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34 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université de Paris, CNRS-IN2P3, Paris, France
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57 Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana“, Catania, Italy
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We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV
(1 EeV=1018 eV) using the distributions of the depth of shower maximum Xmax. The analysis relies on ∼50,000
events recorded by the Surface Detector of the Pierre Auger Observatory and a deep-learning-based reconstruc-
tion algorithm. Above energies of 5 EeV, the data set offers a 10-fold increase in statistics with respect to
fluorescence measurements at the Observatory. After cross-calibration using the Fluorescence Detector, this
enables the first measurement of the evolution of the mean and the standard deviation of the Xmax distributions
up to 100 EeV. Our findings are threefold:

(i) The evolution of the mean logarithmic mass towards a heavier composition with increasing energy can
be confirmed and is extended to 100 EeV.

(ii) The evolution of the fluctuations of Xmax towards a heavier and purer composition with increasing energy
can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in
Xmax at the highest energies.

(iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass,
featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the
energy spectrum.
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I. INTRODUCTION

To understand the physics of ultra-high-energy cosmic rays
(UHECRs), including their origin, the measurement of their
mass composition is of fundamental importance. On the one
hand, an event-by-event determination of mass enables esti-
mations of the particle charges, which are valuable when per-
forming arrival-direction analyses in the presence of magnetic
fields. On the other hand, it provides insights into whether the
observed flux suppression at the end of the cosmic-ray spec-
trum [1–4] is a signature of the interaction of the particles with
the cosmic microwave background [5, 6], a consequence of a
limit of the maximum injection energy of the cosmic accel-
erators [7, 8], or a combination of both [9, 10]. Whereas for
the former, due to photodisintegration during the propagation,
a change in the composition is expected that scales with the
energy per nucleon (E/A), for the latter, the so-called Peters
cycle, a change in composition scaling with rigidity (E/Z) is
expected.

Due to the rapid decrease in particle flux at ultra-high
energies, modern cosmic-ray observatories perform indirect
measurements of the rare particles by detecting generated
air showers instead. The influence of the primary mass on
the shower development can be characterized mainly by the
number of muons and the atmospheric depth of the shower
maximum Xmax at which the shower reaches its maximum
size. With increasing primary mass, the number of induced
sub-showers increases, and the energy per nucleon reduces,
leading to an Xmax higher up in the atmosphere and decreas-
ing shower fluctuations. The increase in the number of sub-
showers additionally causes an increase in the number of pro-
duced muons. Since the current generation of hadronic in-
teraction models cannot describe the muon component in full
detail [11–14], currently the most precise composition studies
at ultra-high energies rely on measurements of Xmax.

Studying the energy evolution of ⟨Xmax⟩, the mean of the
distribution, enables us to directly examine the evolution of
⟨lnA⟩, the mean logarithmic mass. The evolution of the fluc-
tuations σ(Xmax), i.e., the standard deviation of the distribu-
tion, provides additional insights into the composition and its
mixing [15, 16].

In the past two decades, significant progress in our under-
standing of UHECRs has been made, largely attributed to the
establishment of the Pierre Auger Observatory [17] and the
Telescope Array Project [18]. The Pierre Auger Observatory
is the world’s largest cosmic ray detector and is composed of
a Surface Detector (SD) and a Fluorescence Detector (FD).
By observing the longitudinal shower profile of extensive air
showers, the FD telescopes of the Observatory not only enable
the precise determination of the shower energy but also pro-
vide an accurate determination of Xmax [19, 20]. Currently, the
most precise mass composition studies rely on these fluores-
cence observations. However, the operation of fluorescence
telescopes is confined to dark and moonless nights, resulting
in a duty cycle of around 15%. Additionally, for an unbiased
Xmax data set, further cuts have to be applied. In contrast, the
duty cycle of the SD is close to 100%, enabling composition
studies with high statistics.

Recently, several methods have been developed to infer
mass-sensitive information using the SD. Using the risetime
of signals in the water-Cherenkov detectors, the evolution of
the average mass composition as a function of energy can
be studied with good precision [21]. Furthermore, the phe-
nomenological approach of shower universality [22], based on
a decomposition of the measured detector signals into the dif-
ferent shower components, has shown first promising results
in the reconstruction of ⟨lnA⟩. To determine the fluctuations
in Xmax, i.e., to measure σ(Xmax), yet more precise, event-by-
event measurements are needed. Measuring σ(Xmax) is partic-
ularly important as its interpretation does not depend strongly
on hadronic interaction models, as a considerable part of the
fluctuations depends on the mean free path of the first interac-
tion and, thus, the cross-section at the highest energies.

With the advent of deep learning, new possibilities have
emerged for designing learning algorithms, i.e., deep neu-
ral networks (DNNs), to analyze high-dimensional and com-
plex data in computational sciences [23, 24] as well as in
physics [25]. Trained on large simulation libraries, these al-
gorithms are capable of recognizing small patterns to which
conventional methods were previously not sensitive. This re-
cent progress provided improved reconstruction algorithms
in astroparticle physics, e.g., imaging air Cherenkov tele-
scopes [26], gravitational wave detection [27], neutrino [28–
30] and cosmic-ray observatories [31], including the recon-
struction of Xmax [32, 33] and other air shower proper-
ties [34, 35]. So far, the potential of deep-learning-based
methods for improved reconstruction in astroparticle physics
has been demonstrated, but the application to measured data,
including a comprehensive study of systematic uncertainties
and associated new insights, is limited. This work aims to
close this gap and shows a successful application to measured
data starting at the raw detector signals.

In this article and the accompanying Letter [36], we report
on the first investigation of the UHECR mass composition
based on the first and second moment of the Xmax distributions
from 3 to 100 EeV using the SD. The data set, reconstructed
using a novel deep-learning-based reconstruction method, of-
fers an increase in statistics with respect to analyses based on
fluorescence observations, which amounts to a factor of ten
above 5 EeV.

By cross-calibrating the developed algorithm using hybrid
events — events that feature SD and FD reconstruction — we
find an excellent agreement with previous analyses. The new
measurement of ⟨Xmax⟩ and σ(Xmax) up to the highest ener-
gies is subject to minor systematic uncertainties and avoids
the large statistical uncertainties present in previous work. As
a result, it offers new insights into the composition at ultra-
high energies.

II. THE PIERRE AUGER OBSERVATORY

The Pierre Auger Observatory, fully commissioned in 2008,
is located in the Pampa Amarilla in Argentina at an altitude of
∼1500m, which corresponds to about 875 gcm−2 of atmo-
spheric overburden. The SD of the Observatory [17] com-
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FIG. 1: Simulated footprint of a cosmic-ray event measured by the SD. (a) Cutout of 13×13 stations of an SD event containing
the induced signal pattern on the triangular grid. The marker size indicates the logarithm of the total measured signal, the color
denotes the arrival time (green for early, blue for late), the arrow marks the projection of the shower axis on the ground, and its
tip denotes the shower core. (b) Representation of the event on a Cartesian grid after pre-processing as a cutout with dimensions
13×13 as used for the DNN after axial indexing. The color indicates the arrival time of the shower front at each station.

prises an array of 1660 water-Cherenkov detectors (WCDs)
placed on a triangular grid with a spacing of 1500m and cov-
ering an area of about 3000km2. Each WCD is composed of
a sealed liner with a diameter of 3.6 m and a height of 1.2 m
filled with 12,000 liters of ultra-pure water. Three 9-inch pho-
tomultiplier tubes (PMTs) look downward through transpar-
ent windows into the water volume to record the Cherenkov
light of relativistic charged particles penetrating the walls.
The signal measured by each PMT is digitized by a 40 MHz
Flash Analog-to-Digital Converter, corresponding to a bin
width of 25 ns in time. Due to the limited available bandwidth,
the time-dependent signals, i.e., signal traces, are only col-
lected if a signal was measured in at least three WCD stations
in temporal and spatial coincidence. In addition, the current
parameters for calibrating the signals into units of VEM [37]
(vertical equivalent muon) — defined as the average signal of
a single muon induced when passing the detector vertically
through the center of the tank — are sent. These are updated
every minute and provide reliable signal sizes even during
strongly varying operation conditions. This in situ calibration,
together with solar-powered electronics and a battery, offers a
duty cycle of the SD close to 100%.

The SD array is overlooked by 27 telescopes located at four
different sites at the borders of the Observatory. Three sites
host six, and one hosts nine Schmidt telescopes, each com-
posed of a 13 m2 mirror and a 440-pixel camera to observe
the longitudinal shower development using the isotropically-
emitted fluorescence light. At the Coihueco site, three High
Elevation Auger Telescopes are used to detect low-energy
(down to 1017 eV) showers. To ensure the most precise obser-

vations, the atmospheric conditions are monitored using prob-
ing beams of two laser facilities placed close to the center of
the array. For more details on the design and operation of the
Observatory we refer to Ref. [17].

A. Surface Detector data

A typical air shower with a zenith angle below 60◦ and
E > 10 EeV induces a footprint with the size of tens of square
kilometers at the Earth’s surface, on average triggering around
ten stations. See Fig. 1a, for a simulated example event. For
each triggered station, three signal traces are recorded, one
measured by each PMT. The trace has a length of 768 time
steps of 25 ns, resulting in a total length of ∼20 µs. These
traces are further processed with a peak finder to search for the
signal window. In this work, the signal window has a width
of 120 time steps (3 µs), which includes more than 99% of
the signals. Simulated example traces of the event shown in
Fig. 1 are depicted in Fig. 2 for stations located at three dif-
ferent distances to the shower core. Note that, in contrast to
the standard reconstruction, which integrates over the signal
window to estimate the shower energy, in this work, we make
use of the full signal trace for the Xmax reconstruction.
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FIG. 2: Simulated signal traces of a cosmic-ray event in the SD stations before (left) and after the pre-processing (right). (a)
Simulated signal trace of a station close to the shower core (top), at a distance of around 1000 m (middle), and at a distance of
around 3500 m to the shower core (bottom). Different colors indicate signals from different shower components. The black line
denotes the total measured signal, including the saturation effects of the electronics that are only simulated for the sum of all
shower components.
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TABLE I: Basic and analysis-specific selections (separated
by a line) for the SD data set.

Cut Events ε (%)
reconstructed vertical event (θ < 60◦) 5,994,712 —
is 6T5 4,858,291 81.1
log10 (E/eV)> 18.5 133,167 2.7
hardware status 129,403 97.2
station start slot 128,308 99.2
2.75 < A/P < 3.45 126,033 98.2
S̄tot > 5 VEM in surrounding hexagon 125,828 99.8
350 m < core distance < 1000 m 101,392 80.6
fiducial SD cut 48,824 48.1

In addition to the three traces, the arrival time of the shower
front at each station is estimated based on the starting time of
the signal window and the trigger time of each WCD station.
These arrival times, combined with the station positions, en-
code information on the arrival direction of the primary parti-
cle. They are used in the standard reconstruction to determine
the shower axis by fitting a model of an inflating sphere [38].
The algorithm for the reconstruction of Xmax relies on the po-
sition of the triggered stations and on both the arrival times
and the signal traces measured at each station.

B. Data selection

The data set for the measurement of the cosmic-ray mass
composition consists of air shower events recorded with the
SD. Additionally, for the calibration and the validation of the
reconstruction, hybrid measurements — events detected by
both the SD and the FD — are utilized.

1. SD data set

The data selection for mass composition studies mostly
follows the criteria used for determining the energy spec-
trum [39] and is summarized in Table I. As pre-selection cri-
teria, we require a successful energy reconstruction, a zenith
angle < 60◦ to consider vertical showers only, and exclude
lightning-induced events. We further require that the stations
with the largest measured signals are surrounded by six work-
ing stations (a so-called 6T5 trigger) to ensure that the foot-
print is sufficiently sampled by the SD and that the events with
shower cores outside the array are rejected. In this analysis,
we only consider events with log10(E/eV)> 18.5, where the
SD is fully efficient in the selected zenith angle range, and
keep only events when the SD is properly operational.

In the analysis-specific post-selection, we remove a minor
fraction of events where the starting bin of any single signal
trace seems to be mis-reconstructed by the peak finder. We
only accept events with an average integrated signal Stot >
5 VEM, for all triggered stations surrounding the station with
the largest signal to ensure an adequate measurement of the
signal trace. Additionally, we reject events with very large and

TABLE II: Selections for hybrid data.

Cut Events ε (%)
number of events 25,076 —
telescope cuts 19,733 78.7
hardware status 16,916 85.7
aerosols/clouds 9,822 58.1
hybrid geometry 9,157 93.2
fiducial FoV cut 3,497 38.2
profile cuts 3,331 95.3
passed SD selection 3,086 92.6
analysis-specific cuts 1,642 53.2

very low area-over-peak (A/P) ratios that cannot be linearly
calibrated during the aging calibration, which is discussed in
Section III D 1. We additionally remove events with small
(350 m) and large (1000 m) distances of the reconstructed
shower core to the station with the largest integrated signal
to remove events with saturated stations and station multiplic-
ities challenging to reconstruct, respectively. Since the mul-
tiplicity of triggered stations is small at low energies, and the
sampling fluctuations of the WCDs are — due to the smaller
particle density — high, the Xmax reconstruction bias depends
on the zenith angle and the energy. To obtain an unbiased
dataset, we therefore only accept events where the composi-
tion bias is small. This fiducial selection was derived using
simulation and is discussed in Section III B. It is strict at ener-
gies below 10 EeV, causing, due to the steeply falling energy
spectrum, a low overall selection efficiency. However, at high
energies, it hardly causes any statistical disadvantage for the
energy-dependent study of the UHECR mass composition. In
total, the SD data set contains, after selection, 48,824 events
recorded between 1 January 2004 and 31 August 2018.

2. Hybrid measurements

For the calibration of the DNN to the Xmax scale of the FD,
hybrid events with a high-quality reconstruction of the SD and
FD data are used. Thus, besides the selection of the SD events,
FD cuts are applied to this data set that follow the selection
used in previous composition analyses [20]. The selection is
summarized in Table II. The pre-selection ensures good data-
taking conditions by accepting only events with a stable gain
calibration of the FD PMTs and adequate observation con-
ditions, i.e., featuring a clear sky and a measurement of the
vertical aerosol optical depth within the last hour that guaran-
tees precise measurements. To ensure an adequate air-shower
reconstruction, we require a good fit of the Gaisser–Hillas pro-
file, a minimum observed track length of 200 gcm−2, and the
Xmax to be reconstructed in the field of view of the telescope
with an Xmax uncertainty smaller than 40 gcm−2. Since the
condition on Xmax to fall in the field of view constrains Xmax
and, thus, results in an acceptance that depends on the mass
of the primary particle, a fiducial field-of-view cut is applied.
The cut is derived in a data-driven fashion and ensures that
only shower geometries that provide unbiased views of the
bulk of the Xmax distribution are selected. This strict crite-
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rion removing a significant fraction of events guarantees an
unbiased, i.e., composition-independent data sample and has
an efficiency of slightly less than 40%. See Ref. [20] for more
details. In addition, we remove events with holes in the profile
that exceed 20% of the observed track length, and those events
with an uncertainty on the energy reconstruction above 12%.
In total, 3,331 events remain after the FD selection. After ap-
plying the same SD selection as described above, the hybrid
data set comprises 1,642 events measured between 1 January
2004 and 31 December 2017.

III. RECONSTRUCTION OF THE SHOWER MAXIMUM
USING THE SURFACE DETECTOR AND DEEP LEARNING

The previous reconstruction of Xmax on an event-by-event
basis was confined to fluorescence telescope data. To obtain
high-statistic measurements of the UHECR mass composition
at the highest energies, the reconstruction of Xmax using the
SD is a promising solution. The reconstruction is challenging
as, in contrast to the FD, the SD does not directly measure the
longitudinal shower development — enabling straightforward
observations of Xmax— but subsamples the particle density of
the particle cascade at the ground. To infer information on
the shower development, the temporal structure of the parti-
cle footprint has to be exploited. On the one hand, different
particles induce different signals in the WCDs [34, 40], e.g.,
a single muon typically induces a clear spike as it crosses the
station in a straight line (cf. Fig. 2e). Thus, the SD signals
contain information on the absolute density of the respective
content. Additionally, the temporal structure of the signals en-
codes information on the shower development. For example,
γ, e+, and e− that form the electromagnetic component un-
dergo multiple scattering when penetrating the atmosphere,
leading to delay and broadening of the signals (cf. Fig. 2a
and cf. Fig. 2c), which scale with the distance to Xmax. The
temporal structure of the measured signal in a single station,
however, is more complex as it further depends on additional
kinematics like the energy and mass of the primary cosmic
ray, the zenith angle, and the distance of the station to the
shower core. Previous approaches rely on measuring the sig-
nal risetimes [21] and thus provide insights into the muon con-
tent. However, this data-driven approach does not consider
all available information on the shower development. The
complex temporal and spatial information in the SD signals
are intractable to analyze using analytical models. Therefore,
complicated parameterizations are needed that rely on simula-
tion libraries. The phenomenological approach of air-shower
universality [22, 41] utilizes simplifications in order to pa-
rameterize and decompose the expected signals, limiting the
performance of the algorithm, especially when exploiting the
temporal structures of signals with strong fluctuations (signal
spikes) beyond the average. Thus, in this work, we use an
alternative approach based on deep neural networks (DNNs).

A. Deep-learning-based reconstruction

The DNN trained for the reconstruction of Xmax is based
on the signal traces measured using the WCDs of the trian-
gular grid of the SD array and the arrival times. To process
the temporal and spatial structure of the particle footprint, the
DNN uses the following architecture methodology, separat-
ing the analysis in space and time. Since the SD grid is tri-
angular with a regular spacing of 1500 m, we use the axial
representation for re-indexing into a Cartesian grid [31]. For
a memory-efficient re-indexing, we use a cutout of 13× 13
stations, where the station with the largest signal defines the
center of this grid. The dimensions of 13×13 stations guaran-
tee that, on average, more than 99.9% of the triggered stations
per event are contained within this sub-array. See Fig. 1a that
visualizes this process using an example SD event.

The time traces S(t) at each time step t are re-scaled using
a logarithmic transformation

S̃i(t) =
log10 (Si(t)/VEM+1)
log10 (Snorm/VEM+1)

(1)

that maps stations with a large signal of Snorm = 100 VEM
to 1 and maintains the physical property that non-triggered
stations keep zero signals. This normalization stabilizes the
training process of the DNN. In a similar way the shower ar-
rival time t0,i at each WCD is normalized with respect to the
arrival time τcenter measured at the station with the largest sig-
nal, i.e., the center of the cutout, and the standard deviation
σt,data = 48.97 ns of the arrival times estimated over the whole
training data set,

t̃0,i =
t0,i − τcenter

σt,data
. (2)

To analyze the temporal structure of the signal traces, recur-
rent long short-term memory (LSTM) layers [42] are utilized
in the first part of the network. The identical network subpart
with the same adaptive parameters is applied to each signal
trace, i.e., we apply weight sharing along all stations as simi-
lar particles induce similar responses in the detector. The out-
put of this network can be interpreted as an image of 13×13
pixels (stations) with ten channels instead of three in a natural
RGB image, as the recurrent network part characterizes the
traces of each station into ten features. These features are the
input for the convolutional part and are concatenated with the
channel of arrival times and an additional channel characteriz-
ing the detector states of the surrounding WCDs (working/not
working). The next stage is based on an advanced type of
convolutional neural network (CNN) [23] to exploit the spa-
tial structure of the event. We make use of the so-called Hex-
aConv layers [43] and residual connections [44, 45], which
extends the principle of a filter sliding along an image by a
rotation. This is a meaningful extension as the induced signal
patterns are to first order independent of the azimuth angle.
Finally, after a ResNet-like architecture, a single node for the
prediction of Xmax forms the output of the DNN. For a detailed
description of the DNN architecture, we refer to Ref. [32].

The network was trained using a library [46, 47] of 400,000
events with equal fractions of proton-, helium-, oxygen-, and
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FIG. 3: Determination of the fiducial selection with events simulated using the Sibyll2.3c hadronic interaction model. We show
the lower (left) and upper (right) bounds of the selection as derived using a pure proton (red) and pure iron (blue) composition.
The markers at a given energy indicate the minimum (lower bound) and maximum (upper bound) zenith angle bin where the
reconstruction bias is less than 10 gcm−2. Derived parameterizations are shown as continuous curves. In the ongoing analysis,
only events between the upper and lower bounds are accepted.

iron-induced showers in an energy range of 1 to 160 EeV with
a spectral index of γ = −1 simulated using CORSIKA [48]
with the hadronic interaction model EPOS-LHC [49] and the
FLUKA model [50]. We use only events with zenith angles
θ < 60◦ and the full azimuth range (0◦− 360◦). During the
training, we perform on-the-fly augmentation of the data using
varying detector states1 to increase the diversity of our data
and mimic real operational conditions. Technical details of
the training and the model can be found in Ref. [32].

B. Fiducial event selection

The mass-composition analysis in this work relies on the
first and second moments of the measured Xmax distributions
and their energy evolution. An unbiased selection of the re-
constructed events has to be ensured for a precise determi-
nation of the moments. In contrast to the FD, Xmax cannot
directly be observed using the SD but needs to be inferred
from the time-resolved particle density at the ground. Due to
the attenuation of the particle density for increased distances
between the shower maximum and the detector plane, which
further scales with the zenith angle, the amount of information
encoded in the sampled signals depends on the shower geom-
etry and the energy. For example, at very low energies, there

1 This includes malfunctioning stations, faulty PMTs, and varying saturation
thresholds of the WCD electronics.

are fewer particles in the shower, and Xmax is farther away
from the detector. This will lead to a smaller particle density
at the ground, i.e., fewer triggered stations, and fewer parti-
cles arriving per station to be analyzed by the DNN, making
the already challenging measurement of Xmax intractable.

To avoid selections depending on Xmax, and thus the com-
position itself, we derive upper and lower zenith angle bounds
for the selection of air-shower events as a function of energy.
We scan the reconstruction bias for proton and iron-induced
showers2 as a function of energy and estimate the minimum
(maximum) zenith angle at which the absolute reconstruction
bias is below |∆Xmax| < 10 gcm−2 to derive a lower (upper)
bound on the zenith angle. This is visualized in Fig. 3.

At low energies, for almost vertical showers, the number
of triggered stations is small (around 6), and for events with
large zenith angles, the signals decrease by up to 50% due to
the increased atmospheric attenuation3 between shower max-
imum and ground level [17]. Whereas the energy and arrival
direction can be accurately reconstructed using the SD [38],
this leads to a reconstruction bias in Xmax. At very high ener-
gies, events can be reconstructed for zenith angles up to 60◦,
but for smaller angles, proton showers can develop the shower
maximum below the ground, causing biased Xmax reconstruc-
tions. Therefore, we accept only events if they have zenith

2 As the reconstruction of proton and iron showers is subject to the largest
reconstruction biases. Also see Fig. 4

3 At 10 EeV, S(1000) decreases from around 55 VEM at 0◦ to 25 VEM at
60◦.
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angles above the lower and below the upper iron and proton
bounds at a given energy. We find the very same dependence
across the investigated hadronic interaction models EPOS-
LHC, QGSJetII-04, and Sibyll2.3c [51] and use the selection
derived using Sibyll2.3c for further analyses, as it results in
the most conservative cut. The selection removes more than
50% of events below 5 EeV and is very relaxed above 10 EeV.
Note that the cut is independent of the primary particle mass
since only a cut on the zenith angle is performed. However,
due to the steep cosmic ray spectrum, strict cuts at lower en-
ergies still enable statistically powerful measurements. Using
this fiducial cut, high quality Xmax measurements are ensured,
and a merit factor4 of separating proton and iron close to 1.5
can be reached [52].

C. Reconstruction of the Xmax moments

The determination of the first two moments ⟨Xmax⟩ and
σ(Xmax) of the Xmax distribution and its evolution with en-
ergy relies on the Xmax reconstruction of the DNN and the
energy estimator S38

5 from the standard reconstruction of SD
data [38]. To examine the quality of the reconstructed Xmax
moments, both resolution and bias must be considered. There-
fore, we study hereafter the reconstruction of the Xmax mo-
ments using a forward-folding approach. The bias and res-
olution of the Xmax and energy reconstruction depend on the
composition and energy. The finite resolution of the energy
estimator and its composition bias can cause a spillover of
events into neighboring energy bins, depending on the under-
lying spectrum and the composition. To handle this effect, we
utilize the latest measurement of the UHECR spectrum [53]
and consider the trigger efficiency of the SD at low energies.
We investigate this forward-folding approach for the energy
evolution of ⟨Xmax⟩ and σ(Xmax) for three different composi-
tion scenarios following the Auger spectrum [53].

Since proton and iron showers feature the largest recon-
struction biases, we study a pure proton and a pure iron com-
position. Note that this is a conservative approach since previ-
ous analyses strongly disfavor significant iron fractions at low
and significant proton fractions at high energies [20]. As the
most realistic scenario, we also use the Auger mix, the com-
position fractions derived by fitting a template of simulations
to the Xmax distributions measured using the FD [54]. Since
the measurement of the FD ends at about 50 EeV, we assume
the composition remains unchanged from there onward.

To finally estimate the reconstruction performance, we
compare the reconstructed ⟨Xmax⟩ and σ(Xmax) after the
forward-folding process with the injected moments from
Monte-Carlo simulations. To study the composition bias, we

4 The merit factor is defined as

fMF =
|⟨Xmax,P⟩−⟨Xmax,Fe⟩|√

σ2(Xmax,P)+σ2(Xmax,Fe)
, (3)

5 Defined as the signal a station measures at a distance of 1000 m to the
shower core if the shower would have arrived at a zenith angle of 38◦.

use bootstrapping in each bin to estimate ⟨Xmax⟩ and its statis-
tical uncertainty. Since a composition bias in the Xmax recon-
struction translates into an Xmax dependence of the reconstruc-
tion bias, the variance of the reconstructed distribution can be
expressed as

σ
2(Xmax,DNN) = σ

2(Xmax)︸ ︷︷ ︸
phys. fluct.

+σ
2
res(Xmax,DNN)︸ ︷︷ ︸

resolution

+2Cov(Xmax,Xmax,DNN −Xmax)︸ ︷︷ ︸
Xmax dependence of bias

.

Thus, to reconstruct σ(Xmax), not only the resolution but due
to the composition dependence, i.e., Xmax dependence also,
the covariance term has to be considered. In the absence of
sufficient information, estimators like DNNs trained with the
mean-squared-error objective function tend to predict sam-
ples close to the mean since the reconstruction is ambiguous.
Therefore, at low energies in particular, the DNN is likely to
reconstruct, on average, iron with positive and proton with
negative Xmax bias. In turn, the covariance term is negative for
the DNN, i.e., it will in part cancel the resolution term. We
studied the dependence of the sum of both terms, the covari-
ance and the resolution for various hadronic models and com-
positions as a function of energy. In the case of our trained
DNN, we found that, to a good approximation, both terms
cancel or are small in comparison to the physical fluctuations
in Xmax. Therefore, the standard deviation of the distribu-
tion formed by the DNN predictions is used as the estimate
for σ(Xmax), and the statistical uncertainty on σ(Xmax) is ob-
tained using bootstrapping. Deviations, i.e., scenarios with
non-canceling contributions of the resolution and covariance,
will translate into a composition bias of the second moment in
this forward-folding approach and propagate into the system-
atic uncertainties of the σ(Xmax) measurement.

In Fig. 4, the performance in reconstructing the evolution
of the moments ⟨Xmax⟩ (top) and σ(Xmax) (bottom) using the
SD is depicted for three different scenarios. A pure pro-
ton composition is shown in red, pure iron in blue, and the
Auger mix in yellow for the three hadronic interaction mod-
els EPOS-LHC (filled diamonds), QGSJetII-04 (grey-filled
squares), and Sibyll2.3c (open circles). As a reference, the
injected (true) moments are shown as white boxes where their
vertical sizes indicate the statistical uncertainty prior to the
Xmax reconstruction by the DNN and the energy reconstruc-
tion [38]. Note that only EPOS-LHC was used as a hadronic
interaction model for training the DNN. Since a large fraction
of the EPOS-LHC simulations was used for the DNN training,
the statistical uncertainty is larger for EPOS-LHC events than
for QGSJetII-04 and Sibyll2.3c, where all simulations could
be used for testing. We find that the performance in the de-
termination of ⟨Xmax⟩ depends on energy and the hadronic in-
teraction models. Above 10 EeV the performance differences
across the models and mass composition scenarios are small 6.

6 A residual plot for the three investigated models can be found in Fig. 17
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FIG. 4: Reconstructed (top) first moments and (bottom) second moments of the Xmax distributions as a function of energy using
the SD for the scenarios of a pure proton (red), Auger mix (yellow), and pure iron (blue) composition for showers simulated
using EPOS-LHC (left, filled diamonds), QGSJetII-04 (center, grey-filled squares), and Sibyll2.3c (right, open circles). The
injected (true) Xmax moments, prior to the energy and Xmax reconstruction, are shown as white boxes. The reconstruction of the
DNN and systematic effects such as composition-dependent resolution and bias of the SD-based energy reconstruction are
considered using forward folding. The fiducial SD selection is applied. Note that EPOS-LHC was used as a hadronic
interaction model for training the DNN.

The reconstruction bias shows a dependence on the composi-
tion at low energies. At 3 EeV, the pure iron composition is
subject to a bias of up to 10 to 15 gcm−2 that reduces with
energy. For a pure proton composition, a similar dependence
is visible, of up to −10 gcm−2 decreasing with energy.

For the Auger mix, the composition bias is independent
of energy for QGSJetII-04 and Sibyll2.3c. Only for EPOS-
LHC, a small composition bias of up to −5 gcm−2 can be
seen below 6 EeV. Otherwise, we find an interaction-model
bias of −5 gcm−2 for QGSJetII-04 that applies to all com-
positions. For Sibyll2.3c, this bias amounts to −12 gcm−2.
Because EPOS-LHC was used for training, no such bias is
visible for this model. Both the composition bias and the
hadronic-interaction model bias would propagate into the sys-
tematic uncertainty of the ⟨Xmax⟩ measurement. However,
since the Observatory features a hybrid detector design, both
biases, and their energy dependence can be removed (as in-
vestigated in a simulation study) by re-calibrating the DNN
measurement using fluorescence observations (as discussed in
Section III D 2).

The composition bias of the σ(Xmax) reconstruction as seen

in Fig. 4 (bottom) depends on energy and is below 5 gcm−2

above 10 EeV for proton and iron. For the Auger mix it is
even lower at these high energies and not significant. Overall,
the biases observed for reconstructing σ(Xmax) are small over
a large range of energies. For this reason, no calibration us-
ing the FD will be performed. Furthermore, the biases found
here will be transferred to the systematic uncertainty of our
composition measurements. Different from the measurement
of ⟨Xmax⟩, the estimation of σ(Xmax) is not subject to a strong
dependence on the hadronic interaction model. This can be
explained by the fact that a large part of the shower fluctu-
ations depends on the fluctuations of X1, i.e., the traversed
depth prior to the first interaction, owing to the given nuclear
cross sections with air molecules. Depending on the primary,
the expected fluctuations in X1 are in the order of 10 gcm−2

(50 gcm−2) for iron (proton) nuclei.
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FIG. 5: Correction of the DNN Xmax predictions for detector aging effects of the SD. Decay of the predicted Xmax during the
lifetime of the Observatory before (a) and after (b) the calibration. (c) Dependence of the Xmax predictions on the ⟨A/P⟩ for an
example zenith angle bin. The fitted calibration function is shown in blue. (d) Obtained slope c as a function of the zenith angle.
The blue line denotes the fitted parameterization c∗(θ). The obtained parameter for plot (c) corresponds to cos(40◦)≈ 0.77.

D. Calibration

After training the DNN using simulations, the algorithm
is applied to the measured data. Even though the simula-
tion is continuously developed and improved, important dif-
ferences exist between the measured data and the simula-
tions. To remove such differences arising from inaccurate
modeling, we perform calibrations using the SD data set by
studying the Xmax reconstruction as a function of physics and
monitoring observables. We examine the reconstruction bias
∆Xmax,DNN = Xmax,DNN −⟨Xmax,DNN⟩, estimated with respect
to the average Xmax prediction. For each variable y we intend
to correct with, we perform an event-by-event correction with

X ′
max = Xmax − f∆Xmax(y), (4)

where f∆Xmax(y) denotes the dependence of the Xmax predic-
tion on the variable y. This approach performed for each event
separately ensures meaningful corrections of the predictions
beyond the first moment of Xmax.

Finally, using hybrid events, we calibrate the Xmax predic-
tions to the scale of the FD and remove the dependence on the
hadronic interaction model used during the algorithm training,
the composition, and any remaining differences in the detector
simulation.

1. Corrections using Surface Detector data

The WCD stations of the SD are exposed to a harsh envi-
ronment, with changes in temperature covering several tens of
◦C. During the many years of operation, the PMTs, read-out
electronics, water, and reflective liner are subject to aging ef-
fects. By utilizing muons that constantly cross the detector
stations, the average shape of the single-muon signal is mon-
itored using the area over peak ratio A/P, which relates the
deposited charge in the detector (integrated pulse) to its height
and is a rough measure of the signal duration. Since A/P is a
monitoring observable summarizing the characteristics of the
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FIG. 6: Correction of the DNN Xmax predictions as a function of the core distance dcore to the station with the largest signal. (a)
Reconstruction bias before the calibration. (b) Bias after performing the core calibration. (c) Linear calibration of the Xmax reconstruction
bias as a function of the core distance for an example energy bin from 4 to 5 EeV. (d) Obtained slopes c of the linear fit as a function of energy
E. The determined parameterization of the slope is shown as a blue line.

individual PMT responses, water quality, and liner reflectiv-
ity, it is specific to every station and changes as a function of
time.

a. Aging calibration. When monitoring the distribution
of A/P values of all stations, over the years, a decrease in its
average ⟨A/P⟩ from 3.20 to 2.95 can be observed [55, 56]. We
assume this to be mainly caused by the decrease in the liner
reflectivity or water transparency, leading to a drift of the Xmax
predictions as a function of time (see Fig. 5a). Since our sim-
ulation library is currently limited to simulated stations with
A/P = 3.2, the predictions of the DNN have to be calibrated
as a function of the ⟨A/P⟩ — the average A/P of all triggered
SD stations in a given event — to remove possible time de-
pendencies of the predictions. As depicted in Fig. 5c, the de-
pendence of the Xmax predictions on ⟨A/P⟩ can be modeled
linearly and does not depend on energy. Additionally, we find
an increase of this dependence as a function of the zenith an-
gle, likely caused by the fact that the average distance a par-
ticle travels through the detector rises with the zenith angle.

By parameterizing (blue line in Fig. 5d) this dependence as
c∗(θ) = α cos(θ)+β , with α = (−135.1±9.2) gcm−2, and
β = (152.6±7.2) gcm−2, we calibrate the predictions using:

f∆Xmax(θ ,A/P) = c∗(θ)
(
⟨A/P⟩−⟨A/P⟩

)
︸ ︷︷ ︸

zenith & A/P dependence

+ ∆X︸︷︷︸
scale

, (5)

where ⟨A/P⟩ = 3.03 denotes the average of the distribution
calculated over the full SD data set. Additionally, we in-
troduce an absolute shift ∆X = ⟨Xmax⟩ − ⟨Xmax,A/P=3.2⟩ =
−9.5g/cm2to adjust the Xmax scale by considering the dif-
ferent averages in the A/P distributions in simulations
⟨A/P⟩MC = 3.2 and data ⟨A/P⟩data = 3.03.

The reconstruction bias of Xmax shows a dependence on
the distance between the station with the largest signal and
the shower core reconstructed using fitting of a lateral distri-
bution function [38]. At low and high energies, the biases
are relatively large since at small distances, the stations with
the largest signal are often saturated, and at low energies, the
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FIG. 7: Data-based correction of the DNN Xmax prediction. Top: dependence of the Xmax reconstruction as a function of (a) season (time of
year), (b) time of day (UTC), and (c) azimuth angle of the shower. The fitted calibration functions are shown in blue. Bottom: dependence of
the reconstruction as a function of (d) season, (e) time of day (UTC), and (f) azimuth angle after the calibration.

station multiplicity is small, making a detailed reconstruction
more challenging. Furthermore, the number of triggered sta-
tions is on average, lower for cores located close to one sta-
tion since in this case the distances to the next stations of the
grid all become close to 1500m. A similar effect applies to
events with reconstructed shower cores far away from the sta-
tion with the highest signal. Simulation studies show that at
a distance of roughly 600 m, the bias is smallest. In gen-
eral, events with core distances larger than 350 m and smaller
than 1000 m feature a small bias and a dependence of the re-
construction bias on the core distance, as visible in Fig. 6a.
Events outside this regime that exhibit larger biases were re-
jected during the data selection.

The described effect mainly concerns events with a low
multiplicity of triggered stations, i.e., showers produced by
primaries having energies below ∼10 EeV. Therefore, we ap-
ply an energy-dependent calibration to remove the Xmax bias
at small energies. In bins of energy, we perform a linear
fit f∆Xmax(d) = c(d − 0.6 km) of the reconstruction bias, as
shown in Fig. 6c for the example energy bin from 4 to 5 EeV.
Above 10 EeV, a constant fit usually shows a better χ2 and
is preferred over a linear fit. The dependence of the slope

with energy is shown in Fig. 6d, and parameterized by fit-
ting the function c′(ESD) = ae−bESD . The obtained values are
a= (89.0±39.4) gcm−2/km and b= (0.3±0.1) EeV−1. The
final calibration of the DNN is performed using

f∆Xmax = c′(ESD)(d −0.6 km) (6)

and using Eq. (4) on an event-by-event basis.
b. Temporal variations. The change in pressure and

temperature due to diurnal and seasonal variations causes
small influences on the detector response and the conversion
of distance to Xmax, hence affecting its reconstruction. To re-
move seasonal and diurnal variations, we investigated the re-
construction as a function of time on a yearly and daily basis7,
as shown in Fig. 7a and Fig. 7b. We find small variations of
the size of 2 gcm−2 or 1 gcm−2, respectively. We first cali-
brate the Xmax predictions to remove the seasonal variation by
fitting a sine function to the data and correcting it by using the

7 The time is given in UTC.
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FIG. 8: Application of the DNN Xmax estimation to hybrid data. (a) Correlation between FD observations and DNN predictions
using SD data. (b) The energy-dependent bias of the SD-based reconstruction of the DNN when compared to the reconstruction
of the fluorescence detector.

time of year on an event-by-event basis. These predictions are
also used to remove the diurnal variations by again fitting a
sine wave and correcting events using Eq. (4). The dependen-
cies after correction are depicted in Fig. 7d and Fig. 7e.

c. Angular dependence. In contrast to our simulation
study, we find a dependence of the Xmax reconstruction on
the azimuth angle (see Fig. 7c). The dependence is small,
and its fluctuations are around 3 gcm−2 and possibly caused
by a slight slope of the SD array tilted away from the An-
des mountains. We remove the dependence by fitting a cosine
and calibrating the predictions using the azimuth angle on an
event-by-event level. The reconstruction after calibration is
shown in Fig. 7f. We also tested the reconstruction for a pos-
sible dependence on the zenith angle. Therefore, we studied
Xmax as a function of the zenith angle for different energy in-
tervals to account for the fiducial cut but could not find any
indications for a dependence.

2. Calibration using hybrid events

The hybrid design of the Pierre Auger Observatory enables
a cross-calibration of the SD Xmax measurements with FD
Xmax of hybrid events. The dependence of the Xmax scale of
the DNN on the hadronic interaction model can thus be elim-
inated by calibrating the DNN predictions with the FD Xmax
scale that can be accurately determined [20].

The event-by-event correlation between the FD and the
SD is shown in Fig. 8a. We find a Pearson correlation of
ρ = 0.70 ± 0.03, which is in good agreement with the ex-
pectations from idealized simulations (ρMC = 0.73). The ab-

solute bias, however, amounts to −31.4± 0.8 gcm−2. This
bias is larger than expected from simulation studies (up to
−15 gcm−2 assuming the Auger mix) with interaction models
different from those used in the algorithm training (cf. Fig. 4
and Ref. [32, 52]). The observation of negative bias, i.e., a
heavier composition in data (smaller Xmax values), is in line
with findings in previous analyses, where the average sig-
nal footprint measured using surface detector arrays seems
to favor a composition heavier than expected from simula-
tions [11, 14, 21]. In particular, recent works indicate that
the current generation of hadronic interaction models may not
model the muonic component in full detail [11, 12, 57]. Addi-
tionally, adjustment of the longitudinal shower profile might
be needed [58]. In contrast, the relative fluctuations in the
muon component seem to be reasonably modeled [14]. Using
the exotic hadronic interaction model Sibyll⋆ [59] that fea-
tures ad-hoc modifications of the shower content, a significant
increase of the muon number can be accomplished. A test us-
ing Sibyll⋆ that predicts an increase of the muon number by
40% for protons with respect to Sibyll2.3d shows that a bias of
−40 gcm−2 could be reproduced, indicating that the observed
scale of the bias could be explained by a mis-modeling of the
muonic component of current interaction models. However,
it is unclear if such ad-hoc adjustments or data-based refine-
ments [60] offer a realistic solution. In addition, note that
a non-perfect detector simulation could cause deviations and
that the systematic uncertainty on the FD Xmax scale amounts
to roughly 10 gcm−2 [61].

We find no significant energy dependence when studying
the bias as a function of energy (see Fig. 8b). This is con-
sistent with our simulation study since no strong energy de-
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FIG. 9: Energy-dependent resolution of the DNN (dashed red line)
obtained by subtracting the FD resolution (dashed grey line) from
the standard deviation of the FD and the SD Xmax reconstruction
(red line) in the hybrid data set.

pendence was found when studying the reconstruction bias of
the most likely composition scenario, i.e., the Auger mix, for
Sibyll2.3c and QGSJetII-04 (see Fig. 4). Since the Xmax scale
can be precisely defined using the FD, we re-calibrate the pre-
dictions of the DNN for the SD events with a constant offset of
(−31.7±0.7) gcm−2 obtained by the fit depicted as a red line
in Fig. 8b. Due to the calibration, we adopt the uncertainty of
the FD Xmax scale to the systematic uncertainties on the ⟨Xmax⟩
measurement. This enables us to remove the composition and
interaction-model-dependent contributions to the systematic
uncertainty of the ⟨Xmax⟩ measurement with the DNN and the
SD. Since with the low statistics in the hybrid data set at high
energies, we cannot exclude a small energy dependence of the
DNN reconstruction, deviations from a constant calibration
offset are examined using energy-dependent calibrations. We
consider this in an energy-dependent systematic uncertainty
on ⟨Xmax⟩ measurements. Note that we are using in this work
the same data production as Ref. [62], which covers the same
data-taking period. Ongoing work on the FD reconstruction
has led to refinements in the Xmax scale [63, 64] that have not
been considered, but remain below 5 gcm−2 in ⟨Xmax⟩ [65].

In Fig. 9, we show the event-by-event resolution of recon-
structing Xmax using the DNN (dashed red line) after subtract-
ing the FD resolution [61] (dashed grey line) in quadrature
from the standard deviation (continuous red line), found using
the hybrid data. The resolution improves from 40 gcm−2 at
low energies to 25 gcm−2, which is in good agreement with
simulations studies [32].

a. Crosscheck of SD-based calibrations. We addition-
ally checked the event-by-event correlation between the FD
and the SD reconstruction before and after each calibration
described in Section III D 1 to ensure its validity. We found
an increase in correlation with the FD Xmax measurement af-
ter performing each SD-based calibration. Furthermore, the
Pearson correlation coefficient increased from 0.62 to 0.7 by

applying all the SD calibrations and the analysis-specific cuts,
thus confirming the validity of the calibrations and the selec-
tion.

E. Systematic uncertainties

The systematic uncertainties of the ⟨Xmax⟩ measurement
using the SD are shown in Fig. 10a. The Xmax-scale uncer-
tainty of the FD, as inherited by the DNN during the calibra-
tion using hybrid measurements to remove the dependence on
hadronic interaction models, is depicted as a dash-dotted line.
It contains uncertainties regarding the reconstruction, the at-
mosphere, and the calibration of the FD. Whereas the latter
is independent of energy, the energy dependence is caused by
the former two contributions. At low energies, reconstruc-
tion uncertainties of the FD dominate. These are surpassed by
atmospheric uncertainties with increasing energy since more
distant showers can be detected with correspondingly larger
corrections for the light transmission between the shower and
the detector. For more details on the FD uncertainty, we re-
fer to Ref. [20]. Uncertainties from the SD are denoted as
dashed region and comprise the remaining uncertainties of the
detector aging (< 0.5 gcm−2), diurnal variations (1 gcm−2)
— since the FD calibration is performed at night — and the
uncertainty on the calibration using hybrid events. The cali-
bration uncertainty has two parts, the uncertainty of the def-
inition of the absolute Xmax scale, which is estimated to be
±2 gcm−2, and the energy dependence of the calibration. To
estimate the energy-dependent uncertainty of the calibration,
we compare the assumed constant calibration to a calibration
function linear in log10(ESD/eV) and use the observed differ-
ences as the upper and lower uncertainty on our calibration
(compare Fig. 18a in the appendix).

The resulting total uncertainties of the SD-based ⟨Xmax⟩
measurement are of the order of ±10 gcm−2 and shown as
a continuous red line. In general, the obtained uncertainty is
very similar to the FD uncertainty. Only at high energies, due
to the limited statistics of hybrid events, is the uncertainty on
the calibration rising slightly. Nevertheless, at high energies,
substantial deviations from the applied calibration are not to
be expected since the simulation study (see Section III C) in-
dicated only a very small reconstruction bias above 30 EeV.

In contrast with the measurement of the first moment, no
strong dependence of σ(Xmax) on hadronic interaction models
was found. Therefore, no calibration is performed using the
FD. Hence, the measurement is independent of the FD and
the systematic uncertainties contain only SD contributions.
Fig. 10b displays the different contributions as a function of
energy, where effects are only shown that contribute more than
1 gcm−2. The largest source of uncertainty at low energies is
the composition bias that was found to be independent of the
interaction models. It was derived from the simulation studies
reported in Section III C by assuming for each energy bin the
largest reconstruction bias found in studies of a pure proton,
a pure iron, and the Auger mix composition. The assumed
parameterizations are a conservative estimate as, in nature, a
pure proton, a pure iron, and an Auger mix composition can-
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FIG. 10: Energy-dependent systematic uncertainties for the measurement of ⟨Xmax⟩ and σ(Xmax). (a) Total uncertainty of the calibrated
DNN (continuous red lines) resulting from adding the uncertainty on the FD Xmax scale (dash-dotted line) and the DNN uncertainties
(hatched region) after the hybrid calibration in quadrature. (b) Systematic uncertainties for the DNN reconstruction of σ(Xmax) as a function
of energy. The total systematic uncertainty is denoted as the continuous red lines. Only contributions > 1 gcm−2 are presented.

not exist at the same time. Nonetheless, this provides an es-
timate for all potential scenarios, even though a substantial
proton or iron fraction at high or low energies, respectively,
are extremely unlikely. In this work, we use the bias parame-
terization8 obtained for the EPOS-LHC interaction model. To
examine potential shortcomings of the modeling of the muon
component as intensively discussed in the literature [11–14],
we studied Sibyll⋆ with a significantly increased muon num-
ber and found a slight underestimation of the fluctuations of
the order of 5 gcm−2, constant for all compositions and in-
dependent of energy. In particular, at high energies, we ac-
count for a potential muon deficit, contributing more than all
other factors to the uncertainty of σ(Xmax). Other contribu-
tions come from saturation effects (−2 gcm−2) and detector
aging (±1.5 gcm−2).

IV. INVESTIGATION OF THE UHECR MASS
COMPOSITION USING THE SURFACE DETECTOR

In the following section, we present inferences on the
UHECR mass composition based on the first two moments
— ⟨Xmax⟩ and σ(Xmax) — of the reconstructed Xmax distribu-
tions. The composition analysis is based on 48,824 events
recorded using the SD and its evolution studied in bins of
∆ log10 (E/EeV) = 0.1 with an integral bin above 1019.9 eV.
For comparison, we use FD data of Ref. [62] covering the

8 No significant differences can be observed between different interaction
models. The obtained parameterization can be found in Fig. 17.

same data-taking period. Since the full FD data set features
— in comparison to the hybrid data set used for calibrating
the DNN, which requires a full SD and FD reconstruction as
well as a specific geometry due to the different efficiencies of
the two detectors as a function of zenith angle — an increase
in statistics of a factor of almost five, we allow for a constant
shift of the SD Xmax scale when comparing the DNN and FD
measurements. The adjustment on top of the hybrid events
study amounts to −1.7 gcm−2 and is within our statistical un-
certainty (2 gcm−2) of the calibration.

In Fig. 11, we present the energy evolution of ⟨Xmax⟩ and
σ(Xmax) as reconstructed using the DNN based on SD data
(black circles) and as obtained using the standard FD recon-
struction (open grey squares). The statistical uncertainties
are estimated using bootstrapping and are shown as verti-
cal lines, whereas the systematic uncertainties, discussed in
Section III E, are depicted as brackets. We do not show the
systematic uncertainty for the measurement of ⟨Xmax⟩ using
the FD as it is part of the SD uncertainty due to the cross-
calibration we conducted. Since for σ(Xmax) no calibration is
performed, we show the systematics for both measurements.
The measured data are compared to predictions [66] for pro-
tons (red) and iron (blue) of the three hadronic interaction
models EPOS-LHC, Sibyll2.3d, and QGSJetII-04, denoted by
different line styles. In the right plot, we further show the
number of events in each bin of the SD data, which is the
same in both plots. The evolution of ⟨Xmax⟩ in Fig. 11a as
a function of energy shows an excellent agreement between
the SD and the FD measurements with only very small devi-
ations that can be explained purely by statistics. This extends
the Xmax measurements to 100 EeV and confirms the transi-
tion from a lighter to a heavier composition with increasing
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FIG. 11: Energy evolution of (a) the average depth of shower maximum ⟨Xmax⟩ and (b) the fluctuations of the shower maximum σ(Xmax) as
determined using the FD reconstruction [62] (grey open squares) and the DNN Xmax predictions (black circles). Red (blue) lines indicate
expectations for a pure proton (iron) composition for various hadronic models.

energy, also reported in previous SD-based studies using the
risetime of signals in the WCDs [21].

The elongation rate D10 is defined by the change of ⟨Xmax⟩
per decade of energy

D10 =
d⟨Xmax⟩

dlog10(E)
= D̂10

(
1− d⟨lnA⟩

dln(E)

)
,

where A denotes the primary particle mass. When measur-
ing D10, a deviation from the elongation rate D̂10, which is in
a very good approximation, universal across all hadronic in-
teraction models and primary nuclei, can be traced back to a
change in the primary mass composition. The elongation rate
obtained using the SD over the whole energy range amounts
to D10 = (24.1 ± 1.2) gcm−2 decade−1 in good agreement
with the FD result

(
(26±2) gcm−2

)
[62]. However, the re-

duced χ2/ndf = 46.7/13 obtained for the SD data indicates
that another substructure exists, as will be comprehensively
discussed in the next Section IV A.

The evolution in σ(Xmax), sensitive to the composition mix-
ing, is shown in Fig. 11b. We find a decrease of σ(Xmax) as
a function of energy and a very good agreement between the
measurements of the SD and the FD. This confirms for the
first time the transition from a lighter and mixed composition
into a heavier and purer composition with large statistics. At
the highest, previously inaccessible energies (> 50 EeV), the
fluctuations appear to stabilize and remain small. However,
more statistics are needed to examine the composition evolu-
tion at these energies in more detail. Given the limited dif-
ferences in the interaction model predictions of σ(Xmax), the
small fluctuations in Xmax beyond 30 EeV clearly exclude a

scenario with a substantial fraction of protons and light nuclei
in the UHECR composition. Additionally, at around 10 EeV,
the fluctuations appear to stay constant.

A. Discussion of breaks in the elongation rate

The observation of an elongation rate similar to the FD
but obtained using the comprehensive SD data set that fea-
tures χ2/ndf ≈ 3.6, indicates that a simple linear model is not
describing the data well (see Fig. 12a), suggesting the exis-
tence of a substructure to be analyzed. The measurement of
σ(Xmax) also shows a non-continuous decrease of fluctuations
with energy.

In Fig. 12, we study the evolution in the UHECR mass com-
position using different models. We analyze the evolution us-
ing broken-line fits with a different number of breaks. The
simplest model beyond a constant elongation rate is a broken-
line fit with one fitted break point shown in Fig. 12b that also
cannot describe our data reasonably (χ2/ndf ≈ 3.4). Con-
sidering Wilks’ theorem, we compared the χ2 values of two
nested models, in which the model of a constant elongation
rate is used as the null hypothesis and test if it can be rejected
with more complex models. A model with two breaks in the
elongation rate can reject the constant elongation rate hypoth-
esis at a significance of 3.4σ (see Fig. 12c). In Fig. 12d, we
show a model with three breaks in the elongation rate, where
the slopes and the break position were determined by a fit.
This model can reject the hypothesis of a constant elongation
rate at a level of 4.6σ and a single-break model at a level of
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FIG. 12: Investigated models (grey lines) describing the evolution of ⟨Xmax⟩ as a function of energy E. The studied models are
piecewise-linear in log10(E/eV). (a) Fit of a constant elongation rate, as suggested by the FD data analyses above 3 EeV. More
complex models describing a scenario beyond a constant evolution: piecewise-linear models with (b) one break, (c) two breaks,
and (d) three breaks. The locations of the breaks are indicated by grey arrows.

4.4σ , which, on a statistical basis, indicates a substructure in
the evolution of the UHECR composition. The significance of
rejecting the hypothesis of a two-break model using the three-
break model amounts to 3.3σ .

The investigated models and their parameters are summa-
rized in Table III, including statistical and systematic uncer-
tainties, and compared to the positions of the energy spec-
trum features identified at ultra-high energies. Systematic
uncertainties were estimated by shifting the measurement
by the upper and lower energy-dependent uncertainties dis-

cussed in Section III E and re-fitting the data and further-
more incorporating the uncertainty on the hybrid calibra-
tion by an energy-dependent calibration (see Fig. 18) affect-
ing the size of the elongation rate. The breaks in the evo-
lution of ⟨Xmax⟩ in all models are observed to be at sim-
ilar energies as the features of the UHECR energy spec-
trum [53], i.e., the ankle at (4.9± 0.1(stat)±0.8(sys)) EeV,
instep at (14±1(stat)±2(sys)) EeV and suppression at
(47±3(stat)±6(sys)) EeV. Note that, even for a joint astro-
physical interpretation, features in the energy spectrum and
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TABLE III: Best-fit parameters with statistical and systematic uncertainties for the studied elongation models that feature up to
three changes at energies (E1,E2,E3) in the elongation rate (D0,D1,D2,D3) and an offset b (⟨Xmax⟩ at 1 EeV), without
including a systematic uncertainty of 14% on the energy scale. Also given are the positions of the energy spectrum features
measured at the Pierre Auger Observatory [53] in the same data-taking period.

Parameter Const. elong. 1-break model 2-break model 3-break model Energy spectrum
Val±σstat ±σsys Val±σstat ±σsys Val±σstat ±σsys Val±σstat ±σsys Val±σstat ±σsys

b / gcm−2 743±5±13 743±5±13 750.5±4±13 750.5±3±13
D0 / gcm−2 decade−1 24±1±4 23±2±12 12±6±5 12±5±6
E1 / EeV 35±12±16 6.5±0.9±1 6.5±0.6±1 4.09±0.1±0.8
D1 / gcm−2 decade−1 39±14±12 39±12±10 39±5±14
E2 / EeV 10±2±3 11±2±1 14±1±2
D2 / gcm−2 decade−1 22±3±8 16±3±6
E3 / EeV 31±5±3 47±3±6
D3 / gcm−2 decade−1 42±9±12

the evolution of ⟨Xmax⟩ do not have to coincide in energy, as,
for example, the break in the elongation rate observed around
2 EeV [61] is physically interpreted in association with the
ankle [9, 10], located at 5 EeV.

We analyzed the σ(Xmax) measurement for characteristics
similar to the ones found in the evolution of ⟨Xmax⟩. Between
E0 = 6.5 EeV and E1 = 11 EeV, where the observed elon-
gation rate is within uncertainties compatible with a constant
composition, also σ(Xmax) appears to stay constant. Further-
more, beyond E ≈ 30 EeV (at E2), the decrease in the fluc-
tuations appears to stop, which would be consistent with the
elongation rate that was found to be close to that of a constant
composition at the highest energies. Due to the increasing sta-
tistical uncertainties, more data are needed for a definite state-
ment. A quantitative test of a structure in σ(Xmax) with breaks
at positions that agree with the ones found in the elongation
rate study, however, is not significant. The null hypothesis of a
linear decrease of σ(Xmax) can be rejected at only a 2.2σ sig-
nificance level, using a model with three break positions fixed
to the ones found in the elongation rate study, which nonethe-
less seems to be compatible with the data (χ/ndf = 10.3/10).
Reduced uncertainties and more data are required to analyze
the structure in the evolution of σ(Xmax) in detail.

Note that a one-to-one agreement of breaks and structures
generally, in the measurements of ⟨Xmax⟩ and σ(Xmax), is not
to be expected since a change in the mean logarithmic mass
does not need to coincide with a similar change in the mea-
surement of σ(Xmax), i.e., the composition mixing [16]. It
would rather reveal a characteristic structure of the composi-
tion. Interestingly, breaks at similar positions in the energy
evolution of Xmax and σ(Xmax) can be obtained when fitting a
simplified astrophysical model using the FD Xmax data and the
Auger spectrum as measured by the SD (see Fig. 3 and Fig. 6
in Ref. [10]). A dedicated analysis focusing on the astrophys-
ical interpretation and investigating the non-trivial interplay
between the spectrum, ⟨Xmax⟩, and σ(Xmax), is ongoing and
will be discussed in a future publication.
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FIG. 13: The found elongation rate model with three breaks
obtained using SD data (continuous grey line) compared to
the evolution of ⟨Xmax⟩ as measured using the FD (open grey
boxes) and the SD (black markers). The χ2 shown refers to
the FD data.

1. Crosscheck and comparison with the FD

The obtained model exhibiting a characteristic structure be-
yond a constant change in the mean logarithmic mass has to
be consistent with the FD measurements. The comparison
of the elongation model with the FD and SD is presented in
Fig. 13. The model describes the FD data adequately with
χ2/ndf = 1.1, demonstrating the consistency of the model
with FD data.

Additionally, we tested the obtained model by investigating
the fit with a different binning in energy and with different se-
lections of core distance, zenith angle, and azimuth angle. We
further studied the influence of seasonal, diurnal (day-night),
and aging effects. No significant effects could be found for
any of the tests. Next, we investigated the existence of the fea-
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EPOS-LHC, Sibyll2.3d, and QGSJetII-04, determined using the FD [62] (grey open squares) and the DNN (black circles).

tures before applying calibrations and without applying qual-
ity cuts and found a statistical significance level larger than 5σ

using the model featuring three breaks. Since our selection re-
moves approximately half of the events, we estimate that the
expected median significance for identifying the breaks with
a data set of similar statistics, and same quality as the full data
set without any cuts, is 3.4σ . The finding of a 4.6σ signif-
icance using our data selection confirms the expectation that
the significance should increase with improving data quality.

We additionally tested energy-dependent calibrations of the
DNN with the hybrid data by employing various broken-line
model fits. The tested calibration functions are summarized
in Fig. 18. None of the tested calibration functions reduced
the significance of rejecting a constant elongation rate but
showed, due to the energy dependence of the calibration, a
stronger rejection of a constant elongation. In addition, for
each studied hybrid calibration, we examined the energy-
dependent FD Xmax scale uncertainty. The significance of re-
jecting the constant elongation rate with the three-break model
remains of the same order, with a minimum of 4.4σ observed
for the cases where the total lower and upper uncertainty is
applied to the measurement. The two-break model can be re-
jected at a significance level of around 3σ in most cases. Only
for more complex functions (compare Fig. 18e and Fig. 18f),
which cannot be strongly constrained due to the low statistics
in the hybrid sample, the significance level drops to around
2σ . The rejection of a single-break model consistently re-

mains above the 3σ level and is at the 4σ level in most cases.
Rejecting a constant elongation rate using the two-break

model is very stable and above a significance of 3.4σ for all
scenarios. Applying instead of the FD calibration a correction
of the SD Xmax reconstruction based on the expected composi-
tion bias of the Auger mix using simulations (compare Fig. 4),
a constant elongation rate can be rejected by more than 5σ as-
suming EPOS-LHC, as the first break is strongly pronounced.
Therefore, we find a robust indication at a 4.4σ level for struc-
tures beyond a constant elongation rate. However, more statis-
tics and/or a reduction in energy-dependent uncertainties are
needed to confidently reject the 2-break model, i.e., to inves-
tigate the existence and nature of the third break.

B. Interpretation using hadronic interaction models

By interpreting the reconstructed moments ⟨Xmax⟩ and
σ(Xmax) using hadronic interaction models, the measurement
can be converted into the first two moments of the distribu-
tions of the logarithmic mass [67, 68], its mean ⟨lnA⟩ and
variance σ2(ln A). In Fig. 14, the derived moments are shown
using air-shower simulations based on the interaction models
EPOS-LHC, Sibyll2.3d, and QGSJetII-04. The evolution of
the mean logarithmic mass with energy shows a trend from
a light composition towards a heavier composition, including
the same characteristic breaks at three energies. Likewise, at
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around 10 EeV and 30 EeV, the ⟨lnA⟩ shows indications of an
almost constant composition. For all interaction models, the
fluctuations σ2(lnA) in lnA are small, indicating a composi-
tion dominated by a single type of nucleus. This observation
exhibits a distinct characteristic that is quite compatible with
the expectations for the Peters cycle. However, for quantita-
tive results on the fluctuations of lnA, the systematic uncer-
tainties in the measurements, as well as the uncertainties in
the interaction models, will need to be reduced.

Nonphysical negative fluctuations are found for QGSJetII-
04 across the whole energy range, strongly disfavoring the
model, in line with previous studies [21, 61, 62, 69]. Nega-
tive fluctuations for Sibyll2.3d and EPOS-LHC are also vis-
ible but are compatible with zero within uncertainties. Note
that this result does not state that the fluctuations are not cor-
rectly modeled in simulations but rather that the fluctuations

expected from a composition derived from the ⟨Xmax⟩ mea-
surement are in tension with the model predictions. In fact,
the uncertainties from the interaction-model description of the
fluctuations are rather small, and parts of the mismatch found
could likely originate from differences in the Xmax scale in
measured data and simulations. Indications for such a tension
in the ⟨Xmax⟩ scale in simulation and data were previously re-
ported in other studies [12, 58].

Another way of comparing the measured data to model pre-
dictions is the illustration of the data in a re-scaled σ(Xmax)
vs. Xmax plane [15, 70, 71]. First, in this representation, the
measurements of ⟨Xmax⟩ are transformed into the scale of the
respective model. Thus, x = 0 translates to a pure iron com-
position, and x = 1 corresponds to a pure proton composition.
A similar transformation is applied to σ(Xmax) and denoted
with y. Note that extremely mixed compositions would fea-
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ture values larger than y = 1. Since the elongation rate for
pure beams is, to a good approximation, universal across all
interaction models and the energy-dependence of σ(Xmax) is
small, the representation allows for a concise interpretation in
which transitions between two pure compositions follow arc-
like curves in these “umbrella” plots.

In Fig. 15, we show the measurement of the SD (black
dots) and the FD (open grey squares), including only statis-
tical uncertainties, and compare them to the predictions of
the hadronic models EPOS-LHC, Sibyll2.3d, and QGSJetII-
04. The blue lines indicate transitions between pairs of pure
compositions at an energy of 10 EeV. FD measurements be-
low 3 EeV are depicted as open grey triangles. The statistical
uncertainties are estimated using bootstrapping and shown as
vertical lines. In the matching energy range, the SD and FD
data agree well and show the same evolution, demonstrating a
consistent measurement of the two Xmax moments.

Our measurements are consistent with a relatively heavy
and pure composition for EPOS-LHC and Sibyll2.3d, within
systematic uncertainties. Again, QGSJetII-04 shows a signif-
icant tension and is disfavored by our measurements. Fur-
thermore, it can be seen that the features we found in the
energy evolution of ⟨Xmax⟩ yield a consistent picture when
including the σ(Xmax) measurement. Energy regions with
smaller changes in ⟨lnA⟩ would appear as clusters of points.
Two such regions are suggested by the elongation rate studies
(cf. Fig. 13) and are also visible in Fig. 15. For example, for
EPOS-LHC, the two regions at around 10 EeV and 50 EeV
are close to the mass groups of A ∼= 4 and A ∼= 14.

V. SUMMARY

In this work, we have presented a study of the UHECR
mass composition based on the first two moments of the dis-
tribution of depth of maximum, Xmax, of air shower profiles
using surface detector data of the Pierre Auger Observatory
recorded between 2004 and 2018. With the use of deep
learning, a novel reconstruction technique was developed, en-
abling for the first time a precise reconstruction of Xmax us-
ing the recorded time-dependent SD signals on an event-by-
event level. Our approach included cross-calibration with the
complementary FD to remove mismatches between simula-
tions and measured data and investigate systematic uncertain-
ties, highlighting the importance of an independent data set for
calibrating and validating machine learning algorithms. After
cross-calibrating the method using fluorescence observations,
we have studied the energy evolution of ⟨Xmax⟩ and σ(Xmax)
from 3 EeV up to 100 EeV. Due to the superior duty cycle of
the SD in comparison to the FD, the statistics for composition
studies using Xmax are increased by a factor of ten for ener-
gies above 5 EeV, enabling for the first time a measurement of
σ(Xmax), sensitive to the composition mixing, beyond 50 EeV.
We have found excellent agreement of the ⟨Xmax⟩ measure-
ment with previous studies using the FD and confirm the tran-
sition of ⟨lnA⟩ from a lighter to a heavier composition. Fur-
thermore, our σ(Xmax) measurement, which is independent of
the FD calibration, agrees very well with previous studies us-

ing fluorescence telescopes. The finding of a decrease in the
fluctuations with energy is confirmed, indicating a transition
to a heavier and purer composition. The observation of very
small fluctuations appears to exclude a large fraction of light
nuclei at the highest energies.

With the increase in statistics, we have found evidence at
a level of 4.4σ for a characteristic structure in the evolution
of the mass composition beyond a constant elongation rate,
considering both statistical and systematic uncertainties. The
model describing our data best features three breaks in the en-
ergy evolution of the composition and is compatible with the
FD measurements. The locations of the identified breaks are
found at energies similar to the ankle, instep, and suppression
features identified in the UHECR energy spectrum. An inter-
esting structure, while not statistically significant, is visible
in σ(Xmax), which could suggest breaks at similar energies.
However, more statistics and reduced systematic uncertainties
are needed to study the nature of the identified breaks and, in
particular, investigate the existence of the third break.

The study presented here is one of the first that uses deep
learning to analyze measured detector data in astroparticle
physics, including a comprehensive study of systematic un-
certainties. The demonstrated performance, superior to pre-
vious approaches for mass composition studies using SD
data, shows promising potential for machine-learning-based
methods in astroparticle physics. The ongoing AugerPrime
upgrade, including the upgrade of the water-Cherenkov de-
tectors [72], as well as further improvements in machine-
learning-based analysis strategies, opens up new and far-
reaching prospects for understanding cosmic rays, their mass
composition at ultra-high energies, and ultimately constrain-
ing astrophysical models of their origin.
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Ministero dell’Università e della Ricerca (MUR); CETEMPS
Center of Excellence; Ministero degli Affari Esteri (MAE),
ICSC Centro Nazionale di Ricerca in High Performance
Computing, Big Data and Quantum Computing, funded
by European Union NextGenerationEU, reference code
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APPENDIX

Derivation of the formula for the reconstruction of σ(Xmax).
Here, Xmax denotes the true depth of the shower maximum and
Xmax,DNN the reconstruction of the DNN.

σ
2(Xmax,DNN) =σ

2(Xmax +Xmax,DNN −Xmax)

=σ
2(Xmax)+σ

2(Xmax,DNN −Xmax)

+2Cov(Xmax,Xmax,DNN −Xmax)

(7)

TABLE IV: First two moments of the Xmax distributions.
Energies are given in log10 E/eV and ⟨Xmax⟩ and σ(Xmax) are
given in gcm−2 followed by their statistical and systematic
uncertainties.

log10 E/eV bin ⟨log10 E/eV⟩ ⟨Xmax⟩ / gcm−2 σ(Xmax) / gcm−2

18.5–18.6 18.55 757.0 ± 0.5+7.7
−9.6 48.8 ± 0.5 +9.1

−4.8

18.6–18.7 18.65 758.8 ± 0.5+7.8
−9.2 46.3 ± 0.5 +8.7

−4.8

18.7–18.8 18.75 759.5 ± 0.5+7.9
−8.8 43.4 ± 0.5 +8.3

−4.8

18.8–18.9 18.85 761.8 ± 0.5+8.0
−8.5 39.7 ± 0.5 +8.0

−4.8

18.9–19.0 18.95 765.7 ± 0.5+8.2
−8.2 38.4 ± 0.5 +7.6

−4.8

19.0–19.1 19.05 770.0 ± 0.6+8.4
−7.9 38.8 ± 0.6 +7.3

−4.8

19.1–19.2 19.15 769.9 ± 0.6+8.7
−7.7 34.0 ± 0.6 +7.1

−4.8

19.2–19.3 19.25 774.0 ± 0.8+9.1
−7.5 33.2 ± 0.8 +7.0

−4.8

19.3–19.4 19.35 774.7 ± 0.9+9.5
−7.4 30.7 ± 0.9 +6.9

−4.8

19.4–19.5 19.45 775.3 ± 1.0+10.0
−7.3 27.3 ± 1.0 +6.8

−4.8

19.5–19.6 19.55 778.6 ± 1.3+10.5
−7.3 26.3 ± 1.3 +6.8

−4.8

19.6–19.7 19.64 783.2 ± 1.4+11.0
−7.3 24.2 ± 1.4 +6.8

−4.8

19.7–19.8 19.74 787.2 ± 2.0+11.6
−7.5 20.7 ± 2.0 +6.8

−4.8

19.8–19.9 19.85 794.5 ± 3.6+12.2
−7.8 25.1 ± 3.6 +6.8

−4.8

> 19.9 20.00 793.9 ± 4.5+13.1
−8.3 21.8 ± 4.5 +6.8

−4.8
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FIG. 16: Energy-dependent contributions of the SD systematic
uncertainties for the measurement of ⟨Xmax⟩ after calibrating DNN
to FD observations.

TABLE V: Available statistics for determining the UHECR
composition using the FD and the DNN. FD data are taken
from Ref. [62].

log10 E/eV bin Xmax,FD Xmax,DNN

18.5–18.6 1,347 8,739

18.6–18.7 1,007 9,360

18.7–18.8 707 7,725

18.8–18.9 560 6,506

18.9–19.0 417 5,228

19.0–19.1 312 3,863

19.1–19.2 253 2,781

19.2–19.3 159 1,791

19.3–19.4 122 1,205

19.4–19.5 80 701

19.5–19.6 50 455

19.6–19.7

35

277

19.7–19.8 113

19.8–19.9 54

> 19.9 26



27

1 3 10 30 100 160
ESD / EeV

–30

–20

–10

0

10

20

30

〈X
m

ax
,M

C〉
–
〈X

m
ax

,D
NN
〉/

gc
m

–2

upper error
p0 = 9.50± 3.42
p1 = 0.12± 0.08
p2 = 1.60± 0.70

lower error
p0 = –9.58± 0.92
p1 = 0.11± 0.03
p2 = –1.84± 0.59

upper error
lower error

pure proton
pure iron

auger mix

(a) EPOS-LHC

1 3 10 30 100 160
ESD / EeV

–30

–20

–10

0

10

20

30

σ
(X

m
ax

,M
C)

–
σ

(X
m

ax
,D

NN
)/

gc
m

–2

upper error
p0 = 4.18± 1.50
p1 = 0.16± 0.13
p2 = 2.65± 0.73

lower error (estimated)
p0 = –4.00

upper error
lower error

pure proton
pure iron

auger mix

(b) EPOS-LHC

1 3 10 30 100 160
ESD / EeV

–30

–20

–10

0

10

20

30

〈X
m

ax
,M

C〉
–
〈X

m
ax

,D
NN
〉/

gc
m

–2

upper error
p0 = 4.69± 5.05
p1 = 0.35± 0.59
p2 = 14.30± 0.81

lower error
p0 = –18.42± 0.82
p1 = 0.08± 0.01
p2 = 12.34± 0.56

upper error
lower error

pure proton
pure iron

auger mix

(c) Sibyll2.3c

1 3 10 30 100 160
ESD / EeV

–30

–20

–10

0

10

20

30

σ
(X

m
ax

,M
C)

–
σ

(X
m

ax
,D

NN
)/

gc
m

–2
upper error
p0 = 5.44± 1.38
p1 = 0.06± 0.04
p2 = 2.16± 1.05

lower error (estimated)
p0 = –4.00

upper error
lower error

pure proton
pure iron

auger mix

(d) Sibyll2.3c

1 3 10 30 100 160
ESD / EeV

–30

–20

–10

0

10

20

30

〈X
m

ax
,M

C〉
–
〈X

m
ax

,D
NN
〉/

gc
m

–2

upper error
p0 = 3.96± 3.39
p1 = 0.42± 0.56
p2 = 4.67± 0.57

lower error
p0 = –17.46± 0.68
p1 = 0.07± 0.01
p2 = 2.19± 0.53

upper error
lower error

pure proton
pure iron

auger mix

(e) QGSJetII-04

1 3 10 30 100 160
ESD / EeV

–30

–20

–10

0

10

20

30

σ
(X

m
ax

,M
C)

–
σ

(X
m

ax
,D

NN
)/

gc
m

–2

upper error
p0 = 6.18± 1.90
p1 = 0.28± 0.15
p2 = 4.62± 0.39

lower error (estimated)
p0 = –4.00

upper error
lower error

pure proton
pure iron

auger mix

(f) QGSJetII-04

FIG. 17: Expected composition bias for measuring the first moment ⟨Xmax⟩ (left) and the second moment σ(Xmax) (right) of
Xmax distributions as a function of energy for EPOS-LHC, Sibyll2.3c, and QGSJetII-04 (from top to bottom) after
forward-folding of all systematic effects on the measurement. The different compositions are denoted by different colors. The
dashed line indicates a parameterization for the composition bias. Note that only the parameterization for σ(Xmax) propagates
into the uncertainty of the measurement, as for ⟨Xmax⟩ the method is cross-calibrated using the FD. Note that EPOS-LHC was
used as the hadronic interaction model in the training of the network.
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FIG. 18: Models used for studying the effect of energy-dependent calibrations on the measurement of ⟨Xmax⟩ and the
significance of the identified features. (a) Linear function considered for a global energy dependence of the calibration (used for
estimating the systematic uncertainty of ⟨Xmax⟩). (b) Piecewise-linear function. (c) Piecewise-linear function with the break
fixed to the position of the fitted second break. A similar dependence could also be motivated by the composition bias of
EPOS-LHC (used for training) using the Auger mix (cf. Fig. 17a). (d) Piecewise-linear fit with the first slope fixed to 0 gcm−2

and the break fixed to the position of the second break (e) 3-fold piecewise-linear fit with the first and second break fixed to the
position of the first and second break. (f) Piecewise-linear function with three adaptive breaks. None of the calibrations lowers
the significance considerably.




