford gates using measurements of the
quantum device (required since direct observation of the wavefunction is not possible).
Following that, in Section 3.1 we discuss a strategy for fine-tuning a bootstrapped
model using ARB. Finally, in Section 4, we conclude the paper.

2 Methods

2.1 Data generation: creating quantum control samples with
Juqbox

Quantum control sample generation via Juqbox Petersson and Garcia (2022) is a
cornerstone of our methodology, as it defines the parameters within which we validate
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our hypotheses. Our objective was to produce samples comprising a single input angle
in the range of −π to π, paired with output pulse coefficients of a predefined size
(20 in this case). The qubit is controlled by a microwave control channel capacitively
coupled to the qubit. we use quadratic B-splines as the basis functions to decompose
the envelop of the microwave control drive with the wave frequency set to be the
qubit frequency. The first/last 10 pulse coefficients are the B-spline coefficients of the
real/imaginary part of the control. In this study, we assume the qubit anharmonicity
to be 200 MHz unless otherwise specified. We set the pulse duration time to be 125 ns
and the maximum pulse amplitude to be 20 MHz for optimal control. To implement
the control pulse with specific hardware, the control pulse has to be converted to the
voltage level of the control line. The conversion is typically determined by calibrating
the quantum hardware Schuster (2007); Johnson (2011). The calibration’s details are
highly specific to the experimental setup and are outside the scope of this paper.

The generation of these samples was facilitated through a Jupyter Notebook1

script, which in turn invoked several Julia2 scripts for configuration and generation
using Juqbox. Aiming for a high-fidelity threshold, we achieved a fidelity greater than
0.9999 (referred to as “four 9s” of Fidelity), signifying an excellent quantum state
overlap. This level of precision, quantified by fidelity, highlights the data’s precision
and the system’s effectiveness in maintaining the desired state.

The Juqbox mathematical model uses a seed value that alters the output pulse
coefficients even when the input angle value remains unchanged. This creates a chal-
lenging dataset for model building due to large variations in outputs for neighboring
input angles. To address this, we generate datasets using 100 seeds, each containing
4,096 input angles uniformly distributed from −π to π, which helps reduce erratic
variation as discussed in the next section. In addition to the general variation across
different seeds, we observed that the pulse coefficients would invert at around -3.118
when initialized randomly. We addressed this by including a fixed positive or nega-
tive baseline initial pulse based on the sign of the rotation angle, in addition to the
random initialization in the Julia script responsible for generating these pulses by
optimal pulse control. This fixed baseline serves as an educated guess to force the
optimized pulses to carry the same sign as the baseline. Empirical analysis determined
that approximately 4,096 samples within the −π to π range were ideal. Excess sam-
ples introduced unwanted noise, while too few samples reduced the model’s ability to
generalize.

2.1.1 Data analysis: refining and optimizing quantum control
samples

Refining and optimizing data samples is crucial for enhancing the performance
and efficiency of model development. The process began with the organization and
improvement of data generated from the 100 varied seeds, with each one producing
slightly varied outputs.

The uniformity of the data was improved by averaging the outcomes from all seeds,
resulting in a single set of 4,096 samples. This averaging process is performed across

1https://jupyter.org
2https://julialang.org
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Fig. 1 Total Variation of Pulse Parameters Over Angle. This overlay plot compares the original, aver-
aged, and smoothed datasets, highlighting changes in parameter stability across different processing
stages.

Fig. 2 Comparative subplots of output B-spline coefficients 2 to 7 out of 20 coefficients for X gates,
demonstrating parallel trends. The six coefficients shown have similar values (y-axis) for a given X
gate rotation angle (x-axis), and hence they can be replaced by the average value for data smoothing
as explained in the main text.

the 100 seeds for each of the 4,096 input angles. Our objective is to mitigate the
noise associated with any particular seed. For each input angle, the averaging can be
expressed as:

Ai =
si1 + si2 + si3 + · · ·+ si100

100
(1)

where Ai is the averaged value for the i-th input angle, and sij represents the value
from the j-th seed for the i-th input angle. This process is repeated for all 4,096 input
angles.

6



Fig. 3 Trace Fidelity comparison between a single seed and after dataset optimizations over varying
input angles.

This step was critical to eliminate outliers and anomalies inherent in any individual
seed. The data was then smoothed by using a sort of convolution that works by
averaging groups of 50 close samples and using this average for the middle sample.
This method helps the values change gradually instead of suddenly, leading to much
less variation in the data, as shown in Fig. 1. We further simplified our data for X
gates by reducing the number of coefficients from 10 to 5. We observed that several
coefficients exhibited minimal variation across different input angles, allowing us to
replace them with their average values without significant loss of information. Figure
2 illustrates this pattern for X gates. Once the data was smoothed in this manner,
it was divided into training, testing, and validation sets for use in subsequent stages.
The script detailing these processes is available for reference.

Through these modifications, the dataset was condensed while maintaining four
nines of fidelity. Despite a negligible decline in overall fidelity of the dataset (<
0.00002), the fidelity for some individual angle measurements actually improved,
particularly in previously worst-case scenarios, as evidenced by Fig. 3.

2.2 Model training: optimizing for efficiency and fidelity

For our model architecture, we opted for a multi-layer perceptron neural network
due to the relatively straightforward nature of pulse coefficient prediction and its
capability to efficiently translate to hardware. Our Keras-based neural network model’s
training process involves progressive stages. We begin with pre-training using ‘ground
truth’ values from quantum simulations, helping the model recognize similarities in
pulse coefficients. Subsequently, we refine the model by focusing on quantum state
output fidelity, using infidelity (1 - fidelity) as the loss function. This stage incorporates
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Input Angle

Hidden Layer

Output Pulse
Coefficients

Fig. 4 Illustration of the smallest Keras model configuration with 33 parameters achieving four
nines of fidelity.

quantum simulation directly into training but is slower due to the non-analytical
nature of the infidelity loss function. These steps are detailed in Section 2.2.

We then make training quantization-aware (Section 2.3), translate the model for
field programmable logic (Section 2.4), and fine-tune based on measurement-only
information (Section 3.1).

Our focus is on creating a compact, efficient Keras model maintaining four nines
of fidelity. This involves optimizing architecture, activation functions, learning rate,
and loss function. The model is trained and evaluated using separate training and
validation sets.

Pre-training involved 10,000 epochs with a 0.0001 learning rate, using MSE as the
primary loss function. For fine-tuning, we employed an infidelity-based loss function,
introducing controlled perturbations to the model’s weights and recalculating infi-
delity. This process, detailed in Section 2.2.1, significantly improved performance but
is considerably slower than MSE training.

Through these optimizations, we reduced model complexity from over 2000 to just
33 adjustable parameters. Fig. 4 illustrates the final model. This neural network model
has a single input with a single hidden layer of size 4 and an output layer of size 5
which is reduced from the 20 pulse coefficients as explained earlier in Section 2.1.

2.2.1 Simulation-based training algorithm

The algorithm is built on a set of functions that are available in our software
package Bhat et al (2024). See Algorithm 1.

• Function infidelity loss parallelized(x, y preds, y orig):

– Description: Calls an external quantum simulation to compute infidelities in
parallel.

– Input: x - input data, y preds - predicted values, y orig - original values.
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– Output: infidelities y preds - infidelities of y preds, infidelities y orig - infi-
delities of y orig.

• Function infid grad(x, model, epsilon):

– Description: Applies a small epsilon perturbation to each weight/bias of the model
and computes the gradients. The gradients are obtained by calculating the infi-
delities using infidelity loss parallelized, computing the difference before and after
the perturbation, and dividing that by the perturbation epsilon.

– Input: x - input data, model - trained model, epsilon - small perturbation value.
– Output: gradients - computed gradients, infidelity original - original infidelity.

• Function train step(x batch, y batch):

– Description: Computes gradients and loss for the batch using infid grad, updates
model trainable variables using optimizer, updates loss metric to track loss.

– Input: x batch - batch of input data, y batch - batch of output data.

Algorithm 1 Simulation-based training

1: Load the best pre-trained model based on an MSE loss over pulse coefficients.
2: Initialize the optimizer and loss metric.
3: Set up ModelCheckpoint callback with the specified coefficients.
4: for epoch in training epochs do
5: Reset loss metric.
6: for batch in training set do
7: Perform train step with x batch and y batch.
8: end for
9: Update model checkpoint.

10: end for

2.3 Quantization aware training

Quantization-aware training (QAT) is critical in optimizing ML models for efficient
deployment on hardware accelerators. This is particularly true for field-programmable
logic, which is increasingly used in edge computing due to its reconfigurability,
energy efficiency, and ability to perform parallel computations. However, constrained
resources, such as limited memory and computational elements, necessitate deploy-
ing carefully tailored models. Thus, the primary motivation behind QAT is to reduce
the precision of the weights and activations in neural networks from floating-point
to fixed-point representations, thereby decreasing the model size and computational
complexity. By training neural networks to be aware of quantization effects, it is possi-
ble to significantly mitigate the degradation in performance typically associated with
more traditional techniques like post-training quantization.

In our work, we have adopted QKeras Coelho et al (2021), an extension of the pop-
ular Keras library that mimics the behavior of fixed-point arithmetic as part of the
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training process. QKeras provides quantized versions of standard Keras layers (e.g.,
QDense, QConv2D) where the designer can specify the bit width for weights, biases,
and activations directly in the layer definitions. During training, QKeras simulates the
quantization process: the forward pass computes the layer outputs using quantized
weights and activations, simulating the effects of fixed-point quantization. However,
for the backward pass and weight updates, floating-point precision is typically used
to maintain training stability and performance. Among the QKeras customizable
parameters, we experimented with:

• bits to select the total fixed-point bit width (W ) allocated for a layer. Our experi-
ments indicate that diminishing this value to as low as 16 bits preserves our model
fidelity.

• integer to select the number of bits (I) allocated to the integer portion of the fixed-
point representation. Maintaining a minimum of 5 bits for the integer part and 11
bits (W − I) for the decimal part did not significantly diminish our model fidelity.

• alpha facilitates the simulation of Leaky ReLU functions. A Leaky ReLU intro-
duces a nonzero gradient alpha for negative inputs. Introducing this slight slope
for negative values helps keep neurons “alive” by ensuring they can still learn dur-
ing the backpropagation process even when their inputs are negative. In our initial
experiments, we adopted a value of 1.

• qnoise factor determines the extent to which quantization noise is added to the
weights and activations during the forward and backward passes of model training.
The network learns to cope with the noise, leading to potentially better general-
ization and accuracy in the quantized model. As the value of noise increases, more
quantization noise is added, simulating a higher degree of quantization effect. In our
current study, we set this parameter to 1.

Finally, it is worth noting that we did not retrain the model from scratch in QKeras.
Instead, we transferred the weights from the previously trained Keras model to the
quantized QKeras model and then additionally ran quantization-aware training. This
method ensured the model’s fidelity while transitioning to a quantized representation.

2.4 Hardware translation: from quantized model to FPGA
deployment

We adopted hls4ml, a Python open-source framework FastML Team (2024); Duarte
et al (2018), to co-design and translate our ML models into a hardware implementation
while studying model accuracy, resource utilization, and inference latency. The hls4ml
workflow begins with a floating-point model from a conventional ML framework, such
as TensorFlow or PyTorch, or a quantized model from QKeras. Then, it translates the
model into a C++ specification for the high-level synthesis (HLS) flow. HLS generates
a hardware description at the register-transfer level for a more traditional synthesis and
implementation flow targeting programmable logic as deployment hardware. Designers
can leverage hls4ml to make quick design explorations by configuring the hardware
implementation parallelism Fahim et al (2021) and, thanks to the integration with
QKeras, by also evaluating the impact of low-bit precision on model performance before
finalizing the hardware implementation.
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We iteratively translated the QKeras model into an HLS/C++ specification and
hardware implementation to evaluate the resource utilization and model fidelity. In
particular, we tuned the reuse factor parameter in hls4ml, which impacts parallelism,
resource utilization, and performance. In our experience, a reuse factor of 20 has shown
a good compromise in resource utilization. Moreover, we adjusted the accumulators’
bit accuracy for each layer in fixed-point arithmetic. It is worth noting that QKeras

does not provide the fine-tuning necessary for optimal hardware implementation. We
observed a minimum bit width of around 22 to avoid performance degradation. At
this point, hls4ml automatically translates the ML model into an HLS/C++ specifi-
cation that can be simulated for fidelity assessment. This verification step is crucial for
confirming that the translation has been successful and that the model specification
is ready for the hardware implementation.

We leveraged graphical tools provided by the hls4ml framework to ensure transla-
tion correctness. For example, we use identity-line plots to compare the layer outputs.
In such a plot, the diagonal line (the line of identity) represents perfect agreement
between QKeras and HLS/C++ implementations. Points sitting precisely on the diag-
onal indicate that for every input of the layers, both implementations produce the
same outputs. The goal is for all points to lie as close to the diagonal as possible, indi-
cating that the two-layer implementations produce nearly identical results. Deviations
from the diagonal suggest discrepancies between the outputs of the two systems and
should be carefully analyzed.

We ran HLS and implementation targeting FlexLogix eFPGA, a reconfigurable
fabric that offers efficient and flexible hardware acceleration solutions Flex Logix Tech-
nologies, Inc. (2024). The results of our implementation showed a resource utilization
of 693 LUTs, 709 FFs, and 2 DSPs, with a latency of 420ns. The resource utilization
is minimal even for the smallest configuration of FlexLogix eFPGAs.

2.5 Adapted Randomized Benchmarking (ARB)

The standard approach for estimating quantum gate fidelity in the literature is Ran-
domized Benchmarking (RB), which applies to Clifford gates. Here we provide an
adapted algorithm for non-Clifford gates, updating the ideas behind RB, and provide
a method for computing confidence intervals for the fidelity.

Assuming that only Rx(θ) gates are to be tested, let G be the set of angles that
we want to test and |G| its cardinality. For each angle θi, the corresponding imperfect
gate is R̂x(θi). Before starting the algorithm, there are two required steps:

• Preliminary step 1: Choose a set of sequence lengths M = {m1, . . . ,mM}. Each
sequence length defines the number of gates that are consecutively applied to the
initial state, where the last gate will be the inverse of the sum of the previous gates.
The denser M is the better the estimation will be. We empirically observed 2 to
100 is a reasonable range.

• Preliminary step 2: Choose K random sequences. Each kth sequence will be m
gates long, depending on the current sequence length m. The first m− 1 gates are
uniformly sampled (possibly with repetition) from the set to be tested. For each new
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Fig. 5 The first three experiments with artificially perturbed gates (K=500).

sequence, a new sampling is performed, resulting in (typically) unique sequences.
We empirically observed a K on the order of hundreds to be performant.

With the preliminaries complete the Adapted Randomized Benchmarking algo-
rithm for non-Clifford gates is Algorithm 2. Although a formal relation between gate
fidelity and the metric estimated by ARB is not established, we will show numerically
that the estimation successfully characterizes the error in rotation angles and can be
used as the cost function to train a neural network to correct the error.

2.5.1 Testing ARB with direct unitaries

As an initial demonstration, consider a set of perturbed gates without an underlying
physical simulation. Here, the interval [−π, π] is divided in 1,000 angles and each

angle θi is perturbed by adding noise term drawn from a Gaussian distribution, θ̂i =
θi+N (0, σ). We perform ARB by doing a sequence of rotations using these perturbed
angles, but we modify the procedure and set the final rotation as the inverse formed
from the sum of the exact angles instead the noisy angles. While ARB shouldn’t use
exact gates, here it is necessary because if we use the sum of the perturbed angles for
the inverse, we would obtain exactly the initial state. An alternative would have been
to use the sum of the same angles and add another Gaussian noise perturbation.

We perform six experiments, varying K and σ. In all of them we set N = 1, 000
and M = range(2, 150, 10). The first three have K = 500, and σ equal to 0.05 rad,
then 0.1 rad, and then finally 0.5 rad. The results are shown in Fig. 5. The last three
have K = 1, 000, and the same σ values. These results are shown in Fig. 6.

2.5.2 Using ARB for testing a pre-trained neural network on
different physical conditions

We initially trained a neural network using a quantum simulation of a qubit with 0
guard levels instead of 1 guard level. The network was trained using the Mean-Squared
Error (MSE) between the pulse coefficients generated by Juqbox for the angles in
the training set and the corresponding pulse coefficients inferred by the NN as a loss
function. We used ARB to measure the fidelity using a simulation with zero guard
levels and identical anharmonicity, finding a fidelity that remained at the level of four
nines.
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Algorithm 2 Adapted Randomized Benchmarking for non-Clifford gates

1: for m ∈ M do
2: for k ∈ 1 . . .K do
3: Uniformly sample a random sequence of numbers sk = s1ks2k . . . sm−1k ,

where sik ∈ {1, . . . , |G|}. Each sik corresponds to a gate R̂x(θsik ).
4: Prepare the initial state |0⟩.
5: Apply the sequence of gates R̂x(θs1k ) . . . R̂x(θsm−1k

)R̂x(−
∑m−1

i=1 θsik ).
6: Perform N repetitions and measurements in the Pauli-Z basis. The

probability of outcome 0 is estimated as

p̂k,m =
#zeros

N
,

with standard error from the Binomial distribution,

SEp̂k,m =

√
p̂k,m(1− p̂k,m)

N

.
7: end for
8: Calculate the average of p̂m, avgp̂,m, over the K sequences. Its standard error

will be

SEavgp̂,m =

√∑
SE2

p̂k,m

K
.

9: The current estimated fidelity with m gates is therefore Fm = avgp̂,m, with
standard error errm = SEavgp̂,m .

10: end for
11: After calculating the quantities for each m, fit F̄m = A+Bfm. Here, A,B, f are

the coefficients to be found, m is the independent variable and F̄m the dependent
variable. The errm’s are used as uncertainties to obtain the resulting uncertainties
on A,B and f . The bounds should be 0 ≤ A ≤ 1, 0 ≤ B ≤ 1, 0 ≤ f ≤ 1.

12: We now have an estimate f̂ for the single-gate fidelity from the fit, along with a
covariance matrix3 for the three parameters, Σ ∈ R3,3. The third diagonal entry
(if f was used as third parameter for the fitting) will contain SE2

f̂
.

13: Finally, perform a 2-tailed Student’s t-test, where the number of degrees of freedom
is equal to |M |−3 (3 is the number of parameters), and setting α = 0.05 to obtain
a 95% confidence interval for f , corresponding to[

f̂ − tα
√

Σ(3, 3), f̂ + tα
√

Σ(3, 3)
]

.
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Fig. 6 The last three experiments with artificially perturbed gates (K=1,000).

The actual physical system has an infinite number of guard levels, and the occu-
pancy probability falls as the level increases. Additionally, temperature cycles such as
heating up the system and then cooling it down again impact some physical param-
eters, such as the qubit anharmonicity. Therefore, we expect the performance of the
NN to decrease over time, because it was trained on pulses that Juqbox generated
utilizing different physical parameters.

We examined this network using ARB to measure the fidelity of the pulses gener-
ated by the pre-trained neural network, first setting the anharmonicity to 200 MHz,
then multiplying it by 10. In both cases, we added one guard level to the simula-
tion. The primary purpose of this change is to simulate a mis-modeling of the physics
parameters that describe the device. This allows for some estimation of the impact
of imperfect device simulation on NN training, for example, in the case of using sim-
ulation to bootstrap a model for fine-tuning on hardware. It also provides a proxy
for understanding the impact of drifts in the device noise characteristics, which is an
important issue for keeping a NN model well-tuned.

As shown in Fig. 7, introducing one guard level causes the fidelity decrease by two
orders of magnitude. In Fig. 8, however, it is evident that multiplying the anharmonic-
ity by 10 has the effect of compensating for this by moving the guard level further
from the two essential levels.

3 Results

3.1 Using ARB for fine-tuning

Our strategy for adapting ARB to a realistic scenario is to take the pre-trained network
(as described in Section 2.2) and to fine-tune it to a different configuration, using ARB
instead of the MSE with “ideal” pulse coefficients for the NN loss.

In particular, a simulated scenario with G=1 guarded levels is considered, with a
new anharmonicity equal to 2 GHz, which is 10 times the one that the network was
trained on. Notice that this higher anharmonicity compensates for the new guarded
level, as it provides a higher frequency separation of the two essential levels |0⟩ , |1⟩
from the guarded level |2⟩.
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Fig. 7 Fidelity estimated with ARB when the anharmonicity is unchanged.

Fig. 8 Fidelity estimated with ARB when the anharmonicity is x10 the one used during training.

3.2 Code structure

The NN model was trained in Python4 using TensorFlow Abadi et al (2015). We
further use Python to do the fine-tuning and the inference. At each training epoch, we
consider a set of angles from −π to π and infer a list of 20 pulse coefficients for each
of these angles. The 20 coefficients are the B-spline coefficients of the control pulse
described in section 2.1. Then, for each angle, its corresponding list of coefficients is
used to make the system evolve according to the corresponding pulse and a unitary

4https://www.python.org
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corresponding to that pulse is obtained. Doing this for all the angles, a set of unitaries
is obtained corresponding to the gates that the network inferred for all the angles. At
this point, ARB is run to measure the fidelity of these gates to the theoretical ones,
and the weights of the network are updated accordingly via gradient descent.

A technical complication arises from the fact that Juqbox is implemented in Julia,
so we transfer data between applications using pipes, which are a type of Inter-Process
Communication (IPC), exchanging data in JSON5 format.

Another technical consideration is that the unitaries obtained with Juqbox result
from a numerical integration of differential equations, and due to limited precision
may not be unitary. Therefore, as an additional step we renormalize them using their
2-norm.

3.2.1 Optimization algorithm for training

Our ultimate goal is to deploy this network on an embedded device, so we invested
substantial effort in minimizing the footprint of the NN. The “small” version of the
network has 8 dense layers (fully connected layers with ReLu activation function),
resulting in 760 parameters (weights and offsets). Because our loss is calculated via IPC
program calls, TensorFlowautograd cannot be used, and gradients must be computed
by hand. Exact gradient computation would require calculation of the loss varying
each parameter. By doing this for all the parameters we would estimate the gradient.
However, this results in the calculation of 760 ∗ 2 losses for each epoch, where each
loss calculation involves a number of simulations equal to the number of angles used
in training, which can be in the order of thousands. While accurate this procedure is
unacceptably slow.

Another method, proven to statistically converge to the same solution, is Simulate-
nous Perturbation Stochastic Approximation (SPSA) Spall (1992) (Fig. 9). Here, all
network parameters are perturbed at once, adding the same ϵ to all of them but with
random sign. Specifically, considering a function f(θ⃗) of which we want to estimate
the gradient, we perform

∇f(θ⃗) =

 ∂f
∂θ1
. . .
∂f
∂θn

 ≈ f(θ⃗ + ϵ∆⃗)− f(θ⃗)

ϵ
∆⃗−1 (2)

where ∆⃗ ∈ {+1,−1}n and, in this case, ∆⃗−1 = ∆⃗ being its element-wise reciprocal.
The advantage of SPSA is that it only requires 2 evaluations per epoch, one with the
perturbed parameters and one with the unvaried ones, independent of the network
size.

During training, there are actually two hyperparameters that determine the
“aggressiveness” of gradient descent. One is the ϵ by which the gradient is estimated,
and the other is the learning rate α, where θ⃗k+1 = θ⃗k − α∇̂f(θ⃗k).

5https://www.json.org/json-en.html
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SPSA

Exact gradient

Fig. 9 An illustration showing how SPSA works compared with standard gradient descent (figure
inspired by Qiskit (2024)).

3.2.2 Training set construction

There are multiple ways to construct the training dataset. Network generalization is
generally enhanced by a larger number of angles used for training. We empirically
observed 500 angles to be a good starting point. Our first experiment used a training
set with 500 uniformly sampled angles, with a similar construction for the valida-
tion dataset with 100 angles. Note that the sampling procedure generates spacing
that is generally non-uniform. As a form of regularization, then, the training set was
resampled at each epoch.

Then, for a second experiment, we trained a version of the network with fixed
intervals between angles without re-sampling. The training set was further divided into
10 batches. The validation set was again uniformly sampled. Finally, α = ϵ = 10−6

were used for both experiments.

3.2.3 Results

The results of the first experiment are shown in Fig. 10. We found re-sampling to
construct the training set at each epoch made the learning unstable for this problem.
In Fig. 11, we show the results of the second approach and find better results.

4 Discussion

From the results, we see that many epochs are needed to achieve a consistent improve-
ment of accuracy. It is likely that, if the training is uncontrolled, the loss will at some
point stabilize or start increasing again. For this reason, an early stopping mechanism
is necessary, and some kind of regularization could be useful to avoid overfitting. The
loss function is highly non-convex so it’s very hard to achieve its global minimum, and
a hyperparameter tuning process can help reaching the best possible local minima.
A larger neural network may offer better performance, but at the cost of exceeding
resources on an embedded platform.
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Fig. 10 Loss function during training for the first experiment. Blue = training loss, orange =
validation loss

Fig. 11 Loss function during training for the second experiment.

Another potential improvement would be to modify the architecture of the network
to include the qubit anharmonicity among the inputs, together with the rotation angle.
This may reduce the need to retrain the network each time the anharmonicity changes,
if it could reliably be trained once considering a set of possible anharmonicities.

In conclusion, Adapted Randomized Benchmarking is a good strategy for opti-
mizing neural networks to work with varying physical conditions, making it possible
to potentially achieve a high fidelity arbitrary rotation gate on hardware platforms.

18



Because this work is conducted on a simulation of a quantum device, we cannot guar-
antee the observed results will translate to hardware. However, we provide a complete
workflow for real quantum hardware.

While we have not demonstrated the technique on a real hardware platform, by
utilizing varying simulation configurations without utilizing the underlying knowledge
of those configurations for tuning, our results suggest these techniques will translate
to hardware. However, these techniques are not likely to be shot-efficient for super-
conducting transmons if noise drifts on a platform are significant, as re-training the
NN will be time-consuming relative to the strategy of calibrating fixed angle gates
and composing arbitrary rotations by utilizing virtual Z’s. This technique will be more
useful for platforms that do not have the benefit of a “free” and very high-fidelity
rotation gate.

Acknowledgements. M.R. was partially supported for this work by the Summer
Students Italian Program at the Fermi National Accelerator Laboratory. He would also
like to thank Bartolomeo Montrucchio for extensive support in the role of PhD advisor.
M.R., G.P., and A.C.Y.L. were partially supported for this work by the DOE/HEP
QuantISED program grant “HEP Machine Learning and Optimization Go Quantum,”
identification number 0000240323.

G.D.G. is supported by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the Department of Energy (DOE), Office of Science, Office of
High Energy Physics.

This document was prepared using the resources of the Fermi National Accelerator
Laboratory (Fermilab), a U.S. Department of Energy (DOE), Office of Science, HEP
User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting
under Contract No. DE-AC02-07CH11359.

Fermilab report number: FERMILAB-PUB-24-0127-ETD-SQMS.

Declarations

Competing interests

The authors declare no competing interests.

References

Abadi M, Agarwal A, Barham P, et al (2015) TensorFlow: Large-scale machine learn-
ing on heterogeneous systems. URL https://www.tensorflow.org/, software available
from tensorflow.org

AbuGhanemM (2024) Full quantum process tomography of a universal entangling gate
on an ibm’s quantum computer. URL https://arxiv.org/abs/2402.06946, 2402.06946

Alexander T, Kanazawa N, Egger DJ, et al (2020) Qiskit pulse: programming quan-
tum computers through the cloud with pulses. Quantum Science and Technology
5(4):044006. https://doi.org/10.1088/2058-9565/aba404, URL https://dx.doi.org/
10.1088/2058-9565/aba404

19

https://www.tensorflow.org/
https://arxiv.org/abs/2402.06946
2402.06946
https://doi.org/10.1088/2058-9565/aba404
https://dx.doi.org/10.1088/2058-9565/aba404
https://dx.doi.org/10.1088/2058-9565/aba404


Ang J, Carini G, Chen Y, et al (2022) Architectures for multinode superconducting
quantum computers. 2212.06167

Bhat M, Russo M, Carloni L, et al (2024) ml-qubit-control. https://github.com/
mb4989/ml-qubit-control

Bravyi S, Dial O, Gambetta JM, et al (2022) The future of quan-
tum computing with superconducting qubits. Journal of Applied
Physics 132(16):160902. https://doi.org/10.1063/5.0082975, URL
https://doi.org/10.1063/5.0082975, https://pubs.aip.org/aip/jap/article-
pdf/doi/10.1063/5.0082975/16515734/160902 1 online.pdf

Coelho CN, Kuusela A, Li S, et al (2021) Automatic heterogeneous quantization of
deep neural networks for low-latency inference on the edge for particle detectors.
Nature Machine Intelligence 3(8):675–686

Developers C (2023) Cirq. https://doi.org/10.5281/zenodo.10247207, URL https://
doi.org/10.5281/zenodo.10247207

Duarte J, et al (2018) Fast inference of deep neural networks in FPGAs for particle
physics. Journal of Instrumentation 13(07). https://doi.org/10.1088/1748-0221/13/
07/P07027

Fahim F, et al (2021) hls4ml: An Open-Source Codesign Workflow to Empower Scien-
tific Low-Power Machine Learning Devices. In: Proc. tinyML Research Symposium,
2103.05579

FastML Team (2024) hls4ml. https://github.com/fastmachinelearning/hls4ml

Flex Logix Technologies, Inc. (2024) Flex logix efpga technology. https://www.
flex-logix.com/

Fowler AG, Mariantoni M, Martinis JM, et al (2012) Surface codes: Towards practical
large-scale quantum computation. Phys Rev A 86:032324. https://doi.org/10.1103/
PhysRevA.86.032324, URL https://link.aps.org/doi/10.1103/PhysRevA.86.032324

Houck AA, Koch J, Devoret MH, et al (2009) Life after charge noise: recent results
with transmon qubits. Quantum Information Processing 8(2):105–115. https://doi.
org/10.1007/s11128-009-0100-6, URL https://doi.org/10.1007/s11128-009-0100-6

Jia Z, Huang S, Kang M, et al (2023) Angle-robust two-qubit gates in a linear ion
crystal. Phys Rev A 107:032617. https://doi.org/10.1103/PhysRevA.107.032617

Johansson J, Nation P, Nori F (2012) Qutip: An open-source python framework
for the dynamics of open quantum systems. Computer Physics Communications
183(8):1760–1772. https://doi.org/https://doi.org/10.1016/j.cpc.2012.02.021, URL
https://www.sciencedirect.com/science/article/pii/S0010465512000835

20

2212.06167
https://github.com/mb4989/ml-qubit-control
https://github.com/mb4989/ml-qubit-control
https://doi.org/10.1063/5.0082975
https://doi.org/10.1063/5.0082975
https://arxiv.org/abs/https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/5.0082975/16515734/160902_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/5.0082975/16515734/160902_1_online.pdf
https://doi.org/10.5281/zenodo.10247207
https://doi.org/10.5281/zenodo.10247207
https://doi.org/10.5281/zenodo.10247207
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
2103.05579
https://github.com/fastmachinelearning/hls4ml
https://www.flex-logix.com/
https://www.flex-logix.com/
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1103/PhysRevA.107.032617
https://doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://www.sciencedirect.com/science/article/pii/S0010465512000835


Johansson J, Nation P, Nori F (2013) Qutip 2: A python framework for
the dynamics of open quantum systems. Computer Physics Communications
184(4):1234–1240. https://doi.org/https://doi.org/10.1016/j.cpc.2012.11.019, URL
https://www.sciencedirect.com/science/article/pii/S0010465512003955

Johnson BR (2011) Controlling photons in superconducting electrical circuits. PhD
thesis

Koch J, Yu TM, Gambetta J, et al (2007) Charge-insensitive qubit design derived from
the cooper pair box. Phys Rev A 76:042319. https://doi.org/10.1103/PhysRevA.76.
042319, URL https://link.aps.org/doi/10.1103/PhysRevA.76.042319

Kudra M, Kervinen M, Strandberg I, et al (2022) Robust preparation of wigner-
negative states with optimized snap-displacement sequences. PRX Quantum
3:030301. https://doi.org/10.1103/PRXQuantum.3.030301, URL https://link.aps.
org/doi/10.1103/PRXQuantum.3.030301

Li Z, Liang MJ, Xue ZY (2023) Time-optimal universal quantum gates on supercon-
ducting circuits. Physical Review A 108(4). https://doi.org/10.1103/physreva.108.
042617, URL http://dx.doi.org/10.1103/PhysRevA.108.042617

Maslov D, Nam Y, Kim J (2019) An outlook for quantum computing [point of view].
Proceedings of the IEEE 107:5–10. https://doi.org/10.1109/JPROC.2018.2884353

McKay DC, Wood CJ, Sheldon S, et al (2017) Efficient z gates for quantum computing.
Phys Rev A 96:022330. https://doi.org/10.1103/PhysRevA.96.022330, URL https:
//link.aps.org/doi/10.1103/PhysRevA.96.022330

Onorati E, Werner A, Eisert J (2019) Randomized benchmarking for individual quan-
tum gates. Physical Review Letters 123(6). https://doi.org/10.1103/physrevlett.
123.060501, URL http://dx.doi.org/10.1103/PhysRevLett.123.060501

Petersson NA, Garcia F (2022) Optimal control of closed quantum systems via b-
splines with carrier waves. 2106.14310

Qiskit (2024) Training Parametrized Quantum Circuits. https://learn.qiskit.org/
course/machine-learning/training-quantum-circuits

Rodionov AV, Veitia A, Barends R, et al (2014) Compressed sensing quantum process
tomography for superconducting quantum gates. Physical Review B 90(14). https:
//doi.org/10.1103/physrevb.90.144504, URL http://dx.doi.org/10.1103/PhysRevB.
90.144504

Russo M, Giusto E, Montrucchio B (2023) Quantum kernel estimation with neutral
atoms for supervised classification: A gate-based approach. URL https://arxiv.org/
abs/2307.15840, 2307.15840

21

https://doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://www.sciencedirect.com/science/article/pii/S0010465512003955
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://link.aps.org/doi/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PRXQuantum.3.030301
https://link.aps.org/doi/10.1103/PRXQuantum.3.030301
https://link.aps.org/doi/10.1103/PRXQuantum.3.030301
https://doi.org/10.1103/physreva.108.042617
https://doi.org/10.1103/physreva.108.042617
http://dx.doi.org/10.1103/PhysRevA.108.042617
https://doi.org/10.1109/JPROC.2018.2884353
https://doi.org/10.1103/PhysRevA.96.022330
https://link.aps.org/doi/10.1103/PhysRevA.96.022330
https://link.aps.org/doi/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/physrevlett.123.060501
https://doi.org/10.1103/physrevlett.123.060501
http://dx.doi.org/10.1103/PhysRevLett.123.060501
2106.14310
https://learn.qiskit.org/course/machine-learning/training-quantum-circuits
https://learn.qiskit.org/course/machine-learning/training-quantum-circuits
https://doi.org/10.1103/physrevb.90.144504
https://doi.org/10.1103/physrevb.90.144504
http://dx.doi.org/10.1103/PhysRevB.90.144504
http://dx.doi.org/10.1103/PhysRevB.90.144504
https://arxiv.org/abs/2307.15840
https://arxiv.org/abs/2307.15840
2307.15840


Schuster DI (2007) Circuit quantum electrodynamics. PhD thesis, Yale University

SciPy (2024) SciPy Manual. In: https://docs.scipy.org/doc/scipy/reference/
\generated/scipy.optimize.curve fit.html

Spall J (1992) Multivariate stochastic approximation using a simultaneous per-
turbation gradient approximation. IEEE Transactions on Automatic Control
37(3):332–341. https://doi.org/10.1109/9.119632

Wallman JJ, Flammia ST (2014) Randomized benchmarking with confidence.
New Journal of Physics 16(10):103032. https://doi.org/10.1088/1367-2630/16/10/
103032, URL https://doi.org/10.1088%2F1367-2630%2F16%2F10%2F103032

Xu D, Ozguler AB, Guglielmo GD, et al (2022) Neural network accelerator for quan-
tum control. In: 2022 IEEE/ACM Third International Workshop on Quantum
Computing Software (QCS), URL https://doi.org/10.1109%2Fqcs56647.2022.00010

You X, Lu Y, Kim T, et al (2024) Crosstalk-robust quantum control in multimode
bosonic systems. 2403.00275

22

https://docs.scipy.org/doc/scipy/reference/\generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/\generated/scipy.optimize.curve_fit.html
https://doi.org/10.1109/9.119632
https://doi.org/10.1088/1367-2630/16/10/103032
https://doi.org/10.1088/1367-2630/16/10/103032
https://doi.org/10.1088%2F1367-2630%2F16%2F10%2F103032
https://doi.org/10.1109%2Fqcs56647.2022.00010
2403.00275

