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From CMB polarization data alone we reconstruct the CMB lensing power spectrum, compara-
ble in overall constraining power to previous temperature-based reconstructions, and an unlensed
E-mode power spectrum, with clear detections of the third through tenth acoustic peaks. The obser-
vations, taken in 2019 and 2020 with the South Pole Telescope (SPT) and the SPT-3G camera, cover
1500 deg2 at 95, 150, and 220 GHz with arcminute resolution and roughly 4.9 µK-arcmin coadded
noise in polarization. The power spectrum estimates, together with systematic parameter estimates
and a joint covariance matrix, follow from a Bayesian analysis using the Marginal Unbiased Score
Expansion (MUSE) method. The E-mode spectrum at ℓ> 2000 and lensing spectrum at L> 350
are the most precise to date. Assuming the ΛCDM model, and using only these SPT data and
priors on τ and absolute calibration from Planck, we find H0 =66.81± 0.81 km/s/Mpc, comparable
in precision to the Planck determination and in 5.4σ tension with the most precise H0 inference
derived via the distance ladder. We also find S8 ≡ σ8(Ωm/0.3)

0.5 =0.850± 0.017, providing further
independent evidence of a slight tension with low-redshift structure probes. The ΛCDM model
provides a good simultaneous fit to the combined Planck, ACT, and SPT data, and thus passes a
powerful test. Combining these CMB datasets with BAO observations, we explore extensions to
the ΛCDM model. We find that the effective number of neutrino species, spatial curvature, and
primordial helium fraction are consistent with standard model values, and that the 95% confidence
upper limit on the neutrino mass sum is 0.075 eV, close to the minimum sum expected from ob-
servations of solar and atmospheric neutrino oscillations. The SPT data are consistent with the
somewhat weak (< 3σ) preference for excess lensing power seen in Planck and ACT data relative
to predictions of the ΛCDM model given the combined Planck, ACT, and BAO data sets. We also
detect at greater than 3 σ the influence of non-linear evolution in the CMB lensing power spectrum
and discuss it in the context of the S8 tension. Forthcoming SPT-3G analyses will feature deeper
and wider observations in temperature and polarization, providing even tighter constraints and more
powerful tests of the ΛCDM model.

I. INTRODUCTION

Since the successful completion of the Planck satellite’s
sky surveys [1], the frontier in the study of the cosmic
microwave background (CMB) anisotropies has been its
polarization. Here we present the strongest cosmological
constraints to date derived from polarization data alone,
constraints that are, by some measures, comparable to
those from temperature data alone. Low-noise polariza-
tion measurements allow for new tests of the standard
cosmological model, as the cosmological parameter infer-
ence relies on different signals, and they allow for addi-
tional robustness to many sources of potential systematic
error.

The data we use come from the SPT-3G camera [2]
installed on the South Pole Telescope (SPT) in early
2017. By October of 2024, SPT-3G had been used to
survey 10,000 deg2, with the bulk of the Austral winter
observing time spent on a 1500 deg2 patch. The resulting

∗ fge@ucdavis.edu

data allow for powerful tests of the standard cosmolog-
ical model, ΛCDM, via the primary and CMB lensing
signals [3], improved constraints on primordial gravita-
tional waves via de-lensing of the degree-scale observa-
tions of the BICEP/Keck Collaboration [4], and many
other science applications [5–11].
This paper is the first of a series of papers on CMB

power spectra, the CMB lensing power spectrum, and
cosmological parameter estimates inferred from the 2019
and 2020 Austral winter observations of the 1500 deg2

patch. The temperature and polarization maps used in
these analyses are the result of four times as much ob-
serving time and twice as many detectors as were used
for similar analyses that used a half season of data taken
in 2018 with a partial SPT-3G focal plane [12–15].
This paper is distinct from the others in the coming se-

ries by its focus on polarization data only, and by its use
of a novel algorithm for optimally and simultaneously es-
timating the CMB lensing power spectrum, the unlensed1

1 We note a subtle distinction between a de-lensed spectrum, which

mailto:fge@ucdavis.edu
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CMB E-mode polarization power spectrum (EE), and
systematics parameters. This algorithm, the Marginal
Unbiased Score Expansion (MUSE), was developed by
Millea & Seljak [16] and Millea [17], and is applied to
real data here for the first time. We present the analysis
in some detail and emphasize its advantages, including
straightforward incorporation of systematic effects into
a statistical model, a lensing potential map with lower
noise than if it were produced by a quadratic estimator
[e.g. 18], and an unlensed EE power spectrum with re-
duced sample variance relative to any inference of the
lensed EE power spectrum [19].

De-lensed power spectra from quadratic estimators
have been estimated previously from data by Planck Col-
laboration et al. [20] and Han et al. [21]. The method-
ology for optimal lensing reconstruction has been princi-
pally developed in these papers: Millea & Seljak [16], Hi-
rata & Seljak [22], Carron & Lewis [23], Millea et al.
[24, 25]; and an application to SPTpol data was described
in Millea et al. [26]. With the SPT-3G data we analyze
here, we are crossing the threshold of polarization noise
level below which optimal methods lead to significant im-
provements in lensing reconstruction.

We focus solely on polarization anisotropies in order to
avoid modeling extragalactic foregrounds and their non-
Gaussian properties. Such modeling would likely be nec-
essary for a similar analysis which included temperature
anisotropies, where the relative impact of foregrounds is
larger. Due to the low noise and high angular resolution
of the SPT-3G measurements, this initial conservative
approach still leaves us with an inferred CMB lensing
power spectrum with high signal-to-noise ratio. In the
part of sky we observe, over the angular scales used in
the analysis, galactic foregrounds are also negligibly small
[12, 27].

We compare with other CMB measurements in both
temperature and polarization, including those from the
Planck Collaboration [28] and the Atacama Cosmology
Telescope (ACT) Collaboration [29–32]. We check for
consistency of our results in the context of the ΛCDM
model. We also determine cosmological parameters as-
suming the ΛCDM model and extensions from SPT data
alone and in combination with these other datasets. Al-
though the SPT observations we use here cover much
less sky relative to Planck and ACT, the very low noise
(4.9µK-arcmin in coadded polarization maps) and arc-
minute angular resolution enable measurements of the
EE power spectrum and CMB lensing potential power
spectrum (ϕϕ) that are the most precise measurements
ever made at ℓ> 2000 for EE and L> 350 for ϕϕ.
We discuss how the signals in our data allow for the

determination of cosmological parameters assuming the

contains a residual lensing component which must be modeled,
and our inference of an unlensed spectrum, which contains no
such residual, independent of cosmological model. Although of
minor impact, this explains our usage of “unlensed” throughout
the text.

ΛCDM model. The origins of these determinations have
interesting differences compared to those from Planck
CMB data. For example, the Hubble constant (H0) infer-
ence depends heavily on the lensing information; without
it, the error increases by more than 10 times. Consistency
between the Planck and SPT inferences of H0 places fur-
ther constraints on attempts to solve the H0 tension [33]
with changes to cosmological models [34, 35].
We pay particular attention to the implications of our

data for the “negative neutrino mass” problem and its re-
lation to excess lensing power pointed out by Craig et al.
[36], and to the suggestion from Amon & Efstathiou [37]
that the σ8 tension is associated with non-linear evolu-
tion, either due to mismodeling the ΛCDM predictions
or by neglect of some new physics that modifies evolution
on non-linear scales.
The rest of this paper is constructed as follows. In

Sect. II we describe the process for making CMB maps
from real and mock observations. We give an overview
of MUSE and our data modeling in Sect. III. We present
our pipeline and data validation processes, the blinding
procedure, and results in Sect. IV. We show the resulting
bandpowers and cosmological parameter constraints in
Sect. V. We conclude in Sect. VI. Throughout this work
we use a series of abbreviations for external datasets tab-
ulated in Tab. III.

II. DATA AND MAPMAKING

We use data taken with the SPT-3G camera during the
2019 and 2020 winter observing seasons. The 1500 deg2

SPT-3G winter footprint extends from −42◦ to −70◦ in
declination and −50◦ to 50◦ in right ascension. The
footprint is divided into four subfields with declination
centers of −44.75◦,−52.25◦,−59.75◦, and −67.25◦, and
that allows for fitting different systematics parameters
between patches that improve detector response consis-
tency and linearity across the entire field. Observations
are performed in two-hour periods and map a single
sub-field at a time. During one observation, the tele-
scope performs 72 constant-elevation (and thus constant-
declination) scans with a scan speed of 1 deg/s in right
ascension and an elevation step of 12.5 arcmin between
scans. The subfields are observed 1034, 902, 772, and 578
times respectively across the two seasons, which produces
approximately uniform map noise levels across subfields.
Each of the ∼ 16,000 detectors in the SPT-3G cam-

era samples the sky as the telescope scans, producing
one-dimensional “timestreams” that record sky bright-
ness as a function of right ascension. The timestreams
used in this analysis have on-sky sample rates between
0.3 arcmin/sample and 0.6 arcmin/sample depending on
declination, corresponding to an effective Nyquist fre-
quency well beyond our maximum multipole of interest.
The timestreams are low-pass filtered to reduce alias-

ing when later binning into maps, and high-pass fil-
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tered to remove large-scale instrumental and atmospheric
noise. The high-pass filter is performed by deprojecting
a set of Legendre polynomials up to 30th-order and a set
of sines and cosines up to an equivalent angular scale of
ℓ≤ 300.

The filtering described above can produce undesired
“ringing” features in the maps around the locations of
point sources (a term we will loosely use here to de-
scribe both emissive galaxies and the Sunyaev-Zeldovich
effect from galaxy clusters, the latter which can be spa-
tially extended). To reduce these features, when fitting
the deprojection coefficients, we ignore regions around
point sources, specifically around all emissive sources
with 150GHz flux > 6mJy and all galaxy clusters with
a signal-to-noise > 10, for a total of 2655 objects. This
procedure reduces ringing but does not mask the point
sources, which instead happens at the map level later in
the pipeline.

After filtering, we bin the timestream samples using
inverse-variance weights into 0.5625′ pixels given a Lam-
bert projection centered on a right ascension of 0◦ and
a declination of −59.55◦. Weights are determined from
the detector noise in the range 320<ℓ< 4000. The pixel
size was chosen so that the 1500 deg2 patch fits into maps
with a number of pixels on each side that are powers of
two, which maximizes the efficiency of FFTs. For this
resolution, this yields 4096× 8192 maps.

After maps have been made for each observation in the
2019 and 2020 winter observing seasons, we sum these
maps into a full-depth “coadd” with a small number of
data cuts. In addition to full-depth coadds, we also con-
struct 500 “sign-flip” noise realizations by summing the
observations with a random half of them multiplied by
−1, canceling the signal but leaving the statistical prop-
erties of the noise unchanged. We use these to quantify
the noise covariance, and to directly add to simulated
signal maps to produce highly realistic simulations of the
full dataset. We estimate that the noise realizations are
correlated with each other at the percent level due to the
finite number of observations in the dataset, but this is
below the level which can significantly impact this anal-
ysis.

Next, we apply an isotropic anti-aliasing filter to the
0.5625′ maps and rebin them to the final 2.25′ resolu-
tion, 1024× 2048 pixel analysis maps. We note that
the reason for not binning the timestreams directly into
the final 2.25′ resolution is exactly to be able to apply
this anti-aliasing filter, as otherwise nothing would pre-
vent aliasing in the scan-perpendicular direction. The
final Nyquist frequency for these maps corresponds to
ℓ=4800, high enough to accommodate the ℓmax =4000
of our analysis while at the same time minimizing the
pixel count and hence the computational cost of MUSE.

Finally, we apply the pipeline masks described in
Sect. III C. These processed and masked 1024× 2048-
pixel maps of Q and U stokes polarization at 95, 150,
and 220GHz are the basic data, d, which is input to our
analysis pipeline.

III. METHODOLOGY: BAYESIAN INFERENCE
WITH MUSE

A. Bandpower and systematics inference

We perform a map-level simultaneous Bayesian infer-
ence of the gravitational lensing potential bandpowers,
the unlensed CMB EE bandpowers and systematic pa-
rameters. This procedure is described in Millea & Seljak
[16] and Millea [17], and summarized below with a few
additions specific to this work. The central piece of the
analysis is the joint posterior probability function,

P(f, ϕ, θ | d) (1)

where f refers to the unlensed CMB maps (here just po-
larization), ϕ to the gravitational lensing potential, θ to
the bandpower and systematics parameter vector, and d
to the maps described in the previous section. The exact
details of our modeling and construction of this function
are given in the next section. Here, we first discuss how
we use it to perform inference.
The goal of our analysis is to marginalize over the “la-

tent” f and ϕ variables to produce the marginal posterior
on just the parameters of interest, θ:

P(θ | d) =
∫

df dϕP(f, ϕ, θ | d) (2)

The constraints on θ described by this function are for-
mally optimal, satisfying our goal of an optimal analy-
sis. This optimality is achieved because, implicitly, the
marginalization sources information from moments of the
data at all orders, unlike e.g. quadratic estimators, which
only use second-order moments. In particular, this means
our results use information from all combinations of the
data such as EE, EB, BB, EEE, EEB, etc...
Various techniques exist for performing the difficult

high-dimensional integration in Eqn. (2). A popular but
computationally expensive choice is to use Hamiltonian
Monte Carlo to yield the exact answer, up to sampling er-
rors. MUSE instead performs an approximate but much
faster marginalization, which yields a multi-variate Gaus-
sian approximation to the marginal posterior,

−2 logP(θ | d) ≈ (θ − θ̂)†(ΣMUSE)
−1(θ − θ̂) + C (3)

for posterior mean θ̂, covariance ΣMUSE, and unimpor-
tant constant, C. The Gaussian approximation is well-
motivated due to the central limit theorem as long as
many modes of f and ϕ contribute to the constraint on
each θ, which is well-satisfied here.

The marginal posterior mean, θ̂, is given by solving the
following equation for θ:

sMAP

i (θ, d) =
〈
sMAP

i (θ, d′)
〉
d′∼P(d′ | θ)

, (4)
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where sMAP
i (θ, d) is the gradient of the joint posterior with

respect to parameter θi, evaluated at the maximum a
posteriori (“MAP”) estimate of z≡ (f, ϕ), i.e.

sMAP

i (θ, d) =
d

dθi
logP(ẑ(d, θ), θ | d)

∣∣∣
θ

(5)

with

ẑ(d, θ) = argmax
z

P(z, θ | d). (6)

One way to understand this definition is to consider
sMAP
i as a data compression, which, for a given value of
θ, takes as input our ∼million-dimensional data vector
and returns another vector of the same dimensionality as
θ, which in our case is around a hundred bandpower and
systematics parameters. The MUSE algorithm then pro-
ceeds by picking a starting guess for θ and compressing
the data according to this, generating a suite of data sim-
ulations given the same θ and compressing them as well,
and finally iteratively searching for the value of θ which
make the data and simulations most similar, as compared
via this data compression (Eqn. 4). Intuitively, this yields
the parameters θ which are most likely to have actually
generated the real data.

More formally, Millea & Seljak [16] show that following
this procedure leads to an asymptotically unbiased esti-

mate of parameters, θ̂, for any Gaussian or non-Gaussian
latent space, z. For a Gaussian latent space, the data

compression is a sufficient statistic, and therefore θ̂ gives
the exact marginal posterior mean. For non-Gaussian la-
tent spaces such as the one here, the data compression
can be considered “lossy”, but this leads only to a possi-
ble loss of optimality, with the asymptotic bias remaining
zero. For a lensing analysis similar to the one performed
here, Millea & Seljak [16] bounds any loss of optimality
to less than 10% of the statistical uncertainty.

The covariance, ΣMUSE, is computed from:

Σ−1
MUSE = H† J−1H +Σ−1

prior (7)

where

Jij = cov
(
sMAP

i (θ̂, d), sMAP

j (θ̂, d)
)
d∼P(d | θ̂)

(8)

Hij =
d

dθj

[〈
sMAP

i (θ̂, d)
〉
d∼P(d | θ)

]∣∣∣∣
θ=θ̂

, (9)

and Σprior is the covariance of any assumed prior. Note
that this is not a pure Monte Carlo covariance of the
MUSE estimate, which would be prohibitive computa-
tionally, but rather a cheaper Monte Carlo covariance
of just sMAP, with analytic propagation to the result-
ing covariance in parameters. All derivatives in practice
are computed with automatic differentiation, and Monte
Carlo error stemming from J is reduced using a method
described in App. C.
One aforementioned aspect of MUSE which is key for

this analysis is that it is unbiased even for “lossy” data

compressions. This holds as long as the simulation-
generating distribution, P(d | θ), is an accurate represen-
tation of the real data. There is not actually any require-
ment on the form of sMAP

i for MUSE to remain asymp-
totically unbiased and for the covariance expressions to
be valid. The default choice for sMAP

i given in Eqn. (5)
is simply the one which makes MUSE exact for Gaussian
problems.

Here, we keep this choice largely intact, but mod-
ify the joint posterior appearing in Eqns. (5) and (6),
P(f, ϕ, θ | d), to be slightly different from the likelihood
function used to generate the simulations, P(d | θ). Nor-
mally, the two distributions would be related by:

P(d | θ) = P(d)

P(θ)

∫
df dϕP(f, ϕ, θ | d). (10)

Instead, here we have one statistical model denoted as
the posterior model, P(f, ϕ, θ | d), and another called the
simulation model, P(d | θ).
In the analysis, the posterior model is used in compu-

tationally costly high-dimensional maximizations, while
the simulation model is only ever used to generate a few
hundred samples from P(d | θ). This hints at the mo-
tivation for this choice of separate models, namely to
allow defining a simulation model which fully meets our
accuracy requirements, while keeping a simpler “surro-
gate” posterior model which is much faster to compute
and makes the analysis more tractable. With an accu-
rate simulation model, the MUSE analysis will remain
unbiased, and we find little loss of optimality due to ap-
proximations in the posterior model.

We note that our analysis can also be considered a
form of “simulation-based inference” (SBI). This term is
used to describe a class of algorithms which leverage the
ability to generate samples from P(d | θ) directly into the
ability to perform inference, and has been of increasing
interest in various domains in cosmology [see e.g. 38–44].
In typical high-dimensional SBI applications to-date, an
important first step is to obtain a suitable data compres-
sion function to reduce the dimensionality of the prob-
lem, often by training a neural network on the generated
samples themselves [45]. The compressed data is then
used to infer parameters with something like Approxi-
mate Bayesian Computation (ABC) [46, 47], or by train-
ing a neural network surrogate model for the likelihood
which can be inverted to obtain the posterior [see 48].

MUSE is similar in that it also involves a data com-
pression function, but rather than learned with a neural
network, the generic and semi-analytic sMAP

i is used in-
stead. Furthermore, rather than using something like
ABC or training surrogate models for inference, we ex-
ploit our access to gradients and Jacobians through the
posterior and simulation-generating function to derive
semi-analytic expressions for the posterior mean and co-
variance. In this way, MUSE can be considered one of the
possible augmentations of SBI suggested by [48] which
use additional tractable quantities from the simulator.
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B. Cosmological parameter inference

The output of MUSE is a parameter mean, θ̂, and
its covariance, ΣMUSE. The inferred parameters for
this analysis include the ϕϕ and unlensed EE spec-
tra binned into bandpowers, and systematics parame-
ters. The systematics-marginalized CMB bandpowers
and covariance can be obtained by simply dropping the
systematics from the estimate and dropping the corre-
sponding block from the covariance (which is equivalent
to marginalizing them). That is, part of the output
of MUSE is automatically a set of “CMB-compressed”
bandpowers such as those which have been derived for
other experiments [49–51]. We can then estimate cosmo-
logical parameters, γ, as usual, by forming a cosmological
parameter likelihood,

−2 logP(θ̂ | γ) =
[
θ(γ)− θ̂

]†
Σ−1

MUSE

[
θ(γ)− θ̂

]
, (11)

where θ(γ) is our theory ϕϕ and unlensed EE
spectra binned according to our specified bandpower
window functions (App. A 1). For our main re-

sults we sample P(θ̂ | γ) with Cobaya2 [52] and use
CAMB3 [53] to compute theory spectra. To get the
accurate theory CMB spectra at large ℓ, we set
lens potential accuracy=4 and lens margin=1250 in
CAMB. We also set halofit version=mead2020 for the
non-linear correction in CAMB. The convergence criterion
of MCMC is set to R − 1 < 0.01 of the Gelman-Rubin
statistic.

C. Map-level model summary

The posterior and simulation models are specified in
Eqns. (12-19), with a summary given below and full de-
tails given in Appendix A.

Simulation model :

f ∼ N (0,Ccurv sky
f (AEE

b )) (12)

ϕ ∼ N (0,Ccurv sky
ϕ (Aϕϕb )) (13)

nν ∼ {nνsignflips} (14)

dν,i = Mfourier ·Mtrough ·Mpix ·
(
PWF · TFν · R(ψνpol) ·A

ν,i
cal · B(βn, β

ν
pol) ·G · P · L(ϕ) · f

+ ϵν,iQ · tνQ + ϵν,iU · tνU + nν
)

(15)

Posterior model :

f ∼ N (0,Cflat sky
f (AEE

b )) (16)

ϕ ∼ N (0,Cflat sky
ϕ (Aϕϕb )) (17)

µν,i = Mfourier ·Mtrough ·Mpix ·
(
PWF · TFν · R(ψνpol) ·A

ν,i
cal · B(βn, β

ν
pol) · L(ϕ) · f + ϵν,iQ · tνQ + ϵν,iU · tνU

)
(18)

dν ∼ N (µν ,Cνn) (19)

⇒ −2 logP(f, ϕ, θ | d) = f†C−1
f f + ϕ†C−1

ϕ ϕ+
∑
ν

(dν − µν)†(Cνn)−1(dν − µν)− 2 logP(ϕ) (20)

where − 2 logP(ϕ) =
∥∥Mpix∇2ϕ

∥∥2/10−8 (21)

Reading these models top-to-bottom describes how to
produce a random sample from the model, with “∼” used
to represent generation of a random sample from the dis-
tribution on the RHS and N (µ,Σ) a multi-variate Gaus-
sian with mean and covariance µ and Σ.

2 https://cobaya.readthedocs.io/en/latest/
3 https://camb.info/

To summarize, in the simulation model, we generate
curved-sky unlensed CMB maps (f ) and lensing poten-
tial maps (ϕ) from appropriate covariance operators (C),
which are parameterized by the bandpower amplitudes

which we will infer (AEE
b and Aϕϕb ). We apply the lensing

operation (L) to produce lensed CMB maps and project
to the flat-sky Lambert pixelization of the data (P). We
apply an additional small deflection (G) to account for
relativistic aberration due to our proper motion relative
to the CMB rest frame. We apply the beam convolu-

https://cobaya.readthedocs.io/en/latest/
https://camb.info/
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tion operator (B(βn, βνpol)), which is parameterized by a

set of beam eigenmode amplitudes (βn) and the polar-
ization fraction of the beam sidelobes at each frequency
(βνpol). We rotate the global polarization angle of the

maps (R(ψpol)) by an angle ψpol to model systematic er-
rors in the overall polarization angle of our detectors. In
each subfield, i, we scale the maps by Aν,ical, to model
the uncertain absolute calibration of the instrument. We
apply the model transfer function (TF), and apply the
pixel window function (PWF). We add in temperature
to polarization monopole leakage Q and U templates de-
termined directly from our temperature observations (tQ
and tU) with subfield-dependent amplitudes (ϵiQ and ϵiU),

as well as add in a sample of the noise (nν) from one of
the sign-flip noise realizations. Finally, we apply our cho-
sen pixel, “trough”, and Fourier masks (see App. A 9) to
produce a simulated data vector, dν .

The posterior model is nearly the same, with the only
differences being that the covariances, C, assume flat-sky
statistics, the noise is generated from a covariance and is
unmasked, and aberration is ignored. For the posterior
model, it is possible to calculate the posterior probability
function, given in Eqn. (20). Here, we also choose to
include a “super-sample” prior, P(ϕ), in order to reduce
the lensing mean-field (before its impact is automatically
removed entirely in the process of obtaining the MUSE
estimate).

The final inferred parameter vector is

θ = {Aϕϕb , AEE
b , βn, β

ν
pol, A

ν,i
cal, ψpol, ϵ

i
Q, ϵ

i
U}, (22)

containing 77 bandpower parameters and 47 systematics
parameters. The MUSE estimate is a joint best-fit and a
covariance between all of them.

We note that the approximation of leaving the noise
unmasked, while seemingly benign, is actually critical to
obtaining a sufficiently fast posterior function since it
avoids an additional large matrix inversion, while hav-
ing little impact on the final results (see also Sec. 3.7 of
[26]). We also note that the ability to directly use the
sign-flip noise realizations in the simulation model is ex-
tremely advantageous. Without this, a Bayesian analysis
would depend on an accurate statistical model of all mo-
ments of the noise (power spectrum, bispectrum, etc...),
and would require both sampling and evaluating the like-
lihood of a noise map given such a model. Here, noise
modeling is essentially a non-issue since MUSE requires
only sampling the noise, and the sign-flip realizations pro-
vide these samples and empirically match the true noise
distribution.

There are a few effects which we considered but ulti-
mately chose not to include the model. The first effect
is polarized foregrounds. The dominant expected fore-
ground comes from polarized point sources. For the same
point source flux cut used here, Dutcher et al. [12] con-
struct a set of priors on the foreground amplitudes based
on measurements of temperature foregrounds scaled to
polarization with very conservative priors on the polar-

ization fraction. Based on this, we find that the max-
imum possible contamination has power two orders of
magnitude lower than our noise spectra at all frequen-
cies. That the foreground contribution is small is also
consistent with [54], in which it is found that even for
much deeper observations than ours, the bias to lensing
from polarized foregrounds is fairly marginal. As men-
tioned, this finding that the foreground contribution is
negligible in polarization for this analysis was key in our
decision to focus only on polarization in this paper.
The second effect we ignore is the bias due to spatial

correlation between the lensing potential and the location
of our masked point source holes [55]. Using the Agora
simulations [56], which include a model for these spatial
correlations, we find that for our point source masking

threshold, the maximum bias to CϕϕL would be ∼ 0.5%.
However, Lembo et al. [55] also show that this maximum
bias is highly suppressed in an optimally filtered ϕ map
such as the MAP ϕ maps which enter our analysis. We
thus conclude this effect is also negligible here.

IV. VALIDATION OF PIPELINE AND DATA

Before computing our main results, we conducted a set
of validation tests which we present in this section. To
mitigate and quantify confirmation bias, we performed
these tests “blind”, that is, without comparison to data
from other experiments or to theory models derived from
these experiments. After unblinding, we allowed our-
selves to make further changes to the pipeline before
producing our final baseline results, but committed to
reporting in this paper the parameters that we initially
found before any such changes. This motivated and fo-
cused the validation work, and allows us to quantify any
level of confirmation bias; the initial unblinded results
could not be impacted by confirmation bias, only the
shifts after unblinding could be. A full discussion of
changes made after unblinding is at the end of this sec-
tion (Sec. IVC).
Our chosen set of rules for blinding were: 1) do not

plot our bandpowers on the same plot as bandpowers or
theory curves from any other previous analysis or exper-
iment (including from SPT itself), or show bandpowers
relative to any theory curves, 2) if we do plot bandpow-
ers, remove all tick marks and tick labels and do not look
at numerical values of bandpowers, 3) do not look at ab-
solute cosmological parameters derived from bandpowers
(internal null parameter differences, e.g. the parameters
from 95GHz minus parameters from 150GHz were al-
lowed).
This procedure left us blind to all but very gross de-

partures from ΛCDM and did not allow us to know if
bandpowers were consistent with any other experiment
before unblinding, while not being overly burdensome.
We now describe the set of validation tests of our

pipeline and data which we performed while blinded.
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FIG. 1. Verification that our pipeline recovers unbiased bandpower and systematics parameters using 100 mock simulations.
The colored lines are the average MUSE parameter estimates over simulations after subtracting the input simulation truth
(in the final panel we also divide by the errorbars for one simulation due to the otherwise large dynamic range). The first
two panels show ϕϕ and unlensed EE bandpower amplitude parameters (and also consider single-frequency runs) and the last
panel groups together all the systematics parameters (see Sec. III C and App. A for description of the systematics considered).
The PTEs of the colored lines relative to the expected scatter and 2-tailed numbers of σ are shown in the legends. To get the
PTEs, we Monte Carlo sample the expected distribution of χ2 values, accounting both for the look-elsewhere effect of 4 tests
(3 single-frequency runs and 1 all-frequency run) and the fact that we compute the expected scatter itself from 100 mocks. For
reference, gray bands are the all-frequency 1 and 2 σ errors (note that this is not the expected scatter of any of the lines, rather
is a way to judge the size of any potential bias).

A. Pipeline tests

1. Simulated Data

To validate our full bandpower and cosmological pa-
rameter estimation pipeline, we use an ensemble of highly
realistic simulations of the full dataset which we call
“mock simulations”. The signal part of the mock sim-
ulations consists of a lensed CMB realization gener-
ated assuming a fiducial Planck ΛCDM cosmology and
a Gaussian foreground model based on Agora sim-
ulations [56] that is calibrated against data at very
high-ℓ. These maps are processed through a proce-
dure called mock observation, which generates simulated
timestreams and simulates the observation and process-
ing of the timestreams into maps at each frequency, us-
ing the identical code which processes the real data.4

The noise part of the mock simulations comes from sign-
flipped noise realizations.

2. End-to-end pipeline tests

To check that our pipeline is unbiased, we start with
an end-to-end test of the pipeline on a set of 100 mock
simulations. First, we compute MUSE estimates of band-
powers and systematic parameters on each mock simula-
tion using all three 95+150+220 GHz polarization maps
(hereafter, “all-frequency”). Then we repeat the same
procedures on single-frequency polarization maps with

4 To reduce computational cost and because many observations
have identical filtering, we use only 5% of the total observations
in this step.

the corresponding systematic parameters fixed to the all-
frequency results (this is how we handle systematics in
the single-frequency runs on real data as well).
In the left two panels of Fig. 1, we show the mean band-

powers over 100 mock simulations compared to the input
truth. The PTE of the difference between the mean and
input truth and its conversion to a number of σ is given in
the legend.5 No bias is detected at 3 σ significance from
the 100 mock simulations. The scatter of the mean band-
powers is at the level of 10% of the statistical uncertainty,
as expected from a test with 100 realizations. In the right
panel of Fig. 1, we also show the mean systematics pa-
rameters over 100 all-frequency mock simulations, here
scaled by their 1 σ uncertainty. These are also recovered
with no significant bias. Single-frequency runs do not
vary systematics parameters, hence those estimates are
not shown.
We next compare the empirical covariance of the 100

all-frequency estimates with the MUSE covariance given
in Eqn. (7). The left column of Fig. 2 compares the
square root of the diagonal covariance entries. We see
good consistency between the two except for Acal. This
is because the mock simulations were made without vary-
ing systematic parameters within their prior, while the
MUSE covariance takes the prior uncertainty of all pa-
rameters into account. This difference is particularly ev-
ident for prior-dominated parameters such as Acal.
In the right column of Fig. 2, we compare the first and

second off-diagonal elements in the bandpower covari-
ance matrices, this time fixing the systematics in ΣMUSE

5 All PTEs we quote are corrected for look-elsewhere in the case
that there are multiple tests. We will specify if the conversion to
number of σ is 2-tailed, in which case negative values correspond
to a PTE better than the mean expectation; otherwise the quoted
σ number is 1-tailed.
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FIG. 2. Verification of the accuracy of the all-frequency
MUSE covariance, ΣMUSE. (Top left) Comparison of the
square root of the diagonal elements between the MUSE co-
variance, σMUSE ≡√

diag(ΣMUSE), and the empirical covari-

ance from running the estimate on mock simulations. (Bot-
tom left) The ratio of the two curves in the upper panel. The
shaded band shows the 1 and 2 σ standard error on σempirical

from the 100 simulations used. These are expected to match
for fully likelihood-dominated parameters, and do so for all
parameters except the partially prior-dominated Acal param-
eters. (Top and bottom right) Comparisons of the first and
second off-diagonal elements of the MUSE and empirical cor-
relation matrices. In this case, systematics are assumed fixed
in the MUSE covariance, since they are fixed in the simula-
tions.

for a more like-to-like comparison. We see good agree-
ment between the empirical covariance and the MUSE
covariance. The anti-correlation in the first off-diagonal
elements is caused by projection effects, masking, delens-
ing and the transfer function, where the projection effects
explain about half of the anti-correlation. Here the pro-
jection effects refers to our use of the flat-sky approxima-
tion in the posterior model. This effect has been found
in the previous SPT-3G analysis [27].

In Fig. 3, we show the MUSE covariance with its diag-
onal entries rescaled to unity (i.e. the correlation ma-
trix between all bandpowers and systematics parame-
ters). We find no significant correlation between lens-
ing bandpowers and any other parameter, suggesting a
robust determination of the lensing spectrum with lit-
tle uncertainty from systematic effects. The correlations
within the unlensed EE block are due to masking, de-
lensing, projection and correlation with systematics pa-
rameters. The EE bandpowers are significantly corre-
lated with both calibration uncertainty and the sidelobe
polarization fraction, both of which add appreciable sys-
tematic uncertainty to our final EE estimates.

We next obtain ΛCDM cosmological parameter esti-
mates from the 100 all-frequency mock simulations. Un-
like the main results which use Cobaya and CAMB to
perform parameter estimation, here, for speed, we have
trained and verified the accuracy of an emulator us-

FIG. 3. The posterior correlation matrix of ϕϕ bandpowers,
unlensed EE bandpowers, and systematics parameters, given
all-frequency data.

ing Capse.jl [57], and sample using Hamiltonian Monte
Carlo.

The one-dimensional cosmological parameter posterior
distributions inferred from each mock simulation and the
product over all of these posteriors is shown in Fig. 4. It
is expected that the product over all posteriors should
cover the input truth, which is found to be the case. The
non-detection of any bias with 100 sims suggests that, at
68% confidence, we have bounded any possible pipeline-
induced systematic error to be less than ≲ 0.1σ for each
cosmological parameter.

To summarize, we have validated the pipeline using
100 highly realistic mock simulations. With 100 simula-
tions, we are able to detect biases at the level of 10% of
the statistical uncertainty. We do not detect any such bi-
ases to within 3 σ of the expected scatter on the mean in
either our estimates of ϕϕ lensing spectra, unlensed EE
bandpowers, systematics, or in the cosmological param-
eters derived from them. We find good agreement of the
bandpower covariance matrices between the one derived
from mock simulations and the one calculated in MUSE
using Eqn. (7).

B. Data tests

Next, we turn to tests of the data itself. These in-
clude intra-frequency null tests using different splits of
the data, inter-frequency comparison of ϕϕ and unlensed
EE bandpower results, pixel-level χ2 tests of our model
fits, and internal comparison of our systematics estimates
with those derived with more traditional methods. We
report the results of these tests in this section.
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FIG. 4. Verification that our pipeline recovers unbiased cos-
mological parameters using 100 mock simulations. We infer
ΛCDM parameters from each simulated all-frequency dataset,
and plot the one-dimensional marginalized posteriors above as
different colored lines for each simulation. The shaded gray
region in each panel is the product over all posteriors, which
should cover the simulation truth, denoted as vertical black
lines. Note that the smaller scatter for τ is because this pa-
rameter is mainly constrained by our prior. Across the other
5 parameters, the shaded region is consistent with the input
truth with significance equivalent to 1.1σ, suggesting no de-
tection of any bias at the level afforded by our 100 simulations.

1. Intra-frequency null tests

Null tests involve splitting the full dataset into two
parts and differencing them such that the signal can-
cels, then checking whether the remaining portion is con-
sistent with the expected statistical properties of noise.
Finding something outside of this expectation could indi-
cate the presence of a systematic, which might then also
be present in the full dataset coadd at some level. By
canceling the signal and thus the sample variance from
the signal, these tests can probe systematics to levels well
below even what could impact the final results, which are
themselves limited by sample variance. Since tempera-
ture data does enter our analysis via leakage templates,
we also present null TE spectra to more thoroughly vet
the full temperature and polarization dataset. Further
details of the null tests will be presented in a future work.

We consider 6 types of data splits: sun, moon, az-
imuth, year, scan, and wafer. The sun and moon tests
are designed to check whether a portion of the dataset
is significantly contaminated by the radiation from the
sun or moon. In these tests, one part of the dataset com-
prises the data we took when the sun or moon was above

the horizon, and the other part below the horizon. The
azimuth test is designed to check whether a portion of
the dataset is contaminated by thermal radiation from
a building near the telescope. One part of the dataset
comprises the data we took when the telescope’s azimuth
angle was within 90 degrees of that of the building, and
the other part azimuth angles outside that range. The
year test is designed to check whether the data we took
during the 2019 season are significantly different from
the data we took in 2020. The scan test is designed to
check whether the data we took when the telescope was
scanning in one direction are significantly different from
the data we took when the scanning was in the oppo-
site direction. Lastly, the wafer test is designed to check
whether the data from one half of the full detector array
are significantly different from the data from the other
half.

For the scan and wafer tests, we do not expect the null
spectra to perfectly cancel the signal due to details of our
mapmaking pipeline. For the wafer test, this is because
we filter time-ordered data from different detector wafers
differently. For the scan test, this is mainly because we
do not correct for each individual detector’s time con-
stant effect when converting its time-ordered data into
map pixel values. The time constant effects refers to the
fact that each detector does not respond to changing ra-
diation from the sky instantaneously. As a result, a map
made from left-going scans contain a version of the CMB
shifted to the left, and vice-versa for right-going scans.
For these two tests, we calculate the expected null spec-
tra through simulations of the mapmaking pipeline and
subtract it. This is computed assuming a fiducial cos-
mology, but because these expected null spectra are very
small compared to the signal, it does not significantly
imprint model-dependence to these null tests or degrade
their usefulness.

For each null test type, we divide each of the two halves
of the data into 25 smaller parts and call them bundles.
We create 25 null maps by differencing bundles from each
half one-by-one, then compute all 300 cross-spectra from
these 25 null maps and bin them into the same bandpow-
ers as the analysis. The average of these is what we call
a null spectrum, and the standard error is our estimate
of the expected scatter of the null spectrum.

The maps used for these tests are curved-sky projec-
tions of the same timestreams which enter the main anal-
ysis, with spectra computed with PolSpice [58]. For
convenience, most of the tests have been computed using
slightly different masks than the ones used to produce
our main results. These tests, which we do not expect to
depend significantly on the masking choice, use a pixel
mask which includes slightly more sky, and a harmonic
space mask which zeros all aℓm for ℓ ∈ [500, 680] and
m ∈ [350, 425]. This harmonic mask removes contamina-
tion from a narrowband signal around 1.1 Hz, which is
similar, but not exactly the same as the “trough” mask
used to remove the contamination in the MUSE pipeline.
As the 1.1 Hz signal presents itself mainly in detector
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FIG. 5. Spectra of null maps computed from various data splits divided by the expected 1 σ scatter due to noise. Detector
wafer and scan direction tests also have had a small expected contribution from signal leakage subtracted, and in EE and BB
have been computed with the exact pixel and Fourier space masking used in the main results pipeline (indicated as “MUSE
masking”; the other tests are not expected to depend significantly on masking). Legends give the PTE for each test without
correcting for the look-elsewhere effect. The 2 σ threshold when considering the look-elsewhere effect is a PTE> 0.07% on any
individual test, which is passed in all cases.

wafer and scan direction tests, we have recomputed these
with the exact MUSE pixel and Fourier masking to verify
the MUSE masking is sufficient to remove it.

After masking, computing null spectra, and subtract-
ing expected contributions as necessary, we calculate a χ2

with respect to the expected scatter, assuming no corre-
lation between neighboring bandpowers. To compute a
threshold probability-to-exceed (PTE) for the observed
χ2, we Monte Carlo sample the expected distribution of
χ2 values, accounting both for the look-elsewhere effect
of 54 tests and the fact that we compute the expected
scatter itself from a finite 300 simulations. We consider
the test passed if the PTE is > 5% (corresponding to a
< 2σ deviation) with respect to this Monte Carlo dis-
tribution. This corresponds to a PTE> 0.07% on any
single individual test amongst our suite (this is roughly
5%/54 with an additional correction for the slightly noisy
expected scatter).

A summary of all tests and their PTEs is given in
Fig. 5. All tests pass at our threshold of 0.07%, and
no obvious features are otherwise visible.

2. Inter-frequency agreement

We next check for inter-frequency agreement of the
ϕϕ and unlensed EE bandpowers inferred from single-
frequency maps. We follow the same procedure for in-
ference as described in Sect. III, except that the data,
d, includes only a single-frequency map and the system-
atic parameters are fixed to the value derived from the

all-frequency run; only the bandpowers AEE
b and Aϕϕb are

free parameters. To quantify the expected scatter, we
run this identical procedure on 100 mock simulations.
In Fig. 6, we show the ratios of bandpowers inferred

from maps at different frequencies relative to the ex-
pected scatter. The blue lines show our result prior to
unblinding, which showed good overall agreement. The
legends give 2-tailed effective number of σ for the χ2 val-
ues, and all are consistent with statistical fluctuations to
within ± 2σ. We also note that with model changes after
unblinding, shown as orange lines, agreement improved
slightly, particularly in the comparison between 95GHz
and 150GHz.

3. Goodness-of-fit

We next compare the pixel-level goodness-of-fit of
our model to the observed data. To do so, we define

χ2 =− 2 logP(ẑ(θ̂, d), θ̂ | d), that is, minus twice the pos-
terior probability function evaluated at the MUSE esti-

mate of parameters, θ̂, and the MAP given that θ̂. Be-
cause of our decoupling of the posterior and simulation
models, we cannot compute the expected χ2 simply from
counting degrees of freedom. Instead, we use the distri-
bution of χ2 obtained from mock simulations to quantify
the expected distribution.
Tab. I gives the data χ2 values observed for single-

frequency and all-frequency runs before unblinding, as
compared to this expectation. We see that the values are
on the order of 108, despite that the number of pixels
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FIG. 6. Tests of the inter-frequency bandpower agreement of
our data. Each panel shows the ratio of ϕϕ or unlensed EE
bandpowers from single-frequency MUSE runs at different fre-
quencies, normalized by the 1 σ expected scatter as computed
from simulations. Legends show the χ2 and 2-tailed effective
number of σ fluctuation of this χ2 given the number of degrees
of freedom. The blue line shows the result using our model
before unblinding, which yielded acceptable χ2 in all cases.
The orange line shows the result after the post-unblinding
changes to our model, which notably slightly improves the
agreement between 95GHz and 150GHz.

in d is close to 107 for the all-frequency case, confirm-
ing the fact that the expectation is not given simply by
counting degrees of freedom. That the single-frequency
expected χ2 are larger than the all-frequencies case is
due to the fixing of systematic parameters in those cases.
Regardless, with the expected distribution mapped out
by simulations, we find that our observed values in all
cases are consistent with a statistical fluctuation within
3σ. This suggests our model is sufficient to describe the
observed data.

4. Agreement of systematics with alternative estimates

Our analysis infers systematic parameters jointly with
bandpowers by incorporating systematics into a map-
level model for the data. In this section, we compare
our systematics estimates to independent determinations
from alternate methods which have traditionally been
used to estimate systematics in CMB analyses.

χ2
obs/10

6 χ2
expected/10

6 PTE nσ

95+150+220 93.33 93.50± 0.12 4.0% 2.1
95 108.21 108.28± 0.18 37.0% 0.9
150 109.32 109.51± 0.19 7.0% 1.8
220 100.97 101.00± 0.04 24.0% 1.2

TABLE I. The χ2 of the best-fit pixel-level model against the
data, as compared to the expectation computed from mock
simulations, as described in Sec. IVB3. The number of σ is
1-tailed. We find values within 3 σ of the expectation for indi-
vidual frequency fits, as well as for our baseline combination
of all frequencies.

In this comparison, we consider the global polariza-
tion rotation angle, ψpol, the amplitude of monopole
temperature-to-polarization leakage, ϵiQ and ϵiU , and the

calibration at each frequency, Aν,ical. Details of how these
are estimated with alternate methods are given in Ap-
pendix A. Briefly here, ψpol can be estimated by assum-
ing the sky EB spectrum is zero, and searching for the
angle correction which achieves this in the data. ϵiQ and

ϵiU can be estimated by assuming that the sky TQ and
TU spectra are zero and finding the deprojection of leak-
age templates which achieves this. Aν,ical can be estimated
taking ratios of power spectra to a known calibrated spec-
trum and averaging over very broad multipole ranges.
Here, A150

cal is fit via ratio to Planck, which performs
its own absolute calibration, and A95

cal and A220
cal are fit

from internal comparison to the Planck-calibrated SPT
150GHz spectrum.

The source of MUSE estimates of these systematics is
generally the same as described above, but happens im-
plicitly and jointly inside the global MUSE fit, driven by
our model definition (e.g. the model assumes the CMB
EB spectrum is zero and allows a global rotation con-
trolled by ψpol to absorb any EB power observed in the
data during the fit).

The best-fit systematic parameters inferred with
MUSE from the SPT data are summarized in Tab. II.
Broadly speaking, we find around 1% temperature to po-
larization leakage, a little less than half of a degree of
global polarization angle miscalibration, and beam side-
lobes (see Appendix A 4) which are polarized at around
the 50% level.

In Fig. 7, we compare to systematic parameters derived
from the alternative methods. Up to small differences
expected due to slightly different choices of masking and
filtering made in these alternative estimates, we find good
agreement between our two sets of estimates. We also
note that in general the MUSE systematic estimate is
slightly tighter, likely due to simultaneously fitting for
all systematics and increased optimality of the Bayesian
approach.
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Posterior

95GHz 150GHz 220GHz

A1
cal 0.8977±0.0074 0.9276±0.0074 0.8612±0.0084

A2
cal 0.8928±0.0072 0.9133±0.0071 0.864±0.0079

A3
cal 0.8861±0.0073 0.9399±0.0075 0.849±0.0083

A4
cal 0.8775±0.008 0.9272±0.0081 0.8405±0.0097

100 ϵ1Q 0.291±0.025 0.319±0.021 0.492±0.059
100 ϵ2Q 0.402±0.024 0.39±0.022 0.418±0.06
100 ϵ3Q 0.555±0.025 0.838±0.021 2.096±0.066
100 ϵ4Q 0.603±0.033 0.912±0.03 2.221±0.084
100 ϵ1U 0.584±0.027 0.74±0.025 0.735±0.064
100 ϵ2U 0.648±0.025 0.748±0.023 0.642±0.058
100 ϵ3U 0.851±0.027 1.238±0.023 1.33±0.063
100 ϵ4U 0.83±0.035 1.174±0.03 1.121±0.092
ψpol [

◦] 0.393±0.024 0.419±0.021 -0.188±0.079
βpol 0.44±0.20 0.60±0.28 0.51±0.26

Prior

95GHz 150GHz 220GHz

A1
cal 0.9275±0.0094

A2
cal 0.9095±0.0089

A3
cal 0.9386±0.0096

A4
cal 0.927±0.011

βpol U(0, 1) U(0, 1) U(0, 1)

TABLE II. Posteriors on systematics parameters given our
all-frequency MUSE run (top section) and priors which were
input (bottom section). Blank entries or parameters not listed
under priors have uniform priors on (−∞,∞). Superscripts
denote each of the four subfields. Note that no cosmological
model is assumed here.
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FIG. 7. Agreement of polarization angle rotation angle (ψpol),
monopole T→P leakage (ϵQ and ϵU) and calibration estimates
(Acal), between MUSE estimates and alternative methods
which have been previously used. The groups of 4 points
refer to the 4 different subfields in cases where those are es-
timated separately. Details of the alternative estimates are
given in App. A.

FIG. 8. No evidence for dipole, quadrupole, or octopole
T→P leakage. These are MUSE posteriors from a run on all-
frequency data that includes these extra leakage templates in
addition to the other usual bandpower and systematics pa-
rameters. In our baseline run, we thus do not include such
higher-order templates.

5. Higher order T-to-P leakage

In our baseline model, only monopole T-to-P leakage is
modeled. However, it is possible that higher-order leak-
age exists. To verify our baseline choice, we add leakage
templates up to octopole in the MUSE model and infer
their leakage amplitudes. These templates corresponds
to higher-order spatial gradients of the observed tem-
perature maps. The results are shown in Fig. 8, where
no higher-order T-to-P leakage amplitude parameters are
detected at > 3σ.

6. MAPs

We note that prior to unblinding we did look at MAP
estimates of the lensing potential and of the lensed and
unlensed CMB polarization, and thus present them in
this section of the paper. These are shown in Fig. 9.

C. Post-unblinding changes

With all of these validation tests passed, we unblinded
results, fit cosmological models, and compared to data
from other experiments. We found ΛCDM was a good fit
to our own data and that our ϕϕ spectrum agreed very
well with other experiments. However, the EE spectrum
disagreed with the Planck theory prediction by a smooth
slope (shown in the middle panel of Fig. 10), leading
to an overall 3.5σ disagreement across 5 ΛCDM param-
eters (excluding τ) between Planck and SPT datasets.
The slope was most significant at small scales and would
have been undetectable by Planck, ACT, or previous SPT
measurements, thus could have indicated a newly discov-
ered departure from ΛCDM. We were thus motivated
to exhaustively check the robustness of the slope. Do-
ing so, however, we discovered that its likely origin was
an overly strong assumption we had been making in our
polarization beam modeling.
Prior to unblinding, we had assumed the polarized

and temperature beams were the same at the scales used
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FIG. 9. Maximum a posteriori (MAP) maps from 95+150+220GHz data at the MUSE estimate of theory and systematics

parameters, θ̂. MAPs correspond to a filtering of the data which maximizes signal relative to noise (akin to a linear Wiener
filter, but in the case of the MAP κ, a non-linear filter). The statistical anisotropy visible particularly in the E map originates
from this filtering. No other additional smoothing has been applied, although we have subtracted the simulation-mean of κ.
Except for this subtraction, these MAPs correspond exactly to ẑ which enters the MUSE estimate in Eqn. (5). We have chosen
to show only unlensed E and lensed B, as lensed and unlensed E look nearly identical at the scale of this figure, and unlensed
B is effectively zero by assumption.
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FIG. 10. Changes to our results made after unblinding, and their origin in changes to beams. In the left two panels, blue
and orange data points show ϕϕ and unlensed EE bandpowers relative to Planck ΛCDM theory for our final result and our
initial unblinded result, respectively. Colored lines in the EE panel show ratios of temperature (dashed lines) and polarization
beams (solid lines) between final and initial unblinded versions. For the polarized beam changes, we also show the posterior
uncertainty from the final polarized beam fit with shaded bands indicating 1 σ. In the right panel, the same two colors show
the corresponding changes to cosmological parameter results from the SPT dataset.

in the analysis. While the temperature beam sidelobes
are mapped with high signal-to-noise via observations
of bright point sources and planets, we lack sufficiently
bright polarized sources to similarly map the sidelobe re-
sponse of the polarized beams. To check the robustness
of the EE slope to this assumption, we devised a model
of the polarized beams to realistically account for how
much these might differ from the temperature beams.
Appendix A 4 describes the model in more detail, but in
summary, we took the polarized beams to be the sum of
two components. The first is a central main lobe which
can be modeled physically using the basic optics of the
telescope, and is expected from physical modeling to be
fully polarized and thus the same in polarization as in
temperature. This model is fit to match temperature
beams themselves at small scales where the model is a
good description of the beam. The second component is
a diffuse sidelobe stemming from effect such as scatter-
ing or reflection from of optical elements in the camera
and scattering from panel gaps in the primary mirror,
which is not necessarily expected to be fully polarized.
We marginalize over the polarization fraction of the side-
lobe component with a new parameter at each frequency,
βνpol. In this definition, our earlier assumption had cor-
responded to βνpol =1, which makes the polarized beam
identical to the temperature beam.

With these free parameters introduced, we re-ran the
MUSE fit, finding βνpol = [0.44 ± 0.20, 0.60 ± 0.28, 0.51 ±
0.26] at [95, 150, 220]GHz. That is, our CMB data alone
is able to internally constrain the sidelobe polarization
fractions, and it constrains them away from our previ-
ously assumed value of unity with mild significance. The
ability to constrain these parameters at all arises from
inter-frequency differences, as changing the βνpol changes
the beam at each frequency differently. Indeed, if we re-
examine the inter-frequency agreement of our data with
the βνpol marginalized, we find slightly improved agree-
ment. This is shown as the orange line in Fig. 6. Thus,
even though our original blind inter-frequency tests did
not show any statistically significant evidence for dis-
agreement, there was indeed some small systematic dis-

agreement hidden below the noise, which is alleviated by
this improved beam modeling.

Regarding the slope in EE relative to Planck ΛCDM,
the change from βνpol =1 to the new marginalized poste-
rior values largely removes it. It also increases our EE
uncertainties at ℓ> 2000 by as much as a factor of two
for some bins, which, however, is highly correlated be-
tween bins, with the effect much like an additional rela-
tive calibration between high-ℓ and low-ℓ. The impact to
our ϕϕ spectrum of this post-unblinding change is neg-
ligible, as optimal lensing estimation is largely insensi-
tive to smooth changes to beams. Since much of our
cosmological information is coming from lensing, it also
means that our ΛCDM constraints from SPT data are not
that strongly affected; for example we originally found
H0 =67.3± 0.77 with the sidelobe polarization fraction
fixed to unity and H0 =66.81± 0.81 with it marginal-
ized. A larger impact occurs in the (ns,Ωbh

2) plane,
with both parameters shifting just over 1 σ and the pos-
teriors broadening. These changes are all summarized in
Fig. 10. Our final agreement with Planck across 5 ΛCDM
parameters is 0.5σ, with the change roughly coming from
equal parts central value shifts and posterior broadening
in the (ns,Ωbh

2) plane.

We consider this beam model sufficient to capture our
polarized beam uncertainty because we find no signifi-
cant shifts in results if we change the main lobe model
to a simple Gaussian, suggesting the exact details of the
main lobe modeling are not relevant. Additionally, allow-
ing for a free linear dependence of the sidelobe polariza-
tion fraction as a function of angular distance from the
peak response does not significantly shift results either,
suggesting the model of a constant sidelobe polarization
fraction is sufficient.

With this improvement to the polarized beam model-
ing, some additional small tweaks mentioned in App. A
which lead to insignificant changes, and all validation
tests passing at the same or better levels than they were
prior to unblinding, we adopted this as our final baseline
model. All results we will now present in the following
section utilize this baseline model.
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Name Data Set

SPT This work, i.e. SPT-3G 2019/2020 a unlensed EE + optimal ϕϕ from 95+150+220GHz
SPTϕϕ Just the ϕϕ spectrum from the SPT dataset, with systematics and unlensed EE still marginalized over
PlanckT&E Planck 2018 high-ℓ TT, TE,EE + low-ℓ TT [59]
Planckϕϕ Planck NPIPE PR4 ϕϕb [60]
Planck PlanckT&E + Planckϕϕ
ACTϕϕ ACT DR6 ϕϕc [29, 30]
ACT ACT DR4 TT, TE,EEd [31, 32] + ACTϕϕ
WMAP WMAP9e (ℓTE

min = 24, i.e. no τ information) [61]
BAO 6dF [62] + SDSS DR7 MGS [63] + SDSS DR12 LRG [64] + SDSS DR16 Lyα [65] + DESI [66–68]

a The likelihood will be publicly available after the acceptance of this paper for publication. We refer to this data in the figures as
“2yr-main”; the “main” field is the 1500 deg2 field as defined in [3].

b https://github.com/carronj/planck_PR4_lensing
c https://github.com/ACTCollaboration/act_dr6_lenslike
d https://github.com/ACTCollaboration/pyactlike
e https://github.com/HTJense/pyWMAP

TABLE III. Glossary of data set abbreviations used in the text and in figure captions. When combining SPT with WMAP
and Planck data, we sum the likelihood directly assuming no correlation, an assumption justified by the small sky area of
the SPT main field (1500 deg2). When combining ACT DR4 with WMAP and Planck data, we followed the procedure in
[31]. When using both Planck NPIPE PR4 lensing and ACT DR6 lensing, we used the built-in likelihood implementation
of act dr6 lenslike package with variant=actplanck baseline which accounts for correlations between ACT and Planck
lensing due to overlapping sky coverage. For the BAO dataset, we followed the proposal in Sect. 3.3 of Adame et al. [66] to
replace the DESI BGS and lowest redshift LRG measurements with SDSS MGS (zeff ∼ 0.15) and two SDSS DR12 LRG points
(zeff ∼ 0.38, 0.51), as well as replacing the DESI Lyα point with joint eBOSS+DESI Lyα BAO. With the exception of Sec. V I,
any CMB dataset combinations we use includes a prior on τ of 0.051± 0.006 [69]. In Sec. V I, we instead drop the τ prior and
PlanckT&E is to be understood as including the Planck low-ℓ EE likelihood.

V. RESULTS

In this section we present our ϕϕ and unlensed EE
bandpowers and resulting cosmological parameter con-
straints in various model spaces, with and without in-
clusion of some external datasets. Nomenclature for the
external datasets, as well as our SPT-3G dataset, is de-
scribed in Tab. III. We follow the convention of naming
cosmological parameters in [70] (see Table. 1 there for
detail). The setup for MCMC analysis is described in
Sect. III B. For simplicity, we adopt a Gaussian prior,
τ ∼N (0.051, 0.006), using the result from the joint pro-
cessing of Planck HFI and LFI data [69] as baseline un-
less otherwise specified, instead of using Planck low-ℓ EE
likelihood or WMAP TE data at ℓ< 24. Unless otherwise
specified, all uncertainties quoted in this paper represent
the 68% confidence interval.

A. Bandpowers

In Fig. 11, we show our inference of ϕϕ and unlensed
EE bandpowers. The ΛCDM model that best fits these
data provides a good fit with χ2 =75.8 given 71 degrees
of freedom (76 bandpowers minus 5 cosmological param-
eters constrained beyond their prior), which corresponds
to a PTE of 32.7%. By this test, the SPT data are con-
sistent with the standard cosmological model. We also
show as an orange band the 68% confidence level pre-
dictions of the ΛCDM model for the CMB lensing and

unlensed EE power spectra given these SPT data.
We can also check if the SPT data are consistent with

the ΛCDM predictions given Planck data. The 68%
confidence level predictions of the ΛCDM model given
Planck data are shown as a gray band, with the best-fit
ΛCDM model given Planck data shown as a black line.
The χ2 of the SPT bandpowers given the Planck best-
fit ΛCDM model is 80.7, which corresponds to a PTE of
20.2%. Thus, the SPT bandpowers agree with the Planck
ΛCDM best-fit prediction at the 1.3σ level.
In Fig. 12, we compare the SPT bandpowers to prior

measurements. The SPT lensing bandpower measure-
ments extend to L∼ 3000 and are more precise than prior
published measurements at L> 350. The unlensed EE
bandpowers extend to ℓ∼ 3500 and are more precise than
prior published measurements at ℓ> 2000 where we have
clear detections of the eighth, ninth and tenth acoustic
peaks.

B. Origins of ΛCDM parameter constraints

The SPT bandpowers represent a significant advance
in our capacity to constrain cosmological parameters with
polarization data alone. In Fig. 13 we show constraints
on four ΛCDM parameters from SPT, ACT, and Planck,
assuming the ΛCDM model, and limiting to only EE
spectra and polarization-based lensing reconstruction, or
in the case of ACT, also including temperature in the
lensing reconstruction (since no polarization-only lensing
likelihood is available). We see significantly tighter con-

https://github.com/carronj/planck_PR4_lensing
https://github.com/ACTCollaboration/act_dr6_lenslike
https://github.com/ACTCollaboration/pyactlike
https://github.com/HTJense/pyWMAP
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FIG. 11. Top panels: MUSE measurement of the CMB lensing ϕϕ bandpowers and the unlensed EE bandpowers using SPT-3G
2019/20 CMB polarization data. The lensing bandpowers represent a 38 σ detection of lensing power. These are the most precise
measurements to date at ℓ> 2000 for EE and L> 350 for ϕϕ. Bottom panels: Residual bandpowers with respect to the SPT
best-fit cosmology. The gray and orange bands show the 68% confidence region of ΛCDM model spectra fit to Planck and SPT
data, respectively.

FIG. 12. Comparison of SPT bandpowers with existing measurements. Top panels: CMB ϕϕ and EE bandpowers. Bottom
panels: Bandpowers divided by the Planck best-fit cosmology predictions. Note that the EE bandpowers have been further
rebinned as compared to the top panel for clarity. As a reminder, the SPT EE points are inferences of unlensed EE. The
dotted gray line shows the unlensed EE model prediction. The orange dashed and the solid gray lines are the same as Fig. 11.
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reasons). We see tighter constraints on Ωbh
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2, and H0 from the SPT data. We show the SH0ES constraint on H0 for

comparison. See also Tab. III for more details on dataset definitions.
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straints on three of the parameters from SPT, while the
higher dynamic range of the Planck EE data (which ex-
tends to lower ℓ than shown in Fig. 12) leads to a tighter
constraint on ns for Planck.

Constraints on ΛCDM parameters from SPT data and
other dataset combinations, now including both temper-
ature and polarization as detailed in Tab. III, are sum-
marized in Tab. IV. The SPT constraints are comparable
to full Planck results in the matter density, Ωmh

2, and
angular scale of the sound-horizon, θ⋆. The constrain-
ing power on Ωmh

2 from SPT is mainly due to the CMB
lensing bandpowers, which are sensitive to the amount
of matter in the Universe. This is evidenced by the fact
that adding just SPT lensing to WMAP data reduces the
error on Ωmh

2 by over a factor of 3 from 0.0045 [61] to
0.0014, and that further adding SPT EE to this combi-
nation leaves the error unchanged.

That the sensitivity to Ωmh
2 primarily comes from the

lensing reconstruction rather than primary power spectra
(in this case unlensed EE) is a unique feature of these
data compared to prior CMB datasets. The sensitivity
of primary power spectra to matter density is weakened
due to its weighting toward small scales that are sensi-
tive to conditions at horizon crossing; at such early times
the matter density is negligible compared to the radia-
tion density. Conversely, the lensing power spectrum, if
probed precisely enough, has high sensitivity to Ωmh

2.
This comes mainly (but not solely) from how CMB lens-
ing power depends on the scale of matter-radiation equal-
ity. Additionally, the sensitivity increases at the small

scales probed here, with CϕϕL ∝ (Ωmh
2)2 at L∼ 200 and

asymptoting to (Ωmh
2)3 by L∼ 2000 [71].

The SPT data are also sensitive to the angular scale of
the sound horizon, θ⋆. This sensitivity comes from the
EE bandpowers, where the peak and trough locations
of the EE spectrum are highly sensitive to θ⋆. The im-
portance of the EE bandpowers for this constraint, as
opposed to the lensing bandpowers, can be seen in the
comparison of θ⋆ constraints from SPT, WMAP+SPT
and WMAP+SPTϕϕ; the exclusion of SPT EE signifi-
cantly degrades the θ⋆ determination. We note that the
constraint on θ⋆ is known to be improved by delensing
[72], a result which applies to our unlensed spectra in-
ferences here as well, although we do not explicitly at-
tempt to quantify exactly how much improvement we
have achieved.

The constraints on τ from the SPT dataset are driven
almost entirely by Planck low-ℓ polarization data, in-
cluded here as a τ prior. Although lensing can, in theory,
help constrain τ via degeneracy breaking, the contribu-
tion at current noise levels is negligible. The constraint
on log

(
1010As

)
is similarly largely driven by Planck, since

it is degenerate both with τ and the absolute calibration,
the latter which also comes from Planck.

The SPT constraints on Ωbh
2 and ns are weaker than

those inferred from Planck. Both ns and Ωbh
2 cause tilts

of the CMB EE spectrum, since Ωbh
2 affects the photon

diffusion damping at small angular scales and ns affects

the shape of the primordial spectrum. Our observations
lack the very largest scales probed by Planck, which,
logarithmically, contain a significant range of scales use-
ful for constraining a tilt. Additionally, at small scales
our uncertainties are increased by polarized beam uncer-
tainty, preventing what could otherwise be a slightly bet-
ter constraint. Our final result is a 2.5% determination
of the the baryon density.
With the baryon density, matter density, and θ⋆ de-

termined, one has everything necessary, in ΛCDM, for
calculating both H0 and Ωm [e.g. 73]. Adding in As and
ns one can also calculate σ8 and S8. We show constraints
on these four derived parameters in Tab. IV.

C. Agreement with other CMB datasets in ΛCDM

Before providing interpretations, it is useful to estab-
lish the consistency level of our ΛCDM parameter results
with other CMB measurements. Such comparison pro-
vides tests of the ΛCDM model that are complementary
to and stronger than the bandpower-level tests above.
We perform a simple consistency check applicable to

uncorrelated datasets by calculating the χ2 between the
two sets of parameters,

χ2 = (x⃗1 − x⃗2)
T (C1 + C2)

−1(x⃗1 − x⃗2), (23)

where x⃗ is a vector of parameter estimates, C are the
parameter covariances from each, and the subscripts 1
& 2 distinguish datasets. We then compute the PTE
for the given χ2 and quote a 1-tailed conversion to num-
ber of σ. Since, as discussed, our estimates of τ and
As are highly correlated to Planck, we consider only
x⃗=(θ⋆,Ωbh

2,Ωch
2, ns). For these parameters, the SPT

results are very close to independent of both Planck
and ACT due to non-overlapping sky area and multi-
pole ranges. We find ΛCDM parameters from SPT and
Planck datasets are consistent at 0.8 σ, and from SPT
and ACT datasets at 0.8 σ.
A triangle plot comparing marginal posterior distribu-

tions from SPT+WMAP, ACT+WMAP, and Planck is
shown in Fig. 14.
We now turn to estimates of three parameters of par-

ticular contemporary interest in cosmology: H0, S8, and
Ωm.

D. The Hubble constant, H0

The Hubble constant inferred from Planck data, as-
suming the ΛCDM model, has been found to be in ten-
sion with the most precise “distance ladder” measure-
ment [74, 75], which uses Cepheid-calibrated SNe Ia, at
the 5.8σ level.6 In Fig. 15, we show the Hubble constant

6 See also, e.g. Freedman & Madore [76], Freedman et al. [77],
Riess et al. [78] for comparison of alternative “rung 2” methods
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on larger angular scales, achieve constraints on cosmological parameters with similar constraining power as the constraints from
Planck.
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Parameters SPT Planck Planck+SPT WMAP+SPT WMAP+SPTϕϕ

log
(
1010As

)
3.045± 0.024 3.042± 0.011 3.046± 0.011 3.047± 0.012 3.042± 0.013

ns 0.944± 0.027 0.965± 0.004 0.9647± 0.0037 0.9637± 0.0076 0.961± 0.011
100θMC 1.04162± 0.00066 1.04092± 0.00031 1.04104± 0.00028 1.04154± 0.00057 1.0394± 0.0022
Ωbh

2 0.02255± 0.00057 0.02237± 0.00014 0.02239± 0.00013 0.02248± 0.00027 0.02226± 0.00045
Ωch

2 0.1227± 0.0018 0.1199± 0.0011 0.12039± 0.00094 0.1215± 0.0014 0.1210± 0.0014
τreio 0.052± 0.006 0.0532± 0.0056 0.0547± 0.0058 0.052± 0.006 0.0515± 0.0059

H0 [km/s/Mpc] 66.81± 0.81 67.4± 0.5 67.28± 0.42 67.1± 0.6 66.4± 1.1
100θ∗ 1.04181± 0.00069 1.0411± 0.0003 1.04125± 0.00027 1.04173± 0.00057 1.0396± 0.0022
Ωmh

2 0.1459± 0.0019 0.143± 0.001 0.14340± 0.00089 0.1446± 0.0015 0.1439± 0.0015
Ωm 0.327± 0.011 0.3147± 0.0068 0.3169± 0.0058 0.3211± 0.0085 0.326± 0.011
σ8 0.8143± 0.0088 0.8104± 0.0051 0.8137± 0.0046 0.8177± 0.0065 0.8118± 0.0086

S8 =
√

Ωm/0.3 0.850± 0.017 0.830± 0.012 0.8363± 0.0097 0.846± 0.016 0.847± 0.016

TABLE IV. Parameter estimates for various datasets assuming ΛCDM. The datasets are defined in Tab. III.
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FIG. 15. Comparison of the ΛCDM constraints on H0 inferred
from different CMB observations with the Cepheid-calibrated
SNe Ia observations of the SH0ES collaboration [74, 75]. All
CMB ΛCDM constraints are significantly lower.

inferred from various observations. Using the SPT data
alone, we report

H0 = 66.81± 0.81 km/s/Mpc. (24)

This is consistent with the Hubble constant inferred from
Planck, and is in 5.4 σ tension with [74]. This confirms
previous hints of a tension given only CMB polariza-
tion data, where Planck, ACTpol, and SPTpol yielded
H0 =68.7± 1.3 [79], but almost halves the error bar and
increases the significance of the tension from less than
3σ to greater than 5 σ.

The agreement with previous CMB constraints, that
rely heavily on temperature data, is also significant as a
passed test of ΛCDM. Of course, the continued disagree-
ment with distance ladder methods remains a mystery.
We expect that these new SPT data will be a significant
hurdle for many of the proposed models [33], and models
yet to come, that address the Hubble tension.

Combining Planck, ACT, and SPT, we report

H0 = 67.33± 0.37 km/s/Mpc, (25)

which results in tension with the H0 reported in [74] at
6.2σ. This is the tightest constraint on H0 inferred from
CMB observations assuming the ΛCDM model. We also
note that the combination WMAP+ACT+SPT achieves
H0 = 67.18± 0.45 km/s/Mpc, a result with precision
nearly the same as that of the Planck result and nearly
independent of Planck data. Overall, inferences of the
Hubble constant from a wide range of CMB observations
are in good agreement. While the potential for confir-
mation bias to drive this agreement could be a concern,
we highlight that both the unlensed EE and ϕϕ spectra
which enter our SPT result here were obtained blindly,
and while there were some changes to H0 after we un-
blinded, these changes were small compared to the mag-
nitude of the tension.

E. The matter density, Ωm

There has recently emerged some degree of tension be-
tween Ωm as inferred from BAO, and values inferred from
supernova surveys [66]. We summarize the situation in
Fig. 16. The biggest discrepancy is between DESI BAO
and the DES-Y5 determination of Ωm which yields a 2.5σ
difference. Inferences from CMB data, with consistency
among different observations, are more precise than those
from the supernovae and BAO, lying in between the low
BAO value and the higher supernova values. From SPT
data alone we infer

Ωm = 0.327± 0.011. (26)

This is the highest central value of the inferences from
different choices of CMB dataset, though consistent with
all of them, and with an uncertainty only 65% greater
than the Planck uncertainty.

F. The structure amplitude parameter, S8

The amplitude of structure measured from galaxy weak
lensing surveys also shows mild tension with the ΛCDM
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FIG. 16. Comparison of the ΛCDM constraints on Ωm in-
ferred from different CMB observations (blue) with those from
SNe observations (orange) and DESI BAO (green). The SNe
observations include Pantheon+ [80], DES-Y5 [81] and Union
3 [82]. The biggest discrepancy is between DESI BAO and
the DES-Y5 determination of Ωm, a 2.5σ difference.

inference using CMB data. In Fig. 17, we show the value
of S8 ≡σ8

√
Ωm/0.3 inferred from various observations.

From SPT, we find

S8 = 0.850± 0.017, (27)

which is in agreement with the result from Planck at
a similar level of precision. Our result is in 2 σ, 3.2σ,
and 3σ disagreement with HSC-Y3 [83], KiDs-1000 [84]
and DES-Y3 [85], respectively. From the joint fit of
Planck+ACT+SPT, we get

S8 = 0.8380± 0.0084, (28)

which is at 1.8σ, 3.3σ, and 3.3σ tension with HSC-Y3,
KiDs and DES-Y3 results. We also note that the con-
straint on S8 from a combination of WMAP+ACT+SPT
is consistent with the S8 inferred from Planck alone,
which provides a nearly-independent check of the Planck
result.

G. Amplitude of nonlinear structure growth

One proposed phenomenological resolution to the S8

tension is a suppression of the matter power spectrum at
non-linear scales, potentially due to baryonic feedback or
dark matter structure growth which differs from the stan-
dard picture [37, 86]. The CMB lensing reconstruction we
present in this paper is the most precise measurement of
the CMB lensing spectrum at the smaller angular scales
where non-linear effects are more important, and can be
used to further constrain the space of possible models
which resolve this tension. To do so, we introduce a new
parameter, ACMB

mod , equivalent to the Amod parameter of
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FIG. 17. Comparison of the ΛCDM constraints on S8 in-
ferred from different CMB observations (blue) with those from
galaxy surveys of HSC Y3 , KiDs-1000 and DES-Y3 (orange).
The estimate from Planck+ACT+SPT differs with the one
from HSC-Y3 at 2 σ, the one from KiDs at 3.3 σ, and with
the one from DES-Y3 at 3 σ.

[37] under the Limber approximation, but here measured
at CMB lensing scales and redshifts. We implement this
by directly scaling the non-linear correction to the linear-
theory CMB lensing spectrum,

CϕϕL = CϕϕL,lin +ACMB
mod (CϕϕL,nonlin − CϕϕL,lin), (29)

where CϕϕL,lin and CϕϕL,nonlin are the linear and non-linear
CMB lensing spectra, the latter computed via our default
Halofit. This modified lensing spectrum is then also
propagated to changes in the lensed primary spectra.
As a small aside, we have verified that constraints on

ACMB
mod are insensitive to the choice of nonlinear and bary-

onic feedback models. Given that ACMB
mod is the parame-

ter most sensitive to the non-linear prediction, our con-
straints on other cosmological parameters in this paper
are insensitive as well.
Fig. 18 shows results of fitting the ΛCDM+ACMB

mod
model to various CMB datasets. We take the Planck
primary CMB measurements as a baseline, which tightly
limit the linear contribution to lensing, then explore
the impact to constraints on the non-linear contribution,
ACMB

mod , from adding lensing measurements from Planck,
ACT, or the SPT results from this work. As expected
from the spectra shown in Fig. 12, there are significant
improvements in constraining the non-linear contribution
from Planck to ACT, and again from ACT to SPT. The
Planck primary CMB together with SPT detect a non-
zero ACMB

mod at > 3σ for the first time.
All measurements are consistent with the standard

value ACMB
mod =1, and the tightest combination of all lens-

ing measurements yields ACMB
mod =1.60± 0.39. The Amod

inferred from DES-Y3 and KiDs is Amod =0.820± 0.042
[86]. This latter result measures the amplitude of non-
linear structure growth at redshift z∼ 0.3 and scales of
k∼ 1Mpc−1, whereas our CMB lensing measurements
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are sensitive to higher redshifts and larger scales. Using
a Fisher calculation based on our actual achieved error-
bars, in the top panel of Fig. 18 we have computed the
range of (k, z) which contribute most to our constraints
on total lensing power, as well as to just the non-linear
contribution to the lensing power, i.e. to Amod.

This plot, taken together with our Amod constraints,
suggests (at ∼ 2σ) that if the S8 tension is to be ex-
plained by some non-standard physics suppressing the
non-linear matter power spectrum, these effects have not
started at the higher redshift and larger scales of CMB
lensing as compared to galaxy lensing, and evolve in
the decade of separation in (k, z) before suppressing the
galaxy lensing power by ∼ 20% at later times and smaller
scales. We note that with even better future measure-
ments of small-scale CMB lensing, sensitivity to ACMB

mod
will push to smaller scales; e.g., significantly tightening
up measurement of lensing power in a broad band cen-
tered on L=3000 will lead to sensitivity to galaxy weak
lensing scales, although at z ≃ 1 to 2 rather than z = 0.3.

H. Massive neutrinos

The ΛCDM model, as usually understood, includes
a strong assumption about the spectrum of neutrino
masses, namely that the sum is 0.058 eV. This partic-
ular value follows from assuming that the lightest neu-
trino mass is effectively zero, that normal ordering ap-
plies, and that the usual interpretation of atmospheric
and solar neutrino oscillations is correct. Here we relax
this assumption and study constraints on the sum of neu-
trino masses, Σmν . For a review of neutrino physics and
its cosmological significance see [87].

Relative to the case of massless neutrinos, neutrino
rest masses increase the mean energy density and there-
fore the expansion rate. Increased expansion rate re-
duces growth on scales below the neutrino free-streaming
length. Increasing mass also decreases the neutrino free-
streaming length. On scales above the free-streaming
length, neutrinos can cluster, approximately canceling
the impact on growth of the increased expansion rate.
For a recent discussion of the cosmological impact of mas-
sive neutrinos see [88].

With the release of the DESI BAO data, cosmological
constraints on neutrino mass have become an especially
interesting topic. In the context of the ΛCDM+Σmν

model space, the DESI data in combination with Planck
high-ℓ TT , TE, EE and the Planck τ determination serve
to tighten up the predictions for CMB lensing power as
a function of assumed Σmν . As has been shown in [36]
and [89], these predictions, assuming a minimal value
of Σmν =0.058 eV, indicate somewhat less lensing power
than observed in either Planck lensing or ACT DR6 lens-
ing. This is puzzling, since boosting the expected lensing
power by changing the neutrino mass sum would require
a decrease to below the minimum of 0.058 eV.
In Table V, we show the constraints on Σmν from
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FIG. 18. Top panel: Redshifts and scales to which our lensing
measurements are sensitive. Colored regions are iso-contours
in the contribution to the square root of the Fisher informa-
tion from logarithmic bins in k and z. The outermost contour
corresponds to 10% of the peak. Red is for the Fisher informa-
tion in the total lensing power, whereas blue is for the Fisher
information just in ACMB

mod (and is weighted more towards
higher L). Under the Limber approximation, a given (k, z)
contributes to a single CMB lensing multipole, L, and dashed
lines denote this mapping for scales of L=30 and L=3000.
Bottom panel: Constraints on ACMB

mod , defined as the ampli-
tude of non-linear contributions to the CMB lensing spectrum
(Eqn. 29), from Planck primary CMB measurements (labeled
PlanckT&E) in combination with lensing measurements from
Planck, ACT DR6, and the SPT dataset presented here. The
orange band shows the 68% and 95% constraints of Amod in-
ferred from DES-Y3 and KiDs datasets in [86].

various datasets. Combining the CMB observations of
Planck, SPT, and ACT, we report the following con-
straint on neutrino mass

Σmν < 0.20 eV (95%C.L.). (30)

Additionally including BAO measurements yields

Σmν < 0.075 eV (95%C.L.), (31)

which puts extreme pressure on the inverted hierarchy
minimal mass sum of about 0.098 eV.
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I. Excess lensing power?

As mentioned, Craig et al. [36] pointed out that the
lensing power inferred from the Planck lensing recon-
struction and from the ACT DR6 lensing reconstruction
are somewhat in excess of ΛCDM predictions given DESI
BAO and primary CMB data. Here we investigate this
claim, first with L-independent lensing template param-
eters and then with the phenomenological “negative neu-
trino mass” parameter used in [36], Σm̃ν , which can be
thought of as an L-dependent lensing template parame-
ter.

To conduct our analysis, we define three L-independent
lensing template parameters:

1. Arecon scales the ΛCDM model lensing power used
to predict the reconstructed lensing power,

2. A2pt scales the model lensing power used to com-
pute any lensed power spectra (2-point correlation
functions), and

3. Alens scales both of these model power spectra; i.e.,
it is what we call Arecon and A2pt when we force
them to be equal to each other.

Note that what we call A2pt has often been called AL.
We consider four model spaces, each an extension

of ΛCDM. They are ΛCDM+Arecon, ΛCDM+A2pt,
ΛCDM+Alens, and ΛCDM+Arecon+A2pt. Taking θ to
be the ΛCDM parameters, the extensions to the model
spaces that include these template parameters are done
via

CϕϕL (AX , θ) = AXC
ϕϕ
L (θ), (32)

where X = recon, 2pt, or lens and CϕϕL (θ) on the right
hand side is the ΛCDM model evaluated at θ.7 To assist
in comparison with [36, 89], in this subsection only we
take “PlanckT&E” to include the Planck low-ℓ EE like-
lihood and remove the τ prior, and we restrict our use of
ACT data to ACT DR6 lensing only. Our choice of BAO
data can be found in Table III.
In the dash-dotted curves of the top panel of Fig. 19

we see the well-known “A lens” or “AL” anomaly, which
in our language is an A2pt anomaly driven by Planck
PR3 TT data [90]. This is a preference, in the lensed
TT , TE, and EE spectra, for excess lensing power be-
yond what one gets from the ΛCDM model. In the lower
left panel we can see that if both Arecon and A2pt are
allowed to vary freely, the 95% confidence regions for the
four considered data combinations have central values
greater than 1 in both dimensions and no overlap with
the ΛCDM point of Arecon =A2pt =1.

7 Recall that in this paper the ΛCDM model has Σmν fixed to
0.058 eV.
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FIG. 19. Posteriors of the lensing power phenomenologi-
cal scaling parameters A2pt and Arecon. Different combi-
nations of CMB lensing data added to the Planck primary
CMB and BAO are shown in different colors. The 2D con-
tours and solid lines show the marginal posterior from the
ΛCDM+A2pt+Arecon model; the dot-dashed and dashed lines
show the results from ΛCDM+A2pt and ΛCDM+Arecon re-
spectively. The σ values give the level at which Arecon (A2pt)
values less than 1 are excluded, for the case of marginalization
over A2pt (Arecon); i.e., for the solid curves.

Turning to the question of an excess of reconstructed
lensing power, we see in the solid lines of the right panel
that if we marginalize over A2pt (solid lines) then there
is some preference for Arecon> 1. The significances of
these preferences are shown as ranging from 1.8 σ to 2.6σ.
From these significance levels and from the blue, orange,
and green curves we see that we get a very similar result
whether we use Planck, ACT DR6, or SPT lensing recon-
structions, with the ACT DR6 and SPT curves nearly
overlapping. If we remove DESI BAO data8 (a case not
shown in the figure), the preferences for Arecon> 1 per-
sist, although with somewhat reduced significance rang-
ing from 1.4σ to 2.2σ. The preference for Arecon> 1
is weakened much more if we fix A2pt to 1 rather than
marginalize over it (dashed curves); any evidence for ex-
cess reconstructed lensing power is then quite weak.

This dependence of the Arecon posteriors on the treat-
ment of A2pt (fixing to 1 or marginalizing) makes sense
given the correlation we see in the lower left panel. The

8 When removing DESI we also add back in BAO data we had
removed (see Tab. III), namely the SDSS DR16 LRG, ELG, and
QSO BAO [65] and the DR12 BAO bin with zeff =0.61 [64].
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lower the assumed A2pt, the lower the distribution of
Arecon values. Physically, this correlation emerges be-
cause as A2pt is increased, the ΛCDM parameters used
to fit the Planck T&E data adjust in a way that decreases
lensing power (both Ωmh

2 and As decrease). With the
ΛCDM lensing power decreased, a given level of recon-
structed CMB lensing power needs a larger Arecon to fit
it.

Readers who are familiar with [89] may be surprised
at this sensitivity of Arecon to choice of treatment of
A2pt (marginalizing it or fixing it to 1), given argu-
ments made in that paper about the unimportance of
the 2-point lensing anomaly to their conclusion of ex-
cess lensing power. But these two different results do
not contradict each other. Green & Meyers [89] de-
fine a slightly L-dependent lensing template parameter,
AL(Σm̃ν), and an L-independent template parameter,
Blens, which are approximately related to our param-
eters by Arecon =AL(Σm̃ν) and A2pt =AL(Σm̃ν)Blens.

9

The resulting correlation between Blens and Σm̃ν is much
smaller than the correlation we see in Fig. 19, which ex-
plains why they see the posterior for Σm̃ν not change
much if they switch from fixing Blens = 1 to marginaliz-
ing over it.
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FIG. 20. Constraints on the lensing power phenomenological
scaling parameter Alens (68% C.L.) using Planck PR3 Plik

T&E likelihood (in blue) and CamSpec PR4 T&E likelihood
(in orange).

We have a strong theoretical prior that the lensing
power one would infer from lensed CMB spectra (given
the right cosmological model) should be equal, within
the expected uncertainties, to what one would infer in a
CMB lensing reconstruction.10 So, even though the bulk

9 This is approximate because 1) we have ignored the slight L-
dependence of AL(Σm̃ν) and 2) their template is defined with
respect to ΛCDM models with Σmν = 0 eV.

10 Although there are models in which this is violated too; see Craig
et al. [36].

of the probability lies to one side of the Arecon =A2pt

line, it is worth exploring what we find if we force these
two parameters to be equal. This is the model space we
explore with an even greater variety of dataset combina-
tions in Fig. 20, and it is also very similar to the model
space chiefly studied by Green & Meyers [89] (with their
Blens = 1).
One of the dataset variations we consider throughout

Fig. 20 is the replacement of the Planck PR3 Plik T&E
likelihood with the Camspec PR4 T&E likelihood [91].11

The Planck PR4 maps use more timestream data than
does PR3 and the Camspec PR4 T&E likelihood uses
more sky than does the Plik PR3 T&E likelihood. If the
A2pt anomaly is driven by some fluctuations that drive
the spectra away from the mean (in a manner similar to
enhanced lensing) then we would expect the support for
it to go down as we add in more data. For Plick PR3
we have, from TT ,TE,EE+lowE, AL = 1.180± 0.065
[90]. With the additional PR4 data, we instead have
AL = 1.095± 0.056 [91]. Note that there is one other
PR4 T&E likelihood [92], in which they find an even
lower AL = 1.039± 0.052.
The lower half of the entries in Fig. 20 do not include

any BAO data. We see that without the BAO data any
conclusion of Alens> 1 by more than 2 σ is not very ro-
bust, occurring only for one of the dataset combinations.
With the addition of BAO data (top half of the figure),
such a conclusion becomes much more robust. The com-
binations that include Planck T&E, BAO, and all three
lensing reconstructions become robust to the difference
between PR3 and PR4. With PR3 specifically we find
PlanckT&E+BAO+Planckϕϕ+ACTϕϕ+SPTϕϕ yields

Alens = 1.085± 0.032 (33)

and a 2.7σ exclusion of Alens< 1. Note that the con-
straints are weakened by removing DESI from the BAO
data set. Also, if one does so, the results become de-
pendent again on the choice of Planck T&E. Removing
DESI (in the same manner as done above) and switch-
ing from Planck PR3 T&E to Planck PR4 T&E we find
Alens =1.059± 0.029.
We have checked that switching to the L-dependent

lensing template used in [36, 89] in place of Alens

delivers a similar result. Their template depends
on their neutrino-mass-like parameter Σm̃ν . For
PlanckT&E(PR3)+BAO+Planckϕϕ+ACTϕϕ+SPTϕϕ,
we find

Σm̃ν = −0.122± 0.072 eV (34)

and a 2.7σ exclusion of Σm̃ν > 0.058 eV.
We note that this evidence for excess lensing power

arises from 3 types of constraints: 1) lensing power mea-
surements, 2) inferences of ΛCDM parameters (other

11 This replacement does not change the low-ℓ TT and EE likeli-
hood, which remain PR3.
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than τ) from the combination of CMB and BAO data,
and 3) inference of τ from large angular-scale CMB po-
larization. We have seen that the preference for Alens > 1
is robust to selection of different datasets for (1). Of par-
ticular relevance for this paper, the preference is present
when the Planck and ACT lensing measurements are re-
placed with the SPT one. The SPT lensing is inferred
entirely from polarization, making it much less suscep-
tible to possible biases from extragalactic foregrounds.
Regarding (2), we see that a more than 2 σ preference
for Alens> 1 requires either BAO data (including DESI)
or PR3 T&E. The next release of BAO data from DESI
should be informative, as will the forthcoming lensed TT ,
TE, and EE spectra from SPT-3G. Note that τ (item
3 above) is inferred from Planck low-ℓ EE data. The
importance of τ comes from its implications for As as
the combination Ase

−2τ is very well determined by CMB
data: a higher τ would lead to higher As and hence a
higher lensing power prediction. Independent and com-
petitive constraints on τ may come via the kinematic SZ
effect [11, 93].

The conclusion that there is an excess of lensing power
also relies on assumption of the ΛCDM model. Craig
et al. [36] introduced a number of changes to the model
that could possibly restore concordance. Lynch et al.
[94] noted that non-standard recombination can simul-
taneously reduce the H0 tension and lead to a higher
predicted lensing power. The DESI collaboration points
out that with free w0 and wa the constraints on Σmν are
significantly relaxed [66].

J. Other ΛCDM extensions

We also explore ΛCDM extensions with curvature, the
density of light relics, primordial abundance of helium,
and a time-varying dark energy equation of state. Con-
straints on additional parameters are summarized in Ta-
ble V.

For the ΛCDM extension with free curvature and for
the ones with changing dark energy equation of state, we
find that all CMB datasets are consistent within 2 σ with
the fiducial values of the ΛCDM model. The constraints
from different CMB datasets are consistent. Adding the
BAO data significantly tightens the constraints. This is
due to the BAO sensitivity to the expansion rate and the
distance-redshift relation over redshifts when the dark
energy begins to dominate the density.

The energy density of additional relativistic particles
other than photons is parameterized by the effective num-
ber of neutrino species, Neff , defined via

ρrad = ργ

[
1 +Neff

7

8

(
4

11

)4/3
]
, (35)

where ργ is the photon energy density. Assuming the
standard cosmological model, Neff = 3.044 [96–98]. The
CMB power spectrum is sensitive to Neff [99–103].

By increasing the density of light relics, one increases
the expansion rate during the radiation-dominated era.
To keep the precisely measured angular scale of the sound
horizon unchanged, the expansion rate after last scatter-
ing also increases [e.g. 104]. Therefore, there is a positive
correlation between H0 and Neff . The marginal posterior
distribution of Neff and H0 is shown in the left panel of
Fig. 21. Combining Planck, SPT, ACT, and BAO, we
get

Neff = 2.83± 0.13 (36)

H0 = 66.52± 0.87 km/s/Mpc (37)

where Neff is consistent with 3.044 from the standard
model prediction, but H0 is still in 5.4 σ tension with the
SH0ES [74] measurement.
One can further extend the model to allow for a free

Σmν as well. The marginal posterior of Neff and Σmν

is shown in the middle panel of Fig. 21. There is nearly
no degeneracy between Neff and Σmν . Adding SPT data
to Planck improves the constraints on Neff slightly and
Σmν by about a factor of 2 as discussed in Sect. VH. The
lensing information in SPT data is useful for constraining
the neutrino mass sum, as discussed in Sect. VH, and
the improvement of the Neff constraint is mostly from
the more precisely measured EE bandpowers.
The density of light relics is also partially degenerate

with the primordial fraction of baryonic mass in helium,
YP. Both Neff and YP affect the photon diffusion damp-
ing of the CMB power spectra at small angular scales. In
the right panel of Fig. 21, we show the marginal poste-
rior of Neff and YP. Compared to the constraints using
only Planck data, the uncertainty is reduced by ∼ 41%
with the addition of SPT data. When we fit jointly for
Neff and YP using Planck, ACT, SPT, and BAO mea-
surements, we find values of Neff that are consistent with
the standard model prediction of 3.044, Neff − YP con-
tours that are consistent with BBN predictions, and YP
constraints that are consistent with direct measurements
of HII regions in metal-poor galaxies [95].

VI. CONCLUSIONS

In this paper, we presented an optimal joint inference
of the CMB lensing potential power spectrum and the un-
lensed CMB EE power spectrum, derived entirely from
CMB polarization maps. These maps were made from
observations of 1500 deg2 taken during the SPT-3G 2019
and 2020 Austral winter observing seasons. The inference
was performed using a Bayesian framework called the
Marginal Unbiased Score Expansion (MUSE) method,
which also enables propagation of systematic uncertain-
ties into the estimated bandpower uncertainties. The
inferred bandpowers have smaller uncertainties than pre-
viously published results at ℓ> 2000 for the EE spectrum
and at L> 350 for the lensing spectrum, with a 38 σ de-
tection of lensing power.
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Ext. Parameter WMAP+SPT Planck Planck+SPT Planck+ACT+SPT Planck+ACT+SPT+BAO

Ωk −0.021+0.014
−0.011 −0.0070± 0.0056 −0.0098± 0.0052 −0.0076+0.0053

−0.0047 0.0014± 0.0014

w0 −1.42+0.29
−0.47 −1.48+0.20

−0.37 −1.52+0.18
−0.35 −1.52+0.19

−0.35 −1.075± 0.046

w0 −1.10+0.50
−0.69 −1.18+0.46

−0.62 −1.16+0.48
−0.60 −1.18+0.48

−0.58 −0.65± 0.23
wa −1.1+0.6

−1.9 −1.06+0.61
−1.94 −1.18+0.52

−1.82 −1.21+0.57
−1.79 −1.15+0.71

−0.59

Neff 2.95± 0.33 2.89± 0.18 2.85± 0.16 2.66± 0.14 2.86± 0.13
Σmν < 0.38 eV < 0.31 eV < 0.17 eV < 0.20 eV < 0.075 eV
Neff 2.95± 0.32 2.89± 0.19 2.84± 0.17 2.67± 0.14 2.83± 0.13
Σmν < 0.38 eV < 0.31 eV < 0.17 eV < 0.21 eV < 0.061 eV
Neff 2.79± 0.52 2.8± 0.3 2.77± 0.26 2.60± 0.23 2.89± 0.23
YP 0.256± 0.028 0.248± 0.018 0.250± 0.016 0.246± 0.014 0.241± 0.015

TABLE V. Summary of constraints on selected extensions to the ΛCDM model. The errors indicate the 68% confidence region,
and the upper limits on the sum of neutrino masses are 95% upper limits.
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FIG. 21. Marginal posterior distributions of the ΛCDM extension models involving Neff . The horizontal red dashed line shows
Neff = 3.044. The yellow vertical band in the left panel shows the constraint on H0 from Breuval et al. [74]. The vertical brown
dashed line shows Σmν = 0.058 eV. The purple vertical band shows the inference of the primordial helium fraction from Aver
et al. [95].

After checking that the ΛCDM model provides a good
fit to the SPT data (combined with a prior on τ), we re-
ported constraints on the ΛCDM parameters. We found
H0 = 66.81±0.81 km/s/Mpc, a significantly tighter con-
straint than from prior polarization-only measurements.
It is consistent with the Planck TT/TE/EE plus Planck
lensing constraints assuming ΛCDM, and in 5.4 σ ten-
sion with the most precise distance ladder measurement
[74]. The SPT constraints on Ωch

2 and Ωbh
2 are also

tighter than from prior polarization-only or polariza-
tion plus CMB lensing measurements. We also found
S8 = 0.850±0.017, consistent with the result from Planck
data and with comparable uncertainty.

We estimated ΛCDM parameters for several other
CMB datasets and checked for consistency between these
estimates. These consistency tests are stringent tests
of the ΛCDM model. All differences investigated were
within expectations given the measurement uncertain-
ties and the ΛCDM model. The comparison between

SPT and Planck provides a particularly interesting test of
the ΛCDM model, because the SPT constraints are more
heavily weighted toward small-scale polarization power,
and especially lensing power, than is the case for Planck.
We estimated ΛCDM parameters from SPT data in

combination with other CMB datasets. When combined
with primary CMB and lensing from Planck and ACT,
we find H0 = 67.33 ± 0.37 km/s/Mpc, a 6.2σ tension
with the distance ladder [74], and S8 = 0.8380± 0.0084,
in 3.3σ tension with S8 from the 3 x 2pt analysis of KiDs-
1000 [84] and also from the 3 x 2pt analysis of DES-Y3
[85].
Motivated by the work of Amon & Efstathiou [37] and

Preston et al. [86] regarding the S8 tension, we investi-
gated the sensitivity of our lensing measurement to non-
linear corrections. By introducing the ACMB

mod parameter
that scales the amplitude of non-linear corrections to the
CMB lensing spectrum, we found ACMB

mod =1.60± 0.39.
This is the first > 3σ “detection” of the non-linear cor-
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rection for CMB lensing, and is ∼ 2σ higher than the
value needed for resolving the S8 tension between galaxy
lensing and CMB measurements. Our data clearly do
not favor any suppression of the non-linear contribution,
though the uncertainties are still large. A suppressed S8

could arise at lower redshifts and from slightly smaller
scales than the ones we are probing.

The CMB lensing potential is also sensitive to the
neutrino mass sum, Σmν . We investigated constraints
on Σmν with the SPT lensing spectrum. In the
ΛCDM+Σmν model, we find Σmν < 0.20 eV (95%C.L.)
from the joint fit to Planck, ACT, and SPT data.
Adding BAO data, the constraint is further tightened
to Σmν < 0.075 eV (95%C.L.), placing pressure on the
inverted hierarchy minimal mass sum of 0.098 eV.

With the addition of BAO data to the CMB datasets,
the strongest challenge to the standard model we see
in our results comes from an investigation of lensing
power amplitudes. We introduced A2pt to scale the
ΛCDM model CMB lensing spectrum used to calculate
lensed model TT/TE/EE spectra and Arecon to scale
that same ΛCDM model CMB lensing spectrum, but for
comparison to the reconstructed CMB lensing spectrum
instead. With both of these parameters free, the ΛCDM
point in the Arecon, A2pt plane is outside the 95% confi-
dence region for a variety of dataset combinations. Af-
ter marginalization over A2pt, Planck lensing, ACT DR6
lensing, and SPT lensing all favor Arecon> 1 at ∼ 2σ.

We also set Arecon =A2pt and called the single tem-
plate parameter Alens. We investigated the posterior
distribution of Alens for a variety of datasets. For our
most comprehensive combination of datasets we find
Alens =1.085± 0.032 and a 2.7σ exclusion of Alens< 1.
Following Craig et al. [36] and Green & Meyers [89], we
found a similar constraint on their neutrino-mass-like L-
dependent lensing template parameter, Σm̃ν . For the
same dataset we found a 2.7σ exclusion of Σm̃ν < 0.058
eV. We also saw that these constraints are weakened by
dropping DESI BAO, or by switching from Planck PR3
T&E data to Planck PR4 T&E data. Doing both we find
Alens =1.059± 0.029.

We also discussed the cosmological inference with SPT
CMB lensing potential bandpowers and the unlensed EE
bandpowers on other one- and two-parameter extensions
of the ΛCDM model. These model extensions include
varying the amount of spatial curvature, the dark energy
equation of state and its evolution, the density of light
relics, and the primordial fraction of baryonic mass in
helium. The constraints on the extended parameters are
summarized in Tab. V. Combining the SPT results with
Planck, ACT, and BAO, we saw no significant preference
for any of these extensions.

Although the 2019-2020 SPT-3G CMB polarization
data analyzed here primarily constrain H0 and S8, SPT-
3G constraints on other ΛCDM parameters and exten-
sions will be improved significantly in the near future.
The addition of temperature information to both the
power spectrum and lensing analyses will significantly

improve the constraints on the inferred cosmological pa-
rameters, in particular the effective number of neutrino
species, Σmν , and curvature [3]. With polarized beam
uncertainties identified as an important contribution to
our systematic error budget, we have planned additional
deep observations of polarized point sources to better
map out the polarized beam response and reduce this
source of uncertainty in future analyses. The 1500 deg2

field has since been observed for three more seasons. The
noise level of the full 2019-2023 1500 deg2 data is ex-
pected to be 1.7 times lower than the 2019-20 obser-
vations, and the figure of merit for ΛCDM parameters
is expected to be 2 times better [3]. The addition of
∼ 8500 deg2 more sky mapped with SPT-3G by the end
of 2024 will strengthen constraints even further, eventu-
ally surpassing those from Planck [3]. The analysis of
these data, particularly the ultra-deep 1500 deg2 data,
will benefit even more from optimal analyses such as
the MUSE method demonstrated here. This work has
demonstrated the strength of joint Bayesian CMB lensing
potential bandpower reconstruction and unlensed CMB
EE bandpower estimation, in particular its ability to
propagate systematic uncertainties, and paves the way
for future analyses of SPT-3G observations and similarly
deep datasets in the future.
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Appendix A: Modeling details

In this appendix, we give full details about our simulation and posterior models, proceeding in the order in which
each piece is used to generate a simulation. In cases where the posterior model is different from the simulation model,
each is described individually.

1. Lensed CMB

Simulation model In the simulation model, the lensed CMB is computed on the curved sky. Spherical harmonic
coefficients for the unlensed CMB and for the lensing potential are sampled from a normal distribution with variance
given by the appropriate Cℓ values. We use the Ducc library to perform an inverse spherical harmonic transform of
the coefficients to obtain simulated HEALpix Nside =2048 maps. The lensing operation is computed with Lenspyx
[105], taking as input the unlensed CMB maps, f , and the gravitational lensing potential maps, ϕ. The lensed map

http://doi.org/10.1093/mnras/stac2744
http://doi.org/10.1051/0004-6361/202348015
http://doi.org/10.1051/0004-6361/202348015
http://doi.org/10.1103/PhysRevD.103.063518
http://doi.org/10.1103/PhysRevD.103.063518
https://arxiv.org/abs/2406.10202
http://doi.org/10.1088/1475-7516/2021/03/027
http://doi.org/10.1088/1475-7516/2021/04/073
http://doi.org/10.1088/1475-7516/2020/08/012
http://doi.org/10.1088/1475-7516/2020/08/012
http://doi.org/10.1088/1475-7516/2020/12/015
http://doi.org/10.1088/1475-7516/2020/12/015
http://doi.org/10.1103/PhysRevD.69.083002
http://doi.org/10.1088/1475-7516/2016/01/007
http://doi.org/10.1103/PhysRevLett.115.091301
http://doi.org/10.1103/PhysRevLett.115.091301
http://doi.org/10.1103/PhysRevD.107.023517
http://doi.org/10.1103/PhysRevD.107.023517
https://arxiv.org/abs/2409.02295
http://doi.org/10.1103/PhysRevD.87.083008
http://doi.org/10.1051/0004-6361/202346717
http://doi.org/10.1103/PhysRevD.100.023509
http://doi.org/10.1103/PhysRevD.100.023509
http://doi.org/10.1103/PhysRevD.67.043004
http://doi.org/10.1103/PhysRevD.67.043004
http://doi.org/10.3847/1538-4357/aa9ff4
http://doi.org/10.3847/1538-4357/aa9ff4
http://doi.org/10.1051/0004-6361/201936386
http://doi.org/10.1051/0004-6361/201936386
http://doi.org/10.1103/PhysRevD.104.022003
http://doi.org/10.1093/mnras/stac064


33

is then projected to the Lambert projection using Non-Uniform FFTs (NFFTs), as described in the next section.
For the MUSE covariance calculation, we also require the Jacobian of the lensed map with respect to bandpower

parameters. Since here we use external libraries for SHTs and curved-sky lensing, we must define the Jacobians
for these operations for the autodifferentiation (AD) system. The Jacobian of a spherical harmonic transformation

(SHT), f =Ya and the Jacobian with respect to f of the lensing operation, f̃ =L(ϕ)f , are trivially just Y and L
themselves since they are linear operators. The Jacobian of lensing with respect to ϕ is derived from

f(x+∇(ϕ+ ϵ)) = f(x+∇ϕ) +∇f(x+∇ϕ) · ∇ϵ+O(ϵ2), (A1)

where x is a pixel location and ϵ is a small perturbation to the lensing potential. The second term demonstrates
that the Jacobian is the operator ∇f(x +∇ϕ) · ∇, and involves the spatial gradient of a lensed map, which itself is
computed with Lenspyx. With these AD rules implemented, our curved-sky lensing model is fully compatible with
the MUSE covariance calculation.

Posterior model In the posterior model, we assume the flat-sky approximation, so simulated maps are generated
from white-noise maps FFT-convolved with appropriate kernels. We implement lensing with LenseFlow [106], which
is GPU-compatible and automatically differentiable up to second-order as needed by the MUSE covariance calculation.

Bandpower parameters Both simulation and posterior models take as input a theory unlensed CMB spectrum and

gravitational lensing potential spectrum. We introduce free parameters which we will infer, AEE
b and Aϕϕb , which

control the amplitude of these spectra relative to a fiducial model within each bin. Our EE bandpowers have linearly
spaced bins with ∆ℓ=50 between 350 and 3500, and our ϕϕ bandpowers have 12 logarithmically spaced bins between
20 and 3000. We take the fiducial model to be the Planck best-fit spectrum, but this introduces no dependence on
Planck, rather is just a choice of definition of the bandpower amplitude parameters. Within a bin, the parameters

scale the theory spectrum uniformly across ℓ’s. One can show that with this choice, our inferred AEE
b and Aϕϕb

parameters correspond to a constraint on an inverse-variance weighted average of the theory spectrum across the bin.
Since this inverse-variance weighting arises only implicitly, we also construct explicit bandpower window functions
(used in parameter estimation) from an interpolation of the diagonal of the MUSE covariance, ΣMUSE, to every ℓ.
The tests on simulations in Sec. IVA2, which demonstrate no bias and correct scatter of cosmological parameters
derived from simulations, provide verification of this procedure.

2. NFFT-based projections

Within our model, we perform interpolation between maps in different projections in four different places: 1) as
mentioned, in the simulation model, the lensed CMB is projected from HEALpix Nside =2048 to a Lambert pixeliza-
tion, 2) in both simulation and posterior models, the transfer function model involves projecting from a Lambert to an
Equirectangular pixelization, applying some weights, then projecting back to Lambert, 3) when computing the trans-
fer function, a set of end-to-end pipeline simulations are compared to a direct projection of the HEALpix Nside =8192
maps which are input to the end-to-end simulations, and 4) to model deflections due to relativistic aberration.

To ensure easy differentiability, GPU compatibility, and the best possible accuracy, we perform these interpolations
using Non-Uniform FFTs (NFFTs). NFFT interpolation implicitly uses information from all pixels to compute the
interpolated value at a given location, as opposed to other typically-used interpolations such as bilinear interpolation,
which uses only the nearest pixel neighbors. It is exact for a band-limited signal (i.e. when there is no power beyond
the Nyquist frequency), and remains very accurate for nearly band-limited signals such as ours, where power beyond
the Nyquist frequency is highly suppressed by the beam.

We use the CPU and GPU compatible NFFT library NFFT.jl [107]. An interpolation is performed by a pair of
forward and adjoint NFFTs, F , with appropriate grid-points, γ, which describe the relative location of the pixel
centers in the map projections being interpolated between,

f1 = F(γ1)F(γ2)
†f2. (A2)

The adjoint of the projection operator, which arises in automatic differentiation, is then simply(
F(γ1)F(γ2)

†)† = F(γ2)F(γ1)
†. (A3)

We verify these projections are accurate enough in Fig. 22. For use cases (1) and (2), in the left panel, we generate a
simulated lensed CMB map in the Lambert pixelization. We then project to equirectangular and back to Lambert, as
well as to HEALpix Nside =2048 and back to Lambert. We then examine the change to the spectrum of the original
map. Fig. 22 demonstrates this change is ≲ 0.3% up to the maximum multipole used in the analysis, ℓ< 3500. For
use case (3), in the right panel, we compare the spectrum of the projected HEALpix Nside =8192 maps to the input
theory spectrum, again finding ≲ 0.5% changes up to the maximum multipole. These differences are well below our
uncertainties; for example typical EE bandpower errors are at the 5 to 10% level.
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FIG. 22. (Left) Change to the EE (solid) and BB (dashed) power spectrum of a lensed CMB simulation when using NFFTs
to project a pair of Q/U maps to Equirectangular or HEALpix Nside = 2048 pixelizations and back. This demonstrates
negligible modeling error in our simulation and posterior models due to these projections. (Right) Comparison of the pseudo-
powerspectra of NFFT Lambert 2.25′ projections of the HEALpix Nside = 8192 maps which are input to mock observation
(labeled “projskies”) vs. the input theory which generated those HEALpix maps. Blue bands represent 1 and 2 σ Monte Carlo
error from the finite number of simulations used to compute the blue curve. This confirms the “projskies” sufficiently recover
the input theory so as not to bias the transfer function calculation, where they are used. For reference, this plot also shows the
expected change to the power spectra if bilinear interpolation was instead used, which shows much worse performance than
NFFT interpolation.

3. Relativistic aberration

Relativistic aberration distorts the CMB maps due to our proper motion relative to the CMB rest frame []. This
is a small but non-negligible effect, which we expect could bias θs by as much as ∼ 0.3σθs if unaccounted for. One
method for modeling aberration it to apply a first-order correction to the power spectrum [],

Cℓ → Cℓ + Cℓ
d logCℓ
d log ℓ

β⟨cosψ⟩, (A4)

where β is our peculiar Lorentz factor and ⟨cosψ⟩ measures the average angle to the direction of proper motion for
pixels in the field. We note that this correction applies to a lensed spectrum, and does not apply to the unlensed
spectra inferred here. In particular, some a priori unknown part of the aberration deflection is interpreted in the
posterior as very long wavelength gravitational lensing deflection, and then is automatically removed when producing
inferences of the unlensed spectrum. Eqn. (A4) is thus an upper bound on the impact aberration might have on our
particular analysis, but it could be much smaller. Without knowing the exact magnitude, we choose to simply include
the aberration effect directly in the map-level model. Since the effect is small, it is sufficient to only include it in the
simulation model to prevent biases.

The deflection angle, ∆ψ, is given by

∆ψ = ψ − cos−1

(
cosψ − β

1− β cosψ

)
(A5)

where ψ is the angle on the sphere to the direction of proper motion. We assume a fixed velocity of β=0.00128 and
a direction of (l, b)= (264◦, 48◦) [1], ignoring next-order effects from uncertainties on these values. The deflection is
performed via NFFTs.

We note that we do not model the CMB dipole also induced by our proper motion, as this is filtered out by
timestream and map-level high-pass filters.

4. Beams

Next, the CMBmaps are convolved with a model for the polarized instrument beams at each frequency, BνP (βn, βνpol).
We assume a rotationally symmetric convolution kernel, performed on the Lambert maps with FFTs in both simulation
and posterior models. The shape of the convolution kernel in real space, B(θ), or in multipole space, Bℓ, is controlled
by free parameters which are marginalized over in the analysis. These parameters include a set of temperature beam
eigenmode amplitudes, βn, and the polarization fraction of the beam sidelobes at each frequency, βνpol. We first
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describe the temperature beams, then how we derive the polarization beams from them. More detail on the beam
determination will be presented in Huang et al., (in prep).

a. Temperature beams

The first step in determining our polarized beams is to determine the temperature beams. At low radii (≲ 2 arcmin),
temperature beams are determined from observations of several bright AGN in our observing field. The AGN, however,
do not have sufficient brightness to fully map out the beam at larger scales (referred to as the beam “sidelobes”),
where instead we use observations of Saturn. In turn, observations of Saturn cannot be used at small scales, since
its intensity saturates detectors and changes the response as compared to typical CMB observations. Therefore, we
stitch the AGN and Saturn maps into a composite beam map, which uses the AGN measurements at low radii, and
Saturn for the sidelobes.

To create the composite map, we must account for several systematic effects. First, Saturn is very slightly extended.
Before stitching, we convolve the AGN maps with a disk of 8.55 arcsec (the average angular diameter of Saturn during
our observations). We later deconvolve the same disk from the final beam. The SPT-3G detectors have a finite
response time, which spreads signals along the scan direction. While the response time is constant, the on-sky scan
speed varies with declination. Therefore, we deconvolve the map-space effect of the time constants from each map
(both for individual AGN and Saturn), and then reconvolve with the mean effect of the time constant over the SPT-3G
winter field footprint. We also attempt to remove background signals (primarily the CMB) from both the Saturn maps
and AGN maps. Since Saturn moves across the sky, we are able to subtract direct observations of the backgrounds
from the Saturn maps. To do this, we mock observe Planck maps for each of our Saturn observations, and subtract
the mock-observed maps from our Saturn maps. For the AGN maps, we are unable to do this. However, we are only
concerned with small scale (≲ 7 arcmin) information in the AGN maps. On these scales, the CMB varies very little,
and can be modeled with only low-order modes. Therefore, we fit a simple background model to each AGN consisting
of a slope in radius and an offset. We fit these parameters (using the Saturn maps as a reference for the beam) at
95 and 150 GHz, since the CMB is expected to be common between bands, and the 220 GHz maps are significantly
noisier (both from instrumental noise, and higher astrophysical backgrounds). We subtract the background model
from all three bands.

Finally, we apply a very basic model of intra-band frequency dependence to the beam. We model the beam at each
band as a Gaussian made of two components, one which is fixed across the band, and one which scales with frequency.
We model the frequency scaling as σ(ν) ∝ 1/ν, which is the expected behavior for a diffraction-limited beam. We
use the same constant of proportionality across all three bands. In order to fit these parameters, we assume that
the 95 GHz beam is diffraction limited (i.e. the frequency independent component is non-existent). We approximate
the “effective beam frequency” for each band using the SPT-3G mean bandpass functions, and the source spectrum.
Then, we fit the three remaining parameters (the constant of proportionality in the frequency dependent portion, and
the two frequency independent portions of the 150 and 220 GHz beams) using observations of the brightest AGN.
This simple model allows us to approximate the change in the beam by calculating the effective beam frequency for
different source spectra, and convolving the beam maps (or multiplying their spectra) with the appropriate Gaussian.
We apply this model to transform the final beam from the mean AGN spectrum to the CMB spectrum, and to
transform the Saturn maps to match the AGN spectrum before stitching.

With the systematic effects accounted for, the stitching process is relatively simple. For each pair of AGN and
Saturn maps, we fit for an amplitude to account for the difference in intensity between the sources. As discussed
above, we cannot use the innermost portion of the Saturn maps. The AGN maps also become noise-dominated at
large distances from the source, so we perform this fit over an annulus with inner radii of (2.25, 1.5, 1.0) arcmin, and
outer radii of (3.5, 3.0, 2.5) arcmin at (95, 150, 220) GHz. Finally, each composite map is constructed by linearly
transitioning from the AGN map to the Saturn map over the same annulus.

We make composite maps from all pairs of AGN and Saturn maps. We also vary several systematic parameters:
the choice of stitching radii, uncertainty in the time constants, the choice of the background fitting region. For each of
these variations, we create the full set of composite maps. Then, we construct cross spectra of composite maps such
that none of the component maps are the same. If we included the same component map more than once, we would
incur a noise bias in the beam. To measure the final beam, we take the mean of these cross spectra, and apply the
two final effects described above (specifically, deconvolving the Saturn disk, and converting from the AGN spectrum
to the CMB spectrum).

The beam uncertainty is measured from the cross spectra. By including both different Saturn and AGN maps, as
well as the systematic variations, we capture both the map noise, systematic uncertainty from our analysis choices, and
systematic differences between the AGN. Using the Monte-Carlo method, this uncertainty is propagated to a covariance
between temperature Bνℓ ’s at each frequency, ν, and multipole, ℓ. Finally, we add one additional uncertainty directly
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FIG. 23. Beams used in this analysis, in real space (top row) and multipole space (bottom row), at each frequency (each
column). Black lines show the temperature beams. Blue and orange lines show our best fits to the main beam, where the
fitting region is denoted by the gray shaded region. We used the physical main beam for our final result, but we also verified that
using the Gaussian main beam leads to no significant shifts in results (see Sect. IVC). Green lines and green bands represent
the posterior mean and 1 σ uncertainty on the polarized beams from the MUSE analysis, which includes marginalization over
βn, βpol, and all other systematics and bandpower parameters.

to the covariance matrix, which accounts for uncertainty in the detector bandpasses and the AGN spectral index.
This covariance is decomposed into eigenmodes, and in the analysis the amplitude of 5 eigenmodes, βn is free to
vary jointly with the bandpower and other systematics parameters. We note that these are eigenmodes of the joint
covariance between frequencies and multipoles, so each βn changes the beam simultaneously at each frequency (in
different ways at each frequency). The total uncertainty in the determination of the temperature beams is 0.2% at
ℓ=3000, and is sub-dominant to the uncertainty on polarized beams which we now describe.

b. Polarization beams

While the temperature beams are mapped out to very high signal-to-noise at angular scales relevant to this analysis
via observations of bright point sources, we lack sufficiently bright polarized sources to similarly map the sidelobe
response of the polarized beams. Prior to unblinding, we had assumed the polarized and temperature beams were
identical at the scales used in the analysis. However, the temperature beam has significant diffuse sidelobes due to
diffraction and scattering that may not be fully polarized. To account for this, we devised a model of the beams which
allows the polarization of the beam sidelobes to vary. This model assumes the beams are made up of a fully polarized
main central beam, and a diffuse beam sidelobe which may be partially unpolarized.

We consider four components in the model for the main beam 1) Gaussian illumination pattern of the primary by
the detector lenslets, 2) truncation of that illumination pattern by the Lyot stop, 3) averaging the frequency dependent
beam over the detector bandpass weighted by a CMB spectrum, and finally 4) Gaussian broadening of the diffracted
beam due to a frequency independent geometric aberration.

We model the electric field illumination pattern on the primary mirror as a truncated Gaussian:

V (r, ν) = exp

{(
−r2

2
(
σ0

ν0
ν

)2
)}

Π(R) (A6)

where σ0 is the width of the Gaussian beam from the lenslets at some arbitrary fiducial frequency ν0, and Π(R) is a
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disk of radius R:

Π(R) =

{
1 r ≤ R

0 r > R
(A7)

For SPT-3G, R ≈ 3.75 m. The illumination on the sky can then be computed from the Fraunhofer diffraction equation,

U(ρ, z, ν) = 2π

∫ ∞

0

V (r, ν)J0

(
2πrρ

c/νz

)
rdr (A8)

U(θ, ν) = 2π

∫ ∞

0

V (r, ν)J0

(
2πrθ

c/ν

)
rdr (A9)

where z is the distance to the image plane, ρ is the distance from the origin on the image plane, and J0 is the zero-th
order Bessel function. In the second line, we have taken the small angle approximation ρ/z = θ to put this in terms
of angle on the sky. The beam on the sky is the intensity which is the square of the electric field pattern,

B(θ, ν)ideal = U(θ, ν)2 (A10)

The beam for our wide frequency bands is then integrated over the bandpass and source spectrum. We integrate
over the beam intensity, since the electric field phases will decohere at any significant frequency separation. Adjacent
frequencies where phase coherence matters have very nearly the same illumination pattern, because both the spectra
of our sources and bandpasses vary slowly. Thus we have,

B(θ)ideal =

∫
bandpass

I(ν)t(ν)B(θ, ν)dν∫
bandpass

I(ν)t(ν)dν
, (A11)

where t(ν) is the bandpass function, and I(ν) = dB
dT |T=TCMB

is the observed spectrum.
Finally, we need to account for the effect of geometric aberrations. This is simply a matter of convolving B(θ)ideal

with a Gaussian, a representation of geometric aberrations, so the final beam is,

B(θ) = B(θ)ideal ⊗ exp

{(
− θ2

2σ2
geom

)}
(A12)

In principle, we expect σgeom to be the same for all three bands.
This model for the main beam has five free parameters, σ0, σgeom, and an overall amplitude at each frequency, Aν ,

and predicts the main beam simultaneously in each of our bands. We fit this model to the observed temperature
beams as determined in the previous section, limiting to an inner radius of θ < 0.75 arcmin where we observe a good
fit, suggesting the main beam dominates and the fit is not biased by the presence of temperature beam sidelobes. For
this fit, we construct a χ2 of the form

∑
ν

∫
dθ (Bνmodel(θ,A, σ0, σgeom)−Bνobserved(θ))

2 which ignores uncertainties in
the temperature beams, since we expect the systematic uncertainty from our choice of physical model to dominate to
the total uncertainties in fit.

With this fiducial main beam determined, we denote the difference between this and the temperature beam as the
sidelobes, and model the polarized beams as the sum of the fixed main beam and the sidelobes, the latter scaled by
some unknown scale-independent polarization fractions, βνpol. That is, the polarized beams used in our analysis are,

BνP (βn, βνpol) = Bνmain + βνpol (BνT (βn)− Bνmain) (A13)

where the temperature beam at each frequency is

BνT (βn) = Bν0 + β1Bν1 + β2Bν2 + ..., (A14)

where B0 is the best-fit beam and Bn is the n-th eigenmode of the beam covariance. The βn is the amplitude of the
n-th eigenmode, which is the free parameter. The Bn is normalized such that βi has a unit normal prior.

5. Absolute calibration

In the analysis, we apply calibration factors, Aν,ical, to each frequency map, ν, and subfield, i, independently. We

assume a Gaussian prior on the A150,i
cal based on calibrating our maps to Planck, and leave uniform priors for A95,i

cal

and A220,i
cal . App. B describes our choice of prior for the 150 GHz calibration.
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FIG. 24. Left panel: The filtering applied in the scan direction as part of the transfer function model. This function is fit
on simulations at the spline interpolation points denoted with markers. Note the non-linear y-axis scaling. Right two panels:
Comparison of the EE and BB power spectra of an end-to-end pipeline simulation of the CMB as compared to the model
transfer function applied to the same input sky which generated the simulation. Across the multipole range used for the
analysis, the model is accurate to ≲0.2% in EE and ≲2% in BB, both less than 10% of our uncertainties (denoted as gray
bands).

6. Global polarization angle

To model a systematic error on the global polarization angle calibration, we rotate the global polarization angle of
the entire field by an angle, ψνpol, at each frequency, ν. The rotation is given by,

R(ψ)
(
Q
U

)
=

(
cos(2ψ) − sin(2ψ)
sin(2ψ) cos(2ψ)

)(
Q
U

)
. (A15)

7. Transfer function

The transfer function accounts for the filtering of the timestreams during mapmaking described in Sec. II. In our
transfer function model TF, we must approximate the impact of this filtering directly to a Lambert-projected map,
since our model is not at the level of timestreams. The non-trivial procedure of sequentially deprojecting templates
while masking point sources still corresponds to a linear operator, but not one which is diagonal in any easily accessible
basis.

Our model begins by first reprojecting the map to an Equirectangular projection using NFFTs, such that individual
scans are straight lines in the horizontal direction. We then create a single map-level deprojection template by
multiplying the point source mask assumed in mapmaking and applying a 1D filtering in the horizontal direction
using FFTs where the 1D filter is a free function which we will fit for using simulations. This template is subtracted
from the entire map (including the masked regions), before projecting back to Lambert. The operation can be
represented as:

TF = P−1 · [1− (1− TF(ℓx)) ·Mptsrc] · P (A16)

where P is the NFFT projection from Lambert to Equirectangular, Mptsrc is the point source mask and TF(ℓx) is the
fitted FFT kernel in the horizontal direction.

To fit for the appropriate function, TF(ℓx), we compare 1) mock observations of the signal, m, which simulate the
entire timestream filtering and mapmaking process, and 2) direct projections of the simulated signal maps which were
fed into the mock observations, p. The relation between these maps are

m = PWF2.25′ · TF · PWF2
8192 · p. (A17)

The factor of the HEALpix Nside = 8192 pixel window function is due to the interpolation of p onto mock timestreams
during the simulation process, and does not arise in the real data. The factor of Lambert 2.25′ pixel window function,
PWF2.25′ arises from the binning of these timestreams into 2.25′ resolution maps. We then minimize the function
∥mtrue −mmodel∥2 by fitting TF(ℓx) at a set of spline points. We find that a single pair of m and p simulations is
sufficient to obtain a stable estimate, and have verified the result changes negligibly between a few different simulations.

The left panel of Fig. 24 shows the fitted TF(ℓx). As expected, it is roughly zero until around ℓx=300, then
transitions to unity at higher multipoles. We choose to allow some small negative values as it gives a better overall
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fit with no other observed impact. The right two panels of the figure then show the comparison of EE and BB
spectra of the mock observations with those computed by applying the best-fit model transfer function to p. Across
the multipole range used for the analysis, the model is accurate to ≲0.2% in EE and ≲2% in BB, both less than 10%
of our uncertainties (which are denoted as gray bands).

8. Temperature-to-polarization leakage

T-to-P leakage can be caused by a variety of sources. Gain mismatch between detector pairs leaks a scaled copy
of the temperature map into polarization (“monopole” leakage), whereas differential detector pointing and beam
ellipticity introduce copies of the first and second derivatives of the temperature map [“dipole” and “quadrupole”
leakage; 108, 109]. We find no evidence of dipole or quadrupole leakage in the SPT-3G data (Figure 8), so we only
correct for monopole leakage.

In the MUSE simulation and posterior model, we construct the T-to-P leakage as tνQ = (T ν , 0) and tνU = (0, T ν),
where T ν is the temperature map at frequency ν. The temperature maps are made following the same map-making
procedure in Sect. II. The amplitudes of the T-to-P templates, ϵνQ and ϵνU, are free parameters. Note that we used
independent leakage parameters per frequency per subfield to be consistent with the choice of calibration parameters.

9. Masking

We apply a pixel mask (Mpix) in the model, which includes a border mask and a point source mask. The border
mask is set by zeroing out the areas with weights less than 30% of the median, padding the border of the mask with
zero within the radius of 120 arcmin and apodizing with a cosine apodization function of 60 arcmin radius. The point
source mask contains emissive sources with brightness greater than 50 mJy and clusters with signal-to-noise ratio
greater than 15 at 150GHz.

We also apply a trough mask (Mtrough) to exclude specific modes from analysis. As discussed in Sect. A 7, the pixel
mask aliases the power to higher ℓx modes in Equirectangular projection due to the TOD filtering, and smears out the
power when the maps are projected to Lambert. Therefore, we cut out the modes with ℓx < 400 in Equirectangular
projection to avoid this aliasing power. We also masked out the region that has been contaminated in the observation
by a narrow-band signal around 1.1Hz.

The mid-pass filter in the Fourier space (Mfourier) constrains the modes used in the analysis. We include modes
between 350 ≤ ℓ ≤ 4000.
The total mask used in the analysis is M = Mfourier ·Mtrough ·Mpix, that is, Mpix is applied first. The mask is also

applied to the real data map before passed down into the analysis.

10. Monte-carlo correction

With the aforementioned modeling ingredients specified, we can compare the pseudo power spectrum of the signal
part of dν between simulation-model simulations, as in Eqn. (15), and mock observations. We find a remaining 0.3%
discrepancy at ℓ ≲ 1250 in the EE spectrum between mock observations and MUSE simulations. We believe this is
due to residual transfer function modeling errors. Before unblinding, we implement this as an empirical multiplicative
Monte Carlo (MC) correction to the AEE

b parameters, with a shape fit from these simulations. We note that this
correction is small relative to our uncertainties and corresponds to a 0.01 σ shift in H0 or a 0.07σ shift in Ωbh

2.

11. Noise modeling

Simulation model In the simulation model, we use sign-flip noise realizations generated empirically from the real
data. This guarantees the noise in the simulation model has the same statistical properties at the true data noise,
up to the small correlation between sign-flip realizations, which is not large enough to appreciably impact our final
results.

Posterior model In the posterior model, we must be able to compute the posterior probability function, thus must
explicitly specify a random distribution for the noise. We chose a Gaussian model with a covariance derived from the
sign-flip noise realizations themselves. We model the noise as diagonal in Fourier space with isotropic noise spectra,

Nℓ = A(ℓ/3000)α, (A18)
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where A and α are parameters to fit to 20 sign-flip noise realizations across the region 500 ≤ ℓ ≤ 3000, separately
at each frequency. We find this gives an acceptable fit, and note that any deviations of this model from true noise
distribution will only lead to slight loss of optimality, not any bias.

Appendix B: Calibration priors and alternative systematics estimates

Here, we describe the priors on A150,i
cal which enter the MUSE analysis, and the alternative estimates of A95,i

cal , A
220,i
cal ,

ϵQ, ϵU, and ψpol which are compared against the MUSE results.
In practice, calibrating to Planck is performed as two steps. First, we determine a calibration factor for temperature

maps in each subfield, T ical. Then, we determine a correction on top of this for polarization maps, Pcal, which is assumed
the same across all subfields. By our convention, these factors multiply the SPT data, rather than multiplying the
theory model like the MUSE definition of Aν,ical. The relation is thus

A150,i
cal = 1/(T 150,i

cal P 150
cal ), (B1)

The temperature calibration is determined by computing the cross-spectrum of the full-depth 150GHz SPT-3G
data with the full-depth 143GHz Planck map passed through the SPT-3G observing pipeline normalized by the
cross-spectrum of two half-depth SPT-3G maps,

T 150
cal, external =

SPT150
full × Planck143full

SPT150
half1 × SPT150

half2

. (B2)

The uncertainty on Tcal, external is computed from the scatter in the quantity when it is computed with different
subsets of SPT observations entering the SPT maps. After unblinding, we also realized we had neglected to fold in a
0.25% uncertainty on the Planck absolute calibration [110], which leads so insignificant changes, but is fixed in our
final results.

Although not used in MUSE, we also obtain temperature calibrations of 95 and 220GHz SPT-3G maps by cross-
correlating against the 150GHz map (this yields tighter constraints than calibrating these against Planck). The
calibrations are

T 95
cal, internal =

SPT150
half1 × SPT150

half2

SPT95
half1 × SPT150

half2

T 150
cal, external,

T 220
cal, internal =

SPT150
half1 × SPT150

half2

SPT220
half1 × SPT150

half2

T 150
cal, external. (B3)

We recalibrate the Q and U maps by this factor, then correct them for temperature-to-polarization leakage and
polarization angle calibration as described below. Then, we determine P 150

cal by cross-correlating the SPT 150GHz
polarization maps to Planck 143GHz polarization maps in a manner analogous to the absolute temperature calibration
in Eqn. (B3). The estimated P 150

cal is then corrected by an additional factor of
√
0.966 to match the final recalibration

factor applied to the 143GHz Planck polarization bandpowers [Eqn. 45, 110], and additionally has a 0.5% uncertainty
folded in corresponding to the uncertainty on the Planck polarization calibration. Similarly used only for comparison,
we then determine P 95

cal and P
220
cal by internally cross-correlating the SPT maps.

Next, we describe the alternative estimate of temperature-to-polarization leakage and global polarization angle
correction which is used above in determining the calibration factors and is compared against the MUSE results in
Fig. 7. The main difference from the MUSE estimate is that these are performed at the power spectrum rather than
at the map level, and are done with an iterative procedure which assumes a theory cosmological model rather than
simultaneously and jointly with all systematics and bandpower parameters.

Independent estimates of the monopole leakage coefficients, ϵQ,TT ,ϵQ,TQ,ϵU,TT , are formed by fitting a template to

the CTQℓ and CTUℓ cross-spectra using cross-spectra of the half-depth data maps and cross-spectra from simulations
that have no monopole leakage:

CTQℓ,template = ϵQ,TTCTTℓ,data + ϵQ,TQCTQℓ,sim, (B4)

CTUℓ,template = ϵU,TTCTTℓ,data + ϵU,TUCTUℓ,sim. (B5)

In practice, CTUℓ,sim scatters around null, and therefore ϵU,TU can take arbitrary values. For this reason, the second

term is assumed to be 0 and only fits to ϵQ,TT ,ϵQ,TQ,ϵU,TT are carried out [111].
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The observed (and possibly rotated) Q and U are related to the primordial Q̃ and Ũ by:

(Q+ iU) = (Q̃+ iŨ)ei2ψpol , (B6)

which introduces artificial TB and EB correlations:

CTBℓ = − sin(2ψpol)C̃ℓ
TE

(B7)

CEBℓ =
1

2
sin (4ψpol)(C̃ℓ

BB − C̃ℓ
EE

), (B8)

where ψpol is an rotation angle between 0 and 2π.
A joint fit to the T-to-P and polarization rotation parameters is performed by generating 100 (ϵQ,TT , ϵQ,TQ,

ϵU,TT , ψpol) Latin hypercube training points, which are applied to the data maps (first T-to-P deprojection, then
polarization rotation), before computing the resulting TB and EB data spectra. An emulator is then trained using

the CosmoPower [112] package, which allows us to predict CTQℓ,template, C
TU
ℓ,template, C

TB
ℓ , and CEBℓ at arbitrary points

in the full parameter space. An MCMC chain is then run to find the best-fit parameters that produces CTQℓ and CTUℓ
spectra that match with data as well as ψpol that results in the CTEℓ and CEBℓ that is consistent with null.

Appendix C: Covariance shrinkage

We develop and use a new procedure to reduce Monte Carlo error in the MUSE covariance. As a reminder, the
covariance is given by

Σ = H−1J
(
H−1

)†
= H−1⟨s s†⟩

(
H−1

)†
, (C1)

where s ≡ sMAP−⟨sMAP⟩ [see also Eqns. (7-9)]. The H matrix originates from second order derivatives of the posterior
function and hence contains very little MC error. The J matrix, however, is a pure covariance of some finite set of
samples of s and can contain significant MC error.
Under a singular value decomposition of H = USV †, the covariance, Σ, can be rewritten as,

V S−1U†〈s s†⟩US−1V † = V S−1/2
〈
(S−1/2U†s) (s†US−1/2)

〉
S−1/2V † (C2)

Note that in the case of a Gaussian latent space, H = J , hence the quantity in angle brackets in Eqn. (C2) is the
identity matrix. Even for the non-Gaussian latent space of the lensing problem, we have verified on simplified cases
with thousands of samples of s, and for our exact problem with hundreds of samples, that this matrix remains
extremely close to diagonal. This motivates a method of reducing MC error by applying a shrinkage estimator to
compute the covariance in angle brackets in Eqn. (C2). Specifically, we shrink towards a diagonal target covariance
with arbitrary diagonal entries. We find that this drastically reduces MC error of the covariance, and importantly,
of its inverse, which is much more prone to MC error. Note that naively applying a diagonal shrinkage estimator
to J = ⟨s s†⟩ directly would not work, since nothing guarantees the J matrix is close to diagonal nor would there be
any a priori known shrinkage target. Instead, we are essentially applying the shrinkage estimator to a preconditioned
version of J , where the preconditioning is based on H, which itself contains almost no MC error and provides excellent
preconditioning.


