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In this work, we investigate the effect of decomposition basis on primitive qudit gates on supercon-
ducting radio-frequency cavity-based quantum computers with applications to lattice gauge theory.
Three approaches are tested: SNAP & Displacement gates, ECD & single-qubit rotations R(θ, ϕ), and
optimal pulse control. For all three decompositions, implementing the necessary sequence of rotations
concurrently rather then sequentially can reduce the primitive gate run time. The number of blocks
required for the faster ECD & Rp(θ) is found to scale O(d2), while slower SNAP & Displacement
set scales at worst O(d). For qudits with d < 10, the resulting gate times for the decompositions is
similar, but strongly-dependent on experimental design choices. Optimal control can outperforms
both decompositions for small d by a factor of 2-12 at the cost of higher classical resources. Lastly,
we find that SNAP & Displacement are slightly more robust to a simplified noise model.

I. INTRODUCTION

While the advent of quantum computers offers the op-
portunity to investigate new questions in lattice gauge
theories (LGT) [1–4], at present the gate resources are pro-
hibitively large [5, 6]. Due to the large local Hilbert space
of gauge theories, d-dimensional qudit-based computers
can reduce the resources required [5, 7–14]. The poten-
tial algorithmic advantage of qudit platforms arises from
the increased effective connectivity as native single-qudit
SU(d) rotations replace otherwise require non-local multi-
qubit circuits [15–17]. In practice, this may allow for lower
individual gate fidelities for the same algorithmic fidelity.
Today, many promising systems for qudits are being ex-
plored including trapped ions [18–20], transmons [21–26],
Rydberg arrays [27, 28], photonic circuits [29], ultra-cold
atomic mixture [30], and superconducting radio frequency
(SRF) cavities [31]. In this work, we focus on 3D super-
conducting radio-frequency (SRF) cavities derived from
accelerator physics which possess decoherence times on
the order of milliseconds [31]. Similar to qubits the possi-
ble gate sets are numerous; both for native gates [32–35]
and fault-tolerant computation [36–46].

Quantum algorithms for lattice gauge theories gener-
ally require a set of fundamental group theoretic opera-
tions [47]. The identification of primitive subroutines di-
vides the problem of formulating quantum algorithms for
LGT into deriving said group-dependent primitives [5, 48–
53] and group-independent algorithmic design [14, 50, 54–
58]. In addition to the group dependence, the primitive
subroutines vary based on the digitization of the gauge
degrees of freedom. Some digitize in the representation
basis with a maximum representation encoded [11, 13, 59–
74]. Alternatively, the q-deformed formulation obtains
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a finite dimensional Hilbert space by changing the sym-
metry group to be a so-called quantum group [14, 50].
Other formulations consider truncations within the bases
of gauge-invariant states [75–83]. Further methods begin
with different formulations or perform different approx-
imations exist such as light-front quantization [84–86],
conformal truncation [87], strong-coupling and large-Nc

expansions [88, 89]. Another approach is to formulate an
inherently finite-dimensional Hilbert space theory with
continuous local gauge symmetry which is in the same
universality class as the original theory. Some meth-
ods for this include fuzzy gauge theories which use non-
commutative geometry [90], and quantum link models
which use rishons and an ancillary dimension [91–101].

In this work, we consider gates that arise naturally when
digitizing with the discrete subgroup approximation [12,
52, 58, 75, 102–115]. The discrete group approximation
has advantages over the methods discussed above. It
is a finite mapping of group elements to integers that
preserves a group structure; therefore reducing the amount
of fixed- or floating-point quantum arithmetic, simplifying
the primitive gates. This method has its roots in early
Euclidean LGT where the discrete group structure allowed
for reduction of the classical resources [116–122] and has
seen a resurgence in the era of quantum computation [105,
106, 108, 123–125]. While the discrete subgroups are an
approximation, they are related to the continuous groups
broken by a Higgs mechanism [126–130] with work on-
going to understand this systematically [131].

At present, most work has emphasized qubit devices,
but recent demonstrations of multi-qudit gates, have in-
creased interest in qudit-based digitization methods [7–
9, 11–14, 53]. Given the abundance of platforms and
native gates, it would be valuable to explore the relative
merits of different gate sets with respect to algorithmic
implementation. Qudit-based SRF architectures are one
such platform, and we explore prototype gates required
for the simulation of LGT within the discrete subgroup
approximation on them here. Focus is given to imple-
mentations on d = 4, 6, 8 states – respectively referred to
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as ququart, quhexit, and quoctit. We consider both state
preparation and gates decomposed in three ways: SNAP
& Displacement (S+D) gates, the echoed conditional dis-
placement (ECD) & single-qubit rotation gates R(θ, ϕ),
and optimal pulse control. Comparisons between the
three are made in terms of number of blocks, time-scales,
and noise resilience.

This paper is organized as follows. A brief review of
the field theory motivations and the general protocols
we are interested in are found in Sec. II. In Sec. III, we
briefly summarize the theory behind coupling a cavity to
a two-level system to produce a qudit. This is followed
in Sec. IV with a discussion about how the interacting
Hamiltonian is used to implement digital gates and the
three decompositions. Sec. V is where we describe the
methods for determining our gate decompositions, the
results of which are found in Sec. VI including an initial
study of robustness to noise. We conclude in Sec. VII
with summary and future work.

II. LATTICE GAUGE THEORY

The gauge symmetries of particle physics constraint the
possible interactions of theories, and thus only a finite set
of gauge-group dependent primitive gates are required for
simulation [47, 103]. These correspond to operations that
can be performed on either one or two elements g, h of
the group G stored in registers |g⟩ , |h⟩. For the case of
pure gauge theory (theories without the matter), the set
of primitive gates are: the inverse gate U−1 which sends
a group element to its inverse:

U−1 |g⟩ = |g−1⟩ ; (1)

the multiplication gate U× that acts on two registers,
changing the target to the left product with the control:

U× |g⟩ |h⟩ = |g⟩ |gh⟩ ; (2)

the trace gate UTr which rotates |g⟩ by a phase dependent
on the trace of g in a specified representation:

UTr |g⟩ = eiθRe T r(g) |g⟩ ; (3)

and the group Fourier transform UF T which acts on a
single register with some amplitudes f(g):

UF

∑
g∈G

f(g) |g⟩ =
∑
ρ∈Ĝ

f̂(ρ)ij |ρ, i, j⟩ . (4)

The second sum is over ρ, the irreducible representations
of G; f̂ denotes the G Fourier transform of f ,

f̂(ρ) =

√
dρ

|G|
∑
g∈G

f(g)ρ(g), (5)

where |G| is the group size, dρ is the dimensionality of
the representation ρ, and f is a function over G.

FIG. 1. Permutation graph necessary for implementing U−1
for different discrete group: (left) the 48 element BO, (center)
the 108 element Σ108, (right) the 1080 element Σ(1080).

Because these operations act on at most two registers,
they can be analyzed and optimized more efficiently than
working at the algorithmic level; something dramatically
demonstrated for UF T in a recent work [53]. Further,
while |G| (and therefore the optimal qudit dimension d)
in the discrete subgroup approximation range from 24 to
1080, groups share structures which allows us to explore
smaller gates while still being informative about preferred
gate sets for HEP.

By inspecting Eq. (1), we recognize that U−1 corre-
sponds to a pair-wise permutation gate |g⟩ ↔ |g−1⟩ (See
Fig. 1 for three example groups). If the qudit d = |G|, this
gate is formed by a tensor product of at most |G|/2 Pauli
X(g,h) gates between states |g⟩ , |h⟩. An example of this
for the 24 element BT mapped to a quicosotetrit (d = 24
qudit) is shown in the top of Fig. 2. As such, universal
gate sets that can perform multiple X(g,h) concurrently
would yield algorithmic improvement. If d < |G|, the
gate structure generalizes from X(g,h) gates to requiring
controlled permutations that couple the qudits. Another
important structure exemplified in Fig. (1) is that the
maximum distance between |g⟩ and |g−1⟩ is ∼ 1

2 |G| –
another way to discriminate the efficiency of gate sets.

The only two-register gate, U×, corresponds to a con-
trolled permutation gate where a different permutation
gate is applied depending on the control qudit state. As
such, it has similar implementation requirements to U−1.
Further, UTr is diagonal in state space. Therefore if
d = |G|, the only elementary gate required is R(g,h)

Z (θ)
which generates a RZ gate of phase θ between |g⟩ and |h⟩
(See the bottom of Fig. 2).

The final gate, UF, can be decomposed for d = |G| into
a tensor product of SU(|C|) rotations U (a,b...,n)

N where the
size of set {C} is the order of the conjugacy class C of
the group [49]. For d < |G|, these must be mapped to
controlled SU(N) gates. Although the spacing between
states a, b . . . , n could in principle be ∼ |G|, we find that
for the discrete subgroup approximation, |C| ≲

√
|G| with

the maximum |C| = 18. The smallest possible rotation is
SU(2), where the Euler angle decomposition can be built
from an ZXZ rotation where the superscripts indicate
levels that are rotated:

U (a,b)
2 (θ⃗) = R

(a,b)
Z (θ0)R(a,b)

X (θ1)R(a,b)
Z (θ2). (6)

We can combine U (a,b...,n)
N for the conjugacy class C into
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|g〉 X(2,3) X(4,5) X(6,7) X(8,16) X(9,17) X(10,23) X(11,22) X(12,19) X(13,18) X(14,21) X(15,20) |g−1〉

|g〉 R
(0,1)
Z (2θ) R

(8,9)
Z (−θ) R

(10,11)
Z (θ) R

(12,13)
Z (θ) R

(14,15)
Z (θ) R

(16,17)
Z (−θ) R

(18,19)
Z (−θ) R

(20,21)
Z (−θ) R

(22,23)
Z (−θ) |h〉

FIG. 2. Implementation of BT primitive gate assuming a quicosotetrit: (top) U−1 (bottom) UTr. Note for the inverse gate the
largest distance between a |g⟩ and |g−1⟩ is 13

an operator VC . For example, one conjugacy class with
order 2 in BT yields [49]:

V1 =
11∏

a=0
U (2a,2a+1)

2 (θ⃗). (7)

VC for larger n are constructed recursively with additional
Givens rotations [132–135]. SU(3) rotations requires

U (a,b,c)
3 (θ⃗) = U (a,b)

2 (θ⃗0)R(b,c)
X (θ1)U (a,b)

2 (θ⃗2)R(b,c)
Z (θ3). (8)

while an SU(6) needs from two U (a,b,c)
3 (θ⃗) and three

U (a,b)
2 (ϕ⃗) (where we suppress the arguments below):

U (a,b,c,d,e,f)
6 = U (a,b,c)

3 U (d,e,f)
3 U (a,d)

2 U (b,e)
2 U (c,f)

2 . (9)

With these, a VC with order 6 for BT is

V9 =U (0,9,16,1,8,17)
6 U (2,14,20,3,15,21)

6

U (4,11,23,5,10,22)
6 U (6,12,19,7,13,18)

6 .
(10)

Thus, UF is a tensor product of a few SU(N < 18) rota-
tions between well-separated qudit states.

Along with primitive gates, the opportunity for opti-
mizing state preparation in LGT should be considered.
In situations where gauge redundant encodings are nec-
essary, one often prepares a gauge-dependent state and
then applies a gauge-symmetrization operator. This gate
acts as a projection operator [47, 58, 103, 136]:

P |Uij . . .⟩ = 1
|G|N

(∫
G

dg1

∫
G

dg2 . . .

) ∣∣∣g2Uijg
†
1 . . .

〉
= 1

|G|N

∫
GN

dg ϕ(g) |U⟩ . (11)

The structure of this operator is a sum over U×, and thus
again a set of controlled permutation matrices. This con-
straint allows one to restrict the possible state that must
be initially prepared, simplifying state preparation opti-
mization. Further, algorithmic choices in state prepara-
tion can simplify the possible initial states [114, 137, 138].

To summarize, the general structures of a LGT primi-
tive gates are tensor products of X(a,b) and SU(N < |G|)
rotations between states that are typically well-separated.
While it could prove experimentally hard to create qu-
dits with d = |G|, for smaller d the single register gates
become similar to the controlled-permutations required
for U×, so one can start with considering how prototype
gates on smaller qudits can be compiled.

III. 3D CAVITY QED

The hardware platform we will study here corresponds
to an SRF cavity mode (qumode) coupled to a two level
system (qubit). With ℏ = 1, a simplistic model of this
interaction from circuit QED is the Jaynes-Cummings
model [139]:

H = ωcâ
†â+ 1

2ω0σz + g(â†σ− + âσ+). (12)

where ωc is the frequency of the qumode with creation and
annihilation operators â, â†, ω0 is the frequency of the two-
level system which is acted on by the Pauli operators σi,
and g is a coupling between the qumode and qubit. The
regime considered, particularly amenable to hardware, is
the so-called dispersive regime, which occurs when ∆ =
|ω0 −ωc| ≫ g [140]. In this regime, one can approximately
diagonalize H using a unitary transformation D†HD with

D = eλ(â†σ−−âσ+) (13)

where λ = g/∆. By doing so, and expanding to O(λ),
one obtains

H = ωcâ
†â+ 1

2ωqσz + 1
2χâ

†âσz + O(λ2), (14)

where χ = 2gλ = 2g2/∆ is called the dispersive shift and
ωq = ω0 + χ. With this, the Fock states of the qumode
(|0⟩ , |1⟩ , |2⟩ ...) can be used as a qudit computational
space, and the ancilla qubit provides an interaction to
manipulate the qudit.

An easy way to control the system is to add additional
fields acting on the qumode and the qubit. A possible
choice is to add a single control on both:

H =ωcâ
†â+ 1

2ωqσz + χâ†âσz

+ ϵ(t)â† + ϵ(t)∗â+ Ω(t)σ+ + Ω(t)∗σ−. (15)

which we define as H = H0+H1 as a non-interacting H0 =
ωcâ

†â+ 1
2ωqσz, and the remaining terms the interacting

Hamiltonian H1.
With this choice of controls and enough time, it is

possible to manipulate the system to reach any arbitrary
state [141]. It is important to emphasise that for SRF
cavities there is not an agreed-upon mode of operation.
Therefore, the investigation of different gate sets [32–35]
and optimal control [141–149], is key to fully exploit these
systems. At a higher level of abstraction, performing
efficient compilation of quantum circuits to qudits rather
the qubits also requires new techniques [5, 150–154].
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IV. GATE IMPLEMENTATION

To obtain a theoretical target gate Ut, one manipulates
the time-dependent couplings of Eq. (15). All approaches
require this optimization at the Hamiltonian level, and in
this section we summarize two ways to do so. The first
approach only relies on direct optimization of ϵ(t),Ω(t),
while the other decomposes Ut into a set of simpler gates
that have been optimized at the Hamiltonian level. In
either case, one considers a quantum state |ψ(t)⟩ evolving
according to the Schrödinger equation with a particular
time-dependent Hamiltonian H(t). This state can be
approximated by dividing t into time steps of size δt:

|ψ(t)⟩ ≈
t/δt∏
n=0

e−iH(nδt)δt |ψ(0)⟩ ≡ V |ψ(0)⟩ , (16)

with increasing accuracy as δt → 0.
Clearly, H(t) allows transition between quantum states,

and thus V correspond to a digital quantum circuit. The
goal is then is to find a V which implements Ut with high
fidelity. It is important to emphasise that V as defined in
Eq. (16) makes reference to a state |ψ(0)⟩. It is the case
that the state-dependent fidelities vary substantially [155–
157] and therefore synthesizing a general unitary is harder
than preparing a state from a given |ψ(0)⟩. Proceeding, we
will distinguish between gates for state preparation which
are optimized only for acting on vacuum |0⟩, and general
gates which should have high fidelity on any |ψ(0)⟩.

To study these effects, we need to define the infidelity
i.e. a cost function I(Ut, V ) to minimize. Given that
the goal is to implement a target gate Ut, a common
approach consists of dividing the time into N time steps
and for each of these, the control pulses Ω(nδt), ϵ(nδt)
are constant. A main drawback of this approach is the
increasing number of time steps – and therefore opti-
mization parameters– required when increasing d of the
qudit [35, 141], this is because while the controls can
generate the algebra, reaching higher states requires more
and more commutators. Another drawback is the pulse
discontinuities. By optimizing only the field amplitudes
at each time step, we are neglecting the time required
to ramp the fields on the physical hardware, which can
introduce additional infidelity or must be implemented
as expensive constraints on the optimization. Further,
increasing N requires more matrix multiplications in the
optimization algorithm. Looking at Eq. (16), for a d-
dimensional qudit N matrix multiplications are required
to compute the evolution of the system, leading to O(Nd3)
operations. Lastly, when optimizing the cost function,
unless the optimization method is gradient-free, it is nec-
essary to compute either the gradient or in some cases the
hessian – further increases the complexity. For N param-
eters, without recycling computations, the cost function
needs to be evaluated N + 1 times, which leads to an
overall complexity of O(N2d3).

An alternative approach avoids piecewise constant
terms and instead optimize gates in a different basis.

Looking at the expression of Eq. (15), a way to gener-
ate smooth pulses, making it easier to implement, is to
expand them in some polynomial basis [158, 159], where
the optimal choice can be problem-dependent. More-
over, the number of basis states directly controls how
steep the pulse ramping can be. Here, we will expand in
Chebyshev polynomials which provide an exact nth order
interpolation function for any nth order polynomial. Ap-
proximating instead using the Fourier series requires more
terms to reach a comparable accuracy [160]. Rewriting
Eq. (15) in the Chebyshev basis of Tk(t), yields

H = H0 + χâ†âσz +
N∑

k=0

[
(ckâ

† + qkσ+)Tk(t) + h.c.
]
,

(17)

where {ck} and {qk} are the coefficients of the qumode
and the qubit, respectively. Using this expression for H,
it is possible to compute the V . Its magnitude depends
on the dimension of the cavity space that is optimized,
the duration of the pulses, and on the resolution of the
hardware on which the pulses are optimized.

A. Interaction picture

Finding an optimal V from Eq. (17) can be made
easier by transforming into the interaction frame of ref-
erence [161]. Since H0 is time-independent, the time-
evolution can be solved analytically:

U0(t) = e−iH0t.

With this expression, it is possible to define a state vector
in this new frame of reference:

|ψI(t)⟩ = U0(t) |ψS(t)⟩ , (18)

where |ψS(t)⟩ represents the state governed by
Schrodinger equation. Using this, it is possible to write

i
∂

∂t
|ψS(t)⟩ = H |ψS(t)⟩ = e−iH0t

(
H0 + i

∂

∂t

)
|ψI(t)⟩

=⇒ i
∂

∂t
|ψI(t)⟩ = eiH0tH1e

−iH0t |ψI(t)⟩ . (19)

This can be used to simplified optimization of V by
solving Eq. (19) and then transforming back to the ini-
tial frame by multiplying by the inverse transformation
defined by Eq. (18). The remaining step consists in writ-
ing explicitly the term that dictates the evolution of the
system:

H1I
= eiH0tH1e

−iH0t

with the resulting operator being

H1I
= χâ†âσz +

N∑
k=0

[ckCk(t)â† + qkQk(t)σ+ + h.c]. (20)
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where

Ck(t) ≡ Tk(t)eiωct

Qk(t) ≡ Tk(t)eiωqt,

While optimizing the pulses in the interaction picture
may be easier, the pulses must be converted back to the
laboratory frame by multiplying them with the exponen-
tial factors that are missing in Eq. (20). This may reduce
accuracy, depending on the hardware precision.

To inform the gate synthesis that is developed in this
work, it is important to give some realistic near-term prop-
erties for 3D cavities. We take for a fiducial decoherence
time of the cavity T1 = 10 ms [162]. With this, we take
ωc = 5 GHz, ωq = 3 GHz, and χ = 0.3 MHz. Regarding
the control pulses, we consider a max time resolution of 1
ns (corresponding to 1 giga-sample/s) for the state prepa-
ration, and a longer 10ns time resolution for the pulses
used for gate optimization. An additional constraint is
for the drive amplitudes to change by no more than a 1
MHz/ns (to maintain a smooth drive profile) which is
consistent with near-term SRF cavities.

B. Gate decomposition in universal sets

One could imagine engineering an optimized pulse for
each LGT primitive, although issues with computational
expense and error correction may complicate this. Instead,
one might decompose each primitive into a limited set
of universal gates whose implementation is known at the
Hamiltonian level with high fidelity. The price of this
is increased runtime of the primitive. While qudits can
decrease the circuit depth for LGT [49], improvements
are gate-set dependent. Thus we consider two universal
sets: SNAP & Displacement and ECD.

1. SNAP & Displacement

The qudit gate set of SNAP and Displacement gates (S+
D) has been widely discussed in the literature [32–34, 150]
and we briefly review the key points here. Crucially, the
universality of S +D is known [141]. The Displacement
gate is produced by driving the cavity on resonance with
a calibrated pulse of a specific amplitude and length. It
can be expressed as

D(α) = e(αâ†−α∗â), (21)

and generates a coherent state |α⟩ from the vacuum dis-
placed in phase space by α i.e. D(α) |0⟩ = |α⟩. An
important property of D(α) is that its Hermitian conju-
gate D†(α) = D(−α). The parameter α of Eq. (21) can
be considered real, without loss of generality. Mathemat-
ically D(α) represents the Heisenberg group which may
prove useful for compilation. For reasonable χ on GHz
SRF cavities with T1, T2 ∼ O(1) ms, the gate times range
from 0.01 − 0.2 µs depending on α [163].

The SNAP gate applies arbitrary phases to Fock states

S(θ⃗) =
d−1∑
k=0

eiθk |k⟩ ⟨k| . (22)

This is produced by driving the qubit with π pulses with
relative phases, which cause a phase kick-back onto the
qudit. Importantly, while the qubit is used to implement
this gate, upon completion the qubit is unentangled from
the qudit. To ensure high fidelity, the driving strength
for a SNAP must be taken max(Qk(t)) ≪ χ, with a good
heuristic found to be a pulse length of π/(10χ). While
larger χ allows for faster SNAP gates, the need to avoid
strong self-Kerr interactions limits its size. Reasonable
values for χ for GHz cavities with T1, T2 ∼ 1 ms lead to
SNAP gate times between 1 − 50 µs [31, 35, 162].

With these, any single-qudit gate can be approximately
decomposed by [33]:

Ut =
(

M∏
k=0

D(αk)S(θ⃗k)
)
D(αM+1), (23)

where B is the number of blocks used. For a d-state qudit,
an B block decomposition has (d+1)B+1 free parameters.
Since an arbitrary qudit state can be obtained by an
SU(d) rotation with d2 − 1 parameters, a naive estimate
for the decomposition of any single qudit state is at most
B = d2−2

d+1 ∼ O(d) [164]. This represented an algorithmic
improvement over the O(d2) scaling of a log2(d) qubit
device with access to only one and two-qubit gates [17].
The authors of [33] empirically found that a broad set of
qudit gates (with d ≤ 10) can be decomposed according
to Eq. (23) with only 3 to 4 blocks and that the fidelity
F ≈ 1 − e−6.49(B/d)1.91 .

Following the LGT insight discussed in Sec. II that
permutation matrices represent a sizeable fraction of the
primitives necessary, we investigated whether these gates
represent a special subset of all qudit gates in terms
of their fidelity under S + D decomposition. For all
d! permutation gates with d = [3, 6] we performed 10
decompositions with B = [1, 6], where the parameters
for the decompositions were randomly initialized. From
this data, the best fit to the functional form advocated in
[33] was Fperm ≈ 1 − e−3.8(5)(B/d)0.5(1) . This dependence
shows that for values of B/d ≲ 1, permutation gates can
be decomposed with higher fidelity than general gates.
In Fig. 3 we present the distribution of permutation gate
fidelities for d = 6 as a function of M. From the figure,
one observes a clear bimodal distribution in F for B =
3, 6. Beyond finding that permutation gates are easier
to decompose than general SU(d) matrices, one could
ask if specific permutation decompositions are better –
especially in light of the bimodal distribution. Given the
freedom in encoding of LGT, such algorithmic input could
be used similar to Gray codes on qubits to reduce noise or
gates [165–168]. As such, we investigated the dependence
of F for d = 6 permutation gates on two distance metrics
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FIG. 3. Number of d = 6 permutation gates NG with given
fidelity as a function of B for S + D.

used for distinguishing between strings when we write the
permutations as tuples, for example0 1 0

1 0 0
0 0 1

 → (1, 0, 2). (24)

where the i−th entry j of the tuple corresponds to per-
muting the state |j⟩ → |i⟩. The first is the Kendall rank
correlation coefficient KC which is used as a statistic
measure between two sets of data x = {x0 . . . xn} and
y = {y0 . . . yn} of their relative monotonicity [169]. It
is defined in terms of the number of pairs (xi, yi) and
(xj , yj) that are concordant, i.e. for i < j either xi < xj

and yi < yj or xi > xj and yi > yj . If we call this number
nc, and the remaining discordant pairs nd then KC is

KC = nc − nd

nc + nd
(25)

where KC can range from 1 when the two sets are identical
to -1 when the two sets are exactly reverse. We take
x = (0, 1 . . . , d) = 1d, and thus KC is measured from it.
The results are found in Fig. 4. From these it is clear
that KC does capture some of the dependence of F on
permutation, with higher KC typically having larger F . In
particular we see that the bimodal distribution of Fig. 3
is correlated with positive KC . Investigating further,
one observes that F(KC) is non-monotonic, reaching a
minimum at KC = 0 with a large variance, before rising
slightly toward KC → −1.

Another metric for comparing sets, with its ori-
gin in spell checking, is the Damerau–Levenshtein dis-
tance [170, 171] Dperm which here counts only the number
of transposition of two adjacent characters required to
change one word into another. Fig. 5 presents F as a
function of Dperm. We do observe decreasing F with
Dperm. From the best fit lines in Fig 5, we see that
1 − F ≈ [10−3, 10−2]Dperm with some weak quadratic
term. With this, one can make a comparison between
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0.9
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1

−1 −0.5 0 0.5 1

B = 1
B = 3
B = 6

F

KC

FIG. 4. Fidelity of d = 6 permutation gates vs. KC and B.
Quadratic best fit lines are shown to guide the eye.

directly decomposing a gate with and decomposing in
terms of N = Dperm single X(a,a+1) with smaller B each
with individual Find. In the best case for the single gates,

1 − 10−2Dperm = FDperm
ind =⇒ Find > 0.990 (26)

Since this high fidelity for B < Dperm decomposing di-
rectly into S +D is always more efficient.

Taken together, we conclude that permutation gates
represent an important subset of gates under S +D de-
composition with higher than average fidelity. Further,
specific classes of permutation gates appear to have still
better scaling and thus could be useful in optimizing
digitization of LGT.

2. ECD decomposition

One limitation of S + D is that operations require
time comparable to 2π/χ. This is a limiting factor in the
weak-dispersive regime because decoherence will reduce
fidelity. To overcome this challenge, another universal set
has been proposed which combines an echoed conditional
displacement ECD gate with single qubit rotations [35]:

Ut =
(

M∏
k=0

R(θk, ϕk)ECD(αk)
)
R(θM , ϕM ), (27)
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FIG. 5. Fidelity of d = 6 permutation gates vs. Dperm for
different block sizes B. Quadratic best fit lines with F(0) = 1
are shown to guide the eye.

where the ECD gate corresponds to applying D gates
conditioned on the state of the qubit,

ECD(α) = D(α/2) |e⟩ ⟨g| +D(−α/2) |g⟩ ⟨e| .

To enable universality, this is coupled to unselective qubit
rotation

R(θ, ϕ) = exp
(

– iθ2 (σx cosϕ+ σy sinϕ)
)
.

In constrast to S+D, only the ECD gate acts directly
on the qudit. In this scheme R(θ, ϕ) acts on the qubit
changing the relative displacement. As such, the qubit
and qudit may still be entangled at the end of a block.
This leads to greater sensitivity of the qudit to noise from
the qubit. Modern transmon qubits can perform R(θ, ϕ)
in O(0.01 µs). ECD(α) can be implemented in T ∝ α

χα0
where α0 is the magnitude of the intermediate oscillator
displacement. For GHz cavities and reasonable values of
α0 ∼ 30 this would correspond to 0.1 − 0.5 µs [31, 35].

Counting parameters, B blocks have 3B + 2. Since the
qubit may not be decoupled, the general state is given
by an SU(2d) rotation with 4d2 − 1 parameters. This
naively estimates that 4

3d
2 − 1 blocks are needed – O(d2)

scaling – which is parametrically worse that S +D. As
will be seen below, this larger B can be compensated by
the faster gate times.

One should also compare to State-of-the-art qubit im-
plementations, which also scale asymptotically as O(d2).
An SU(2n) unitary where d = 2n requires [17] a number
of sequential CNOTs

NCNOT = 21
16d

2 − d− 3
4d log2(d) (28)

which suggests a comparable circuit depth to ECD. Fur-
ther, the theoretical lower bound is NCNOT = 1

4 [d2 −
1 − 3 log2(d)] [172] while the lower bound on ECD is un-
known. Importantly, modern transmon-based platforms
can perform CNOT gates in ∼ 0.5 µs [173], similar to
the higher estimates for near-term ECD gates. Taken
together, these results suggest that the algorithmic ad-
vantage of qudit-based platforms with ECD gate sets over
qubit devices depends upon acheiving gate times below
0.5 µs and clearer decomposition estimates.

V. METHODS

For optimization, we have used LBFGS as our optimiza-
tion algorithm [174]. For preparing |Ψ⟩, one solves the
pulse optimization of Eq. (16) using the parameters in
Eq. (17) with a fixed |ψ(0)⟩. For general gate preparation,
the more complicated optimization procedure motivates
using the interaction picture of Eq. (20). Further, given
the larger number of optimization parameters, we found
efficiency gains from first optimizing pulses with a small
number of coefficients, and then growing the bases while
using as initial conditions for the next iterations the pre-
vious results1 In order to compare the optimized gates
with the target, it is necessary to define a cost function.
In the literature, there is a number considered, typically
related to p norms [32, 33, 35, 49, 141, 143, 145, 147]:

||A||p = sup
x̸=0

||Ax||p
||x||p

(29)

which use the p vector norm,

||x||p =
(∑

i

|xi|p
)1/p

. (30)

If the goal is preparing |Ψ⟩, the optimization problem
can be restricted to only a subspace of the full system.
Here, we follow prior work and use as a cost function the
infidelity:

I = 1 − | ⟨Ψ|V |ψ(0)⟩ |2, (31)

Typically, |ψ(0)⟩ = |0⟩, but we will investigate a limited
set of other initial states as a way to understand robustness
of state preparation to noise.

1 The entire parallelized codebase is written in Julia and can be
found at https://github.com/AndreaMaestri18/Opt3DQalgs.

https://github.com/AndreaMaestri18/Opt3DQalgs
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FIG. 6. Distribution of I of two cost functions for three gates
on a quhexit using S+D decomposition, after 30 optimizations
and using different numbers of blocks B.

In case where we wish to optimize V to approximate a
gate Ut, one must account for working in the interacting
picture by multiplying the target by the inverse of the
transformation U0(T ) defined in Eq. (18). With this, the
most common cost function to minimize is :

I = 1 −

(
| Tr(U †

t U0(T )V )|
2d

)2

(32)

where 2d is the dimension of the combined cavity and
qubit space. The idea behind this measure is that if
V ≈ Ut, using the properties of the unitary matrices we
have I −→ 0. Other options to measure the distance
between 2 matrices could be:

I = ||1 − U †
t U0(T )V ||2. (33)

which still relies on unitarity, and the norm of the differ-
ence between the matrices:

I = ||Ut − U0(T )V ||2. (34)

VI. NUMERICAL RESULTS

In this section, we numerically optimize decomposi-
tions of a set of prototypical gates for HEP. As a first
step, we studied how minimizing the different infidelities
I of Eqs. (32), (34), and (33) as a cost function. This
preliminary analysis was used to decide which cost func-
tion going forward. The cases considered were S + D
decomposition of two gates on a quhexit: a double X
gate, X(2,3)X(4,5) (with two different block sizes) and
R

(2,3)
X (π/10) gate. While we tested the three norms, the

results coming from the optimization of eq. (34) showed
poor, slow convergence and thus in-depth analysis was
done only on the remaining cost functions which are pre-
sented in Fig 6. In this figure, we present the infidelity of
trace-norm for both optimization functions eq. (33).

0 2 4 6 8 10
Blocks

10−15

10−12

10−9

10−6

10−3

100

I

Quhexit

X (3,4)

a3

Hd

R
(3,4)
X

U
(3,4)
2

0 2 4 6 8 10
Blocks

10−15

10−12

10−9

10−6

10−3

100

I

Quhexit

0 2 4 6 8 10
Blocks

10−15

10−12

10−9

10−6

10−3

100

I

Quhexit

FIG. 7. S + D (open points) and ECD (closed points) decom-
positions of different state preparations for: (top) ququart,
(middle) quhexit, (bottom) quoctit. The horizontal lines cor-
respond to the reference values of the PO infidelities.

One observes from these results that varying cost func-
tion leads to different decompositions, with distinct distri-
butions related to how the matrix elements are weighted.
A more sophisticated two-sided t-test for unequal vari-
ances confirms this. Putting everything together, the trace
distance defined in Eq. (32) generally produced lower I.
Therefore this metric will be used in what follows.

We now study preparation of the following states |Ψ⟩
on all three qudits and using all three decompositions:

• Fock state 3: a3 |0⟩ = |3⟩, which is a representative
of an electric basis state

• d−Hadamard state: Hd |0⟩ = 1√
d

∑
i |i⟩, which can

be taken as a prototype of the weak-coupling gauge-
invariant vacuum state in the magnetic basis

• X(3,4), R(3,4)
X (π/10), U

(3,4)
2 ( π

5 ,
2π
15 ,

π
10 ) applied to

randomly-generated state: |ψran⟩ → Utarget |ψran⟩,
correspond to prototypes of general HEP states that
are prepared on a potentially noisy device.

For each decomposition, I as a function of B are pre-
sented in Fig. (7). From these |Ψ⟩, the S +D decomposi-
tions appear independent of qudit size d– always requiring
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TABLE I. I from pulse optimization of state preparation on
different qudits.
d T [µs] X RX U2 |0⟩ → |3⟩ |0⟩ → |H⟩
4 0.1 2 × 10−12 6 × 10−11 2 × 10−10 2 × 10−10 6 × 10−8

6 0.2 2 × 10−6 5 × 10−7 8 × 10−6 1 × 10−7 2 × 10−6

8 0.5 3 × 10−6 9 × 10−6 7 × 10−5 5 × 10−5 2 × 10−6

a block size BS+D = 2 to reach I < 10−15. In contrast
reaching I < 10−15 requires BECD ≈ d. Thus these |Ψ⟩
confirms the expectations of BECD > BS+D and the scal-
ing from naive parameter counting. Further, while ECD
requires more blocks, the potential 2-50× faster time per
block can mitigate this so the ultimate preference de-
pends on experimental hardware. These results can be
compared to pulse optimization with total times roughly
one block of the ECD gate but different for each qudit:
T 4

P O = 0.1 µs, T 6
P O = 0.2µs. T 8

P O = 0.5 µs. Example of
the pulses for the quhexit are found in Fig. (7). While
these pulses do not start and stop at zero power, impos-
ing smooth ramping was found to have only small effect
on I but greatly increased convergence time. From this,
IP O ≲ 10−5 has a clear dependence on d.

Moving to gate decomposition, we consider the follow-
ing gates which are prototypical of HEP primitives:

• X(3,4), X(2,5), andX(2,3)X(4,5) which can be related
to U−1 and U×

• R
(3,4)
X (θ) with θ = π, π/5, π/10 which model UTr

and UF.
For these gates, we consider their decomposition on quhex-
its with S +D and ECD (See Fig. (9)). In contrast to
state preparation, I depends strongly upon B. We ob-
serve little difference in scaling for X(3,4) and X(2,3)X(4,5),
but X(2,5) – with its larger distance between states – ap-
pears to converge more slowly for S +D. Notice how I
is not strongly affected by applying multiple X-gates –
confirming the S+D observation and suggesting it also
holds for ECD decompositions. For the R(3,4)

X (θ) gates,
I increases with θ for both decompositions. Further, for
fixed B, For the small θ investigated here, RX has lower
I that X gates. In all cases BS+D ≪ BECD with the
relative factor being ∼ 6 = d which comports with the
scaling from parameter counting.

After looking at the dependence of I on the two decom-
position methods, we perform an analysis of two gates
X(3,4) and R

(3,4)
X (π/10) for d = 4, 6, 8 qudits which is

presented in Fig. (10). If we take as a fiducial I = 10−4,
we find that nearly constant BS+D ∼ 2−3 for all d, while
BECD = 16, 36, 64 for d = 4, 6, 8 respectively. This again
suggests BS+D scales sublinearly with d. In contrast,
ECD scales consistently with BECD ∼ d2.

Taking these results, one can estimate the break-even
dimension db when the decompositions require the same
amount of time by setting

BECDTECD = BS+DTS+D. (35)

TABLE II. IP O of two gates obtained with pulse optimization
for qudits. For all cases, the time interval was divided into 50
time steps and the best optimization of 10 trials was taken.
The final truncation order of the Chebysev series is denoted
by oC .

d T [µs] oC X Rx

4 0.5 18 4 × 10−5 5 × 10−7

6 0.5 30 3 × 10−5 6 × 10−5

8 2.0 50 2 × 10−3 2 × 10−3

With the empirically-observed constant BS+D and relative
factor of ∼ 1 between the decompositions, one finds

TS+D

TECD
= d2

b =⇒ db =

√
[1, 50] µs

[0.1, 0.5] µs = [2, 22], (36)

if instead, one takes the scaling suggested from parameter
counting BS+D = d, the range is db = [2, 500]. These
heuristics suggest while neither gate decomposition is
decisively better, hardware-obtainable TS+D and TECD

would resolve it.
This logic can also be used to estimate the number of

HEP primitive gates could be simulated within T1 = 10
ms of the qudit with fixed I versus B. In Fig. 11 is a
fiducial result for the R

(3,4)
X (π/10) gate decomposition

on a quoctit with fixed gate times of TS+D = 1 µs and
TECD = 0.2 µs. Together these suggest such devices
could reasonably achieve circuit depth of thousands of
gates with total I < 1%. Given the resources estimates
for SU(2) in [49], this would be sufficient for quantum
utility in toy models.

Finally, we consider optimal control. The pulse dura-
tion TP O = 0.5 µs for the ququart and quhexit to be
competitive with the single-block gate set decompositions,
but had to be extended to 2 µs for the quoctit to get
I < 10−2. An example of the resulting pulses is shown in
Fig. (12). The lowest infidelity from 10 trials for all three
qudit dimensions are shown in Table II. An additional
optimization that proved useful for the quoctit was to
start with a smaller basis set, truncated at the 32th order.
Then every 500 iterations, new terms were added to the
decomposition. The new terms were added in 3 different
batches consisting of 8, 5 and 5.

For the case of the quhexit, the infidelity from pulse
optimization IP O ≲ 10−5 was close to that of a 5-block
IS+D and a 36 block IECD which allows us to make a
direct comparison in this case of the relative gate time
for the X(3,4) and R

(3,4)
X (π/10):

T 6
P O ≈ 0.5 µs

T 6
S+D ≈ [5, 250] µs
T 6

ECD ≈ [3.6, 18] µs.

Thus we find that pulse optimization for X(3,4) and
R

(3,4)
X (π/10) at fixed infidelity appears to yield at least
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FIG. 8. Pulse optimization for the state prep of H6 |0⟩ = 1√
6

∑
i
|i⟩ for a quhexit

0 1 2 3 4 5 6 12 18 24 30 36
Blocks

10−6

10−4

10−2

100

I X (3,4)

X (2,5)

X (2,3)X (4,5)

0 1 2 3 4 5 6 12 18 24 30 36
Blocks

10−6

10−4

10−2

100

I

R
(3,4)
X

(
π
5

)

R
(3,4)
X

(
π
10

)

R
(3,4)
X (π)

FIG. 9. I vs. blocks for S+D and ECD for quhexit gates.

a factor of 10 in reduction of gate time. For the quoctit,
we can similarly compare to the gate sets, albeit only at
a higher I ≲ 10−3 since that was the best obtained from
pulse optimization. For comparable infidelities a 4-block
S +D and 64-block ECD were found sufficient,

T 8
P O ≈ 2.0 µs

T 8
S+D ≈ [4, 200] µs
T 8

ECD ≈ [6.4, 32] µs.

In this case, the improvement was a more modest factor
for 2, which may indicate a diminishing in advantage
at higher dimension or a reflection of the difficulty of
classical optimization at high dimension.

While these results demonstrate it is possible to de-
compose gates of interest to a universal set, the de-
composition generically has poor scaling O(dn) with
n ≥ 3 [150, 154, 164] that without mitigation will become
prohibitive for large d. It is therefore worth investigating
the relations between optimized parameters to seek heuris-
tics to guide the optimization. Since S+D requires fewer
blocks than ECD, we will restrict our analysis to this
decomposition and study the 5-block versions of X(3,4),
X(2,3)X(4,5), R(3,4)

X (π/10) gates acting on a quhexit. The
optimization is performed 200 times for each gate. The
distributions of I are shown in Fig. (13), where one ob-
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FIG. 10. I vs blocks for S + D and ECD decomposition of an
X(3,4) and R

(3,4)
x (π/10) gate, for ququart, quhexit and quoctit

from top to bottom. The horizontal lines correspond to the
reference values of the PO infidelities.

FIG. 11. R
(3,4)
X (π/10) gate decomposition on quoctit using

(left) S + D and (right) ECD. The T1 is plotted as a reference
for the maximum number of gates given a certain amount
of blocks, assuming fixed gate times of TSNAP = 1µs and
TECD = 200ns.
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FIG. 12. Example X gate pulses for a quhexit, with a control on the pulses every 10ns.

FIG. 13. Distribution of infidelities for 5-block S + D decom-
position for different quhexit gates starting from the same
initial parameters.

FIG. 14. Distribution of αk of quhexit optimizations that gave
I > 10−4 (orange) and I ≤ 10−4 (blue). From left to right
for R

(3,4)
X (π/10), X(3,4) and X(2,3)X(4,5)

serves a clear ordering of I from smallest to largest of
R

(3,4)
X (π/10), X(3,4), X(2,3)X(4,5). This supports the in-

tuition that the distance from 1 is a proxy for difficulty.
Probing further, one can study the distribution of S+D

parameters. The distribution of the SNAP θk appear to
be uniformly distributed regardless of I. In contrast, the
displacement parameters clearly distinguish between good
and poor optimizations as seen in Fig. (14). For I ≤ 10−4

where α cluster near 0, compared to optimizations where
I ≥ 10−4 that have broader distributions. This can be
used to reduce the search parameter space.

FIG. 15. Correlation matrix across parameters for S + D de-
compositions of X(3,4) gate for a 5-block quhexit optimizations
with (left) I ≤ 10−5 and (right) I > 10−5.

Another source for accelerating the optimization would
use correlations between the optimal parameters. This
is further motivated by empirical observations that for
optimal BS+D = 1 decompositions α1 = −α0 of many
gates. We searched for correlations across optimizations
of X(3,4). Fig. (15) shows the correlation matrix corre-
sponding to high and low infidelities. The correlation
between two decomposition parameters X,Y ∈ {αk, θk}
were computed using

ρ(X,Y ) = 1
σXσY (n− 1)

n∑
i=1

(Xi − X̄)(Yi − Ȳ ),

where σX and X̄ are the standard deviation and mean
of X. From the analysis of these correlations, we found
different distributions when comparing low and high in-
fidelity decompositions, when I > 10−5 the parameters
are highly symmetric and with large correlation (or an-
ticorrelation). In contrast, for I ≤ 10−5 the parameters
display decreasing correlation with gates farther away
in the decomposition i.e. gates in the same block are
more correlated. Additionally, there is some clear, weak
anti-correlation structure suggesting new ansatze for de-
composition. Moreover, we found that the same initial
conditions gave either good results for two different gates,
or bad results for both. This is presented in Fig. 16 and
suggests that there might be only a subspace of the param-
eters. However, this hypothesis requires more analytical
work should be explored in the future.

A final consideration is the robustness to quantum noise.
As a first step toward understand this, we studied how
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FIG. 16. Contours of the infidelities reached from same initial
parameters for a RX and a X gate.

FIG. 17. Stability analysis for all the decompositions for a X
gate on a quhexit.

I degrades when the parameters of the gate sets and
pulse optimization were perturbed by a Gaussian noise.
This basic noise model could be taken to approximate
the stochastic fluctuations in the pulses driving the cavity
and qubit. In this model the parameters are varied:

α → α(x) = α+ 1
β|α|

√
2π

exp− 1
2

(
x

β|α|

)2

, (37)

where α is the parameter of the decomposition, and β is
the square-root of the variance.

Taking the noiseless X(3,4) gates on the quhexit with
I ≈ 10−5: 5-block S + D with I = 3.97 × 10−5, 36-
block ECD with I = 3.57 × 10−5, and 30th order pulse
optimization for 0.5 µs with I = 3.10 × 10−5; 50 random
sample perturbations for each β are computed. The plot
showing the results is Fig. (17). One observes that for
β < 10−4, the effect of noise is negligible. At larger β,
pulse optimization and ECD are found to demonstrate
similar sized infidelities from the noise, while S + D is
found to have I about half the size of the other two.

VII. CONCLUSION

In this work, we compared the three methods for imple-
menting prototypical primitive gates for simulating lattice
gauge theories on a 3D SRF qudit architecture: Snap &
Displacement gates, ECD & single-qubit rotations, and
optimal pulse control. We observed that lattice gauge the-
ory primitives have common properties that distinguish
them from general SU(d) circuits, and thus the choice
of decomposition could greatly change the algorithmic
reach of devices. We found evidence that for subsets of
permutation gates the number of SNAP and Displacement
blocks required to approximate them scales sublinearly
with qudit dimension – in contrast to the general case
of linear scaling –, while the ECD block depth quadrati-
cally. In all cases, we found that decomposing a sequence
of X(a,b) gates rather than individual reduces the total
number of blocks required and consequently the total
time for fixed infidelity. With the gate sets, we found
that I < 10−5 is possible for BS+D = d and BECD = d2.
In addition, pulse decomposition with modest classical
resources can outperform in run time for d < 8, while
becoming comparable to gate decomposition for quoctits.
Beyond run time, the S +D decomposition was found to
be more robust to Gaussian perturbations.

From the analysis of the S+D decomposition, we found
that good gate decompositions can be distinguished by
symmetries, correlations, and the distribution of parame-
ters. Further, we found correlations between initial con-
ditions, suggesting a subspace useful as initial conditions.

From this initial work, we found that algorithmic ad-
vantage and hardware-specific gate times can be used to
decisively choose between different native gate sets on
qudit devices for the restricted class of gates needed for
high energy physics. In the future, more in-depth inves-
tigation of the scaling of the decompositions should be
performed. Further, it would be of invaluable help to try
to implement some of the decompositions on the actual
hardware, in order to better understand and develop a
noise model and how the infidelities are affected.
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[12] D. González-Cuadra, T. V. Zache, J. Carrasco, B. Kraus,
and P. Zoller, Hardware efficient quantum simulation
of non-abelian gauge theories with qudits on Rydberg
platforms (2022), arXiv:2203.15541 [quant-ph].

[13] M. Illa, C. E. P. Robin, and M. J. Savage, Qu8its for
quantum simulations of lattice quantum chromodynam-
ics, Phys. Rev. D 110, 014507 (2024), arXiv:2403.14537
[quant-ph].

[14] T. V. Zache, D. González-Cuadra, and P. Zoller,
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[50] T. V. Zache, D. González-Cuadra, and P. Zoller, Quan-
tum and Classical Spin-Network Algorithms for q-
Deformed Kogut-Susskind Gauge Theories, Phys. Rev.
Lett. 131, 171902 (2023), arXiv:2304.02527 [quant-ph].

[51] E. J. Gustafson, H. Lamm, and F. Lovelace, Prim-
itive quantum gates for an SU(2) discrete subgroup:

Binary octahedral, Phys. Rev. D 109, 054503 (2024),
arXiv:2312.10285 [hep-lat].

[52] H. Lamm, Y.-Y. Li, J. Shu, Y.-L. Wang, and B. Xu,
Block Encodings of Discrete Subgroups on Quantum
Computer (2024), arXiv:2405.12890 [hep-lat].

[53] E. M. Murairi, M. Sohaib Alam, H. Lamm, S. Had-
field, and E. Gustafson, Highly-efficient quantum Fourier
transformations for some nonabelian groups (2024),
arXiv:2408.00075 [quant-ph].

[54] T. D. Cohen, H. Lamm, S. Lawrence, and Y. Yamauchi
(NuQS), Quantum algorithms for transport coefficients
in gauge theories, Phys. Rev. D 104, 094514 (2021),
arXiv:2104.02024 [hep-lat].

[55] M. Carena, H. Lamm, Y.-Y. Li, and W. Liu, Im-
proved Hamiltonians for Quantum Simulations of
Gauge Theories, Phys. Rev. Lett. 129, 051601 (2022),
arXiv:2203.02823 [hep-lat].

[56] E. J. Gustafson, Stout Smearing on a Quantum Com-
puter (2022), arXiv:2211.05607 [hep-lat].

[57] E. Gustafson and R. Van de Water, Improved Fermion
Hamiltonians for Quantum Simulation, PoS LAT-
TICE2023, 215 (2024), arXiv:2402.04317 [hep-lat].

[58] M. Carena, H. Lamm, Y.-Y. Li, and W. Liu, Quantum
error thresholds for gauge-redundant digitizations of
lattice field theories (2024), arXiv:2402.16780 [hep-lat].

[59] E. Zohar, J. I. Cirac, and B. Reznik, Cold-Atom
Quantum Simulator for SU(2) Yang-Mills Lattice
Gauge Theory, Phys. Rev. Lett. 110, 125304 (2013),
arXiv:1211.2241 [quant-ph].

[60] E. Zohar, J. I. Cirac, and B. Reznik, Simulating Compact
Quantum Electrodynamics with ultracold atoms: Prob-
ing confinement and nonperturbative effects, Phys. Rev.
Lett. 109, 125302 (2012), arXiv:1204.6574 [quant-ph].

[61] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simula-
tions of gauge theories with ultracold atoms: local gauge
invariance from angular momentum conservation, Phys.
Rev. A88, 023617 (2013), arXiv:1303.5040 [quant-ph].

[62] E. Zohar, J. I. Cirac, and B. Reznik, Quantum Simula-
tions of Lattice Gauge Theories using Ultracold Atoms
in Optical Lattices, Rept. Prog. Phys. 79, 014401 (2016),
arXiv:1503.02312 [quant-ph].

[63] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey,
and J. Zhang, Gauge-invariant implementation of the
Abelian Higgs model on optical lattices, Phys. Rev. D92,
076003 (2015), arXiv:1503.08354 [hep-lat].

[64] J. Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov,
S. W. Tsai, and Y. Meurice, Quantum simulation of the
universal features of the Polyakov loop, Phys. Rev. Lett.
121, 223201 (2018), arXiv:1803.11166 [hep-lat].

[65] J. Unmuth-Yockey, J. Zhang, A. Bazavov, Y. Meurice,
and S.-W. Tsai, Universal features of the Abelian
Polyakov loop in 1+1 dimensions, Phys. Rev. D98,
094511 (2018), arXiv:1807.09186 [hep-lat].

[66] N. Klco, J. R. Stryker, and M. J. Savage, SU(2) non-
Abelian gauge field theory in one dimension on digital
quantum computers, Phys. Rev. D 101, 074512 (2020),
arXiv:1908.06935 [quant-ph].

[67] R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J. Savage,
Scalable Circuits for Preparing Ground States on Digital
Quantum Computers: The Schwinger Model Vacuum on
100 Qubits (2023), arXiv:2308.04481 [quant-ph].

[68] R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J.
Savage, Quantum Simulations of Hadron Dynamics
in the Schwinger Model using 112 Qubits (2024),

https://doi.org/10.1103/prxquantum.3.030301
https://doi.org/10.1038/s41567-022-01776-9
https://doi.org/10.1038/s41567-022-01776-9
https://arxiv.org/abs/2111.06414
https://doi.org/10.26421/QIC6.4-5-9
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.26421/QIC18.1-2-1
https://doi.org/10.26421/QIC18.1-2-1
https://doi.org/10.1007/978-3-031-09005-9_3
https://doi.org/10.1007/978-3-031-09005-9_3
https://arxiv.org/abs/2204.00552
https://arxiv.org/abs/2204.00552
https://doi.org/10.26421/QIC9.5-6-6
https://doi.org/10.26421/QIC9.5-6-6
https://doi.org/10.1007/s11128-021-03280-0
https://doi.org/10.1007/s11128-021-03280-0
https://arxiv.org/abs/2311.08696
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://arxiv.org/abs/2204.12531
https://doi.org/10.4230/LIPIcs.TQC.2022.12
https://arxiv.org/abs/2202.09235
https://doi.org/10.4204/EPTCS.406.2
https://arxiv.org/abs/2405.08136
https://doi.org/10.1103/PhysRevA.98.032304
https://arxiv.org/abs/1803.03228
https://doi.org/10.1103/PhysRevD.100.034518
https://arxiv.org/abs/1903.08807
https://doi.org/10.1103/PhysRevD.105.114501
https://arxiv.org/abs/2108.13305
https://arxiv.org/abs/2108.13305
https://doi.org/10.1103/PhysRevD.106.114501
https://arxiv.org/abs/2208.12309
https://doi.org/10.1103/PhysRevLett.131.171902
https://doi.org/10.1103/PhysRevLett.131.171902
https://arxiv.org/abs/2304.02527
https://doi.org/10.1103/PhysRevD.109.054503
https://arxiv.org/abs/2312.10285
https://arxiv.org/abs/2405.12890
https://arxiv.org/abs/2408.00075
https://doi.org/10.1103/PhysRevD.104.094514
https://arxiv.org/abs/2104.02024
https://doi.org/10.1103/PhysRevLett.129.051601
https://arxiv.org/abs/2203.02823
https://arxiv.org/abs/2211.05607
https://doi.org/10.22323/1.453.0215
https://doi.org/10.22323/1.453.0215
https://arxiv.org/abs/2402.04317
https://arxiv.org/abs/2402.16780
https://doi.org/10.1103/PhysRevLett.110.125304
https://arxiv.org/abs/1211.2241
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.109.125302
https://arxiv.org/abs/1204.6574
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://arxiv.org/abs/1303.5040
https://doi.org/10.1088/0034-4885/79/1/014401
https://arxiv.org/abs/1503.02312
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1103/PhysRevD.92.076003
https://arxiv.org/abs/1503.08354
https://doi.org/10.1103/PhysRevLett.121.223201
https://doi.org/10.1103/PhysRevLett.121.223201
https://arxiv.org/abs/1803.11166
https://doi.org/10.1103/PhysRevD.98.094511
https://doi.org/10.1103/PhysRevD.98.094511
https://arxiv.org/abs/1807.09186
https://doi.org/10.1103/PhysRevD.101.074512
https://arxiv.org/abs/1908.06935
https://arxiv.org/abs/2308.04481


15

arXiv:2401.08044 [quant-ph].
[69] A. Ciavarella, N. Klco, and M. J. Savage, A Trail-

head for Quantum Simulation of SU(3) Yang-Mills Lat-
tice Gauge Theory in the Local Multiplet Basis (2021),
arXiv:2101.10227 [quant-ph].

[70] A. Bazavov, S. Catterall, R. G. Jha, and J. Unmuth-
Yockey, Tensor renormalization group study of the non-
abelian higgs model in two dimensions, Phys. Rev. D
99, 114507 (2019).

[71] A. J. Buser, T. Bhattacharya, L. Cincio, and R. Gupta,
Quantum simulation of the qubit-regularized O(3)-sigma
model (2020), arXiv:2006.15746 [quant-ph].

[72] T. Bhattacharya, A. J. Buser, S. Chandrasekharan,
R. Gupta, and H. Singh, Qubit regularization of asymp-
totic freedom (2020), arXiv:2012.02153 [hep-lat].

[73] A. H. Z. Kavaki and R. Lewis, From square plaque-
ttes to triamond lattices for SU(2) gauge theory (2024),
arXiv:2401.14570 [hep-lat].

[74] E. M. Murairi, M. J. Cervia, H. Kumar, P. F. Bedaque,
and A. Alexandru, How many quantum gates do gauge
theories require? (2022), arXiv:2208.11789 [hep-lat].

[75] Z. Davoudi, C.-C. Hsieh, and S. V. Kadam, Scattering
wave packets of hadrons in gauge theories: Preparation
on a quantum computer (2024), arXiv:2402.00840 [quant-
ph].

[76] I. Raychowdhury and J. R. Stryker, Solving Gauss’s
Law on Digital Quantum Computers with Loop-String-
Hadron Digitization (2018), arXiv:1812.07554 [hep-lat].

[77] S. V. Kadam, Theoretical Developments in Lattice Gauge
Theory for Applications in Double-beta Decay Processes
and Quantum Simulation, Ph.D. thesis, Maryland U.,
College Park (2023), arXiv:2312.00780 [hep-lat].

[78] Z. Davoudi, I. Raychowdhury, and A. Shaw, Search
for Efficient Formulations for Hamiltonian Simula-
tion of non-Abelian Lattice Gauge Theories (2020),
arXiv:2009.11802 [hep-lat].

[79] E. Mathew and I. Raychowdhury, Protecting local and
global symmetries in simulating (1+1)D non-Abelian
gauge theories, Phys. Rev. D 106, 054510 (2022),
arXiv:2206.07444 [hep-lat].

[80] C. W. Bauer and D. M. Grabowska, Efficient Repre-
sentation for Simulating U(1) Gauge Theories on Digi-
tal Quantum Computers at All Values of the Coupling
(2021), arXiv:2111.08015 [hep-ph].

[81] D. M. Grabowska, C. Kane, B. Nachman, and C. W.
Bauer, Overcoming exponential scaling with system
size in Trotter-Suzuki implementations of constrained
Hamiltonians: 2+1 U(1) lattice gauge theories (2022),
arXiv:2208.03333 [quant-ph].

[82] D. M. Grabowska, C. F. Kane, and C. W. Bauer, A Fully
Gauge-Fixed SU(2) Hamiltonian for Quantum Simula-
tions (2024), arXiv:2409.10610 [quant-ph].

[83] T. Li, Quantum simulations of quantum electrodynamics
in Coulomb gauge (2024), arXiv:2406.01204 [hep-lat].

[84] M. Kreshchuk, W. M. Kirby, G. Goldstein, H. Beau-
chemin, and P. J. Love, Quantum Simulation of Quan-
tum Field Theory in the Light-Front Formulation (2020),
arXiv:2002.04016 [quant-ph].

[85] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein,
J. P. Vary, and P. J. Love, Simulating Hadronic Physics
on NISQ devices using Basis Light-Front Quantization
(2020), arXiv:2011.13443 [quant-ph].

[86] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein, J. P.
Vary, and P. J. Love, Light-Front Field Theory on

Current Quantum Computers (2020), arXiv:2009.07885
[quant-ph].

[87] J. Liu and Y. Xin, Quantum simulation of quantum field
theories as quantum chemistry (2020), arXiv:2004.13234
[hep-th].

[88] M. Fromm, O. Philipsen, W. Unger, and C. Winterowd,
Quantum Gate Sets for Lattice QCD in the strong cou-
pling limit: Nf = 1 (2023), arXiv:2308.03196 [hep-lat].

[89] A. N. Ciavarella and C. W. Bauer, Quantum Simulation
of SU(3) Lattice Yang Mills Theory at Leading Order in
Large N (2024), arXiv:2402.10265 [hep-ph].

[90] A. Alexandru, P. F. Bedaque, A. Carosso, M. J. Cervia,
E. M. Murairi, and A. Sheng, Fuzzy gauge theory for
quantum computers, Phys. Rev. D 109, 094502 (2024),
arXiv:2308.05253 [hep-lat].

[91] R. Brower, S. Chandrasekharan, and U. J. Wiese, QCD
as a quantum link model, Phys. Rev. D60, 094502 (1999),
arXiv:hep-th/9704106 [hep-th].

[92] H. Singh, Qubit O(N) nonlinear sigma models (2019),
arXiv:1911.12353 [hep-lat].

[93] H. Singh and S. Chandrasekharan, Qubit regularization
of the O(3) sigma model, Phys. Rev. D 100, 054505
(2019), arXiv:1905.13204 [hep-lat].

[94] U.-J. Wiese, Towards Quantum Simulating QCD,
Proceedings, 24th International Conference on Ultra-
Relativistic Nucleus-Nucleus Collisions (Quark Matter
2014): Darmstadt, Germany, May 19-24, 2014, Nucl.
Phys. A931, 246 (2014), arXiv:1409.7414 [hep-th].

[95] R. C. Brower, D. Berenstein, and H. Kawai, Lattice
Gauge Theory for a Quantum Computer, PoS LAT-
TICE2019, 112 (2019), arXiv:2002.10028 [hep-lat].

[96] S. V. Mathis, G. Mazzola, and I. Tavernelli, Toward
scalable simulations of Lattice Gauge Theories on quan-
tum computers, Phys. Rev. D 102, 094501 (2020),
arXiv:2005.10271 [quant-ph].

[97] J. C. Halimeh, R. Ott, I. P. McCulloch, B. Yang,
and P. Hauke, Robustness of gauge-invariant dynamics
against defects in ultracold-atom gauge theories, Phys.
Rev. Res. 2, 033361 (2020), arXiv:2005.10249 [cond-
mat.quant-gas].

[98] T. Budde, M. K. Marinković, and J. C. P. Barros, Quan-
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