
Fermilab

Observable CMB Tensor Modes from Cosmological Phase Transitions

FERMILAB-PUB-24-0752-T

arXiv:2410.23348

This manuscript has been authored by Fermi Research Alliance, LLC

under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,

Office of Science, Office of High Energy Physics.



FERMILAB-PUB-24-0752-T

Observable CMB Tensor Modes from Cosmological Phase Transitions

Kylar Greene ,1, 2, ∗ Aurora Ireland ,3, † Gordan Krnjaic ,2, 4, 5, ‡ and Yuhsin Tsai 6, §

1Department of Physics and Astronomy, University of New Mexico Albuquerque, New Mexico 87131
2Theoretical Physics Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

3Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305
4Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637

5Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
6Department of Physics and Astronomy, University of Notre Dame, South Bend, IN 46556

(Dated: November 1, 2024)

A B-mode polarization signal in the cosmic microwave background is widely regarded as smoking
gun evidence for gravitational waves produced during inflation. Here we demonstrate that tensor
perturbations from a cosmological phase transition in the post-inflationary universe can nearly
mimic the characteristic shape and power of inflationary predictions across a range of observable
angular scales. Although phase transitions arise from subhorizon physics, they nevertheless exhibit
a white noise power spectrum on superhorizon scales. Thus, while B-mode power is suppressed
on these large scales, it is not necessarily negligible. For viable phase transition parameters, the
maximal B-mode amplitude at multipole moments around the recombination peak (ℓ ∼ 100) can
be comparable to nearly all single-field inflationary predictions that can be tested with current
and future experiments. This approximate degeneracy can be broken if a signal is measured at
different angular scales, since the inflationary power spectrum is nearly scale invariant while the
phase transition predicts a distinct suppression of power on large scales.

I. INTRODUCTION

Cosmological inflation is a compelling framework for
dynamically solving the horizon and flatness problems
while also generating the density perturbations observed
in our universe today [1, 2]. Inflationary models also
generically predict nearly scale-invariant tensor pertur-
bations, which induce a characteristic B-mode polariza-
tion signal in the cosmic microwave background (CMB)
[3–14]. It is widely accepted that observing B-modes
above known astrophysical foregrounds would constitute
“smoking gun” evidence for inflation [15–18].

In this Letter, we present a counterexample of post-
inflationary B-modes that mimic the inflationary pre-
diction. Indeed, any source of large-scale, coherent ten-
sor perturbations produced before reionization can con-
tribute to B-mode signals.1 Our representative exam-
ple is a late-time (T ∼ keV) strongly first-order phase
transition, which produces gravitational waves (GWs)
through bubble collisions, sound waves, and turbulence.
The key difference with respect to the inflationary sig-
nal is that the spectrum from these subhorizon sources
is not (nearly) scale invariant, but rather white noise on
superhorizon scales. Accurately measuring B-modes on
different angular scales can then in principle distinguish
between these sources.

Pioneering earlier work has extensively studied the

∗ kygreene@unm.edu
† anireland@stanford.edu
‡ krnjaicg@uchicago.edu
§ ytsai3@nd.edu
1 See also Ref. [19] for B-mode signals from resonant particle pro-
duction near reionization.

GW signal from cosmological phase transitions [20–
53], with recent developments presenting analytical es-
timates of the GW signal [54–56]. Recently, it has also
been shown that the white noise scalar perturbations
from bubble nucleation can affect CMB temperature
anisotropy measurements [57]. To our knowledge, how-
ever, the CMB B-mode signal from a first-order phase
transition has not been calculated.
This Letter is organized as follows: Sec. II develops the

formalism for calculating the B-mode polarization signal;
Sec. III reviews the tensor power spectrum from a phase
transition; Sec. IV presents our numerical results; Sec. V
discusses the complimentary GW signal; and Sec. VI of-
fers some concluding remarks and future directions.

II. B-MODE POLARIZATION

Tensor perturbations lead to temperature anisotropies
in the CMB. When photons scatter with free electrons,
quadrupole anisotropies in the temperature distribution
are transformed into polarization of the scattered pho-
tons. The majority of CMB polarization is generated
during recombination, since afterwards the number den-
sity of free electrons drops sharply and Thomson scatter-
ing ceases to be efficient. Here, we make the simplifying
assumption that all polarization is generated in this last
scattering event. This approximation will be relaxed in
Sec. III, where we compute the angular B-mode spectrum
exactly using the Boltzmann solver CLASS [58, 59]. The
purpose of these formulas is simply to provide intuition
as well as a semi-analytic check of our results.
Consider initially unpolarized photons which arrive

along direction n̂′ to the point x⃗, where they last scat-
ter at conformal time τ . Letting n̂ be the direction of
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observation and τ0 be the conformal time today, we can

write x⃗ = (τ0−τ)n̂. A tensor perturbation hij(τ, k⃗) gives
the following contribution to the temperature anisotropy
Θ ≡ ∆T/T , which can be written [60]

Θ(τ, k⃗; n̂, n̂′) =
1

2

∫ τ

0

dτ1 V (τ, τ1)e
ik⃗·n̂(τ0−τ)

×
∫ τ

τ1

dτ2e
−ik⃗·n̂′(τ−τ2)

∑
λ=+,×

n′
iϵ

λ
ijn

′
j ∂τ2hλ(τ2, k⃗)

(1)

where ϵλij is the polarization tensor for gravitational
waves, the sum runs over graviton polarizations, and
V (τ1, τ2) is the visibility function, which satisfies

V (τ1, τ2) = e−κ(τ1,τ2)
dκ(τ2)

dτ2
, (2)

and is defined in terms of the optical depth

κ(τ1, τ2) =

∫ τ1

τ2

dτ a(τ)σT ne(τ) (3)

where ne is the electron number density and σT is the
Thomson cross section. This temperature anisotropy
gives rise to an anistropy in the intensity of incoming
radiation, and so Θ enters into the CMB polarization
tensor as [3, 60]

Pab(k⃗; n̂) =
3

4π

∫
d2n′εab

∫ τ0

0

dτV (τ0, τ)Θ(τ, k⃗; n̂ · n̂′), (4)

and we have defined the tensor

εab =
1− (n̂ · n̂′)2

2
gab − n̂′ea · n̂′eb , (5)

where ea is the set of basis vectors on the celestial sphere
and gab is the background metric. Notice that because
n̂′ enters in a bilinear combination, polarization requires
a quadrupole component to the anisotropy.

It is convenient to decompose the polarization tensor
into E- and B-modes, which can each be expanded in
spherical harmonics on the celestial sphere. Doing so,
one can identify the coefficient

aBℓm(k⃗) = −
∫

d2n
[
Y

(B)
ℓm

]∗
ab
(n)P ab(k⃗; n̂) , (6)

where Y
(B)
ℓm are the B-mode tensor harmonics on the

sphere.2 The angular spectrum of B-mode polarization
is defined in terms of these coefficients as

CBB
ℓ =

1

2ℓ+ 1

∑
m=±2

∫
d3k

(2π)3

〈
aBℓm(k⃗) aBℓm(k⃗)∗

〉
, (8)

2 The B-mode tensor harmonics are related to the ordinary spher-
ical harmonics as(
Y

(B)
ℓm

)
ab
(n) =

√
(ℓ− 2)!

2(ℓ+ 2)!
(ϵcb∇a∇c + ϵca∇c∇b)Yℓm(n) . (7)

where the angle brackets denote ensemble average. Work-

ing in a frame with the azimuthal axis oriented along k⃗
to perform the integrals, one can show that

CBB
ℓ = 36π

∫ ∞

0

dk

k
Ph(k)Fℓ(k)

2 , (9)

where Ph(k) is the dimensionless tensor power spectrum
evaluated at the initial time and

Fℓ(k) =

∫ τ0

0

dτ V (τ0, τ)Sℓ(k, τ0, τ)

∫ τ

0

dτ1 V (τ, τ1)

×
∫ τ

τ1

dτ2
j2[k(τ − τ2)]

k2(τ − τ2)2

(
∂T (τ2, k)

∂τ2

)
, (10)

where we have defined

Sℓ(k, τ0,τ) ≡
ℓ+2

2ℓ+1
jℓ−1[k(τ0−τ)]− ℓ−1

2ℓ+1
jℓ+1[k(τ0−τ)]. (11)

Note that in deriving this result, we have decomposed
the tensor perturbation into an initial perturbation am-

plitude hini
λ (k) and the transfer function T (τ, k⃗), where

hλ(τ, k⃗) = hini
λ (k⃗)T (τ, k⃗) . (12)

This decomposition is useful because it separates the ef-
fect of statistical correlations between the initial ampli-
tudes from the deterministic effect of the modes’ sub-
sequent evolution, as captured by the transfer function.
The statistical properties of the initial perturbations are
encoded in the (dimensionful) power spectrum Ph(k),〈

hini
λ (k⃗)hini

λ′ (k⃗′)∗
〉
=

δλλ′

2
Ph(k)(2π)

3δ(3)(k⃗ − k⃗′) . (13)

We also introduce the dimensionless power spectrum ap-
pearing in Eq. (9),

Ph(k) =
k3

2π2
Ph(k) . (14)

In the presence of a nonzero source Πij(τ, k⃗), a Fourier

mode of the metric perturbation hij(τ, k⃗) evolves accord-
ing to the wave equation

h′′
ij + 2Hh′

ij + k2hij = 8πGa2Πij , (15)

where H = a′/a is the conformal Hubble rate, primes
denote derivatives with respect to conformal time, and
the source term is the Fourier transformed anisotropic
stress. When the source is inactive, the transfer function
satisfies

T ′′ + 2HT ′ + k2T = 0 . (16)

Following Ref. [61], we ignore the late-time contribu-
tion from dark energy, and consider only effects from the
transition from radiation to matter domination. In this
2-component universe, the Friedman equations can be
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solved analytically, and one can derive the following solu-
tions for the transfer function in the radiation-dominated
and matter-dominated regimes

TRD(τ, k) = Ak j0(kτ)−Bk y0(kτ) (17)

TMD(τ, k) =
3

kτ

[
Ck j1(kτ)−Dk y1(kτ)

]
. (18)

From the initial conditions and the matching conditions
at the characteristic timescale τ̃ = 4

√
Ωr/H0Ωm, the

constants in Eq. (17) are Ak = 1, Bk = 0, and those
in Eq. (18) satisfy

Ck =
1

2
− cos(2kτ̃)

6
+

sin(2kτ̃)

3kτ̃
,

Dk = − 1

3kτ̃
+

kτ̃

3
+

cos(2kτ̃)

3kτ̃
+

sin(2kτ̃)

6
.

(19)

Given a form for the initial tensor power spectrum,
Eq. (9) in conjunction with Eqs. (10), (17), (18), and
(19) can be used to compute the B-mode signal. These
expressions contain many nested integrals with oscilla-
tory integrands, however, which can lead to numerical
instabilities. Approximating the visibility function as a
Gaussian of width ∆τr ≃ 0.04τr about its maximum [60],
the conformal time integrals can be simplified consider-
ably to yield

CBB
ℓ ≃ 36π

25

(
∆τr
τr

)2∫ ∞

0

dk

k
Ph(k) j2(kτr)

2Sℓ(k, τ0, 0)
2, (20)

where we have used the fact that modes entering during
matter domination (τ > τeq) obey

T (τ, k) → 3j1(kτ)

kτ
. (21)

Note that the approximation in Eq. (20) is inadequate
to properly capture the behavior of CBB

ℓ for large mul-
tipoles ℓ ≳ 100. For this reason, we will use exclusively
Eq. (9) when comparing our numerical results against
these semi-analytic expectations in Sec. IV.

III. TENSOR POWER SPECTRUM FROM
BUBBLE COLLISIONS

We consider first-order cosmological phase transitions
in the post-inflationary universe as an example of a source
of large-scale, coherent tensor perturbations. Such phase
transitions proceed through bubble nucleation, which
sources tensor perturbations in three distinct stages.

During the bubble collision stage, bubbles of true
vacuum collide and merge, breaking spherical symme-
try and allowing the gradient energy of the scalar field
to source anisotropies [62, 63]. This phase completes
quickly; nevertheless, it can be the dominant contribu-
tion for strong vacuum transitions. After the bubbles
have merged, shells of fluid kinetic energy continue to
propagate through the plasma, colliding and sourcing

GWs during the acoustic stage [31, 64, 65]. These sound
wave collisions can produce vorticity, turbulence, and
shocks in the fluid, which in turn source GWs during
the turbulent stage [66–69].
The relative contribution from each of these stages de-

pends largely on the transition strength, as parameter-
ized by α, as well as the bubble wall velocity vw. For
concreteness, we will consider a near-vacuum transition
with runaway bubble wall, for which the dominant con-
tribution comes from the bubble collision stage. Thus we
consider only the contribution from this stage. In deriv-
ing the initial tensor power spectrum of this source, we
follow the semi-analytic approach of Refs. [54, 55]. Dur-
ing the phase transition, we solve Eq. (15) with source

term Πij(τ, k⃗), defined as the Fourier transform of the
anisotropic stress — the transverse, traceless part of the
energy-momentum tensor

Πij(τ, k⃗) =

(
πikπjl −

1

2
πijπkl

)
Tkl(τ, k⃗) , (22)

with πij = δij − k̂ik̂j . We take the source to be a sta-
tistically homogeneous, isotropic random variable with
unequal-time correlator〈
Πij(τ1, k⃗)Π

∗
ij(τ2, k⃗

′)
〉
=(2π)3δ(3)(k⃗−k⃗′)Π(τ1, τ2, k). (23)

We also assume the phase transition is short-lived and
completes within a fraction of a Hubble time H∗ ≪ β,
where β is the inverse duration of the phase transition.
To solve Eq. (15), we introduce the comoving tensor

perturbation hij(τ, k⃗) ≡ a(τ)hij(τ, k⃗), whose wave equa-
tion is

h′′(τ, k⃗) +

(
k2 − a′′

a

)
h(τ, k⃗) = 8πGa3Πij(τ, k⃗) . (24)

We also introduce the Green’s function Gk(τ, τ̄), which
solves the homogeneous equation with delta func-
tion source and boundary conditions Gk(τ, τ) = 0,
G′

k(τ, τ̄)|τ=τ̄ = 1. During radiation domination a ∝ τ , so
a′′ = 0 and we have

Gk(τ, τ̄) =
sin[k(τ − τ̄)]

k
. (25)

The solution for hij(τ, k) during the phase transition τ ∈
[τi, τf ] is given by convolution

hij(τ, k⃗) = 8πG

∫ τ

τi

dτ1 Gk(τ, τ1)a
3
1Πij(τ1, k⃗) , (26)

where aj = a(τj). At the end of the transition, the initial

tensor mode amplitude hini
ij (k⃗) ≡ hij(τf , k⃗) is then

hini
ij (k⃗) =

8πG

afk

∫ τf

τi

dτ1 sin[k(τf − τ1)] a
3
1 Πij(τ1, k⃗) . (27)

Substituting this explicit solution into Eq. (13) and sum-
ming over polarizations, the initial power spectrum is

Ph =
32π2G2

a2fk
2

∫ τf

τi

dτ1

∫ τf

τi

dτ2 cos[k(τ1−τ2)]Π̃(τ1,τ2, k) , (28)
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FIG. 1: Left Top: B-mode polarization spectra for a phase transition with parameters T∗ = 3.2 keV, κ = 1,
α = 0.039, and β/H = 10 (solid red) and a minimal inflationary model with r = 0.0025 (dashed blue). Semi-analytic
prediction of Eq. (9) shown for comparison (black points). Parameters chosen to saturate bounds from ∆Neff and
finite bubble statistics. Lensing removed for illustrative purposes. Left Bottom: Ratio of B-mode signals from
these sources. Right: Contours of B-mode spectra for phase transitions at different values of T∗. Other parameters
same as left panel. Inflationary prediction for r = 0.0025 shown for comparison (black). Note that phase transition
temperatures with peak power above the r = 0.0025 curve are ruled out for the specific model considered, based on
the constraints of Fig. 2.

where Π̃(τ1,τ2, k) ≡ a31a
3
2Π(τ1,τ2, k) and the unequal-time

correlator is defined in Eq. (23). Since we assume the
phase transition completes in well under a Hubble time,
we can neglect expansion while the source is active and
approximate all insertions of the scale factor with the
same constant value during the phase transition, ai ≈
af ≡ a∗. In this limit, Eq. (28) simplifies to

Ph ≃ 32π2G2a4∗
k2

∫ τf

τi

dτ1

∫ τf

τi

dτ2 cos[k(τ1−τ2)]Π(τ1,τ2, k) . (29)

Note that this double integral has the same form as
Eq. (23) of Ref. [55], which identified the result with the
dimensionless quantity ∆(k/β),∫ tf

ti

dt1

∫ tf

ti

dt2 cos[k(t1 − t2)] Π(t1, t2, k)

≡ 3κ2H4
∗

16G2β2k3

(
α

1 + α

)2

∆

(
k

β

)
,

(30)

where the transition strength α describes the ratio of
vacuum energy released relative to that in radiation, and
the efficiency factor κ characterizes how much vacuum
energy goes into bulk kinetic energy. Note that ∆(k/β)
depends only3 on the ratio k/β, since other thermal phase
transition parameters have been factored out.

In order to express our result in terms of this ∆ func-
tion, note that Ref. [55] carries out their source cal-
culation integrating over the dimensionless quantity tβ

3 In principle, ∆ also depends on the wall velocity vw. We follow
Ref. [55] in setting vw = 1 for simplicity.

(where they have set β = 1 in all intermediate steps).
Since we work in conformal time, the corresponding di-
mensionless quantity for us is τa∗β. Thus, we are justi-
fied in using their functional form for ∆ with the replace-
ment β → a∗β, so that the dimensionless tensor power
spectrum becomes

Ph(k) = 3κ2

(
a∗H∗

k

)2(
H∗

β

)2(
α

1 + α

)2

∆

(
k

a∗β

)
. (31)

Note that the semi-analytical ∆ calculation in Ref. [55]
uses the thin wall and envelope approximations and we
show the complete expression in Appendix B. This result
can be approximated with an empirical fitting formula,
which reproduces the full spectrum to within 8% error
[55]

∆(x) ≃ ∆p

[
clx

−3 + (1− cl − ch)x
−1 + chx

]−1
, (32)

where x ≡ k/kp, kp ≃ 1.24 a∗β is the peak frequency of
the phase transition, ∆p ≃ 0.043 is the peak amplitude,
cl ≃ 0.064, and ch ≃ 0.48. The most important thing to
note is that the high- and low-k scaling of ∆ is

∆ ∝
{
k3 k/(a∗β) ≲ 1

k−1 k/(a∗β) ≳ 1
. (33)

In particular, the low-frequency regime displays the ex-
pected k3 behavior characteristic of the causality-limited
part of a stochastic GW spectrum — that is, those modes
whose wavelengths (and periods) are much larger than
the spatial (and temporal) correlations of the source [70].
This result in conjunction with the k-scaling of Ph in
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Eq. (31) implies

Ph ∝
{
k k/(a∗β) ≲ 1

k−3 k/(a∗β) ≳ 1
. (34)

Naively, the B-mode contribution from cosmological
phase transitions should be negligible since the CMB is
sensitive to long-wavelength modes and the phase tran-
sition power spectrum is suppressed at low frequencies.
The mildness of this Ph ∼ k fall-off suggests, however,
that for sufficiently strong transitions, the power in the
causal tail may still be appreciable enough to yield an
observable B-mode signal.

IV. NUMERICAL RESULTS

In Fig. 1, we plot the angular B-mode power spectrum
in terms of

DBB
ℓ ≡ ℓ(ℓ+ 1)

2π
T 2
0C

BB
ℓ , (35)

with CBB
ℓ defined in Eq. (8). The left panel compares the

numerically calculated DBB
ℓ spectra for two scenarios:

• A phase transition with parameters T∗ = 3.2 keV,
κ = 1, α = 0.039, and β/H∗ = 10 chosen to
saturate bounds from ∆Neff [71] and finite bubble
statistics [57]. This benchmark point corresponds
to the blue star in Fig. 2

• A minimal inflationary model with a tensor-to-
scalar ratio of r = 0.0025, selected to match the
peak amplitude of the phase transition signal at
the multipole ℓ ≈ 100.

For illustrative purposes, we exclude the predicted lens-
ing signal from both cases to highlight the shape differ-
ences between these sources. Note that the lensing signal
is a foreground effect that impacts both models in a sim-
ilar way [72–83].

The solid and dashed curves in the top left panel are
computed using the Boltzmann solver CLASS [59]. In
particular for the phase transition signal, we utilize the
external-pk module with the custom primordial ten-
sor power spectrum from Eq. (13). CLASS then computes
the transfer functions from the Einstein-Boltzmann equa-
tions and the polarization source functions. These out-
puts, combined with the primordial tensor power spec-
trum, are then used to evaluate the line-of-sight and k-
space integrals to obtain the CBB

ℓ . For comparison, we
show also the semi-analytic estimate from Eq. (9), which
accurately captures the recombination peak but becomes
numerically challenging at higher multipoles ℓ > 100. In
contrast, CLASS efficiently handles the numerical integra-
tion required at higher multipoles.

The bottom left panel shows the ratio of the phase
transition and inflationary B-mode predictions, high-
lighting their distinct spectral shapes. The tensor power

FIG. 2: Experimental limits (2σ) on α for various phase
transition temperatures, assuming all energy is released
into dark radiation (adapted from Ref. [57]). Here we
show bounds from Lyman-α [84] (orange shaded), CMB
scalar perturbations [85] (orange shaded), CMB spectral
distortions COBE-FIRAS, [86] (yellow shaded), and the
CMB limit on ∆Neff ≥ 0.29 [71] (light grey shaded).
We show also future projections from CMB-S4 (grey
dashed curve) and SuperPIXIE [87] (red dashed curve),
assuming sensitivity of ∆ργ/ργ ∼ 10−8. The blue star
denotes the benchmark point of Fig. 1, for which
α = 0.039, κ = 1, vw = 1, T∗ = 3.2 keV, and β/H∗ = 10.

spectrum from a phase transition scales as Ph(k) ∝ k in
the superhorizon regime, resulting in enhanced power at
higher multipoles and suppressed power at lower multi-
poles compared with the nearly scale-invariant inflation-
ary case. In particular, the reionization peak at ℓ ≲ 10
is essentially absent in the phase transition spectrum.
The difference in the distribution of power across angu-
lar scales implies that these scenarios can in principle be
distinguished.
The right panel of Fig. 1 shows B-mode power spectra

for various phase transition temperatures ranging from
T∗ = 1 eV to T∗ = 1 MeV, whilst keeping κ = 1,
α = 0.039, and β/H∗ = 10 fixed to their benchmark val-
ues. For comparison, we show also the inflationary pre-
diction with r = 0.0025 (black), which is well within the
sensitivity of future B-mode experiments such as Lite-
BIRD [88] and CMB-S4 [89]. Phase transitions at lower
temperatures yield B-mode signals that can rival or even
exceed those from inflation, emphasizing the importance
of considering such alternatives in CMB analyses.

V. A COMPLEMENTARY GW SIGNAL

The tensor perturbations that source our B-modes also
result in a stochastic GW background that offers a com-
plementary signal of our scenario. The relative energy
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density in GWs per logarithmic frequency interval is
quantified by the spectral density parameter ΩGW

ΩGW =
1

ρtot

dρGW

d ln k
. (36)

At the time of the phase transition τ∗, the energy density
in GWs is

ρ∗GW =
1

8πGa2∗

〈
h′
ij(τ∗, x⃗)h

′
ij(τ∗, x⃗)

〉
, (37)

where the real-space correlation function can be ex-
pressed as

〈
h′
ij(τ, x⃗)h

′
ij(τ, x⃗)

〉
=

∫
d ln kPh′(τ, k) . (38)

Using the explicit form of hij , one can show that Ph′(k) =
k2Ph(k). From the above and Eq. (31), one can work out
that at the time of the phase transition

Ω∗
GW = κ2

(
H∗

β

)2 (
α

1 + α

)2

∆

(
2πf∗
β

)
, (39)

where as a last step we have introduced the physical
frequency f , related to the comoving momentum as
k = 2πaf .

To translate this signal to today, we can use entropy
conservation relate the scale factor at the transition to
that today

a∗
a0

=

[
g⋆,s(T0)

g⋆,s(T∗)

]1/3
T0

T∗
. (40)

The frequency redshifts like one power of the scale factor,
f0 = f∗ (a∗/a0), while the energy density in GWs dilutes

as four powers of the scale factor, ρ0GW = ρ∗GW (a∗/a0)
4
.

The spectral density parameter today is then

ΩGWh2 ≃ 4× 10−5κ2α2

(
H∗

β

)2

∆

(
2πf0
a∗β

)
, (41)

where we have normalized a0 = 1 and taken g⋆(T⋆) =
3.36 and g⋆,s(T⋆) = 3.91, since we focus on late-time
phase transitions.

In Fig. 3, we show sample ΩGW predictions for the
phase transition and inflationary scenarios, presented
alongside the CMB constraints from Ref. [90]. As dis-
cussed in Appendix A, the precise location of the CMB
limit from B-modes is model dependent, as translating
sensitivity from DBB

ℓ to ΩGW depends on the power
spectrum of the source. Because the phase transi-
tion only produces GWs at time τ∗, the corresponding
GW spectrum picks up an additional suppression fac-
tor (kτ∗)

2 ∼ 10−10 relative to the inflationary curve at
frequencies near f ∼ 10−17 Hz, corresponding to scales
k ∼ 10−2 Mpc−1 — even though both signals have simi-
lar peak values in DBB

ℓ at this scale.

10−18 10−15 10−12 10−9 10−6 10−3 100

Frequency f [Hz]

10−24

10−21

10−18

10−15

10−12

10−9

h
2 Ω

G
W

(f
)

SKAInflationary
CMB constraint

r = 0.036

Inflation: r = 0.0025

T∗ =
40 keV

PT: T∗ =
3.2 keV

α
=

0.04

LISA

α
=

1

FIG. 3: Representative GW spectra for tensor modes
from phase transitions (PT) (solid) and inflation
(dotted), shown alongside the CMB constraint on
inflation from Ref. [90]. The solid PT curves shown here
predict the same B-mode power at ℓ = 100 as the
corresponding dotted inflationary curves of the same
color. In Appendix A, we discuss the model dependence
of this limit and why the CMB B-mode constraint for
these PTs is actually much lower on this plane;
calculating this limit beyond the scope of this work.
The light blue inflation curve (r = 0.036) meets the
BICEP upper limit [91] and matches the peak B-mode
amplitude of a T∗ = 40 keV PT with α = 1, though
ruled out by Fig. 2. Similarly, r = 0.0025 aligns with a
T∗ = 3.2 keV PT with α = 0.039 (Fig. 1, upper left).
Both PT curves assume κ = 1 and β/H∗ = 10.
Sensitivity curves for LISA (purple) [92] and SKA
(black) [93] are also shown.

VI. DISCUSSION

In this Letter, we have found that the gravitational
waves produced during a late-time, first-order phase tran-
sition can generate CMB B-modes on observable scales.
Although phase transitions occur due to causal processes
on subhorizon scales, they nonetheless exhibit white noise
on large scales and the corresponding B-modes from this
white noise power can viably mimic the more familiar
inflationary signal across a range of multipole moments.
Thus, a positive detection of B-modes beyond the known
lensing effect is no longer a definitive “smoking gun” for
inflation, though it is still clear evidence of new physics.

Fortunately, the phase transition signal is not fully de-
generate with the inflationary predictions. Although the
peak power from any testable inflationary model (down
to r ∼ 10−3) can also be accommodated with a viable
late-time phase transition, the latter signal exhibits a
characteristic spectral shape: low-ℓ suppression and high-
ℓ enhancement relative to the inflationary prediction.
Thus, these hypotheses can ultimately be distinguished
with sufficiently precise B-mode measurements on differ-
ent angular scales scales. Furthermore, the cosmological



7

phase transitions we have considered may also predict
stochastic GW backgrounds within SKA sensitivity [93],
CMB spectral distortions observable with PIXIE [94] and
SPECTER [95], and ∆Neff within the reach of CMB-S4
targets [89]. Collectively, these additional probes can, in
principle, break the near degeneracy between the infla-
tionary and phase transition B-mode signals.

Note that our treatment of gravitational waves from
phase transitions is conservative as we have only in-
cluded contributions from bubble collisions and omitted
the effects of turbulence and sound waves. Furthermore,
many of the limits on cosmological phase transitions (e.g.
∆Neff) are model dependent as they assume a specific
equation of state for the hidden sector after the transi-
tion completes. Fully accounting for these effects and
their variations could allow for much louder GW signals
within viable parameter space, but we leave a more de-
tailed treatment for future work.

While our result heightens the challenge of understand-
ing inflation from a B-mode discovery at a single angular
scale, it also opens the door to understanding a wider
range of new physics in the event of such a discovery. In-
deed, we have shown that all existing and future experi-
ments sensitive to B-modes can also be sensitive to white
noise power from a new range of new, non-inflationary
scenarios. We note that similar white noise signals may
also arise from other sources, including cosmic strings
or domain walls, whose contributions we leave for future
work.
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Appendix A: Model Dependence of CMB ΩGW limits

In this appendix, we derive the relationship between
CMB limits on ΩGW for phase transitions and compare
these limits to the more familiar inflationary case shown
in Fig. 3. We first show that the primordial power
spectra Ph(k) are approximately equal for a k value as-
sociated with the predicted peaks of the DBB

ℓ spectra.
We then demonstrate that these peaks are indeed nearly
equivalent in amplitude in DBB

ℓ space. Finally, using the
same Ph(k) that produced similar DBB

ℓ signals, we define
the relationship between Ωinf

GW and ΩPT
GW, demonstrating

a relative suppression between the two predicted spectra
on large scales, even though the Ph(k) which source them
produce similar DBB

ℓ amplitude at the given scale.
The inflationary prediction for the primordial tensor

power spectrum is parameterized as

P inf
h (k) = rAs

(
k

kpiv

)nT

, (A1)

where As = 2.1 × 10−9 is the amplitude of scalar fluc-
tuations and kpiv = 0.05 Mpc−1 is the pivot scale [71].
For illustration, let us consider the a minimal inflationary
model with tilt nT = −r/8 and a reference value for the
tensor-to-scalar ratio which saturates the BICEP bound,
r = 0.036 [91]. For phase transitions, the corresponding
tensor power spectrum is given in Eq. (31),

PPT
h (k) = 3κ2

(
a∗H∗

k

)2(
H∗

β

)2(
α

1 + α

)2

∆

(
k

a∗β

)
. (A2)

We adopt the model parameters

κ = α = 1 , β/H = 10 , T∗ = 40 keV , (A3)

so that the amplitude of DBB
ℓ at the ℓ ∼ 100 peak roughly

matches the amplitude of the inflationary signal.
The recombination peaks of the DBB

ℓ spectra occur
around ℓ ∼ 100 for both the phase transition and in-
flationary signals. Using the approximation ℓ ∼ kτ0,
this ℓ mode corresponds roughly to the comoving mo-
mentum k100 ≡ 6.45 × 10−3 Mpc−1 and the frequency
f ∼ 10−17 Hz. For the benchmark phase transition in-
puts from Eq. (A3), chosen so the two types of signals
have similar power at k100, we find

P inf
h (k100) ≈ PPT

h (k100) ≈ 9× 10−11 . (A4)

The primordial tensor power spectrum gives the B-mode
signal via

DBB
ℓ = 18ℓ(ℓ+ 1)T 2

0

∫ ∞

0

dk

k
Ph(k)Fℓ(k)

2 , (A5)
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FIG. 4: Dimensionless tensor power spectra Ph(k)
corresponding to a sample phase transition with
parameters given in Eq. (A3) (solid red) and inflation
with r = 0.036 (dotted blue). The vertical grey line
denotes the comoving momentum associated with
ℓ ∼ 100, for which the power spectra are approximately
equal.

where Fℓ(k)
2 is independent of the source of tensor per-

turbations and we have combined Eqs. (9) and (35). The
similar Ph(k100) values for the two signals also yield sim-
ilar peak values (ℓ ≈ 100) for the B-mode power

DBB,inf
100 ≈ DBB,PT

100 ≈ 2.4× 10−7µK2 . (A6)

With these numbers, we can now estimate the corre-
sponding GW energy density ΩGW at this frequency. Be-
fore horizon re-entry, the GW energy density sourced by
the inflationary signal is [90]

Ωinf
GW =

ΩR

24
P inf
h (k) , (A7)

where we have assumed radiation domination. Similarly,
for phase transitions during radiation domination, we can
combine Eqs. (31) and (39) to obtain

ΩPT
GW =

ΩR

3

(
k

a∗H∗

)2

PPT
h (k) , (A8)

where ΩR = ρR/ρtot is the energy fraction of radiation.
Thus, using (a∗H∗)

−1 = τ∗ and our model parameters to
enforce P inf

h ≈ PPT
h at k100, the gravitational wave from

phase transition has a smaller energy density receives an
IR suppression (kτ∗)

2 compared to the inflation signal

ΩPT
GW ∼ (k100τ∗)

2Ωinf
GW . (A9)

For T∗ = 40 keV the phase transition occurs at conformal
time τ∗ ≈ 3 × 10−3 Mpc, so at f ≈ 10−17 Hz, the ratio
of signals from the two scenarios satisfies

ΩPT
GW

Ωinf
GW

∼ (k100τ∗)
2 ∼ 10−10 . (A10)

This relative suppression is manifest as the difference be-
tween the GW spectra shown in Fig. 3 at this frequency.
Importantly, Eq. (A9) also implies that the CMB B-mode
constraints, when translated into the ΩGW parameter
space, depend on the spectral shape of the source and
must be recalculated using a dedicated analysis for each
case; however, doing so for the phase transition signal is
beyond the scope of this work.

Appendix B: Single and Double Bubble Spectra

Here we reproduce the explicit form for the function
∆ from Eq. (30) derived originally in Ref. [55] work-
ing in the thin-wall and envelope approximations. As
in this work, for simplicity we presume a luminal wall
velocity vw = 1, though the generalization to vw < 1 is
straightforward. We also set β = 1 for convenience and
restore it later as needed using dimensional analysis. We
parametrize this function according to ∆ = ∆(1) +∆(2),
where the ∆(1),(2) are the “single-bubble” and “double-
bubble” contributions, respectively.
The “single-bubble” term arises when the bubble wall

segments passing through two distinct points originate
from the same nucleation event, where

∆(1) =
k3

12π

∫ ∞

0

dy

∫ ∞

y

dr

r3
e−r/2 cos(ky)

I(y, r) G(y, r, k), (B1)

where the integrand depends on the functions

I(y, r) = ey/r + e−y/r +
y2 − (r2 + 4r)

4r
e−r/2, (B2)

G(y, r, k) = j0(kr)F0 +
j1(kr)

kr
F1 +

j2(kr)

(kr)2
F2, (B3)

and we have defined

F0(y, r) = 2(r2 − y2)2(r2 + 6r + 12) (B4)

F1(y, r) = 2(r2 − y2)[−r2(r3 + 4r2 + 12r + 24)

+y2(r3 + 12r2 + 60r + 120)] (B5)

F2(y, r) =
1

2

[
r4(r4 + 4r3 + 20r2 + 72r + 144)

−2y2r2(r4 + 12r3 + 84r2 + 360r + 720)

+y4(r4 + 20r3 + 180r2 + 840r + 1680)
]
. (B6)

The “double-bubble” contribution also arises from bub-
ble wall segments passing through two spatial points, but
in this case the two wall segments originate from distinct
nucleation events and

∆(2)=
k3

96π

∫ ∞

0

dy

∫ ∞

y

dr cos(ky)j2(kr)g(y, r)g(−y, r)

r4I(y, r)2(kr)2 , (B7)

where we have defined

g(y, r) = (r2−y2)[(r3+2r2)+y(r2+6r+12)]e−r/2 . (B8)
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