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Neutrino-nucleus cross section measurements are needed to improve interaction modeling to meet
the precision needs of neutrino experiments in efforts to measure oscillation parameters and search for
physics beyond the Standard Model. We review the difficulties associated with modeling neutrino-
nucleus interactions that lead to a dependence on event generators in oscillation analyses and cross
section measurements alike. We then describe data-driven model validation techniques intended
to address this model dependence. The method relies on utilizing various goodness-of-fit tests and
the correlations between different observables and channels to probe the model for defects in the
phase space relevant for the desired analysis. These techniques shed light on relevant mis-modeling,
allowing it to be detected before it begins to bias the cross section results. We compare more
commonly used model validation methods which directly validate the model against alternative
ones to these data-driven techniques and show their efficacy with fake data studies. These studies
demonstrate that employing data-driven model validation in cross section measurements represents a
reliable strategy to produce robust results that will stimulate the desired improvements to interaction
modeling.

I. INTRODUCTION

The desire to measure neutrino-nucleus cross sections
is motivated by the needs of modern neutrino exper-
iments. Moving forward, precision measurements of
muon-to-electron neutrino oscillations [1–4] will enable
the characterization of charge-parity violation in the neu-
trino sector [5], the determination of the neutrino mass
ordering [6], and searches for physics beyond the Stan-
dard Model. These oscillations are studied through mea-
surements of neutrino-nucleus interactions, which repre-
sent the nucleus’s response to a neutrino probe [7]. In
order to interpret these measurements properly and to
disentangle any new physics from background Standard
Model processes [3, 4], this data must be accompanied
by precise modeling of neutrino-nucleus scattering in the
∼GeV energy region [8] benchmarked with rigorous cross
section measurements.

Neutrino-nucleus interactions present a challenging
theoretical problem. They involve both the electroweak
force and the strong force, which is non-perturbative
in the relevant energy regime [9], all within the com-
plex multi-body environment of the nucleus. This re-
sults in an incomplete theoretical description of neutrino-
nucleus interactions in the ∼GeV regime. However,
these challenges do not necessarily prevent the success of
accelerator-based neutrino oscillation experiments [1, 2].
As long as the nucleus’s response to the neutrino probe
can be described with sufficient detail, the desired pre-
cision can still be achieved in oscillation measurements.

∗ microboone info@fnal.gov

For this purpose, experiments utilize event generators,
which simulate neutrino interactions through a collec-
tion of effective models constructed to explain different
modes of neutrino-nucleon interactions [8] and are used
to estimate event selection efficiencies and detector re-
sponses. In this light, neutrino-nucleus interaction cross
section measurements are calibration points which help
ensure that simulations provide a robust description of
nature.

However, this naturally raises the question of model
dependence in cross section measurements, which like-
wise utilize event generators to correct for backgrounds,
efficiencies, finite resolution, and biases in the reconstruc-
tion of kinematic quantities. The process of “extracting”
or “unfolding” the cross section, which constitutes map-
ping the reconstructed distributions onto physics quan-
tities, assumes that the model captures the true value of
these corrections within its uncertainties. Though this is
required in order to obtain a robust result, the validity
of this assumption is not known a priori, and must be
verified in any cross section measurement.

To address this issue of model dependence, we propose
utilizing a data-driven model validation procedure to test
whether the model, together with its uncertainties, can
describe the data in a self-consistent manner. The valida-
tion is based upon constructing a variety of data-driven
tests in order to identify mis-modeling relevant to the de-
sired cross section measurement. When the model passes
validation, it suggests that the data is a suitable realiza-
tion of the range of possibilities afforded by the model’s
uncertainties. We demonstrate that, in general, when
this condition is met, any bias introduced in the cross
section extraction will be within the quoted uncertain-
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ties of the measurement, thereby building confidence in
a robust result. The MicroBooNE experiment has pre-
viously used these data-driven techniques in a variety of
analyses [10–13]. These results include measurements of
visible kinematic variables, such as the energy and angle
of the outgoing muon in a charged current muon neutrino
(νµCC) interaction, as well as measurements of derived
quantities, such as the cross section as a function of the
incoming neutrino energy or the energy transferred to
the nucleus. We emphasize that these techniques can be
employed equally to extract neutrino energy dependent
cross sections and to extract cross sections as a function
of visible variables.

This paper is organized as follows. In Sec. II, we mo-
tivate why model validation is critical in all cross section
measurements and explore where model dependence may
arise. In Sec. III, we describe various techniques which
may be used to detect relevant mis-modeling and gen-
eral considerations for designing a sufficiently sensitive
model validation procedure. In Sec. IV, we compare the
usage of the fake data sets in two cases: one in evalu-
ating the model uncertainties and the other one on the
model validation procedure. We then present fake data
studies (FDSs) as described in the latter case to demon-
strate the efficacy of the data-driven model validation
procedure. These points are then summarised in Sec. V.

II. IMPORTANCE OF MODEL VALIDATION

A. A Priori Information About Event Generators

The complex nature of neutrino-nucleus scattering in
the ∼GeV energy regime necessitates the use of effective
models to describe these interactions. Event generators
are formed from a collection of these effective models and
are used by neutrino experiments to simulate neutrino in-
teractions and interpret experimental data. A variety of
generator codes exist, including GENIE [14], NEUT [15],
NuWro [16] and GiBUU [17]. Though these generators are
built upon similar underlying theory and may even em-
ploy some of the same models, the details of the imple-
mentation and choice of model parameters can have a
large impact on the generator’s prediction and its ability
to describe data. Despite their crucial role, each effective
model generally suffers from not being able to describe
the corresponding interaction modes across the complete
phase space [11]. This poses issues for experiments be-
cause event generators are often required to be capable of
describing the complete contents of the final state and to
provide coverage over the entirety of the available phase
space, but usually require substantial interaction uncer-
tainties to do so.

This motivates the need for data-driven inputs to in-
form the allowed parameters for these models and reduce
their uncertainties. Experiments often supplement gen-
erators with tailored “tunes” to better represent their
data [18–20]. The success of this strategy in fulfill-

ing the requirement of generating complete final-state
particle kinematics in neutrino-nucleus interactions has
been demonstrated with the consistent |∆m2

atm| values
extracted from the accelerator neutrino oscillation ex-
periments [1, 2] and reactor antineutrino oscillation ex-
periments [21, 22], in which the inverse β decay process
allows for a simpler and more precise reconstruction of
neutrino energy. Nevertheless, because of their hybrid
nature, event generators tend to better describe inclusive
processes or phase spaces where sufficient data were ac-
cumulated. For other exclusive processes, which require
a more detailed description of the hadronic final states,
event generators are more likely to fall short.

This places experiments in the following situation. On
one hand, it is unlikely the parameters available in cur-
rent event generators are sufficient in describing interac-
tion modes in the complete phase space. On the other
hand, the conservative uncertainties assigned on these
parameters partially mitigate this shortcoming but often
lead to large systematic uncertainties. As such, cross sec-
tion measurements that treat the reliance on event gen-
erator with care remain essential in stimulating improve-
ments to simulation that will enable the desired level of
precision in current and future neutrino experiments.

B. Sources of Model Dependence

Extracting cross section measurements from experi-
mental data constitutes mapping reconstructed distri-
butions to truth counterparts that can be more readily
compared to external predictions. In this process, an
overall model, generally consisting of flux, detector, and
interaction models, is required to estimate the mapping
from reconstructed quantities to true quantities. This
leaves such measurements susceptible to model depen-
dence, hence the need for model validation.

To see more explicitly how such a dependence arises,
consider the general equation describing the process of
extracting a flux-averaged differential cross section, dσ

dx ,
as a function of a given truth variable x from a measured
distribution na = da − ba, where, for the ath bin, da
is the number of selected events, ba is the background
prediction, and na is the estimated number of selected
signal events. In generic terms, this equation takes the
form (

dσ

dx

)
β

=
ΣaUβa (da − ba)

Φ · T · εβ · (∆x)β
, (1)

where Uβa is the smearing matrix describing the pre-
dicted probability that an event in reconstructed bin a
belongs to truth bin β, εβ is the estimated selection ef-
ficiency for signal events in truth bin β, (∆x)β are the
widths of the truth bins, and T is the number of target
nuclei. The total integrated flux prediction Φ is the inte-
gral of the predicted neutrino flux ϕ(Eν) over the entire
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neutrino energy spectrum

Φ =

∫
ϕ(Eν) dEν . (2)

In the case of extracting the cross section as a function of
the neutrino energy, σ(Eν), the integrated flux prediction
acquires a dependence on the truth bin, Φβ , to account
for the fact that any truth bin only corresponds to a
specific subset of the neutrino flux spectrum.

From Eq. 1, it is clear that cross section extraction de-
pends on a model prediction for the neutrino flux, the
rate of background events, the selection efficiency, and
detector effects that result in the imperfect reconstruc-
tion of kinematic quantities accounted for in the smearing
matrix. This dependence on the overall model means
that mis-modeling in the phase space relevant to the
cross section extraction can introduce bias into the mea-
surement. For measurements that must contend with
low efficiencies, purities, or substantial detector effects,
this phase space may extend beyond the measured one
into background channels, where mismodeling could lead
to an incorrect background correction, or into channels
and observables adjacent to the measurement where mis-
modeling could suggest an incorrect efficiency estimation.
The fundamental challenge here is that one does not
know if the model used in the extraction can describe
nature. Moreover, when the overall model is unable to
describe nature, it is usually unclear if the discrepancy
is due to detector, cross section, or flux effects and may
even be due to a combination of a variety of sources of
mis-modeling. In these cases, there may be a need for ad-
ditional uncertainties beyond those inside the model, and
therefore a form of model validation is required to verify
that the existing uncertainties provide sufficient coverage
of the data.

Model validation is especially important to any analy-
sis that extracts cross sections as a function of the neu-
trino energy or energy transferred to the nucleus. These
quantities are not directly observable and must be esti-
mated from the measurement of the visible leptonic and
hadronic energy. The way the unfolding maps from the
reconstructed hadronic energy to the true energy trans-
fer depends on the overall model, particularly the cross
section model, to correct for the missing hadronic en-
ergy going to particles that cannot be reconstructed by
the detector. Care must be taken to avoid introducing
model dependence that biases these measurements be-
yond stated uncertainties, and a rigorous examination of
the model is essential.

Visible kinematic variables do not entirely avoid model
dependence either. Whenever a measurement relies upon
mapping from reconstructed quantities to true quantities
this mapping must be estimated through a model, moti-
vating the need for model validation in these cases. In
particular, the mapping for quantities like the available
energy Eavail [12, 23–26], often defined as the sum of re-
constructable energy deposited by visible particles, serves
as an alternative to the energy transfer but has a strong

dependence on the accurate simulation of particles that
deposit energy in the detector. Since different modeling
and reconstruction failures may be present in different fi-
nal states, the mapping from reconstructed to true Eavail

requires a robust description of the complete contents of
the hadronic final state, thereby making it susceptible to
model dependence.
Similar forms of mis-modeling may impact measure-

ments of visible kinematic variables that depend on the
final state hadronic kinematics. Measurements of differ-
ential cross sections for more exclusive final states are also
susceptible to mis-modeling as they generally impose a
detection threshold based on the reconstruction perfor-
mance of the detector. Because selection efficiencies can
be a complex function of the particle kinematics and con-
tents of the final state, substantially different modeling of
nuclear effects between generators can lead to drastically
different predictions for the number of above threshold
particles [27]. This can have a large impact on the esti-
mated selection efficiencies, background predictions, and
bin migration effects, thereby introducing model depen-
dence into these results.

C. Real versus Nominal Flux

Measurements of differential cross sections inherently
depend on the mapping between neutrino energy and the
visible kinematic variable when unfolding or generating
predictions. Due to the broad energy spectrum of neu-
trino beams, cross section measurements are typically av-
eraged over the integral of the entire flux spectrum, Φ, as
described in Eq. 1. This may reduce the dependence on
this mapping, but does not entirely remove it. For exam-
ple, a 1 GeV neutrino cannot produce a muon with 2 GeV
of kinetic energy. Therefore, despite being averaged over
the entire flux, any given muon energy measurement bin
naturally maps to a sub-range of the neutrino energy
spectrum. This introduces model dependence related to
the neutrino flux prediction.
The extent of this model dependence depends on sub-

tleties in the treatment of the flux and its related un-
certainties. In the literature, this has been described as
whether the measurement is averaged over an assumed
well defined nominal neutrino flux spectrum, or averaged
over the unknown real neutrino flux spectrum impingent
on the detector [28]. When extracting cross sections in
the real flux, unfolding amounts to correcting for detec-
tor effects with a presumed cross section and flux model.
When extracting cross sections in a nominal flux, one cor-
rects for detector effects but then also extrapolates from
the (unknown) real flux to the nominal flux in the un-
folding. This distinction is subtle but leads to important
differences in the treatment of flux uncertainties. These
uncertainties can be quite prominent in the context of
accelerator-based neutrino experiments, which often have
10% or higher uncertainties on their flux predictions.
The distinct advantage of cross section extraction in
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the real neutrino flux spectrum is that it minimizes the
usage of the mapping between neutrino energy and vis-
ible kinematic variables in the extraction of cross sec-
tions. This makes these results less model-dependent.
However, extractions in the real neutrino flux spectrum
do not eliminate the dependence on the mapping from
neutrino flux to observables but, rather, push it down
the line to future analyzers of the data who are required
to supply their own flux model and associated uncertain-
ties when making comparisons. In other words, theorists
must provide their own model of the mapping, which is
usually just the prediction of the nominal flux and its
uncertainties at the measurement location as reported
by the experiment. However, in order to make a robust
comparison between predictions and the data, these flux
uncertainties should include correlations between the as-
sumed neutrino energy spectrum and the extracted cross
section result, which typically already include flux nor-
malization uncertainties. These correlations are gener-
ally not reported by the experimental collaboration and
may lead to incorrect conclusions about how well alter-
native models describe the data [28].

If an analysis extracts cross sections in the nominal
neutrino flux spectrum, model-dependence arises when
the mapping between neutrino energy and the visible
kinematic variable is used to extrapolate from the real
to the nominal neutrino spectrum. In this approach, flux
uncertainties are estimated by varying the assumed real
flux, but not the well-defined nominal flux, when deter-
mining the impact of flux effects. Referring to Eq. 1,
this amounts to keeping Φ constant while re-evaluating
na based on the real flux in each flux systematic uni-
verse. This approach allows the covariance matrix to
include the uncertainties of extrapolating the data from
the unknown real neutrino flux to the nominal flux and
corresponding Φ that the results are averaged over. In
this case, comparisons to external theory or event gen-
erator predictions are straightforward because there is
no need for future analyzers of the data to utilize ad-
ditional flux uncertainties. Flux systematics are entirely
accounted for by the experimentalist when estimating un-
certainties for the cross section extraction. In this case,
data-driven model validation can serve as a mechanism
to quantify the bias introduced in the extrapolation from
real to nominal flux and help avoid under-estimating or
over-estimating flux uncertainties.

To reiterate, the primary difference between measure-
ments in the real and nominal flux is the amount they
depend on the mapping from neutrino energy to visible
kinematics variables and their treatment of flux shape
uncertainties, which are fully included in the covariance
matrix extracted in a nominal flux measurements but not
in a real flux measurement. The challenges of comparing
predictions to measurements made in the real flux are de-
scribed in Ref. [28]. Here, we illustrate those challenges
with a toy example. We consider an ideal νµCC cross
section measurement as a function of the muon energy
with perfect efficiency, no background, and perfect muon

energy reconstruction. In this case, the smearing matrix
Uβa, background ba, and the efficiency εβ disappear from
Eq. 1 leaving just the reconstructed signal event counts
na, which are now exactly equal to the true signal event
counts nβ , the integrated flux prediction Φ, the number
of target nuclei T , and the bin widths (∆Eµ)β :(

dσ

dEµ

)
β

=
nβ

Φ · T · (∆Eµ)β
. (3)

The only uncertainties on the extracted cross section
from this equation are statistical uncertainties on nβ and
an uncertainty on the integrated neutrino flux predic-
tion Φ. For the latter, we use the MicroBooNE νµ flux
with systematic uncertainties taken from Ref. [29]. We
then generate fake data distributions that fluctuate nβ

according to statistical and flux model uncertainties in
the same 11 true muon energy bins used in Ref. [10].
This is performed by sampling the multivariate Gaussian
distribution using a singular value decomposition, as well
as Poisson statistical fluctuations.
In this toy study, we assume the true cross section

is exactly the prediction from GENIE with CCQE and
CC2p2h parameters set according to [18], which will be
referred to as the “MicroBooNE tune”. The real flux
used to produce the observed nβ before additional statis-
tical fluctuations is different in each fake data set. The
flux prediction used in the cross section extraction is kept
constant across all universes and corresponds to the cen-
tral value (CV) MicroBooNE νµ flux prediction. In this
case, besides statistical fluctuations, any deviation in the
results from the MicroBooNE tune CV is due to system-
atic fluctuations in the flux model.
Three different methods are utilized to compare the

real flux-averaged cross section result to prediction; the
“Incorrect method”, the “Flawed method” and the “Cor-
rect method”. The “Incorrect method” includes no ad-
ditional flux uncertainties when comparing the extracted
cross section with the prediction. This method is easy
for analyzers to perform as it only requires them to sup-
ply a CV for the flux. The “Flawed method” includes
flux uncertainties on the prediction, but does not ac-
count for correlations between the extracted cross sec-
tion results and the assumed neutrino energy spectrum.
This is achieved by generating many alternative predic-
tions, each of which uses a unique flux drawn according
to the uncertainties on the flux model, and using them to
build a covariance matrix. The “Flawed method” is more
difficult to perform, since it requires future analyzers of
the data to have access to and utilize a published flux
covariance matrix to derive an uncertainty for their pre-
diction. The “Correct method” is similar to the “Flawed
method” and also takes into account the flux uncertainty
in the generator prediction by building a covariance ma-
trix from predictions obtained with the flux model varied
according to its uncertainties. The difference is that in
the “Correct method” one includes the correlations be-
tween the integrated flux normalization uncertainty in
the extraction and the flux uncertainty in the prediction.
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(a)

(b)

(c)

FIG. 1: Toy study illustrating three methods of compar-
ing a real flux measurement with prediction. The “Incor-
rect method” neglects flux uncertainties on the predic-
tion. The “Flawed method” includes flux uncertainties
on the prediction, but neglects flux correlations between
the prediction and extraction. The “Correct method”
includes flux uncertainties on the prediction and correla-
tions with the extracted result. The distributions of χ2

values obtained for each method is shown in (a) alongside
a binned χ2 distribution. The corresponding distribution
of p-values is shown in (b). The distribution of the differ-
ence between χ2 values and the nominal flux extraction
χ2 obtained for each method is shown in (c).

In Fig. 1, we illustrate the three methods by compar-
ing the extracted real flux-averaged cross sections to a
generator prediction that assumes the CV of the Micro-
BooNE flux model. The associated uncertainties on the
real flux measurement and central value of the extracted
cross section are the same in each method. The differ-
ences arise from the treatment of flux uncertainties for
the prediction. As an additional point of reference, we
verify that the “Correct” method gives identical χ2 val-
ues to those extracted with the nominal flux technique,
within numerical errors. Figure 1(a) shows the distri-
bution of χ2 values obtained when the extracted cross
section from each of 10000 fake data sets is compared
to the MicroBooNE tune prediction, which corresponds
to the truth for these fake data sets. Figure 1(b) shows
the same, but with the χ2 values converted into p-values.
Figure 1(c) expands this comparison further by showing
the difference between χ2 values obtained with the vari-
ous methods instead.

The “Incorrect method”, though easiest to perform,
generates a distribution of χ2 values shifted towards
larger values than expected from a χ2 distribution with
11 degrees of freedom. This arises from the fact that, in
a given fake data set, there may be a sizable difference
between the real flux and the CV flux, which produces
a large χ2 value. The possibility of this difference is not
accounted for due to the fact that flux uncertainties were
neglected on the supplied flux model and thus this mis-
modeling of the flux is wrongly attributed to defects in
the MicroBooNE tune prediction.

For the “Flawed method”, the distribution of χ2 val-
ues is significantly closer to what is expected from a χ2

distribution. However, it is still shifted to smaller val-
ues than the χ2 distribution with 11 degrees of freedom.
This is the result of double counting the flux uncertainty,
which is done on both the extraction and prediction side.

The “Correct method” method generates a distribu-
tion of χ2 values that agrees with a χ2 distribution with
11 degrees of freedom. However, in most current real-
flux-averaged cross section data releases, this method is
impossible for analyzers of the data to perform, since it
requires additional information about how the extracted
cross section is correlated with flux spectrum variations.
This information is rarely provided by experimentalists,
rendering the “Correct method” of comparing cross sec-
tions extracted in the real neutrino flux to external pre-
diction likely impossible.

The deviation between the three methods is further
illistrated in Fig. 1(c), which shows the distribution of
the universe by universe differences between χ2 values
obtained for the measurement reported in the nominal
flux and those obtained for the measurement reported in
the real flux. From this figure, it is apparent that the
“Incorrect Method” consistently produces a larger than
accurate χ2. Though the “Flawed Method” produces a
distribution of χ2 values shifted towards smaller values
than a χ2 distribution with 11 degrees of freedom, it can
still produce a larger χ2 value than obtained for the cross
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section extracted in the nominal flux. Since the nominal
flux method is able to reproduce a χ2 distribution with
11 degrees of freedom, this suggests that the “Flawed
Method” does not strictly underestimate the χ2. The
aforementioned phenomena are also described in [28].
These observations further complicate the use of real flux-
averaged measurements as they prevent one from using
the “Flawed Method” and “Incorrect Method” as lower
and upper bounds on the GoF between data and predic-
tion and necessitates the use of the “Correct Method” for
a rigorous comparison.

As demonstrated by this toy study, the requirements of
reporting and using neutrino flux uncertainties and their
correlations with cross section results make it very diffi-
cult, if not impossible, for theorists to properly compare
their predictions with cross sections extracted using the
real neutrino spectrum. Indeed, this may be related to
some of the issues encountered in recent efforts to tune
event generators to experimental data [18, 30, 31]. Be-
cause of this, we advocate for extracting cross sections
in the nominal neutrino flux spectrum, which allows the
results to be reported in a single well-defined flux. With
this method, all flux uncertainties are included in the co-
variance matrix obtained in the unfolding. However, this
method also introduces additional model dependence on
the experimental side associated with the mapping be-
tween the neutrino energy spectrum and the measured
kinematic variables. We thus advocate for data-driven
model validation when extracting cross sections in any
physics variable at the nominal neutrino flux spectrum to
ensure that the uncertainties associated with extrapolat-
ing from the true to the nominal neutrino flux spectrum
are sufficient.

III. DATA-DRIVEN MODEL VALIDATION

Data calibration and data-driven model validation are
closely related. Instead of using data to replace part
of the model in a calibration procedure, the model val-
idation procedure focuses on testing whether the model
used for the extraction can describe the data in a self-
consistent manner. When the validation indicates that
the data falls within the allowed parameter space of the
model, this builds confidence that the bias introduced in
the cross section extraction will, in general, be within the
quoted uncertainties of the measurement. This is demon-
strated with several case studies in Sec. IV. The data-
driven methods we propose are in contrast with other ap-
proaches to model validation, which usually examine the
variation between multiple different model predictions for
backgrounds, efficiencies, or biases in the reconstruction
of kinematic quantities. This is commonly done through
FDSs used to inform additional uncertainties to be added
to the primary model used for extracting the data cross
sections. Differences between the role of FDSs in model
validation based on comparisons with alternative mod-
els and the data-driven model validation we propose is

discussed in more detail in Sec. IVA.

A. Tools for Model Validation

1. Goodness of Fit Tests

The data-driven model validation procedure is based
on comparing the model prediction to the data with
goodness of fit (GoF) tests that quantify the ability of
the overall model to describe the data. Any GoF tests
performed over a reconstructed space distribution should
be evaluated in such a way that correlations between bins
are accounted for. This can be achieved with a χ2 test
statistic constructed via the covariance matrix formalism
given by

χ2 = (M − P )T · V −1 · (M − P ), (4)

where M is the measurement vector, P is the prediction
vector, and V is the total covariance matrix which in-
cludes the uncertainties on the reconstructed distribution
and bin-to-bin correlations. These χ2 values are inter-
preted by using the number of degrees of freedom, ndf ,
which corresponds to the number of bins, to obtain p-
values.
To obtain sufficient stringency, we require that all tests

which probe the model in the phase space relevant for
the cross section extraction yield a p-value greater than
0.05, which indicates that the model is able to describe
the data at the 2σ significance level. If all tests pass this
level of stringency, then the model is considered to be val-
idated and may be used for the cross section extraction.
In this case, given a set of models that pass validation,
the discrepancy between the results extracted using dif-
ferent models are expected to be smaller than the total
uncertainties.

2. χ2 Decompositions

In an overall GoF test, it is possible that conservative
uncertainties have hidden a significant discrepancy be-
tween data and model in some bins that may bias the
cross section extraction in select regions of phase space.
However, it is challenging to further evaluate the GoF in
select regions of phase space because there are generally
strong bin-to-bin correlations in the reconstructed distri-
butions. To address this, the overall test statistic can
be decomposed by diagonalizing the covariance matrix,
thereby making all bins uncorrelated. In this transformed
basis, the absence of correlations allows for a rigorous
quantification of the GoF between the data and model
prediction within a single bin given the uncertainties of
the diagonalized covariance matrix. This allows one to
test the local GoF of distributions in the decomposed
space.
In particular, the symmetric covariance matrix can be

decomposed into V = Q̃ · Λ · Q̃T where Λ contains the
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eigenvalues of V along its diagonal and Q̃ has the corre-
sponding eigenvectors as its columns. Defining Q = Q̃−1

and ∆ = (M − P ) allows Eq. 4 to be written as

χ2 = (Q ·∆)T · (Q · V ·QT )−1 · (Q ·∆). (5)

By further defining ϵi = ∆′
i/
√
Λii, where ∆

′ = Q ·∆, the
above expression can be written as

χ2 = ∆′T · Λ−1 ·∆′ =
∑
i

ϵ2i . (6)

Because Λ is diagonal, the ϵi are all independent, and the
χ2 is now written in terms of independent components,
also known as the χ2 decomposition format. These ϵi are
normally distributed and may be interpreted as the sig-
nificance of the tension between data and prediction in
the corresponding ith bin of the eigenvalue basis. Com-
pared to the deviations on individual bins in the cor-
related reconstructed space distribution, the deviations
between data and model in ϵi take into account the cor-
relations and can be individually evaluated quantitatively
in a consistent manner.

A local χ2 and corresponding p-value, χ2
local and plocal

respectively, can be computed from any number of large
ϵi which indicate the presence of a local discrepancy with

χ2
local =

r∑
i

ϵ2i , (7)

where r is the number of points summed over and the
number of degrees of freedom in the χ2

local distribution.
When computing local p-values in this way, a large num-
ber of tests can be examined, increasing the odds of ran-
domly producing a larger value. As such, one must cor-
rect for the look-elsewhere effect [32, 33] by converting
the local p-value into a global p-value which describes the
probability of observing such a discrepancy in any combi-
nation of the ϵi. Several previous MicroBooNE analyses,
such as [12], computed plocal from all ϵi above 2σ and
then preformed the plocal to pglobal conversion according
to

pglobal = 1− (1− plocal)
(nr) = 1− (1− plocal)

n!
(n−r)!r! , (8)

where n is the total number of bins and r is the num-
ber of ϵi above the 2σ threshold, which we refer to as
“extreme values”. This accounts for the fact that for n
independent ϵi there are

(
n
r

)
ways to chose r with extreme

values. However, calculating a plocal and converting it in
a pglobal in this manner does not produce an unbiased
estimator, which is an undesirable attribute for a test
statistic. Moreover, with this method, one must choose
their definition of an extreme value and the choice of the
threshold can impact the resulting pglobal. As an exam-
ple, consider a case in which a 2σ threshold is chosen
and a distribution with 10 bins shows one ϵi at 3σ, an-
other at 1.9σ and the rest all less than 1σ. This produces
pglobal = 1− (1− 0.0027)10 = 0.027. However, if this dis-
tribution were to have its second most extreme ϵi at 2σ

instead, this yeilds pglobal = 1 − (1 − 0.0015)45 = 0.065.
This is a undesired result; the worse agreement in the
second most extreme ϵi increases the pglobal rather than
decreasing it. This property arises from the fact that
Eq. 8 assumes that all observations are uncorrelated.
Though each ϵi is uncorrelated, the observation of ϵ1
above threshold is correlated with the observation of both
ϵ1 and ϵj above threshold, thereby violating the assump-
tion behind Eq. 8.

As such, we suggest two alternatives. Rather than ex-
amining all ϵi above an arbitrary threshold, one can in-
stead select only the largest ϵi. In this case r = 1 and
Eq. 8, which is now valid, simplifies to

pglobal = 1− (1− plocal)
n. (9)

If one still wished to examine multiple ϵi in accor-
dance with Eq. 7, they could instead employ a fre-
quentist method. This would entail simulating many
pseudo-experiments with n bins, then, in each pseudo-
experiment, finding the minimum possible local p-value,
pmin
local, out of all combinations of bins. The same quan-

tity would then also be calculated for the observed data
distribution. By computing the fraction of pseudo-
experiments with a pmin

local below the pmin
local of the data,

one obtains a rigorous pglobal for the data distribution.

Both of these alternative methods of calculating a plocal
and converting it in a pglobal produce an unbiased estima-
tor that will not decrease the pglobal if any of the p-values
for individual ϵi increases. They also remove any depen-
dence on an arbitrary threshold. Nevertheless, in most
circumstances, the differences between these three meth-
ods will be small and we choose to utilize Eq. 9 in the
fake data studies presented in Sec. IV.

An example of utilizing the χ2 decomposition is illus-
trated in Fig. 2 on MicroBooNE data. The distribution
of interest in this figure is the νµCC selection from [34]
binned as a function of the reconstructed hadronic en-
ergy, which Fig. 2(b) shows in reconstructed space. Fig-
ure 2(c) then shows the the χ2 decomposition and in-
cludes both the resulting distribution of ϵi values in the
decomposition space and the matrix used to transform
from the reconstructed space to the decomposition space.
This matrix, though generally challenging to interpret,
can provide some insight into the mapping between the
two spaces and the types of discrepancies that would re-
sult in significant tension in individual ϵi. Taking the
first decomposition bin as an example, we see that this
bin receives a negative contribution from the first three
reconstructed bins and a positive contribution from all
higher energy bins. As such, a migration of events from
these first three low energy bins into the higher energy
bins would likely cause a large discrepancy in this de-
composition bin which would likewise result in a large ϵi
indicative of significant mis-modeling.
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3. Conditional Constraints

The conditional constraint procedure [35] can be used
to increase the stringency of the validation by provid-
ing an additional means of probing for relevant mis-
modeling. In this procedure, a constraint from one set of
data distributions is used to narrow the allowed model
parameter space of a different set of distributions. This
amounts to an updated central value and a reduced un-
certainty band on the constrained prediction. More ex-
plicitly, consider two distributions, X and Y , with model
predictions µX and µY , and a covariance matrix contain-
ing these two channels (X, Y ):

Σ =

(
ΣXX ΣXY

ΣY X ΣY Y

)
.

Here, the distributions are assumed to be jointly Gaus-
sian with ΣXX describing the uncertainties on channel
X as well as the correlations between its bins, and ΣY Y

aanalogously describing the uncertainties on channel Y
as well as the correlations between its bins. The correla-
tions between the bins of X and Y are described by ΣY X

and ΣXY . If a data measurement of channel Y results in
the distribution nY , one can derive the prediction for X
given this observation in Y to be

µX,const. = µX +ΣXY ·
(
ΣY Y

)−1 ·
(
nY − µY

)
, (10)

ΣXX,const. = ΣXX − ΣXY ·
(
ΣY Y

)−1 · ΣY X . (11)

In this case, Y is referred to as the constraining channel
and X is referred to as the constrained channel with its
posterior prediction and uncertainties given by µX,const.

and ΣXX,const., respectively. This method can be under-
stood as deriving a conditional probability distribution
for X given Y . With this context, Eq. 10 describes the
conditional mean for X and Eq. 11 describes the condi-
tional covariance.

The procedure described in Eqs. 10 and 11 allows a
GoF test to be performed on X after the constraints from
Y . This allows the simultaneous examination of the cor-
related modeling of X and Y , which provides additional
information about the compatibility between the model
and data. Typically, the constrained and constraining
channels have highly correlated model predictions due to
detector and physics effects that impact both sets of dis-
tributions. The model’s description of the correlations
is dictated by the modeling of these effects. The reduc-
tion in uncertainties for the prediction on the constrained
distribution provides additional sensitivity by providing
a means of exploring the modeling of these correlations.
The modeling of X, Y , and the relationship between X
and Y must all be sufficient for the model to pass a con-
strained validation test.

An example of using the conditional constraint can
be seen in Fig. 2. In this example, Y is defined to be
the distributions of the reconstructed muon kinematics,

namely, the reconstructed muon energy, Erec
µ , and the

muon angle, cos θrecµ , where θrecµ is defined as the angle
the muon scatters with respect to the incoming neutrino
beam. These distributions are shown in Fig. 2(a). Events
fully contained (FC) and partially contained (PC) within
the detector are placed into separate bins to better sep-
arate these two classes of events, which may be sensitive
to different forms of mis-modeling. Distribution X s cho-
sen to be that of reconstructed hadronic, Erec

had, for events
partially contained (PC) within the detector. This dis-
tribution is shown in Fig. 2(b). Note that in this case,
X and Y contain the same events, and therefore statis-
tical correlations are present in the covariance matrix.
The MicroBooNE Monte Carlo (MC) prediction before
constraint is shown in red and the prediction after con-
straint is shown in blue. The shift between the red and
blue predictions is dictated by the observation in data
for the muon kinematics and by the model’s predicted
relationship between the muon kinematics and the re-
constructed hadronic energy. The bands surrounding the
prediction, which show the uncertainties before and after
constraint, illustrate the large reduction in uncertainties
and enhanced sensitivity to mis-modeling that is obtain-
able with the conditional constraint. In particular, this
test is expected to provide sensitivity to the modeling of
the missing hadronic energy as is described in more detail
in Sec. III B. Other examples of similar constraint tests
can be found in [10–12].
The conditional constraint procedure borrows princi-

ples from data calibration. It uses the data to reduce the
uncertainty on the model prediction thereby allowing for
more stringent examinations of the model. However, it
should be emphasized that, in this context, the sole pur-
pose of these constraints is model validation and they
are not used in the cross section extraction. Since the
constraining distributions are often using the same set
of events as for the unfolding, this reduction of the sys-
tematic uncertainties would be superficial in the case of
cross section extraction. As an extreme example, utiliz-
ing the exact same distribution for the constraining chan-
nel as the distribution to be unfolded results in a com-
plete elimination of the uncertainties, which is obviously
not realistic or useful for the cross section extraction.
Nevertheless, as described in [36], one could also utilize
the conditional constraint formalism directly in the un-
folding to employ background constraints from side-band
channels. Though the mathematics of this technique is
identical to the data-driven validation we describe, its
utility is distinct and we advocate for still employing a
model validation when a background constraint is part
of the analysis strategy.

B. Developing a Model Validation Procedure

Data-driven model validation focuses on the total
model uncertainties, which includes flux, detector, and
cross section effects as well as any other modeling or sys-
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FC PC FC PC

(a) The reconstructed muon energy and muon scattering angular distributions. These distributions are used to
constrain the distribution shown in (b) and thus correspond to channel Y in Eq. 10. Both distributions utilize
separate bins for FC and PC events. The top panels show the data and MC reconstructed distributions and the
bottom panels show the data to MC ratio. The uncertainties of the prediction are shown in the bands and the
data statistical uncertainties are shown on the data points.

PC

(b) The reconstructed hadronic energy distribution for PC
events. This distribution is constrained by the distributions
shown in (a) and thus corresponds to channel X in Eq. 10.
The MC prediction before (after) constraint from the ob-
served muon energy and angle distributions is shown in red
(blue). The top panel shows the data and MC reconstructed
distributions and the bottom panel shows the data to MC
ratio and its corresponding uncertainties both before and af-
ter constraint. The uncertainties of the prediction are shown
in the bands and the data statistical uncertainties are shown
on the data points.

(c) Further examination of the GoF for (b) with the χ2 de-
composition. The top panel shows the matrix used to trans-
form the constrained reconstructed hadronic energy distri-
bution into the eigenvalue basis of the covariance matrix.
The bottom panel shows the significance of the tension be-
tween data and MC, otherwise known as ϵi values, in the
eigenvalue basis.

FIG. 2: Demonstration of the conditional constraint and χ2 decomposition techniques using MicroBooNE data. The
constraining distributions are shown in (a), the constrained distribution is shown in (b) and the χ2 decomposition is
shown in (c). All distributions utilize the νµCC selection from [34] .
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tematic uncertainties utilized for the cross section extrac-
tion. When the overall model passes data-driven valida-
tion, it suggests that the data is a suitable realization
of the range of possibilities afforded by the model. This
does not mean there is no under-estimation of individual
components of uncertainty, but rather suggests that any
under-estimation of individual components is small com-
pared to the overall uncertainty budget. This approach
is consistent with the evaluation of significance in dis-
crepancies [37, 38]. As described in Sec. IVA, this differs
from more commonly used approaches to model valida-
tion that tend to focus on the cross section modeling.
A data-driven approach naturally evaluates the overall
model, thereby making the assessment of the total uncer-
tainty band more straightforward than many traditional
approaches. This can be seen as a distinct advantage of
data-driven approaches.

However, this also brings about its own set of down-
sides. A combination of flux, detector and cross section
effects could conspire in such a way to cancel out, thereby
making reconstructed space tests less sensitive to mis-
modeling that would still bias the extracted cross sec-
tions. The potential for such a situation is investigated
in Sec IVB1 and should be kept in mind when deciding
which tests to include in the model validation procedure.
In addition, it is important to note that the procedures
we outline are more applicable when the background and
signal models are both well defined and relatively well
understood up to their uncertainties. If a signal signifi-
cantly deviates from existing models or is completely un-
known then these techniques cannot be properly applied
as validation. In that case, other techniques should be
employed to validate the background modeling and the
signal efficiency within uncertainties before extracting a
cross section.

When developing a model validation procedure for a
desired cross section extraction, one must make sure to
design a set of tests that are sufficiently sensitive to mis-
modeling in the phase space relevant for the cross section
extraction. For example, validating only the overall event
rate will not be sufficient for a differential cross section
measurement. Such a test averages over the entire re-
constructed phase space and will thus be insensitive to
any mis-modeling related to the shape of the distribution
that could bias the extraction of a differential cross sec-
tion. Selecting an appropriately sensitive set of tests rep-
resents the key to a well-designed model validation pro-
cedure. To achieve this, one should consider what forms
of mismodeling may be capable of introducing bias into
their cross section result and choose tests that address
these possibilities. Mismodeling in distributions irrele-
vant to the extraction do not need to be examined. It
may be useful to use FDSs to evaluate the ability of the
selected set of tests to detect relevant mis-modeling be-
fore it begins to bias the extracted cross section results
beyond stated uncertainties. A case study containing this
type of FDS is presented in Sec. IV. This study mirrors
the analysis done in [10] and thus also provides an ex-

ample of what a full suite of tests used in a data-driven
validation may look like. However, such studies are not
mathematical proofs that the intended validation proce-
dure constructed for the given analysis is guaranteed to
detect relevant mis-modeling. As such, it is pertinent to
probe the model from a variety of different angles in or-
der to maximize the probability of detecting problematic
forms of mis-modeling that would bias the cross section
results beyond their uncertainties.

The more challenging a variable or channel is to recon-
struct or model, the more stringently it should be exam-
ined in the validation. For visible kinematic variables in
more inclusive cross section measurements, a direct data
to prediction comparison over the reconstructed distri-
bution used in the unfolding is likely sufficient. However,
more challenging distributions to model or reconstruct
require additional validation. Examples include distribu-
tions containing events that are not fully contained with-
ing the detector volume, distributions used to map to
quantities that cannot be fully reconstructed, or a more
exclusive channel with kinematics cuts that are near de-
tector thresholds.

Conditional constraints are particularly useful when
validating aspects of the model that are impacted by
substantial modeling or reconstruction challenges. One
way to use this technique is to use a better understood
and more easily reconstructed distribution to constrain
the less understood and harder to reconstruct distribu-
tion that is more likely to show mis-modeling. For exam-
ple, in the case of partially contained events, a constraint
from the analogous distribution of fully contained events,
which are correlated with the partially contained events
through common physics and detector modeling, helps
provides a more stringent test. In the case of measuring
more exclusive channels, where the modeling of events
near the detection threshold may become especially im-
portant, additional examination of the variables relevant
to the detection threshold is warranted. In this situation,
the constraint provides a means of examining multiple
variables simultaneously, the relationship between which
may contain important information on the sufficiency of
the model.

One particularly prominent example of this is the re-
construction of low energy protons. Low energy nucleons
are known to be modeled significantly differently among
event generators [39, 40] thus leading to very different
predicted selection efficiencies for protons near the de-
tection threshold [27]. This can have a large impact on
measurements related to the proton’s energy, such as the
kinetic energy of the leading proton or transverse kine-
matic imbalance variables [41–43], which are projections
of the lepton and proton momentum onto the plane per-
pendicular to the neutrino direction. In such a case, a
conditional constraint from a related visible kinematic
variable less susceptible to the threshold may be useful.
Examples of this include the energy and angle of the out-
going lepton. These constraints will reduce the allowed
parameter space through correlations due to shared de-
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tector, flux, and cross section modeling thereby allow-
ing for a more thorough investigation of the modeling of
the proton kinematics near the detection threshold. In-
cluding an additional constraint from a closely related
channel, such as one without protons, can provide ad-
ditional information on the modeling of backgrounds or
signal events that did not pass selection cuts and may
also be useful in probing for relevant mis-modeling. This
can be seen as similar to studying side-bands, which are
often used to evaluate the modeling of backgrounds, but
intends to evaluate the modeling used in the cross section
extraction more directly.

When attempting to extract variables that cannot be
fully reconstructed, such as the the neutrino energy or
energy transferred to the nucleus, a direct comparison
between data and MC is likely insensitive to relevant
mis-modeling. These quantities include both visible and
missing portions, the latter of which cannot be examined
with sufficient scrutiny in a direct comparison. In this
case, the conditional constraint becomes a crucial tool in
evaluating the mapping from reconstructed to true quan-
tities. The choice of these constraints can be based upon
physics arguments to help provide the required level of
stringency.

For the case of energy transfer ν, one can use conser-
vation of energy to design a test that is sensitive to the
modeling of missing hadronic energy, Emissing

had , through
the examination of the correlations between the leptonic
and visible hadronic energy. The visible portion of the
energy transfer, Evis

had, can be measured through the re-
constructed hadronic energy, Erec

had, without needing the
model to correct for contributions that are not directly
measurable. The energy of the outgoing lepton, Eℓ, can
likewise be measured through the reconstructed lepton
energy, Erec

ℓ , without such corrections. Together, these
quantities account for the total energy of the incoming
neutrino,

Eν = Eℓ + ν = Eℓ + Evis
had + Emissing

had . (12)

Through the use of Erec
ℓ as a constraint, the simultaneous

measurement of Erec
had and Erec

ℓ is able to validate the pre-
dicted relationship between these distributions. This is
achieved by using Erec

ℓ as channel Y and Erec
had as channel

X in Eq. 10:

µErec
had,const. = µErec

had

+ΣErec
hadE

rec
ℓ ·

(
ΣErec

ℓ Erec
ℓ

)−1

·
(
nErec

ℓ − µErec
ℓ

)
, (13)

where ΣErec
ℓ Erec

ℓ describes the uncertainties on Erec
ℓ and

ΣErec
ℓ Erec

had describes the correlations between Erec
ℓ and

Erec
had. The same is done for Eq. 11 to obtain the reduced

uncertainty band, ΣErec
hadE

rec
had,const., for the Erec

had predic-
tion. From Eq. 13, we see that the modeling of Erec

ℓ ,
Erec

had, and the correlations between them all play a role
in obtaining the posterior prediction. Following Eq. 4,
these can then be simultaneously examined with a GoF

test on the constrained Erec
had prediction:

χ2 = (nErec
had − µErec

had,const.)T

·
(
ΣErec

hadE
rec
had,const.

)−1 ·
(
nErec

had − µErec
had,const.

)
. (14)

Given a flux prediction with its associated uncertainties,
the correlations that yield µErec

had,const. will be dictated by
the modeling of Emissing

had . Thus, if Erec
ℓ and Erec

had are mea-
sured, and a constraint from Erec

ℓ is applied to Erec
had to

reduce uncertainties on the flux and overall Eν predic-
tion, a precise description of Emissing

had becomes necessary
for Eq. 12 to be satisfied. It is this narrowed parame-
ter space for the correlated Eℓ, E

vis
had, and Emissing

had pre-
dictions that provide sensitivity to mis-modeling in the
missing energy through conservation of energy.

The test described in Eq. 13 is demonstrated on Mi-
croBooNE data in Fig. 2. This technique of using the
lepton energy to constrain reconstructed hadronic energy
has been employed by MicroBooNE to enable the extrac-
tion of energy-dependent inclusive νµCC cross sections
on argon [10–12]. Similar constraints could be applied
to other variables potentially sensitive to the modeling
of missing hadronic energy. Similarly, when extracting
nominal flux-averaged cross sections, which requires ex-
trapolating from the real to the nominal neutrino flux
spectrum, examining the mapping between the true and
reconstructed neutrino energy is a route to evaluate if
the overall uncertainty budget is sufficient for propagat-
ing the reported result from the real to the nominal flux.

Constraints could also be used to explore other physics
that is challenging to probe with a direct data to MC
comparison. Examples include using the lepton energy
distribution to constrain the lepton angular distribu-
tion. Since quasi-elastic (QE), resonance (RES), meson
exchange current (MEC), and deep-inelastic scattering
(DIS) processes have distinct predictions for lepton kine-
matics, a mis-modeling of the relative contribution of
these events could be detected with such a constraint.
This could also be explored by using the observed muon
kinematics to constrain another variable that already
shows some separation between interaction modes, such
as the opening angle between the lepton and the leading
proton. This is demonstrated in the fake data studies
presented in Sec. IVB2.

When the model passes a well designed validation pro-
cedure, it suggests that the difference between the data
and simulation are within the quoted total model uncer-
tainty. When the model fails the validation procedure, it
reveals that the difference between the data and simula-
tion is beyond the model uncertainty and should trigger
actions to improve the model for use in the analysis. This
may include an expansion of the uncertainties or an up-
dated central value prediction. These may be derived in
a data-driven way [12] similar to the overall model val-
idation procedure or derived from alternative models or
event generators. As long as the expanded model is able
to pass all relevant model validation tests, it may be used
in place of the original model to extract the desired cross
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section results.

IV. FAKE DATA STUDIES

A. Usage of Fake Data Studies

It is common practice in neutrino-nucleus cross sec-
tion measurements to perform model validation on the
primary interaction model used for cross section extrac-
tion through comparisons to alternative model or event
generator predictions. Often, this comes in the form of
FDSs designed to determine if the unfolding is able to
recover the underlying true distribution when the “data”
are produced by an alternative model rather than by na-
ture. This allows one to assess how the variations be-
tween model predictions for backgrounds, efficiencies, or
biases in the reconstruction of kinematic quantities can
impact the results. In the case of poor closure on the
underlying true distribution, these studies can be used
to inform additional uncertainties to be applied to the
primary model prediction used for extracting the data
cross sections. Using fake data studies in this way is
thus akin to using the data-driven model validation that
we advocate for, which likewise aims to verify that the
model contains sufficient uncertainties for the intended
measurement.

In these FDSs, it is especially useful to consider al-
ternative models that are expected to provide a particu-
larly good description of the data or contain significantly
different physics than the nominal model. Ideally, these
FDSs should be conducted at statistics equal to, or higher
than, that of the actual data. In many cases, the fake
data is generated using the same detector and flux model
as the nominal model. This makes these uncertainties
superfluous and FDSs are therefore conducted removing
these sources of uncertainty. This allows for a more di-
rect test of the interaction model and the extent to which
it may bias the unfolding.

The benefit of directly validating the interaction model
used for unfolding with fake data is that this approach re-
duces the dependence on any given model. It helps ensure
that the discrepancy in results extracted using the exam-
ined set of event generators is insignificant compared to
the uncertainty on the results. While this method is a
viable strategy for validating the interaction model used
for unfolding, it has the following shortcomings:

1. There is no guarantee that the combined phase
space covered by the set of tested models and event
generators is able to completely describe nature.
Therefore, this approach lacks a guarantee of suffi-
ciency in determining the primary model’s under-
estimation of uncertainties.

2. It is also possible that the phase space cov-
ered by these event generators leads to a signifi-
cant over-estimation of uncertainties. While over-
estimating systematic uncertainties is better than

under-estimating them, over-estimated uncertain-
ties will reduce the power of the data.

3. Since one can always invent new effective models
or event generators, it is not clear when one should
stop in evaluating the model uncertainty under this
approach.

It is even possible for both issues 1 and 2 to exist si-
multaneously in different regions of phase space and it
is challenging to know where the spread of event genera-
tors lies relative to these two extremes. The fundamental
issues of these shortcomings are related to the earlier dis-
cussion in Sec. IIA on the nature of event generators.
We propose utilizing a data-driven model validation

procedure to reduce the reliance on alternative models
to validate the model used for unfolding and address is-
sues 1 and 2. As described in Sec. III, when a model
passes a carefully designed data-driven validation pro-
cedure, it suggests that the difference between the data
and simulation are within the quoted total model uncer-
tainty in the phase space relevant for the cross section
extraction. This approach also addresses issue 3 because
it is based upon real data rather than alternative models,
and is thus better suited to determine the adequacy of
the model used for the extraction and whether an expan-
sion of its uncertainties is appropriate. Nevertheless, the
data-driven validation does not totally eliminate these
issues. One can still run into issue 1 if one selects tests
that do not probe the full phase space of the measure-
ment, or issue 2 if one’s suite of tests is overly sensitive
to mis-modeling irrelevant to the desired measurement,
and the choice of which tests to utilize is analogous to
issue 3. However, having the validation centered around
the data rather than alternative models minimizes the
potential downsides of these issues.
When evaluating the data-driven model validation

methods presented here, we use FDSs in a very differ-
ent way. Instead of testing the robustness of the model,
these FDSs aim to test the robustness of the model val-
idation itself. In particular, FDSs in the case of data-
driven model validation should aim to demonstrate the
following points:

• The model validation procedure is indeed sensitive
to mis-modeling in the phase space relevant for the
cross section extraction.

• When the model passes validation, the potential
bias in the extracted cross sections is small com-
pared to the total uncertainties.

These FDSs may additionally demonstrate that even in
certain cases where the model fails validation, the biases
in the extracted cross sections are still small compared to
the total uncertainties. Though an analysis should not
proceed to unfolding with a model that has not passed
validation, observing such cases in these studies provides
additional evidence that the validation is able to identify
mis-modeling before bias is introduced. In short, FDSs
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employed in the context of data-driven model validation
aim to examine the procedure used to validate the model,
whereas more typical FDSs aim to directly examine the
model used for the extraction. As was done in the Supple-
mental Material of Refs. [10–13], we illustrate how to test
the sufficiency of a model validation procedure through
FDSs presented in IVB.

When evaluating a data-driven model validation pro-
cedure with FDSs, it is perhaps more useful to utilize
all systematic uncertainties rather than only the cross
section uncertainties, even if some uncertainties are su-
perficial in the context of fake data. Such studies provide
a more realistic test of the stringency of the model vali-
dation as it is performed on the real data. Through the
conditional constraint, the validation cancels shared sys-
tematics from all sources including neutrino flux, cross
section, and detector effects. As seen in Eq. 11, the way
the constraint reduces these uncertainties on the model
prediction is independent of the data observation and
only depends on the uncertainties on and correlations
between the model predictions for the different distribu-
tions. Because of this, the way the constraint reduces
the uncertainties is exactly the same in these studies as
in real data. This is not true when only the cross section
uncertainties are included, in which case the constraint
may behave very differently due to the significantly dif-
ferent treatment of the systematic uncertainties. Thus,
a test with the complete set of systematics is required
to demonstrate that the constraint is able to reduce un-
certainties on the reconstructed distributions enough to
detect relevant mis-modeling that will bias the extrac-
tion beyond stated uncertainties. Furthermore, many
FDSs could be interpreted as a detector effect rather
than a cross section effect, thereby testing the ability of
the model validation to detect model discrepancies not
attributable to the cross section modeling.

If an analysis is employing data-driven validation, fake
data studies that directly validate the model through
comparisons to alternative event generators may still be
useful to identify situations in which the extracted results
are not biased beyond stated uncertainties but neverthe-
less show better agreement for the model used for unfold-
ing over the truth. An example of this type of situation
would be one in which the extracted cross section shows a
mild discrepancy with the truth at 1.2σ significance, but
shows tension at only 0.5σ significance with the model
used for extraction. Such a situation can’t be identified
with data-driven model validation, as it only examines if
the bias introduced is within stated uncertainties. This
can be seen as an advantage of more typical FDSs. When
employing data-driven validation, one should be cautious
if this type of bias is identified in a FDS, but such bias
does not necessarily invalidate the model used for unfold-
ing if it still passes the data-driven validation. Unless the
alternative generator used to produce the fake data is ex-
pected to be a particularly good description of the real
data, this bias may not carry over into the extraction of
the real data, and, even if it does, the extracted results

are still expected to fall within the uncertainties of the
true value in nature if the model passes validation by a
well-constructed set of tests.

B. Illustration of Data-driven Model
Validation Using Fake Data Studies

Using the model validation procedure and unfolding
analogous to the methodology employed in [10], we con-
duct two sets of FDSs that serve as case studies for data-
driven model validation. The first set utilizes a fake
data set produced from the nominal GENIE-based Micro-
BooNE model [14, 18] with a shift in the reconstructed
proton energy intended to mimic a mis-modeling of the
relative contribution of the missing hadronic energy to
the total energy transfer. The second set of FDSs uti-
lizes fake data sets produced from an alternative event
generator; namely NuWro 19.02.2 [16]. Studies are per-
formed with the full systematic uncertainties to probe
the ability of the model validation to detect discrepan-
cies under a treatment of systematic uncertainties akin to
that of real data. A FDS utilizing the NuWro fake data is
also performed with only the cross section systematics in
order to more directly probe the cross section model and
its associated uncertainties. As will be shown through-
out this section, the results of these two sets of FDSs
are consistent with the expectation that the data-driven
model validation is able to detect relevant mis-modeling
before it begins to bias the extraction of cross sections.
These fake data sets represent significant deviations

from the mapping between true and reconstructed en-
ergy transfer predicted by the nominal GENIE-based Mi-
croBooNE MC. This is illustrated in Fig. 3, which shows
the energy transfer resolution for the central value pre-
diction of the MicroBooNE MC, the MicroBooNE MC
prediction with a 15% reduction in reconstructed proton
energy, and the NuWro prediction. The MicroBooNE MC
prediction’s cross section uncertainties are included on
the nominal prediction without the proton energy scal-
ing, but these uncertainties are not large enough to cover
the NuWro prediction. Furthermore, a 15% reduction in
the visible hadronic energy is a more significant devia-
tion than changing from the nominal MicroBooNE MC
prediction to NuWro prediction.
For both sets of FDSs, we employ the same νµCC

event selection and systematic uncertainties as in [10],
which are described in detail in [12, 34]. We then per-
form model validation designed to enable the extraction
of the cross section as a function of Eν , the differential
cross section with respect to the energy transfer ν, and
the differential cross section with respect to the muon
energy Eµ. The validation is described in more detail
in the following paragraphs with a complete list of tests
presented in Appendix A. Following the validation, cross
section results are extracted using the Wiener-SVD un-
folding technique [44]. Results for Eµ are not extracted
for the FDSs with the reconstructed proton energy scal-
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FIG. 3: The energy transfer resolution predicted by the
GENIE-based MicroBooNE tune simulation and cross sec-
tion uncertainties, the GENIE-based MicroBooNE tune
simulation with 15% reduction in reconstructed proton
energy, and the NuWro simulation. We show only the
region between -1 and 1 for visual clarity.

ing because these fake data samples do not change the
underlying muon kinematics resulting in perfect closure
in this variable for each FDS.

The model validation utilizes a multitude of tests in
order to increase the chances of detecting problematic
forms of mis-modeling that would bias the cross section
results beyond their uncertainties. One does not neces-
sarily know a priori which test will be most sensitive,
hence the numerous tests. In this case study, each test is
performed on events fully contained (FC) and partially
contained (PC) within the detector as well as jointly on
all events (FC&PC) with separate bins for FC and PC.
The only exception is in tests where the FC distribution
is used to constrain the PC one, in which case only the
PC distribution is examined. In each test, the GoF is
quantified using Eq. 4 to determine how well the fake
data distributions are described by the nominal Micro-
BooNE model used for the unfolding. The GoF is then
further evaluated by decomposing the covariance matrix
into linearly independent components via eigenvalue de-
composition. This transformation to an uncorrelated ba-
sis allows a local p-value to be calculated from the de-
composition bin that shows the largest discrepancy. The
look-elsewhere effect is then corrected for by converting
the local p-value into a global p-value via Eq. 9. This
procedure is described in more detail in Sec. III. These
global p-values and the p-values obtained from the χ2

GoF test described in Eq. 4 are the metrics used to eval-
uate the sufficiency of the model, and must be greater
than 0.05 in all tests for the model to pass validation.

The first set of tests examines the modeling of the
muon kinematics in detail. These are not performed in
the FDSs with the reconstructed proton energy scaling
because these fake data samples do not modify the muon
kinematics. The tests begin with evaluating the GoF
on the muon energy distributions, Erec

µ , and the muon

angular distributions, cos θrecµ . Next, the FC distribu-
tions are used to constrain the PC distributions in the
same variable. These PC distribution are, in general,
more susceptible to mis-modeling due to poorer recon-
struction in events that escape the active volume of the
detector, hence the additional tests. Then, to examine
the muon kinematics more holistically, the Erec

µ distri-
butions are used to constrain the cos θµ distributions.
These tests provide a significantly reduced posterior un-
certainty. This allows the muon kinematics to be ex-
amined in detail, potentially exposing mis-modeling of a
variety of physics effects, such as the relative contribu-
tion of different interaction modes, which could bias the
measurement of the muon kinematics or derived quanti-
ties such as Eν or ν. If the model passes this suite of
tests, it builds confidence that it is sufficient to extract
cross sections as a function of the muon kinematics.

With the muon kinematics validated, the focus shifts
to the hadronic energy distributions in order to enable
the extraction of cross sections as a function of Eν and
ν. These tests begin the same as the ones on the muon
kinematics. Events are binned as a function of the re-
constructed hadronic energy, Erec

had, or the reconstructed
neutrino energy, Erec

ν = Erec
had + Erec

µ , and GoF tests are
performed both on the unconstrained distributions and
on the PC distributions after constraints from the FC
ones in the same variable. From here, the muon kine-
matics are used to constrain the Erec

ν and Erec
had distribu-

tions. These tests, which are described in Eq. 10, exam-
ine the correlated prediction between the hadronic and
leptonic energy thereby providing sensitivity to the miss-
ing hadronic energy. If the model passes this second suite
of tests, it builds confidence that the model can describe
the leptonic and hadronic energy as well as the corre-
lations between them and is sufficient to extract cross
sections as a function of Eν and ν.

To evaluate how well the extraction has reproduced
the underlying true distribution, a χ2 test statistic is
computed between the underlying truth and the unfolded
fake data. In the case of the FDSs conducted with the
scaling of the reconstructed proton energy, the true dis-
tribution corresponds to the MicroBooNE MC. This is
because neither the incoming neutrino energy, the energy
transfer, nor the muon kinematics are modified by this
scaling. These truth level distributions remain identical
and only the relative contribution of missing and visible
energy is modified. In the case of the FDSs conducted
with the NuWro 19.02.2 fake data, the true distribution
corresponds to a prediction from an independently pro-
duced high-statistics sample from the event generator.
The χ2 test statistic is constructed using the covariance
matrix obtained in the cross section extraction and is
converted to a p-value assuming a χ2 distribution with
degrees of freedom equal to the number of bins in the ex-
tracted result. To compare the stringency of the model
validation to the amount of bias induced in the cross sec-
tion extraction, this p-value is compared to the p-values
used to evaluate the model validation. For ease of com-
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parison, we convert all p-values to significance levels cor-
responding to multiples of the standard deviation σ of a
normal distribution. The significance level correspond-
ing to a model validation test indicates the amount of
mis-modeling detected by the validation and the signif-
icance level corresponding to a cross section extraction
indicates the amount of bias induced in the unfolding.
When a model validation test yields a larger significance
level than the corresponding cross section extraction, this
indicates that the model validation is more stringent than
the cross section extraction. In this case, one is able to
use the results of the model validation to identify situa-
tions in which the model is insufficient before such defi-
ciencies become relevant to the unfolding. This allows for
subsequent efforts to mitigate deficiencies in the overall
model by using an updated CV prediction or expanded
set of uncertainties before proceeding to the extraction.

1. Proton Energy Scaling Fake Data Studies

The results of these FDSs with different scalings of the
visible proton energy are shown in Fig. 4 and Table I. In
Fig. 4, the gray band corresponds to the range of the sig-
nificance values obtained across the validation tests, and
the blue and orange points indicate the significance of the
bias between the cross sections extracted in Eν and ν and
MC truth. Theses FDSs are conducted with all system-
atic uncertainties at 6.4×1020 POT, which corresponds to
the exposure of the first three runs of MicroBooNE data
taking that have been used for many recent MicroBooNE
cross section measurements [11–13]. In these studies, we
do not account for correlations in the data and MC sta-
tistical uncertainties arising from the fact that the fake
data and MC utilize the same set of events. However,
this is treated identically between the validation and the
cross section extraction making this a fair comparison
between the sensitivity of the model validation and the
bias induced in the cross section extraction.

For each fake data set, the significance of the bias be-
tween the extraction of the cross section as a function
of Eν is well below the significance of the discrepancy
identified in the corresponding model validation tests.
The significance of the bias for the differential cross sec-
tion extracted in ν is always higher than it is for Eν

but is similarly always below the significance of the dis-
crepancy identified in the most sensitive model validation
test. Furthermore, even at large proton energy scalings
past the point at which the validation indicates that there
is relevant mis-modeling, the agreement between the un-
derlying truth and extracted results remains quite good
for the cross section as a function of Eν . These observa-
tions indicate that the stringency of the model validation
is greater than the bias in the cross section extraction in-
duced by mis-modeling. This allows mis-modeling of the
missing hadronic energy to be detected before it becomes
problematic to the extraction.

As demonstrative examples, the extracted fake data

FIG. 4: Sensitivity of the model validation to discrep-
ancies compared to the bias induced in the cross-section
extraction in FDSs utilizing full-systematics. The fake
data sets used for these FDSs each have their recon-
structed proton energy scaled by different amounts to
mimic mis-modeling of the missing hadronic energy. The
x-axis corresponds to this scaling. The y-axis indicates
the agreement between the fake data and nominal Micro-
BooNE MC for the cross-section extractions and model
validation tests in terms of significance level. For the
model validation, a large significance indicates high sen-
sitivity to mis-modeling. For the extracted cross-section,
high significance indicates more biased results and worse
closure on the underlying true distribution.

cross sections and several of the more sensitive model
validation tests for the fake data studies with visible
proton energy scalings of 0.85 and 0.75 are shown in
Figs. 5 and 6, respectively. Specifically, we show the
model validation test which consists of evaluating the
GoF of the Erec

had distribution for PC events after the
constraint from the muon kinematics. The correspond-
ing χ2 decomposition is also shown. The combination
of these two FDSs demonstrate the points outlined in
Sec. IVA. For the 0.85 scaling, the model passes the val-
idation test depicted in Fig. 5(a) as well as all other vali-
dation tests. This indicates that the uncertainties on the
model are sufficient for this 15% shift in the visible proton
energy. The extracted cross sections likewise show little
bias. This can be seen in Figs. 5(b) and 5(c). The success
of the cross section extraction is confirmed by examining
the differences between the extracted results and the un-
derlying truth in the eigenvalue basis of the covariance
matrix, which eliminates correlations between bins. In
this basis, the tension with the underlying truth is less
than 1σ significance for the majority of the bins, with
only a single bin of the extracted dσ/dν decomposition
falling slightly outside 2σ significance. This is illustrated
in the bottom sub-panels of Figs. 5(b) and 5(c), which
show the significance of tension in this basis for each bin.
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Sensitivity of the Model Validation to Discrepancies
Bias in Extraction Erec

had GoF Erec
had Decomposition Erec

ν GoF Erec
ν Decomposition

Visible Kp scaling σ(Eν) dσ/dν FC&PC FC PC FC&PC FC PC FC&PC FC PC FC&PC FC PC
0.6 2.8 5.9 5.9 2.0 6.3 6.0 3.6 6.6 5.3 1.8 6.4 6.6 3.6 7.1
0.65 1.9 4.6 4.2 1.3 4.9 4.9 2.8 5.5 3.3 0.8 4.6 5.3 2.9 5.8
0.7 1.1 3.4 2.7 0.6 3.7 3.8 2.0 4.4 1.5 0.3 2.9 3.9 2.2 4.4
0.75 0.5 2.3 1.3 0.2 2.4 2.7 1.1 3.3 0.2 0.0 1.3 2.5 1.4 3.1
0.8 0.1 1.3 0.2 0.0 1.2 1.6 0.4 2.2 0.0 0.0 0.2 1.1 0.6 1.8
0.85 0.0 0.6 0.0 0.0 0.3 0.4 0.0 1.0 0.0 0.0 0.0 0.0 0.1 0.4
0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.15 0.0 0.3 0.0 0.0 0.1 0.1 0.0 0.5 0.0 0.0 0.0 0.1 0.1 0.3
1.2 0.0 0.8 0.0 0.0 0.5 0.5 0.2 1.2 0.0 0.0 0.0 0.7 0.6 1.1
1.25 0.1 1.6 0.3 0.1 1.3 1.1 0.8 1.9 0.0 0.0 0.2 1.6 1.3 2.0
1.3 0.3 2.4 1.1 0.4 2.2 1.7 1.4 2.5 0.0 0.0 0.7 2.5 2.0 2.8
1.35 0.4 3.2 2.0 0.9 3.0 2.2 2.1 3.0 0.2 0.2 1.3 3.3 2.6 3.5
1.4 0.6 3.9 2.8 1.5 3.8 2.7 2.7 3.4 0.6 0.4 2.1 3.9 3.2 4.2

TABLE I: Results of the model validation and cross-section extraction for each fake data set that scales the recon-
structed proton energy. All sources of uncertainty are included at data statistics equivalent to 6.4×1020 protons on
target (POT) of exposure. The significance values in the “Bias in Extraction” columns indicate the level of closure
the extracted fake data cross-sections have with the underlying truth. The significance values in the “Sensitivity of
the Model Validation to Discrepancies” columns indicate the level at which the fake data and the MC used for the
cross section extraction disagree. The different columns correspond to different validation tests.

The fake data set with the proton energy scaling of
0.85, shown in Fig. 5, can be contrasted with what is
seen for the proton energy scaling of 0.75, which is shown
in Fig. 6. Here, the model validation indicates the pres-
ence of discrepancies not covered by the systematics. In
particular, the decomposition test on the PC distribu-
tions after constraint from muon kinematics shown in
Fig. 6(a) reveals disagreement at the 3.3σ significance
level. If such a discrepancy were observed for real data,
additional uncertainty or an otherwise expanded model
would have been implemented to cover this difference and
mitigate the potential for bias in the cross section extrac-
tion. Such a strategy was employed in Refs. [12] and [13]
when a modeling discrepancy related to the leading pro-
ton kinetic energy distribution relevant to the desired
cross sections was identified.

The level of tension identified in the model validation
of the fake data set with the proton energy scaling of
0.75 indicates that this analysis should not proceed to
the cross section extraction with the model and associ-
ated uncertainties in their present form. Nevertheless,
for the purposes of this study, we proceed to cross sec-
tion extraction in order to compare the sensitivity of the
model validation to the bias induced in the cross sec-
tion extraction. When the fake data cross section as a
function of Eν is extracted with the nominal model, a
reasonable result is obtained. The extracted cross sec-
tion and underlying truth only disagree at 0.5σ and 1.1σ
significance in regularized truth space and in the eigen-
value basis, respectively. This is seen in the top and bot-
tom panel of Fig. 6(b), respectively. While the extracted

dσ/dν (Fig. 6(c)) is in tension with the truth at 2.3σ sig-
nificance, the discrepancy is less than is seen in the most
sensitive model validation test, which shows tension at
the 3.3σ level (Fig. 6(a)). Furthermore, examination of
the tension between the extracted fake data cross section
and truth in the eigenvalue basis shows that all of the
bins fall within 2σ significance, except for one, indicat-
ing a moderately successful unfolding despite the use of
a model shown to be insufficient by the model validation.

In these FDSs, an interesting feature is illustrated by
comparing the local p-values in the eigenvector basis of
the covariance matrix obtained from the model valida-
tion to those of the cross section extraction. As can be
seen by comparing Fig. 5(a) to Fig. 5(c) and Fig. 6(a) to
Fig. 6(c), the greatest tension seen in an individual bin is
at a similar level in the extraction and validation. This
trend is seen for all scalings and is perhaps unsurprising,
as it is likely that the tension in these bins is originat-
ing from the same source of mis-modeling, which in the
case of these FDSs, is the induced mis-modeling of the
fraction of the energy transfer which is visible. This ob-
servation could potentially be utilized when, instead of
performing model validation with data, FDSs and alter-
native event generator predictions are used to evaluate
the sufficiency of the model. Rather than informing the
need for additional uncertainties by evaluating the bias
introduced in the extraction bin-by-bin in truth space, it
may be useful to evaluate bias bin-by-bin in the eigen-
value basis instead. Evaluating the bias in truth space
with highly correlated bins may be unable to account for
discrepancies that are amplified or suppressed by bin-to-
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Krec
p × 0.85

σ = 0.3

(a) Model validation tests comparing the reconstructed
hadronic energy for fake data and MC prediction for PC
events. The top two pannels shows reconstructed space, with
the red (blue) lines and bands showing the prediction with-
out (with) the constraint from the muon kinematics. The
uncertainties on the MC are shown in the bands and the
statistical uncertainties on the data are shown on the data
points. The bottom pannel shows the significance of the ten-
sion in each bin after the distribution has been constrained
and transformed to the eigenvalue basis of the covariance
matrix.
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(c) Extracted dσ/dν.

FIG. 5: The FDSs with the reconstructed proton energy
scaled by 0.85. Select model validation tests are shown
in (a). The extracted fake data cross section as a func-
tion of Eν is shown in (b) and the extracted differential
cross section as a function of ν is shown in (c). The χ2

displayed on these panels is calculated between the true
distribution indicated by the green line and the extracted
result. The top plots of (b) and (c) show the extracted
result and the bottom panels show the significance of the
tension in each bin after the distribution has been trans-
formed to the eigenvalue basis of the covariance matrix.

Krec
p × 0.75

σ = 2.4

(a) Model validation tests comparing the reconstructed
hadronic energy for fake data and MC prediction for PC
events.
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(b) Extracted σ(Eν).
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(c) Extracted dσ/dν.

FIG. 6: Same as Fig. 5, but for the fake data set with
the reconstructed proton energy scaled by 0.75

bin correlations. Such a scenario could be avoided via
a transformation to the eigenvector basis where bins be-
come uncorrelated and the totality of systematics can be
taken into account while evaluating bias.

The proton energy scaling FDSs can be viewed as an
extension to the ones shown in the Supplemental Material
of [10–12] which were inspired by a similar DUNE FDS
performed in Ref. [45]. The DUNE study utilized a fake
data set with a 20% reduction in the reconstructed proton
energy for the purposes of studying the impact of mis-
modeling on extracting oscillation parameters with a near
and far detector. This fake dataset was then reweighted
using a multivariate event reweighter to match the nomi-
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(a) (b) (c)

FIG. 7: Reconstructed muon kinematic and hadronic energy distributions for events passing the νµCC selection
from [34] before and after the missing energy shift and multivariate event reweighting. The reweighting recovers good
agreement in these variables despite the incorrect true-to-reconstructed energy mapping. Note that a proton energy
shift has no impact on muon kinematic distributions.

nal MC in all the reconstructed distributions considered.
However, as a result, there was still a significantly dif-
ferent mapping between the reconstructed and true neu-
trino energy in the reweighted fake data and the MC.
Because of this, when a simultaneous near-far detector
fit was performed on the reweighted fake data, the in-
correct oscillation parameters were obtained despite the
good agreement in the near detector.

Similar to the DUNE FDS, the FDSs presented in this
section demonstrate that the total MicroBooNE MC un-
certainties, of which the interaction model uncertainties
are but a subset, cannot explain anything beyond a ∼20-
25% shift in the reconstructed proton energy. However,
when comparing the conclusions of the DUNE FDS to the
ones presented in this section, it is important to acknowl-
edge the different set of assumptions in each. Though
the multivariate event reweighter does not change recon-
structed distributions and would indeed pass the model
validation, the reweighting creates large shifts in the con-
tributions from QE, RES, and DIS processes. As we will
show, these modifications are likely beyond any reason-
able event generator prediction. Since different interac-
tion modes have distinct predictions for the muon kine-
matics, the multivariate event reweighter’s freedom to
make significant modifications to individual interaction
modes would likely result in large tension when compar-
ing the true Q2 prediction from the event reweighter to
any reasonable cross section model or event generator
prediction and its associated uncertainties.

To demonstrate this point, we emulate the DUNE FDS
by training a boosted decision tree (BDT) multivariate
event reweighter [46] to restore agreement between the
fake data set with the 20% reduction in the proton energy
and the MicroBooNE MC prediction. The reweighting is
done in the true muon energy, true muon angle, and true
transfer energy, which recovers good agreement between
the MC and the fake data set with the 20% reduction in
the proton energy in the analogous reconstructed distri-
butions, as shown in Fig. 7. This allows the reweighted
model to pass model validation despite a significantly

(a) (b)

FIG. 8: The (a) MicroBooNE BDT reweighted model
and (b) DUNE BDT reweighted model from [45].

different mapping between true and reconstructed distri-
butions, which would create bias in the cross section ex-
tractions. For this particular example, good agreement is
seen in all model validation tests consistent with tension
at the 0σ level, but the extracted cross section as a func-
tion of the energy transfer shows bias at the 0.7σ level
when considering all systematic uncertainties. Though
this is a relatively small amount of bias, it indicates that
our model validation has not detected relevant mismod-
eling. A comparison between the weights obtained in this
study and those obtained in the DUNE FDS can be seen
in Fig. 8. Similar behavior is observed with QE events
at high Q2 scaled up by as much as a factor of 2 and
QE events at low Q2 scaled down by as much as a fac-
tor of 0.6. As such, when the true Q2 distribution for
QE events is compared to the nominal model, a signifi-
cant discrepancy is seen. This is demonstrated in Fig. 9,
where the χ2/ndf calculated between the reweighted dis-
tribution and the nominal model and its associated cross
section uncertainties is 135.04/25, indicating significant
discrepancy. Since the basic lepton kinematics distribu-
tions for QE events are agnostic to final state interac-
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FIG. 9: Comparison between the BDT reweighted model
and the GENIE MicroBooNE Tune prediction as a func-
tion of Q2 for QE events. The normalization and shape
components of the uncertainty bands are shown sepa-
rately. The χ2 is calculated using all cross section uncer-
tainties of the MicroBooNE tune.

tions and are one of the better understood portions of
cross section modeling, being supported by many neu-
trino and electron scattering experiments, such a large
discrepancy with the nominal model is hard to justify.

To explore this discrepancy further, the BDT
reweighted model was compared to QE-like MicroBooNE
νµCC1p data from [47, 48]. This dataset is dominated
by QE events, and, in select regions of phase space, it
achieves an estimated ∼95% pure QE sample. The im-
pact of the BDT-reweighted model’s significantly smaller
QE prediction is illustrated in Fig. 10, where the Mi-
croBooNE tune prediction with and without the BDT
weights is compared to the extracted double-differential
cross section as a function of α3D in the pn < 0.2 GeV
range. These variables describe the magnitude of the
missing momentum (pn) and the angle between the miss-
ing momentum vector and the momentum transfer vector
(α3D). The low phase space pn region consists almost ex-
clusively of QE events where the final state proton has
not experienced significant final state interactions. The
BDT reweighted model underestimates the data in this
region and is in tension with the data at 2.6σ signifi-
cance. This is noticeably worse than the nominal model
without the BDT weights, which shows tension at only
0.9σ significance. Worsened agreement that approaches
this level of increased tension is seen across the other dis-
tributions as well, indicating that the BDT model is not
preferred by this data

Encountering a situation in real data analogous to
the multivariate event reweighter, which would pass the
model validation but has an entirely different mapping
between true and reconstructed neutrino energy, cannot
be completely ruled out. However, such a scenario is
unlikely as lepton kinematic distributions are well con-
strained by electron scattering data, particularly for QE
events. The BDT reweighting we explore here shows
noticeable tension with the QE prediction from the un-

FIG. 10: Comparison of the BDT reweighted model pre-
diction and various event generator predictions to Mi-
croBooNE νµCC1p data from [48]. The χ2/ndf values in
the legend are calculated using the reported covariance
matrix and each prediction is smeared by the reported
AC matrix.

reweighted model and performs worse when compared to
the QE-like νµCC1p dataset from [47, 48]. Given the
extremity of the example, this DUNE FDS is not in-
consistent with the notion that one is able to use data-
driven validation to detect mis-modeling of the mapping
between true and reconstructed neutrino energy to en-
able the extraction of energy dependent cross sections.

2. Alternative Event Generator Fake Data Studies

The results of the FDSs utilizing fake data produced
by NuWro 19.02.2 are summarized in Table II. This set
of fake data was generated at 6.11×1020 POT, which is
approximately equal to the exposure of the first three
runs of data used for recent MicroBooNE cross section
measurements [11–13]. The fake data contains statistical
fluctuations in addition to the difference in event gen-
erators. As in Sec. IVB1, the amount of discrepancy
between the fake data and MicroBooNE MC prediction
identified in the model validation is compared with the
deviations of the extracted cross sections from the truth.
This is done by converting the p-values obtained in each
test or extraction into significance levels corresponding
multiples of the standard deviation of a normal distri-
bution. Both the full systematic uncertainty and cross
section systematic plus statistical uncertainty situations
are considered, which are labeled “All Uncertainties” and
“XS Syst+Stat Uncertainties”, respectively. The results
for each scenario are described throughout this section.
Though the entire suite of tests described in Sec. IVB

were performed, only the test that identified the most sig-
nificant mis-modeling is shown in Table II. In all cases,
this test identifies tension that is equal to or greater
than the tension between the extracted cross sections
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All Uncertainties XS Syst+Stat Uncertainties

Bias in Extraction Model Validation cos θrecµ |Erec
µ Bias in Extraction Model Validation cos θrecµ |Erec

µ

Eν Eµ ν GoF Decomposition Eν Eµ ν GoF Decomposition

0.1 0.0 0.1 0.0 0.4 2.6 0.1 1.5 3.1 3.9

TABLE II: Results of the model validation and cross section extraction for the NuWro FDSs. Two treatments of
systematic uncertainties are considered: one with full systematic uncertainties (“All Uncertainties”) and the other
with only cross section induced systematic uncertainties (“XS Syst+Stat Uncertainties”). Statistical uncertainties are
always included. The Bias in Extraction columns indicate the significance of the tension between the extracted result
and NuWro prediction. The entries in the Model Validation columns indicate the significance at which the fake data
and the MC used for the cross section extraction disagree in the test that shows the most tension. These significance
levels were computed from the p-values obtained in each test or cross section extraction.

and NuWro truth. This is illustrated in Fig. 11, which
shows the aforementioned most sensitive model valida-
tion test for the “XS Syst+Stat Uncertainties” study,
and Fig. 12, which shows the extracted cross section for
both sets of studies. These findings are consistent with
the results shown in Sec. IVB1 and are consistent with
the point that, in general, one may design a data-driven
model validation procedure that is more sensitive to the
mis-modeling than the extracted cross sections.

For the NuWro study with the full systematic uncer-
tainties, the nominal MicroBooNE model passes val-
idation. Similarly, the comparison between the ex-
tracted cross sections and the NuWro predictions yields
χ2/ndf values of 4.0/10, 2.7/11, and 3.0/8 for Eν ,
Eµ and ν, respectively, indicating that minimal bias
was induced by the unfolding. This can be seen in
Figs. 12(a), 12(b) and 12(c). In these figures, the ex-
tracted cross sections are compared to predictions from
the NuWro truth and the nominal MicroBooNE MC.
Though both predictions show good agreement with the
extracted results, NuWro is slightly favored in all cases.

For the study with only the cross section system-
atic uncertainties, the nominal MicroBooNE model does
not pass validation. The aforementioned model valida-
tion test that demostrates the most sensitivity to mis-
modeling shows this explicitly in Fig. 11. In this test,
the FC&PC cos θrecµ distribution is constrained by the
FC&PC Erec

µ distribution. Shape differences in the for-
ward scattering bins are present even after constraint,
and the decomposition of the χ2 reveals tension at the
3.9σ significance level. Given the choice of 2σ signifi-
cance stringency for the model validation, this level of
tension would prompt further investigation if it were en-
countered in real data and an alternative central value or
expanded uncertainty budget would be implemented be-
fore unfolding. For the purposes of this study, the cross
sections were extracted with the nominal model despite
the tension identified in the validation. These results can
be seen in Figs. 12(d), 12(e) and 12(f). The comparison
between these extracted cross sections and NuWro predic-
tions yields χ2/ndf values of 23.2/10, 5.2/11, and 12.7/8
for Eν , Eµ, and ν, respectively. The corresponding sig-
nificance of this bias is 2.6, 0.1, and 1.5, indicating that
a moderate amount of bias was induced in the extraction

XS Syst+Stat
Uncertainties

FC PC

FIG. 11: Model validation tests comparing the NuWro
fake data sample to the nominal MC prediction for
the reconstructed muon scattering angular distribution
for FC&PC events. In (a), the red (blue) lines and
bands show the prediction without (with) the constraint
from the observed muon energy distribution for FC&PC
events. The uncertainties of the prediction only include
the cross section and statistical terms and are shown in
the bands. The data statistical uncertainties are shown
on the data points. In (b), the significance of the tension
in each bin after the distribution has been constrained
and transformed to the eigenvalue basis of the covariance
matrix is shown.

of σ(Eν) and, to a lesser extent dσ/dν. However, the
significance of this bias is still less than the tension iden-
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FIG. 12: The extracted νµCC cross section from the NuWro fake data [(a),(d)] as a function of neutrino energy,
[(b),(e)] as a function of muon energy, and [(c),(f)] as a function of energy transfer. The statically independent NuWro
prediction is compared to the measurements using full systematic and statistical uncertainties in (a)-(c), and only
cross section related systematic and statistical uncertainties in (d)-(f). The nominal MicroBooNE MC prediction is
also shown.

(a) (b)

FIG. 13: The (a) NuWro and (b) MicroBooNEMC cos θrecµ,p

predictions broken down by interaction mode.

tified in the model validation procedure, which reaches
the 3.9 significance level. This observation is again con-
sistent with the previous result that the model validation
is, in general, more sensitive than the extraction of cross
sections in any of these variables. Furthermore, we note
that the NuWro truth is noticeably favored by the data
for all three results and the large χ2 values obtained for
the MicroBooNE MC prediction indicate the stringency
of this FDS.

To further explore the behavior of the conditional con-
straint from the muon kinematics and its potential utility
beyond its role in model validation for cross section ex-
traction, we investigate its impact on the distribution of
the reconstructed muon-proton opening angle, θrecµ,p. This
kinematic variable is sensitive to the breakdown of dif-

XS Syst+Stat Uncertainties

cos θrecµ,p

FIG. 14: Model validation test comparing the NuWro fake
data sample to the nominal MC prediction for the recon-
structed muon-proton opening angle distribution for FC
events. The red (blue) lines and bands show the predic-
tion without (with) the constraint from the reconstructed
muon kinematics. The uncertainties of the prediction
only include the cross section and statistical terms and
are shown in the bands. The statistical uncertainties on
the data are shown on the data points.
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ferent interaction modes with QE interactions dominat-
ing at negative cos θrecµ,p and MEC and RES events more
prominent at positive cos θrecµ,p. Figure 13, which displays
the NuWro and MicroBooNE MC cos θrecµ,p predictions bro-
ken down by interaction mode, illustrates this separation.
The significantly different MEC predictions from the two
generators is also apparent here. This difference is still
present when the NuWro fake data cos θµ,p distribution
is examined after a constraint from the muon kinemat-
ics, as can be seen in Fig. 14. Agreement in the more
QE-rich region (cos θrecµ,p < 0) is observed after constraint
whereas the MEC-rich region (cos θrecµ,p > 0.5) shows no-
ticeable discrepancies. Given the similar RES predictions
between the two models, this suggests that the MEC pre-
diction from NuWro is outside the uncertainties of the
MicroBooNE model. This study demonstrates how the
model validation and the conditional constraint can be
used to probe the modeling of the relative contribution
from different interaction modes.

V. SUMMARY

Neutrino-nucleus cross section measurements are mo-
tivated by the desire to improve interaction modeling
to meet the precision needs of modern neutrino exper-
iments. More robust interaction models are needed for
these experiments to reach their desired level of sen-
sitivity in measurements of oscillation parameters and
searches for physics beyond the Standard Model. The
difficulties associated with modeling neutrino-nucleus in-
teractions at this level of precision result in the reliance
on event generators using effective models in both neu-
trino oscillation experiments and cross section measure-
ments.

The heavy reliance on event generators makes model
validation important when extracting neutrino-nucleus
interaction cross sections. To this end, we have pre-
sented a set of data-driven validation procedures and
demonstrated that they can be powerful for detecting de-
ficiencies in the models used for cross-section extraction.
This validation utilizes techniques based on goodness-of-
fit tests and the conditional constraint procedure to de-
termine if the overall model can describe the data within
uncertainties in the phase space relevant for the unfold-
ing. Since this approach is based upon real data, it
is well-grounded to appropriately validate the unfolding
model and to evaluate the need for additional uncertain-
ties. If a carefully selected set of data-driven tests are
passed by the model, this builds confidence that any bias
introduced in the cross section extraction will be within
the quoted uncertainties of the measurement. This ap-
plies to both measurements of visible kinematic variables,
such as the outgoing muon kinematics, and to derived
quantities, such as the energy transferred to the nucleus.
We demonstrate the efficacy of these data-driven meth-
ods with fake data studies aimed at comparing the sensi-
tivity of the validation to the amount of bias introduced

in the cross section extraction, in which we find that the
validation is able to detect mismodeling before it impacts
the cross section extraction.
These validations are particularly important in the

case of extracting nominal flux-averaged cross sections,
which we advocate for due to the additional challenges
associated with flux uncertainties created for the future
analyzers of the data when extracting cross sections in
the real flux. Producing robust cross section measure-
ments with proper treatment of uncertainties is essen-
tial to tuning efforts and event generator improvements,
which will enable the desired precision in neutrino ex-
periments in the near future. Utilizing data-driven model
validation to extract nominal flux-averaged cross sections
represents a reliable strategy to achieve this goal.

Appendix A: Fake Data Model Validation Test

In this appendix, we present the complete list of model
validation tests used in the fake data studies presented
in Sec. IVB.

• Evaluation of the Erec
µ FC, PC and FC&PC distri-

butions through overall χ2 GoF tests and χ2 de-
compositions (6 total tests).

• Evaluation of the Erec
µ PC distribution after con-

straint from the analogous FC distribution. The
overall χ2 GoF test and χ2 decomposition are ex-
amined (2 total tests).

• Evaluation of the cos θrecµ FC, PC and FC&PC dis-

tributions through overall χ2 GoF tests and χ2 de-
compositions (6 total tests).

• Evaluation of the cos θrecµ PC distribution after con-
straint from the analogous FC distribution. The
overall χ2 GoF test and χ2 decomposition are ex-
amined (2 total tests).

• Evaluation of the cos θrecµ FC, PC and FC&PC dis-
tributions after constraint from the FC&PC Erec

µ

distribution. The overall χ2 GoF test and χ2 de-
composition is examined for each distribution (6
total tests).

• Evaluation of the Erec
ν FC, PC and FC&PC distri-

butions through overall χ2 GoF tests and χ2 de-
compositions (6 total tests).

• Evaluation of the Erec
ν PC distribution after con-

straint from the analogous FC distribution. The
overall χ2 GoF test and χ2 decomposition are ex-
amined (2 total tests).

• Evaluation of the Erec
ν FC, PC and FC&PC distri-

butions after constraint from the FC&PC Erec
µ and

cos θrecµ distributions. The overall χ2 GoF test and

χ2 decomposition is examined for each distribution
(6 total tests).
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• Evaluation of the Erec
had FC, PC and FC&PC dis-

tributions through overall χ2 GoF tests and χ2 de-
compositions (6 total tests).

• Evaluation of the Erec
had PC distribution after con-

straint from the analogous FC distribution. The
overall χ2 GoF test and χ2 decomposition are ex-
amined (2 total tests).

• Evaluation of the Erec
had FC, PC and FC&PC distri-

butions after constraint from the FC&PC Erec
µ and

cos θrecµ distributions. The overall χ2 GoF test and

χ2 decomposition is examined for each distribution
(6 total tests).
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