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We study neutrino induced charge current coherent pion production (νµCC-Cohπ) as a tool for
constraining the neutrino flux at the Deep Underground Neutrino Experiment (DUNE). The neu-
trino energy and flavor in the process can be directly reconstructed from the outgoing particles,
making it especially useful to specifically constrain the muon neutrino component of the total flux.
The cross section of this process can be obtained using the Adler relation with the π-Ar elastic
scattering cross section, taken either from external data or, as we explore, from a simultaneous mea-
surement in the DUNE near detector. We develop a procedure that leverages νµCC-Cohπ events to
fit for the neutrino flux while simultaneously accounting for relevant effects in the cross section. We
project that this method has the statistical power to constrain the uncertainty on the normalization
of the flux at its peak to a few percent. This study demonstrates the potential utility of a νµCC-Cohπ
flux constraint, though further work will be needed to determine the range of validity and precision
of the Adler relation upon which it relies, as well as to measure the π-Ar elastic scattering cross
section to the requisite precision. We discuss the experimental and phenomenological developments
necessary to unlock the νµCC-Cohπ process as a “standard candle” for neutrino experiments.

I. INTRODUCTION

The upcoming Deep Underground Neutrino Experi-
ment (DUNE) will measure charge-parity (CP) viola-
tion in the neutrino sector by observing the oscillation of
muon and electron (anti-)neutrinos with an energy ∼ 0.5-
5GeV over a baseline of 1300 km [1]. These measure-
ments are sensitive to the modeling of the neutrino flux,
as well as neutrino-argon cross sections, both of which
have significant uncertainties. The use of a near and
far detector, as well as both a predominantly neutrino
and predominantly anti-neutrino beam, partially control
these uncertainties. Still, methods to reduce these uncer-
tainties will enhance the power of DUNE to measure CP
violation.

The neutrino flux can be constrained in-situ by mea-
suring the rate of a process with a well understood
cross-section. This has been explored in the con-
text of neutrino-electron elastic scattering; the tech-
nique has been demonstrated in the MINERvA exper-
iment [2, 3] and its constraining power has been pro-
jected for DUNE [4]. In this paper, we explore the pos-
sibility of a neutrino flux constraint with the neutrino
induced charged current coherent pion production pro-
cess (νµCC-Cohπ). Such a constraint would be powerful
on its own due to the high rate of neutrino-nucleus in-
teractions in the DUNE near detector (ND). There will
be about 270k νµCC-Cohπ interactions per year in a
68 t fiducial volume in DUNE ND, compared to 7.5k
neutrino-electron scattering events. A νµCC-Cohπ-based
constraint would also complement a neutrino-electron
scattering measurement by constraining different com-
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ponents of the neutrino flux. In particular, the flavor of
the neutrino can be reconstructed in νµCC-Cohπ inter-
actions, unlike in the neutrino-electron scattering case.
Furthermore, neutrino-electron interactions in the DUNE
near detector can be used in other measurements such as
the weak mixing angle [5] and searches for hidden sector
bosons [6]. A flux constraint with a different interaction
channel would improve the reach of those measurements,
and could also be used to disentangle flux modeling from
any new physics signal.
Neutrino oscillation experiments have previously at-

tempted other methods of using neutrino-nucleus inter-
actions to constrain the flux such as inclusive charged
current interactions [7] and measuring interactions at low
inelasticity (the “low-ν” method) [8–13]. It has also been
proposed to leverage anti-neutrino interactions on hydro-
gen as a constraint [14, 15]. Such flux constraints must
pass three requirements [16].

1. That the cross section of the process can be ob-
tained in a model-independent way.

2. That the neutrino energy can be reconstructed in a
model-independent way from measurements of the
final state particles.

3. That a sample of events in the interaction can be
obtained with high purity and with small uncer-
tainties on the detector performance.

Cross section measurements of the νµCC-Cohπ pro-
cess demonstrate the feasibility of requirement 3 (e.g.,
Ref. [17–21]). The DUNE ND will be a pixelated liq-
uid argon time projection chamber (LArTPC) [1], which
projects to have a particularly strong ability to isolate
this process. Background incoherent neutrino interac-
tions can be rejected by vetoing on additional particles to
the µπ± pair, which in LArTPCs can be identified down
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to low energies: ∼15MeV for protons [22] and ∼50MeV
for muons and pions [23]. Identifying the final state γ-
rays produced in incoherent neutrino interactions would
provide a further veto [24, 25].
Requirement 2 is passed because the interaction is co-

herent and therefore the argon nucleus stays in its ground
state. A tiny fraction of the neutrino energy is taken up
by the nucleus recoil and the rest is measurable from the
outgoing muon and pion.

This leaves requirement 1, that the process has a
known cross section. This requirement can be addressed
using the Adler relation, derived from the partially con-
served axial-vector current (PCAC) theorem [26, 27]

dσCC

dQ2dyd|t|

∣∣∣∣PCAC

Q2=0,ml=0

=
G2

F

2π2
f2
π cos2 θC

(1− y)

y

dσπA
el

d|t|
,

(1)
where |t| = |(q − pπ)

2| = |(pν − pµ − pπ)
2|, y =

(Eν − Eµ)/Eν ≈ Eπ/Eν , Q2 ≃ (pν − pµ)
2, GF is the

Fermi coupling constant, θC is the Cabbibo angle, fπ is

the pion decay constant, and
dσπA

el

d|t| is the cross section

for pion-nucleus elastic scattering. This relation relies on
the elastic pion-nucleus cross section, which has not been
directly measured in argon. Previous attempts to ap-
ply the Adler relation to νµCC-Cohπ scattering on argon
have built up a pion-nucleus model from pion-nucleon
scattering [28], or used data on lighter nuclei such as
carbon [29, 30]. In order for the νµCC-Cohπ cross sec-
tion to be understood precisely, a direct measurement of
π-Ar elastic scattering is necessary. While challenging,
this measurement could potentially be performed in ex-
isting experiments such as ProtoDUNE-SP, ProtoDUNE-
HD [31, 32], or LArIAT [33]. LArIAT has previously
measured inclusive π-Ar scattering [34].
In this paper, we furthermore propose the use of a dif-

ferent experiment to measure the elastic cross section:
DUNE. The DUNE near detector (ND) can measure the
elastic π-Ar cross section with the pions produced in neu-
trino interactions. The wide range of energies of pions
produced in neutrino interactions allow the full range of
kinematic space relevant for νµCC-Cohπ scattering to be
measured. The full kinematics of the elasticπ-Ar interac-
tion can be reconstructed event-by-event from the pion
deflection angle and its energy deposited in the detector
(this is uniquely true for the elastic interaction, it would
not work for any inelastic process without a priori knowl-
edge of the pion energy). There will be millions of π-Ar
elastic scatters in DUNE ND, so in principle the detec-
tor can measure the cross section precisely (up to any
systematic uncertainties).

After the π-Ar elastic cross section is obtained, the
Adler relation reduces to the ratio

dσCC

dQ2dyd|t|
∣∣PCAC

Q2=0,ml=0

dσπA
el

d|t|

=
G2

F

2π2
f2
π cos2 θC

(1− y)

y
, (2)

where now the right hand side consists of fundamental
constants that are measured very precisely by other ex-

periments: G2
F from muon decay [35, 36], and f2

π cos2 θC
from pion decay [37]. This ratio can be used to constrain
the neutrino flux. If both the numerator and denom-
inator can be obtained in DUNE ND, then systematic
uncertainties may be reduced in the fraction, such as any
uncertainty in the detector performance or pion energy
scale.
Care must be taken to apply the Adler relation in a

region of phase space where higher order effects are not
too large [30, 38]. For this work, we apply estimates of
the valid regions of phase space from previous studies of
the νµCC-Cohπ process. Future studies that can more
precisely quantify the kinematic regime where the Adler
relation does (or does not) apply and compute corrections
or uncertainties for any departure(s) will be necessary to
apply this technique in practice at DUNE. Measurements
of the process at ongoing and upcoming neutrino exper-
iments such as SBN [39, 40] can provide complimentary
experimental tests of the Adler relation independent of
any application at DUNE. In addition to its potential
use as a flux constraint, measurements of the νµCC-Cohπ
process shed light on the fundamental nature of the ax-
ial current in neutrino interactions, as expressed by the
PCAC theorem [26, 27]. In addition, this process has
similar kinematics to particle decays to µµ and µπ± final
states, and so can serve as an important background to
beyond standard model physics searches [22].
In this work, we develop a methodology to use the

νµCC-Cohπ process as an in-situ constraint of the muon
neutrino flux in the DUNE near detector. We demon-
strate through bias tests that this procedure is resilient
against possible systematic effects in the cross section.
We estimate the performance of DUNE ND by apply-
ing results from previous LArTPC detectors, as well as
simple simulations of the near detector. With this esti-
mation, we project the power of the flux constraint for
DUNE.
The paper is organized as follows. In Sec. II, we detail

how we model the νµCC-Cohπ cross section and what
phase space restrictions we make. In Sec. III, we describe
the flux constraint methodology. In Sec. IV, we show
the result of the constraint, including bias tests. Finally,
Sec. V concludes the paper.

II. NEUTRINO INDUCED CHARGED
CURRENT COHERENT PION PRODUCTION

Coherent pion production refers to the process in which
a(n) (anti-)neutrino scatters off a nucleus, producing a
forward pion while leaving the nucleus in its ground state.
The process is termed “coherent” because the overall
scattering amplitude results from the constructive in-
terference of the scattering amplitudes of the incident
wave on individual nucleons within the target nucleus,
leading to an enhanced cross section. Since the incident
wave is approximately the same on all nucleons, the tar-
get nucleus recoils as a whole without breaking up and
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FIG. 1. Diagrammatic representation of the muon neutrino
induced CC coherent pion production considered in this work,
where a single W+ boson is exchanged between the neutrino
and the target nucleus. The nucleus remains in its ground
state, while a muon and a charged pion are produced in the
forward direction.

with very little recoil energy, and no quantum numbers
(charge, spin or isospin) are transferred to the target nu-
cleus. Such processes can occur through both charged
current (CC) and neutral current (NC) induced reac-
tions. In this study, we focus on muon neutrino induced
charged current coherent pion production on argon

νµ(pν) + A → µ−(pµ) + π+(pπ) + A. (3)

The process is schematically shown in Fig. 1. A muon
neutrino with four-momentum pν scatters off an ar-
gon nucleus, producing a forward-going muon with four-
momentum pµ and a charged pion with four-momentum
pπ, while the argon nucleus remains in its ground state.
In the coherent pion production process, the four mo-

mentum transferred from the leptonic current to the nu-
cleus, q = pν − pµ, is very small. We treat the nucleus as
infinitely heavy so that all the energy loss at the neutrino
vertex, ν, is transferred to the outgoing pion, such that
ν = Eν − Eµ, where Eν and Eµ are the energies of the
muon neutrino and the muon in the lab frame. Since the
nucleus spin is not flipped during coherent scattering and
its recoil is minimal, we have ν ≃ Eπ, where Eπ is the
pion energy in the lab frame. The process is character-
ized by a small four-momentum transfer to the nucleus
and an exponential decrease in the cross section with |t|,
the four-momentum transfer between the incoming vir-
tual boson and the outgoing pion.

Experimentally, the NC and CC coherent pion pro-
duction processes have been observed in various nuclei
across medium and high energy ranges. The first such
measurement was reported by the Aachen-Padova col-
laboration in 1983 [41], during their study of isolated
π0s produced in νµ and ν̄µ induced processes. This was
followed by the Aachen-Gargamelle group, who isolated
coherent NC π0 events in the Gargamelle heavy freon
exposure [42]. Subsequent neutrino experiments, such
as CHARM [43, 44] and SKAT [45, 46], observed NC-
induced coherent pions over a wide range of neutrino
energies using different nuclear targets. More recently,

several accelerator-based neutrino experiments, includ-
ing K2K [47], SciBooNE [48], MiniBooNE [49], NO-
MAD [50], ArgoNeuT [51], T2K [52], MINERvA [53, 54],
and NOvA [55], have either established limits on the CC-
induced coherent pion production cross section or pro-
vided direct measurements.
Theoretically, the invariant matrix element of the

charged current process shown in Fig. 1 can be written
as

M = −GF cosθC√
2

jµ⟨π+A|Jµ|A⟩, (4)

where jµ is (νµ → µ)-matrix element of the leptonic cur-
rent expressed as

jµ = ū(pµ)γµ(1− γ5)u(pν). (5)

The hadronic matrix element can be derived using
Adler’s PCAC theorem [26, 27]. As a result of PCAC,
the longitudinal component of the axial-vector current
couples to the pion field with a strength proportional
to the pion decay (π → µνµ) constant, fπ(≈ 0.93mπ).
Under the PCAC assumption, Adler’s relation provides
a relationship between the hadronic matrix element for
neutrino-induced pion production and the pion-nucleus
elastic scattering amplitude at Q2 = −q2 = −(pν −
pµ)

2 = 0. In this context, the vector current contribu-
tion is not only suppressed by a factor of 1/ν but is also
forbidden by quantum number selection rules in coherent
processes. The first calculation based on this approach
was carried out by Rein and Sehgal [56], with subsequent
work by the same group and by others over the years [28–
30, 57–60]. In this framework, the differential cross sec-
tion for CC single pion production is given by

dσCC

dQ2dyd|t|

∣∣∣∣PCAC

Q2=0,ml=0

=
G2

F

2π2
f2
π cos2 θC

(1− y)

y

dσπA
el

d|t|
.

(6)
Being proportional to the elastic pion-nucleus cross

section,
dσπA

el

d|t| , the differential cross section in Eq. 6 shows

a sharp exponential decrease with |t|.
The expression above was initially derived assuming

massless leptons, even in the case of the CC process. In
subsequent work, Rein and Sehgal [57] and Berger and
Sehgal [58] incorporated lepton mass effects stemming
from the pion-pole term in the hadronic axial-vector cur-
rent. Including this correction is essential for the CC
process, as it leads to a suppression of the cross sec-
tion at forward muon scattering angles, addressing the
deficit observed in experimental data (e.g., K2K data)
at Q2 ⪅ 0.1,GeV2. When the muon mass, mµ, is not
neglected, the reaction receives a contribution from the
exchange of a charged pion between the lepton vertex
and the hadron vertex. The coupling at the lepton ver-
tex and the amplitude contains the characteristic pion
propagator, (Q2 +m2

π)
−1. This pseudoscalar amplitude

interferes with the remaining amplitude, which is free of
the pion singularity; Rein and Sehgal in Ref. [57] called
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pole-free contribution the “axial” amplitude. These two
amplitudes interfere destructively. The correction factor,
known as Adler’s screening effect, is expressed as:

ξAdler =

(
1− Q2

min

2(Q2 +m2
π)

)2

+
y

4
Q2

min

(
Q2 −Q2

min

(Q2 +m2
π)

2

) (7)

where Q2
min = m2

µy/(1− y) and the range of the variable

Q2 is Q2
min ≤ Q2 ≤ 2M Eνymax where y lies between

ymin = mπ/Eν and ymax = 1−mµ/Eν . This destructive
interference is evident in the first term of the correction
factor in Eq. 7. The two terms within the parentheses
represent the axial and pseudoscalar amplitudes, with
the negative sign indicating destructive interference, re-
sulting in suppression at low-Q2. This effect occurs ex-
clusively in charged current scattering, where the muon
mass plays a significant role. The fact that the muon
mass is comparable to the pion mass in the pion propaga-
tor is crucial. However, the effect diminishes as neutrino
energy increases. The neutral current channels remain
unaffected. The first term in Eq. 7 corresponds to outgo-
ing muons with negative helicity (helicity nonflip) while
the second term represents the helicity flip contribution,
which vanishes at a scattering angle of 0◦. When the
lepton mass is neglected, the additional term multiplied
by the lepton current contributes zero and has no effect.
However, if mµ ̸= 0, the pion-pole term does contribute.
Thus the lepton mass corrected PCAC formula, applica-
ble for small-angle scattering, is given by

dσCC

dQ2dyd|t|

∣∣∣∣PCAC

Q2≈0,ml ̸=0

=
G2

F

2π2
f2
π cos2 θC

(1− y)

y

dσπA
el

d|t|
× ξAdler

(8)

While the process remains coherent for small, non-zero
values of Q2, another problem appears in how to ex-
trapolate the above relation to a finite Q2 value. The
Rein-Sehgal scheme [28] addresses this by introducing a
propagator term through an axial form factor, FA(Q

2),
which is incorporated into Eq. 7 as

ξAdler =

(
FA(Q

2)− Q2
min

2(Q2 +m2
π)

)2

+
y

4
Q2

min

(
Q2 −Q2

min

(Q2 +m2
π)

2

) (9)

resulting a PCAC based cross section that is extended to
ml ̸= 0 and Q2 ̸= 0 and stays as a valid approximation
for low Q2 values. Note that the hadronic matrix element

in Eq. 4 is reduced to a combination of
dσπA

el

d|t| and FA(Q
2).

In addition to the models based on Adler’s relation
discussed above [28–30, 56–60], there is a second cate-
gory of approaches that rely on more microscopic mod-
els for pion production [61–69]. These models are based

on the single-nucleon process, dominated by ∆ produc-
tion within the nucleus. The total cross section is ob-
tained by coherently summing the contributions of the
pion production amplitudes from all nucleons in the nu-
cleus. These approaches account for the nuclear medium
modification of ∆ properties in the nucleus, as well as
the final state interactions (FSI) of the outgoing pion
with the nuclear target. In principle, PCAC-based mod-
els should emerge as an approximation to these more
microscopically motivated nuclear structure models, in
particular for higher neutrino energies and low Q2 pro-
cesses [66].
In this work, we utilize the Berger-Sehgal model based

on Adler’s relation, Eq. 9, due to its simplicity. The
PCAC prescription for the νµCC-Cohπ cross section is
reliable in cases where the transverse component of the
axial current is minimized. For this analysis, we limit the
phase space used in accordance with previous theoretical

studies of the interactions which require that ν > 3
√
Q2

and Q2 ≲ 0.2GeV2 [30, 60]. Within these constraints,
we assume that Eq. 9 holds perfectly for this study. This
equation relies on two inputs: the form factor FA(Q

2)

and the pion-nucleus elastic scattering cross section
dσπA

el

d|t| .

These are detailed below in Sections IIA and IIB, respec-
tively.

A. Form Factor

A form factor FA(Q
2) extrapolates the Adler relation

to finite Q2. From the assumption that the axial current
is dominated by a heavy meson (e.g., the a1 [35]), Berger-
Sehgal used a dipole form of the form factor as in [29]

FA(Q
2) =

FA(0)

(1 +Q2/m2
A)

with mA ≈ 1.0 GeV as the axial mass. The Belkov-
Kopehovlch approach [59], which is based on a dispersion
generalization of the Adler relation, employs the Glauber
model to introduce Q2 dependence and account for the
non-resonant background. The primary contribution to
the non-resonant background in this reaction is associ-
ated with (ρπ) pair production [59]. Assuming that non-
resonant (ρπ)-systems dominate the axial-vector current,
a cut term is obtained instead of the dipole factor. In this
scenario, the dependence of the spectral function of the
dispersion relation on Λ2 (the squared effective mass of
the (ρπ)-system) is defined by the factor (Λ2 − m2

π)
−1.

Thus the cut contribution to the axial form factor, nor-
malized to unity at Q2 = 0, is expressed as follows:

Fcut(Q
2) = FA(0)

∫ ∞

(mρ+mπ)2
dΛ2 (mρ +mπ)

2

(Q2 + Λ2)(Λ2 −m2
π)

= FA(0)
(mρ +mπ)

2

Q2 +m2
π

ln

[
1 +

Q2 +m2
π

(mρ +mπ)2

]
.
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For small values of Q2, FA(Q
2) and Fcut(Q

2) are ap-
proximately equal while the cross-section normalization
at Q2 = 0 is fixed by Adler’s relation. Consequently, as
long as Q2 is kept to smaller values, the form factor con-
tribution from ρπ production in the intermediate state
can be neglected.

However, for a precise model of νµCC-Cohπ produc-
tion it is not clear that such simple prescriptions for the
form factor are adequate. As discussed above, at finite
Q2 other currents perturb the cross section, and the form
factor implicitly folds in these additional contributions.
Other neutrino interaction models have addressed sim-
ilar inadequacies in the dipole form factor with the z-
expansion approach [70, 71]. By expressing the form fac-
tor in a general way as a convergent power expansion of
z,

FA(⃗a,Q
2) =

kmax∑
k=0

a⃗kz(Q
2)k, (10)

where a⃗k are dimensionless coefficients, the form factor
can be represented in a model-independent way [72]. The
variable z is a function of Q2,

z(Q2, tcut, t0) =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

, (11)

where tcut is the mass of of the lightest state that can be
produced by the axial current, kmax is the total number
of coefficients to be used for the expansion, and t0 is a
free parameter that is chosen to optimize the convergence
of the expansion [70, 71]. While the z-expansion model is
not strictly necessary for the νµCC-Cohπ cross section,
it is adopted in this study as a flexible and familiar for-
malism to describe the extension of Adler’s relation to
small Q2 values.

B. Pion-Argon Elastic Scattering Cross Section

The pion-nucleus elastic cross section is the critical
external input to the Adler relation to determine the
strength of the νµCC-Cohπ cross-section at Q2 = 0. This
cross section has never been measured on argon. (An in-
clusive cross section measurement, including elastic scat-
ters where the deflection angle (θπ) is greater than 5◦, has
been performed by the LArIAT experiment [34].) Direct
measurements, either by external detectors such as Pro-
toDUNE and LArIAT or, as we highlight, by DUNE it-
self, are needed to apply this process in a flux constraint.

The π-A elastic scattering cross section consists of an
electromagnetic and QCD component that add at the
amplitude level. Since 40Ar is not an isoscalar, the QCD
component is not the same between positive and nega-
tive pions. The sign of the pion also impacts the inter-
ference of the QCD and electromagnetic components of
the cross section, which is important at small scattering
angle. Measurements on somewhat similar nuclei such

as iron indicate that the sign difference in the cross sec-
tion is O(5%) for Tπ > 250MeV [73], well within the
energy region of interest. Thus, if the π-Ar measurement
is made in DUNE (which cannot measure the sign of the
pion), correcting the cross section value by the relative
fraction of the π+ and π− flux would be necessary. If the
uncertainty on the flux fraction can be kept moderately
small (≲ 20%), then the correction would not contribute
a significant uncertainty. External measurements of the
cross section would not suffer from this uncertainty, and
would also be useful to establish the precise magnitude
of the sign difference on argon as a correction in a DUNE
ND measurement.
Although our method uses an entirely data-driven

measurement of the π-Ar elastic cross section, a model for
the process could be a useful augmentation to the tech-
nique. For example, such a model could reduce the un-
certainty by constraining the possible kinematic depen-
dence of the cross section, or interpolate to areas of phase
space that cannot be directly constrained (e.g., small
θπ). General purpose elastic scattering models such as
those applied by GEANT4 [74, 75] are capable of broadly
describing the cross section across all nuclei. Measure-
ments on 12C have been modeled precisely through a
framework that incorporates the partial wave expansion
of the hadronic component of the cross section [76, 77].
Such a model could be especially useful for the flux con-
straint since the diminishing of partial wave components
at higher orders in principle allows high-angle scattering
data to constrain lower angles.

III. METHODOLOGY

Our proposed method obtains the flux constraint while
simultaneously accounting for the systematic uncertain-
ties on the νµCC-Cohπ cross section model. The flux
constraint is achieved by fitting for neutrino energy de-
pendent scale factors to the 2D kinematic distribution
of reconstructed neutrino energy and Q2 of measured
νµCC-Cohπ events. The event selection for these events
is outlined in Sec. IIIA. The template fit approach used
for this work, further detailed in Sec. III B, resembles that
of Ref. [4], where this method was used for the case of
flux constraint with neutrino-electron elastic scattering
events.
We incorporate into the fit the two factors that deter-

mine the νµCC-Cohπ cross section: the axial-vector form
factor and the π-Ar elastic scattering cross section. The
axial-vector form factor is modeled with a z-expansion
form whose coefficients are varied in the fit. The π-Ar
elastic cross section is included in the fit in two separate
ways to either emulate a DUNE ND (“DUNE ND only”
scenario) or an external constraint (“external π data”
scenario). For the DUNE ND case, we simultaneously
perform a fit of the cross section to π-Ar elastic scatter-
ing events, binned by pion energy and scattering angle.
For the external case, we include the magnitude of the
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A. Event Generation and Selection

1. νµCC-Cohπ Event Selection

We consider DUNE ND to be a liquid argon time pro-
jection chamber (LArTPC) with an active volume of 7m
× 3m × 5m. The fiducial volume is defined with 50 cm
insets in the drift and vertical dimensions, 25 cm in the
front of the detector, and 1.75m in the back of the de-
tector along the beam axis. The conservative cut of the
fiducial volume at the back of the detector ensures that
energy depositions from pions mostly stay contained in
the detector. The neutrino flux used for this study is
the DUNE three-horn optimized muon neutrino flux [1],
shown in Fig. 2. A total of 5 years of on-axis exposure
with 1.1×1021 POT per year is assumed to normalize the
statistics.

A Monte Carlo simulation of neutrino interactions was
generated using the GENIE neutrino event generator
version v3.0.6 G18 10a 02 11a [78]. The GENIE event
generator uses the Berger-Sehgal model for νµCC-Cohπ
events with pion kinetic energies lower than 1GeV [29],
and uses the Rein-Sehgal model for higher energies [28].
GENIE models the axial-vector form factor using the
dipole parameterization with mA =1GeV in default con-
figuration.

Simulated kinematic variables are smeared in a real-
istic way to emulate reconstruction effects and account
for the projected detector performance. In DUNE ND,
muons will either range out inside the LArTPC or be
caught by a magnetized muon spectrometer, so muon
momenta are smeared with a 5% resolution. To esti-
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FIG. 3. Fractional difference between the reconstructed pion
energy and the true pion energy from a GEANT4 simulation.
The deposited energy from the pion in a DUNE ND-sized
liquid argon volume is summed and smeared by 5% to account
for the caloriemtric energy resolution. The distribution in
each pion energy bin is fit to a Crystal-ball function, and de-
biased so that the peak is at 0. The de-biased fit is plotted
for each pion energy range.

mate the pion reconstruction performance, we simulate
the propagation of charged pions in GEANT4 [74] in a
volume of liquid argon using the LArSoft framework [79].
The pions were generated in the defined fiducial volume,
and the deposited energy in the full DUNE ND active
volume was accumulated and smeared by 5% to account
for the calorimetric energy resolution demonstrated by
LArTPCs [80]. The distribution of the de-biased frac-
tional difference between the “reconstructed” and true
pion energy is shown in Fig. 3 for a few ranges of pion
energy. This distribution is largely independent of the
true pion energy, so we apply the distribution of the low-
est pion energy (as fit to a Crystal-ball function [81])
across the full range. This fit obtains an 18% resolution
in the reconstructed pion energy, with a non-Gaussian
tail extending to lower values. This resolution neglects
the impact of dead regions inside the modularized liquid
argon detector that comprise about 10% of the total vol-
ume and will have to be understood for this measurement
to be performed in practice [1].
Although the νµCC-Cohπ process makes up only a

small fraction of the total neutrino cross section at
the few-GeV neutrino energy range, its distinct final
state signature enables a relatively simple event selection
which yields a high signal purity. We perform a mock
νµCC-Cohπ event selection benchmarking the procedures
outlined in previous cross section measurements [17–21].
First, we require the reconstructed event to have ex-
actly two minimally ionizing tracks; events with any π0,
γ, or a proton with a kinetic energy above 20MeV are
rejected. We then require the event to have a recon-
structed |t| smaller than 0.03 GeV2. We also place up-
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per threshold cuts on the muon energy (5.5GeV) and
pion energy (3GeV) to remove events that are too en-
ergetic to be reconstructed effectively at DUNE ND.
Contamination from νµCC-Cohπ interactions from the
wrong-sign component of the flux (ν̄ for FHC and ν for
RHC) are not included as backgrounds. These are ex-
pected be minimized by the ability of the spectrometer
to identify the sign of the muon. After the event se-
lection, the remaining background is subdominant and
comprises the muon-neutrino resonant single pion pro-
duction, shallow/deep-inelastic scattering, and neutral
current scattering, as shown in Fig. 4. This mock event
selection leaves out other possible background rejection
tools, such as low energy “blip” identification, that could
further separate the νµCC-Cohπ process from incoherent
backgrounds [24, 25].

In addition to background rejection cuts, restrictions
on the pion kinematics are made to remain in a region
where the Adler relation is valid and the νµCC-Cohπ
cross section is constrained by π-Ar elastic scatters.
Events with a reconstructed pion kinetic energy less than
300MeV are removed to minimize the sign correction in
the π+-Ar cross section. We assume that any measure-
ment of the π-Ar cross section will be limited to scat-
tering angles above 5◦, so we also cut out νµCC-Cohπ
events that are below the equivalent momentum transfer
to the nucleus (t). We express this requirement in terms
of the effective pion scattering angle θeffπ , where

cos θeffπ = 1− 2t/p2π . (12)

We exclude events with a reconstructed effective scatter-
ing angle below 6◦. Finally, events with reconstructed

ζ (≡ Eπ/
√
Q2) greater than 3.25 and Q2 > 0.2GeV2

are cut to reduce the impact of transverse currents that
spoil the Adler relation. In the case of Tπ, θ

eff
π , and ζ,

the cuts on the reconstructed variables (300MeV, 6◦, and
3.25, respectively) are tighter than the areas of true phase
space where the constraint is not satisfied (250MeV, 5◦,
and 3, respectively). This reduces the fraction of events
that smear from unconstrained into constrained regions
of phase space at the reconstruction level.

The reconstructed neutrino energy distribution of se-
lected events is shown in Fig. 4. This spectrum shows
the distribution of selected νµCC-Cohπ events against
backgrounds from other neutrino interaction channels,
as well as νµCC-Cohπ with “bad” kinematics, defined
as events where: Tπ < 250MeV, θeffπ < 5◦, ζ < 3, or
Q2 > 0.2GeV. For these events, kinematics are such that
either the Adler relation is not reliable, or the equiva-
lent π-Ar elastic cross section cannot be reliably obtained
from data.

2. π-Ar Elastic Scattering Event Selection

Alongside the νµCC-Cohπ event selection, a second
mock event selection identifies π-Ar elastic scatters, to
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FIG. 4. Distribution of reconstructed neutrino energy for
simulated neutrino events in our DUNE ND simulation af-
ter topological and kinematic selection.
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FIG. 5. Distance traveled through the fiducial volume by
pions produced in neutrino interactions in out DUNE ND
simulation.

be used for the scenario where the cross section is simul-
taneously measured in DUNE ND. The neutrino-induced
charged pion flux is found by propagating the pions from
the GENIE simulation of neutrino interactions through a
DUNE ND-sized volume of liquid argon in GEANT4 [74]
using the LArSoft framework [79]. The resulting flux,
broken down by whether the pion stops, inelastically
scatters, or decays inside the detector volume is shown
in Fig. 5.

The number of π-Ar elastic scatters is computed with
the equivalent π-Ar elastic cross section model as used by
the GENIE Berger-Sehgal/Rein-Sehgal simulation. Al-
though this is a less sophisticated simulation of π-Ar
scatters, using the same model for νµCC-Cohπ scatter-
ing and π-Ar elastic scattering ensures consistency in the



8

0.5 1.0 1.5 2.0 2.5 3.0
Pion Kinetic Energy [GeV]

103

104

105

106

107

Nu
m

be
r o

f 
-A

r E
la

st
ic 

Sc
at

te
rs

 / 
Ge

V 
/ 

3 < < 4
4 < < 5
5 < < 6

6 < < 7
7 < < 8
8 < < 10

10 < < 12
12 < < 15

FIG. 6. Pion elastic scatters from the neutrino induced pion
flux at the DUNE ND, limited to pions that inelastically scat-
ter in the detector.

fit. The pion flux used includes only those pions that
inelastically scatter, for which there should be no sig-
nificant background from other tracks. Protons can be
separated from pions calorimetrically, and muons do not
inelastically scatter before stopping. The energy-angle
distribution of π-Ar elastic scatters is shown in Fig. 6.

Backgrounds to elastic scatter vertices should be in-
significant. The LArIAT experiment found that the back-
ground from multiple-Coulomb-scattering is small at the
angle threshold used in this analysis (θπ > 5◦) [34].
We found the background from soft inelastic scatters
from the propagation of neutrino-induced pions through
a DUNE ND-sized volume of liquid argon as simulated
by GEANT4. We considered a fake elastic scatter as
any inelastic process that produces a single charged pion
in the final state, and no protons, photons, or π0s above
the same energy thresholds used in the neutrino selection
(20MeV KE). Background scattering events are domi-
nated by cases where only high energy neutrons are pro-
duced in the final state. The distribution of the apparent
scattering angle (given as the angle between the ingo-
ing and outgoing pion momenta) is much broader than
the equivalent elastic scattering distribution, peaking at
about θapparentπ ≈ 35◦. The number of pions that pro-
duce a fake elastic scatter in the angle region of interest
(θπ < 15◦) is very small: about 1 in 10,000. This trans-
lates to a few thousand fake elastic scatters for 5 years
of running at DUNE, compared to the millions of elastic
scatters. Although taking this background into account
will likely be important for performing the measurement
in practice, it should not significantly impact the result.
We therefore neglect the background in the present anal-
ysis.

FIG. 7. Distribution of pion kinetic energy and pion to argon
energy transfer (|t|) for pions from νµCC-Cohπ events (green)
and π-Ar elastic scattering (blue) events in DUNE ND. Red
hatched lines represent the cut on π-Ar scattering angle from
limitations on reconstruction.

The pion kinetic energy is smeared by the same kernel
as for the neutrino event selection, and no experimental
resolution is applied for the scattering angle. π-Ar elastic
scatters are required to be at an angle greater than 5◦, in
accordance with the threshold achieved by the LArIAT
experiment [34]. For the flux constraint to be feasible,
a sufficient overlap of the kinematic phase space covered
by the selected νµCC-Cohπ sample and the π-Ar elastic
scattering sample is essential. This coverage is illustrated
in Fig. 7.

B. Flux Constraint

The 2D distribution of reconstructed neutrino energy
and reconstructed Q2 of simulated νµCC-Cohπ events
are divided into neutrino energy bins. The distribution
for each bin serves as the template for the corresponding
true neutrino energy range in the fit procedure outlined
in this section. In addition, templates for the 4 lead-
ing background modes are included in the fit to account
for imperfect event selection purity. Figure 8 shows ex-
amples of νµCC-Cohπ and background templates. The
binning used to construct these templates is listed in Ta-
ble I. Linear bins were chosen for reconstructed Q2, while
reconstructed neutrino energy bins were chosen so that
each bin would have the same number of events.
The template fit is executed by minimizing the log-

likelihood function given by the combined chi-squared

χ2 =
(
χstat
ν

)2
+

(
χstat
π

)2
+

(
χprior
π−Ar

)2

+
(
χprior
FA

)2

. (13)

The four terms represent the four components of the fit:

the νµCC-Cohπ data (χstat
ν )

2
, the π-Ar elastic scatter

data for the DUNE ND only scenario (χstat
π )

2
, the prior
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FIG. 8. Example fit templates of νµCC-Cohπ interaction events for different true neutrino energy ranges of (a) 1.0-1.5GeV
(b) 2.5-3.0GeV (c) 4.0-5.0GeV and (d) for the leading background interaction mode, charged-current resonant single pion
production.

Template
Eν Bins [GeV]

0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 5.5, 6.0, 7.0, 8.0, 12.0, 16.0, 20.0, 40,
100

Reconstructed
Q2 Bins [GeV2]

0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1 , 0.11, 0.12, 0.13, 0.14,
0.15, 0.16, 0.17, 0.18, 0.19, 0.2

Reconstructed
Eν Bins [GeV]

0.00, 1.37, 1.63, 1.82, 1.98, 2.12, 2.26,
2.39, 2.52, 2.64, 2.76, 2.89, 3.03, 3.19,
3.36, 3.57, 3.84, 4.22, 4.86, 7.34, 100.00

TABLE I. Summary of choice of bins for neutrino event tem-
plates. The true neutrino energy bins for template assignment
are taken from the binning of the flux covariance matrix of
Fig. 13. Reconstructed Q2 bins are linear, while reconstructed
neutrino energy bins make the number of events in each re-
constructed neutrino energy bin even.

on the π-Ar elastic cross section
(
χprior
π−Ar

)2

, and the prior

on the form factor
(
χprior
FA

)2

. The (χstat
ν )

2
term is the

binned log-likelihood for the neutrino events,

χ2
ν = 2

N∑
i=1

µi(x⃗ν , x⃗π−Ar, x⃗
′
π−Ar, a⃗)

− ni + nilog
ni

µi(x⃗ν , x⃗π−Ar, x⃗′
π−Ar, a⃗)

,

(14)

where ni is the number of data events in bin i, x⃗ν is
the vector of neutrino template normalization parame-
ters, and x⃗π−Ar, x⃗

′
π−Ar, and a⃗ are parameters that de-

termine the νµCC-Cohπ cross section entering the event
rate calculation (µi). The rate µi is given as the weighted
number of simulation events in bin i. The weight on each
background event is equal to the template scale factor of
its background category (resonant pion production, neu-
tral current scattering, multiple pion production, or deep
inelastic scattering). The weight wνµCC-Cohπ on each
νµCC-Cohπ event is

wνµCC-Cohπ(Eν , Q
2, Tπ, θ

eff
π ) = x⃗ν(Eν)×

ξz−exp
Adler (⃗a,Q

2)

ξAdler(Q2)
×

{
x⃗π−Ar(Tπ, θ

eff
π ), if ζ > 3 and Tπ > 250 MeV

x⃗′
π−Ar(Tπ, θ

eff
π ), otherwise

. (15)

In this equation, ξz−exp
Adler (⃗a,Q

2) is the Adler screening fac-
tor (Eq. 9) with the z-expansion axial form factor deter-
mined by the fit parameters a⃗ (Eq. 10) and ξAdler(Q

2)
is the screening factor with the initial form factor in the
simulation. The z-expansion form factor is modeled with
4 coefficients, and the t0 value is chosen as -0.07, to min-
imize the mean value of |z| for the Q2 distribution of the
simulated νµCC-Cohπ neutrino events. The neutrino flux
template scale factor x⃗ν is a function of the true neutrino
energy. The π-Ar scale factors for different phase space
are noted with x⃗π−Ar and x⃗′

π−Ar. νµCC-Cohπ events in a
region of parameter space that can be constrained by the
Adler relation, as defined by ζ > 3 and Tπ > 250 MeV,
are fit to the x⃗π−Ar scale factors. As will be detailed be-

low, the x⃗π−Ar scale factors are constrained by the π-Ar
part of the fit. The identification of these scale factors
between the pion and neutrino data enables the π-Ar
measurement to constrain the νµCC-Cohπ event rate in
the fit. νµCC-Cohπ events with bad kinematics that are
included in the sample are fit to the second set of π-Ar
scale factors (x⃗′

π−Ar) that are not constrained by the π-
Ar elastic scattering cross section. In the DUNE ND only
scenario of the fit, the π-Ar scale factors are binned by
the true pion kinetic energy and the effective scattering
angle (Eq. 12). In the external π-Ar scattering data sce-
nario, the π-Ar scale factor is given by a single number
used for all events.

The (χstat
π )

2
term is included in the DUNE ND only
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Template Tπ Bins [GeV] 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8,
2.1, 2.4, 3, 10

Template θπ Bins 0◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦,
10◦, 12◦, 15◦, 180◦

Reconstructed Tπ Bins [GeV] 0.3, 0.6, 0.9, 1.2, 1.5, 1.8,
2.1, 2.4, 3, 10

Reconstructed θπ Bins 5◦, 6◦, 7◦, 8◦, 10◦, 12◦, 15◦,
180◦

TABLE II. Summary of choice of bins for pion scatter tem-
plates. The template bins and the reconstructed bins are the
same, except for a cut on the kinetic energy of 0.3GeV and
on the scattering angle of 5◦.

scenario. In this case, π-Ar elastic scattering events in
the fit are binned by the reconstructed pion kinetic en-
ergy and the π-Ar scattering angle. They are split into
templates as a function of the true pion kinetic energy
and π-Ar scattering angle. The π-Ar elastic scattering
cross section is fit for as scale factors on each of these
templates. Both the template and reconstructed binning

is detailed in Table II. The
(
χstat
π−Ar

)2
term is computed

as the binned log-likelihood for pion scattering events,

χ2
π = 2

N∑
i=1

[
µi(x⃗π−Ar)− ni + nilog

ni

µi(x⃗π−Ar)

]
, (16)

where µi(x⃗π−Ar) is the weighted number of simulation
events in bin i, x⃗π−Ar is the vector of π-Ar elastic scat-
tering template scale factors, and ni is the number of
data events in bin i. The weight on each π-Ar scattering
event in each template j is equal to the scale factor on
that template: (x⃗π−Ar)j .

Term
(
χprior
π−Ar

)2

is the prior on the two sets of π-Ar

cross section weights. It is equal to

χ2
π−Ar =

∣∣∣∣1− x⃗π−Ar

σprior
π

∣∣∣∣2 + ∣∣∣∣1− x⃗′
π−Ar

0.3

∣∣∣∣2 , (17)

where σprior
π is the prior uncertainty on the π-Ar cross

section. For the external π-Ar scattering data scenario,
we vary the size of σprior

π to study how the power of the
external measurement impacts the flux constraint. For
the DUNE ND only scenario, σprior

π is taken to be 30%.
In this case, the prior is loose, so in any bin where there is
coverage from π-Ar scattering data, the statistical power
of the data dominates. The prior acts to constrain scale
factors that are not covered by π-Ar elastic scattering
data (such as events with bad kinematics) so that the
corresponding scale factor fit is not unrealistic. Only a
small fraction of the neutrinos have such scale factors, so
the precise value of the prior does not impact the result
of the fit.

Finally, we use the well predicted value of the form
factor at Q2 = 0 as a Gaussian prior(

χprior
FA

)2

= −0.5
(FA(⃗a,Q

2 = 0)− µFA(0))
2

σ2
FA(0)

, (18)

where µFA(0) is known as unity up to the uncertainty
σFA(0) (=0.2%), from calculation based on the uncer-
tainty on the values of the pion decay constant and the
Fermi constant [35]. This prior pins the strength of the
cross section at Q2 = 0 to the Adler relation.
In total in the DUNE ND only case, there are 247 pa-

rameters in the fit: 4 template scale factors on the neu-
trino background (one per channel), 19 νµCC-Cohπ scale
factors (one per true neutrino energy bin, see Table I), 4
form factor parameters (one for each component in the
z-expansion), and 220 pion scale factors. The pion scale
factors are per-Tπ and per-θπ bin (see Table II), with one
copy each for νµCC-Cohπ events with and without good
kinematics: 10 × 11 × 2 = 220 parameters. In the case
where we assume external π-Ar elastic scattering data,
there are 29 total parameters. In this case there are only
two total pion scale factors, one each for good and bad
kinematics.
We use the emcee [82] package, a Python implemen-

tation of Goodman & Weare’s Affine Invariant Markov
chain Monte Carlo (MCMC) Ensemble sampler [83] to
fit the simulation to data by numerically maximizing the
likelihood function. Running the MCMC chain enables
us to study the posterior distribution and the covariance
between the varied parameters.

IV. RESULTS

A. Template Fit

The covariance and correlation between fit parameters
are obtained from the MCMC chain. Fig. 9 shows the
correlation between the fit parameters for the DUNE ND
only scenario, up to the first 22 of the pion cross section
scale factors corresponding to the first two pion angle
bins. The remaining pion scale factor parameters follow
patterns similar to the ones shown in the figure. In the
following subsections, we detail the fit result for the form
factor, the pion scale factors, and finally the neutrino flux
scale factors.

1. Form Factor

Figure 10 shows the fitted form factor as a function
of Q2 compared to the GENIE simulation truth for the
DUNE ND only scenario. The fit shows good agreement
with the truth, with the uncertainties fully spanning the
residual discrepancy for all Q2 values. This demonstrates
that the fit method does not introduce bias due to the
correlation between the form factor coefficients and the
neutrino energy scales, and that the z-expansion param-
eterization is capable of describing the Q2 dependence in
a model-independent way. The fit is strongly constrained
at lower Q2 values due to the prior imposed on the value
at Q2 = 0, and the uncertainty increases at higher Q2

values.
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FIG. 10. The axial-vector form factor fit result compared to
the GENIE simulation truth. The hatched area spans the fit
uncertainty.

2. Pion-Argon Elastic Scattering Scale Factors

As shown in Fig. 11, the large number of π-Ar elastic
scatters (O(107)) available in a DUNE ND measurement
enables the cross section on the process to be constrained
to the sub-percent level. Some of that uncertainty is the
result of the resolution in the pion energy measurement,

which is visible in the off-diagonal correlations in the bot-
tom plot of Fig. 11. Figure 12 demonstrates how the π-Ar
part of the fit impacts the νµCC-Cohπ part. The figure
shows the uncertainty of the π-Ar elastic cross section
weight averaged over all of the νµCC-Cohπ events in each
neutrino energy bin (see Table I for the binning). The
averaged cross section is constrained to the sub-percent
level in the peak of the neutrino energy flux. The un-
certainty is largely correlated between the different neu-
trino bins. This is because most of the neutrino bins
have a largely overlapping pion kinematic phase space,
especially after the kinematic restrictions in the event
selection.
Since the statistical power is so strong, systematic un-

certainties will also necessarily play a role in the appli-
cation of this technique at DUNE. One source of possi-
ble systematic uncertainty is the correction of the sign-
averaged pion cross section to the π+ cross section rele-
vant for νµCC-Cohπ scattering. Another is any system-
atic uncertainty associated with detector performance,
although these could also be reduced in the ratio of the
νµCC-Cohπ cross section to the π-Ar elastic scattering
cross section.

3. Neutrino Flux Template Scale Factors

The posterior distributions of the neutrino flux tem-
plate scale factors are stable and well-described as a nor-
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FIG. 11. (a) The uncertainty in the postfit value of the π-Ar elastic cross section weights shown as a function of the pion
kinetic energy for a few scattering angle bins. (b) The post-fit correlation matrix of π-Ar elastic cross section weights, shown
for all angle bins of the first 3 kinetic energy bins.
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FIG. 12. (a) Post-fit uncertainties on the π-Ar elastic cross section weights, averaged over the νµCC-Cohπ events in each
neutrino energy bin. (b) The correlation matrix between different true neutrino energy bins. See Table I for the value of the
binning.

mal distribution. As can be observed in Fig. 9, the flux
template scale factors correlate most strongly with the
form factor coefficients, as well as the scale factor on the
largest neutrino background (resonant pion production).
The sign of the correlation between the form factor and
the template normalizations are determined by the sign
of the coefficient. The lower and higher energy bins of

the neutrino templates have larger fit uncertainties due to
the limited statistics, and therefore correlate less strongly
with the relevant nuisance parameters.
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FIG. 13. Pre-constraint (a) covariance and (c) correlation matrix. Post-constraint (b) covariance and (d) correlation matrix.

B. Flux Constraint

The constraint on the flux prediction is achieved by
quantifying the agreement of the neutrino template fit
result with the distribution of flux universes. Using the
DUNE ND muon neutrino flux prediction in Fig. 2 and
the flux covariance matrix in Fig. 13 [1], 10,000 model
flux universes were generated by randomly drawing from
the multivariate normal distribution. The probability
that a universe is consistent with the fitted simulation
is

P (N⃗ |M⃗) =
1

|(2π)κΣN |1/2

× exp

[
1

2
(N⃗ − M⃗)TΣ−1

N (N⃗ − M⃗)

]
,

(19)

where ΣN is the covariance matrix for the νµCC-Cohπ

template normalization parameters, N⃗ is the fitted val-

ues of the template normalization parameters, M⃗ is the
relative normalizations of the thrown flux universe to the
nominal flux universe, and κ is the number of templates.
With the calculated probabilities for the Nk universes,
the constrained flux covariance matrix elements are cal-
culated as

Ξij =
1

Nk
Σk[P (N⃗ |M⃗)k(Mik − M̄i)(Mjk − M̄j)], (20)

where M̄i =
1
Nk

[ΣkP (N⃗ |M⃗)kMik] is the weighted average
in the ith bin.
Figure 13 shows the flux covariance matrix and corre-

lation matrix with and without the constraint. The co-
variance values significantly decrease for most bins, with
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FIG. 14. Pre-constraint shape-only (a) covariance and (c) correlation matrix. Post-constraint shape-only (b) covariance and
(d) correlation matrix.

the exception of the bins at very low and high energy
where the statistics are very limited. The correlation also
decreases across all bins, especially for bins that are far
off-diagonal. While the lower energy bins remain mostly
positive correlated with each other, some higher energy
bins become anti-correlated after the constraint. The
corresponding matrices for only the shape of the distri-
bution is calculated by normalizing the integrated flux
for the generated universes and are shown in Fig. 14. We
observe the constraint for the shape-only covariance and
correlation to be weaker than for the normalization, but
still significant.

The flux fractional uncertainties are obtained from the
diagonal elements of the covariance matrices. Figure 15.
shows the result when we fit the π-Ar cross section at

DUNE ND, along with the results when it is taken from
external measurements. The constraint is strongest for
bins around the oscillation maxima, and weaker for lower
and higher energy bins that have very limited statistics.
For the external measurement cases, we test three prior

scenarios: 1%, 3%, and 5%. For each case, the π-Ar tem-
plate binning (Table II) is replaced with a single scale
factor. This simplification is motivated by the fact that,
even in the more realistic DUNE ND only scenario, the
π-Ar scattering rate uncertainty is almost completely
correlated between different neutrino energy bins (see
Sec. IVA2, Fig. 12).
In the DUNE ND π-Ar scenario (which neglects sys-

tematic uncertainties on the pion data), the uncertainty
on the neutrino flux at its peak is constrained to ∼1.5%,
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FIG. 15. Unconstrained and constrained flux (a) full uncertainty and (b) shape-only uncertainty for fitting the DUNE ND pion
scattering data (the nominal case) and assuming external measurement with 1%, 3%, and 5% uncertainty.
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FIG. 16. Unconstrained and constrained flux (a) full uncertainty and (b) shape-only uncertainty for 5, 2.5, and 1 year of
running, assuming exposure of 1.1×1021 POT per year.

a reduction of ∼ 6 times relative to the prior uncertainty.
In the external π-Ar data scenario, the uncertainty on
the neutrino flux at its peak is constrained to ∼ 2-5%,
for a π-Ar elastic scattering cross section constraint of 1-
5%. The post-fit uncertainty on the neutrino flux being
correlated so directly with the power of the π-Ar elas-
tic scattering cross section constraint demonstrates that
the elastic π-Ar cross section is the limiting factor in
obtaining a precise flux constraint. The external π-Ar
scenario can also be used to interpret the impact of any

systematic uncertainty in the DUNE ND measurement
of the π-Ar elastic cross section on the extraction of the
neutrino flux. That is, if systematic uncertainties limit
the DUNE ND π-Ar elastic cross section measurement
to an uncertainty of (e.g.) 3%, that is equivalent to an
external measurement with an uncertainty of 3% (up to
correlations, which are not included in this study).

Figure 16 shows the constraint for 5, 2.5, and 1 years
of running for the DUNE ND π-Ar cross section scenario.
For 5 years of running, the uncertainty is reduced from
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FIG. 17. Form factor fit result using (a) the z-expansion model with 8 coefficients and (b) the dipole model. Unconstrained and
constrained flux (c) full uncertainty and (d) shape-only uncertainty using z-expansion model with 4 coefficients (the nominal
model), z-expansion model with 8 coefficients, and dipole model.

∼ 8% to ∼ 1.5% at its peak, and the shape-only uncer-
tainty is halved. While the full 5-year running period
provides the most powerful flux constraint, even a single
year of data yields a significant constraint. The variance
in runtime can also be used to understand the impact of
a non-idealized reconstruction efficiency less than 100%,
as we have assumed in this analysis.

We test the impact of the axial form factor model
choice on the flux constraint by repeating the fit pro-
cedure using two variations of form factor models: the
dipole model with the axial mass as the only model pa-
rameter (as used by GENIE) and the z-expansion model
with 8 coefficients. The form factor fit result in Fig. 17
shows that the fit using the dipole model results in

smaller fit uncertainties, and the fit result using the z-
expansion model with 8 coefficients is comparable to the
nominal case, with marginally smaller uncertainties. Fig-
ure 17 shows that the flux constraint performance is sim-
ilar across the variations. Although not shown here, the
fit was also repeated with different t0 values for the z-
expansion model: 0 and -0.2, in place of the nominal
value of -0.07 which was optimized specifically for the
Q2 distribution of the simulated νµCC-Cohπ events. In
both cases, no significant effects on the result were found.



17

(a) (b)

(c) (d)

FIG. 18. Form factor fit result to fake datasets generated using dipole form factor model with axial mass values of (a) 0.8GeV
and (b) 1.2GeV. Unconstrained and constrained flux (c) full uncertainty and (d) shape-only uncertainty from fits to fake
datasets generated using the dipole form factor model with axial mass values of 0.8 GeV and 1.2 GeV. Solid line marks the
weighted average, and the colored area spans the bin-by-bin standard deviation.

C. Bias Tests

To test the resilience of the proposed method to po-
tential systematical effects that may cause discrepancies
between data and simulation, the fit procedure was re-
peated using fake datasets. First, we repeat the fit using
fake datasets generated with different dipole form fac-
tor axial mass values: 0.8 GeV and 1.2 GeV. Figure 18
shows the form factor fit result for these cases, as well
as the average and the standard distribution of the flux
normalizations of the weighted universes. The results
demonstrate that although the fit central values deviate
slightly from the simulation truth values, the method is

able to accommodate these deviations within the fit un-
certainties. The flux uncertainty constraint performance
is not significantly affected.

Next, we generate fake datasets by weighting by a
factor of 0.7 the events in the kinematic phase space
where the Adler relation is not reliable: ζ < 3 and
Eπ < 0.25GeV. Figure 19 show that the flux constraint
performance remains unaffected in these cases as well.
This test demonstrates the robustness of the fit against
the systematic uncertainties in the phase space that are
more strongly influenced by the transverse currents and
the effects of the sign difference.
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(a) (b)
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FIG. 19. Form factor fit result to fake datasets generated by weighting events with (a) ζ < 3 and (b) Eπ < 0.25GeV by a
factor of 0.7. Unconstrained and constrained flux (c) full uncertainty and (d) shape-only uncertainty from fits to fake datasets
generated by weighting events with ζ < 3 and (b) Eπ < 0.25GeV by a factor 0.7. Solid line marks the weighted average, and
the colored area spans the bin-by-bin standard deviation.

V. CONCLUSION

The upcoming DUNE program has the ambitious goal
of observing charge-parity violation in long-baseline neu-
trino oscillations. The design of the experiment power-
fully constrains the impact of significant systematic un-
certainties on the neutrino cross section and flux inher-
ent to neutrino experiments. Still, techniques which can
directly constrain the neutrino flux in-situ will enhance
the sensitivity of DUNE. In this work, we have demon-
strated that the unique properties of the νµCC-Cohπ
neutrino-nucleus interaction, as well as the capabilities
of the DUNE ND, could enable such a flux constraint.

Furthermore, we have developed a method that provides
a reliable flux constraint while accounting for the sys-
tematic effects on the νµCC-Cohπ cross section from the
axial-vector form factor and the π-Ar scattering cross sec-
tion. We find that the method has the statistical power
to reduce the fractional uncertainty on the muon neu-
trino flux from about 10% to 1.5% near the oscillation
maxima energy in the case where the π-Ar cross section is
simultaneously measured in DUNE ND. Instead, if an ex-
ternal constraint on the π-Ar cross section of uncertainty
1-5% is applied, the fractional uncertainty is reduced to
∼ 2-5%. These results neglect any uncertainty associated
with the DUNE ND detector performance. Such uncer-
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tainties may especially be important for the π-Ar elastic
scattering cross section measurement, as the large num-
ber of elastic scatters makes the statistical uncertainties
essentially negligible.

This study demonstrates the possible utility of a
νµCC-Cohπ flux-constraint, but there are still outstand-
ing questions that need to be resolved before it can be
realized in practice. In particular, more study is needed
to elucidate the range of validity of the Adler relation,
and if there are any necessary corrections or uncertain-
ties at the DUNE neutrino flux energy. Measurements
of the νµCC-Cohπ process on argon in ongoing experi-
ments, such as the SBN program, would aid this effort.
In addition, measurements of the elastic π-Ar cross sec-
tion, such as at ProtoDUNE or LArIAT, would further
demonstrate the feasibility of this method and provide
necessary input to any study of the νµCC-Cohπ process.
In addition to its utility as a flux constraint, studying
the νµCC-Cohπ process can shed light on the fundamen-
tal nature of the axial current in neutrino interactions, as
expressed by the PCAC theorem and the Adler relation.
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