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ABSTRACT

On large scales, measurements of the Lyman-𝛼 forest offer insights into the expansion history of the Universe, while on small scales, these impose
strict constraints on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a cosmological
emulator designed to bridge the gap between large- and small-scale Lyman-𝛼 forest analyses. Using conditional normalizing flows, ForestFlow
emulates the 2 Lyman-𝛼 linear biases (𝑏𝛿 and 𝑏𝜂) and 6 parameters describing small-scale deviations of the 3D flux power spectrum (𝑃3D) from
linear theory. These 8 parameters are modeled as a function of cosmology — the small-scale amplitude and slope of the linear power spectrum
— and the physics of the intergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow can predict 𝑃3D on arbitrarily large
(linear) scales and the 1D flux power spectrum (𝑃1D) — the primary observable for small-scale analyses — without the need for interpolation
or extrapolation. Consequently, ForestFlow enables for the first time multiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological
hydrodynamical simulations spanning redshifts from 𝑧 = 2 to 4.5, ForestFlow achieves 3 and 1.5% precision in describing 𝑃3D and 𝑃1D from
linear scales to 𝑘 = 5 Mpc−1 and 𝑘 ∥ = 4 Mpc−1, respectively. Thanks to its parameterization, the precision of the emulator is also similar for both
ionization histories and two extensions to the ΛCDM model — massive neutrinos and curvature — not included in the training set. ForestFlow
will be crucial for the cosmological analysis of Lyman-𝛼 forest measurements from the DESI survey.
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1. Introduction
The Lyman-𝛼 forest refers to absorption lines in the spectra of
high-redshift quasars resulting from Lyman-𝛼 absorption by neu-
tral hydrogen in the intergalactic medium (IGM; for a review, see
McQuinn 2016). Even though quasars can be observed at very
high redshifts with relatively short exposure times, the scarcity
of these sources limits their direct use for precision cosmol-
ogy. Conversely, Lyman-𝛼 forest measurements from a single
quasar spectrum provide information about density fluctuations
over hundreds of megaparsecs along the line of sight, making
this observable an excellent tracer of large-scale structure at high
redshifts.

Cosmological analyses of the Lyman-𝛼 forest rely on either
three-dimensional correlations of the Lyman-𝛼 transmission field
(𝜉3D; e.g.; Slosar et al. 2011) or correlations along the line-of-
sight of each quasar; i.e., the one-dimensional flux power spec-
trum (𝑃1D; e.g.; Croft et al. 1998; McDonald et al. 2000). The first
analyses set constraints on the expansion history of the Universe
by measuring baryonic acoustic oscillations (BAO; e.g.; Busca
et al. 2013; Slosar et al. 2013; du Mas des Bourboux et al. 2020),
for which linear or perturbation theory is accurate enough. On
the other hand, 𝑃1D analyses measure the small-scale amplitude
and slope of the linear power spectrum (e.g.; Croft et al. 1998;
McDonald et al. 2000; Zaldarriaga et al. 2001; Viel et al. 2004;
★ jchaves@ifae.es

★★ lcabayol@pic.es
★★★ afont@ifae.es

McDonald et al. 2005), the nature of dark matter (e.g.; Seljak et al.
2006; Viel et al. 2013; Iršič et al. 2017; Palanque-Delabrouille
et al. 2020; Rogers & Peiris 2021b; Iršič et al. 2024), the ther-
mal history of the IGM (e.g.; Viel & Haehnelt 2006; Bolton
et al. 2008; Lee et al. 2015; Walther et al. 2019; Boera et al.
2019; Gaikwad et al. 2020, 2021) and the reionization history
of the Universe (see the reviews Meiksin 2009; McQuinn 2016).
In combination with cosmic microwave background constraints,
𝑃1D analyses also set tight constraints on the sum of neutrino
masses and the running of the spectral index (e.g.; Spergel et al.
2003; Verde et al. 2003; Viel et al. 2004; Seljak et al. 2005, 2006;
Palanque-Delabrouille et al. 2015, 2020).

Unlike 𝜉3D studies, 𝑃1D analyses go deep into the nonlinear
regime and require time-demanding hydrodynamical simulations
(e.g.; Cen et al. 1994; Miralda-Escudé et al. 1996; Meiksin et al.
2001; Lukić et al. 2015; Bolton et al. 2017; Walther et al. 2021;
Chabanier et al. 2023; Puchwein et al. 2023; Bird et al. 2023).
Naive analyses would demand running millions of hydrodynam-
ical simulations, which is currently unfeasible. Rather, the pre-
ferred solution is constructing fast surrogate models that make
precise predictions across the input parameter space using sim-
ulation measurements as the training set. The main advantage
of these surrogate models, known as emulators, is reducing the
number of simulations required for Bayesian inference from mil-
lions to dozens or hundreds. In the context of Lyman-𝛼 forest
studies, the first 𝑃1D emulators involved simple linear interpo-
lation (McDonald et al. 2006) and progressively moved towards
using Gaussian processes (GPs; Sacks et al. 1989; MacKay et al.
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1998) and neural networks (NNs; McCulloch & Pitts 1943); for
instance, Bird et al. (2019); Rogers et al. (2019); Walther et al.
(2019); Pedersen et al. (2021); Takhtaganov et al. (2021); Rogers
& Peiris (2021a); Fernandez et al. (2022); Bird et al. (2023);
Molaro et al. (2023); Cabayol-Garcia et al. (2023).

The primary purpose of this work is to provide consistent
predictions for Lyman-𝛼 forest clustering from linear to nonlin-
ear scales. There are three main approaches to achieve this. The
first relies on perturbation theory (e.g.; Givans & Hirata 2020;
Chen et al. 2021; Ivanov 2024), which delivers precise predic-
tions on perturbative scales at the cost of marginalizing over a
large number of free parameters. The second involves emulating
power spectrum modes measured from a suite of cosmological
hydrodynamical simulations, which provides precise predictions
from quasilinear to nonlinear scales. The main limitation of this
approach is that accessing the largest scales used in BAO anal-
yses, 𝑟 ≃ 300 Mpc, would require hydrodynamical simulations
at least 3 times larger than this scale (e.g.; Angulo et al. 2008),
which is currently unfeasible due to the computational demands
of these simulations.

Instead, we follow the third approach of emulating the best-
fitting parameters of a physically-motivated Lyman-𝛼 clustering
model to measurements from a suite of cosmological hydrody-
namical simulations (see McDonald 2003; Arinyo-i-Prats et al.
2015). We emulate the 2 Lyman-𝛼 linear biases (𝑏 𝛿 and 𝑏𝜂),
which completely set the large-scale behavior of 𝑃3D together
with the linear power spectrum, and 6 parameters modeling small-
scale deviations of 𝑃3D from linear theory. Consequently, this
strategy has the potential to make precise 𝑃3D predictions from
nonlinear to arbitrarily large (linear) scales even when using sim-
ulations with moderate sizes as training data. It also enables pre-
dicting any Lyman-𝛼 statistic derived from 𝑃3D without requiring
interpolation or extrapolation. For instance, we can compute 𝜉3D
by taking the Fourier transform of 𝑃3D or determine 𝑃1D by
integrating its perpendicular modes

𝑃1D (𝑘 ∥ ) = (2π)−1
∫ ∞

0
d𝑘⊥ 𝑘⊥ 𝑃3D (𝑘 ∥ , 𝑘⊥), (1)

where 𝑘 ∥ and 𝑘⊥ indicate parallel and perpendicular modes,
respectively.

We emulate the 8 previous parameters as a function of cos-
mology and IGM physics using forestflow1, a conditional nor-
malizing flow (cNFs; Winkler et al. 2019; Papamakarios et al.
2019). forestflow predicts the values and correlations of model
parameters, allowing the propagation of these correlations onto
𝑃3D and derived statistics. We train forestflow using measure-
ments from the suite of cosmological hydrodynamical simula-
tions presented in Pedersen et al. (2021), which consists of 30
fixed-and-paired hydrodynamical simulations of 67.5 Mpc on a
side.

The release of forestflow is quite timely for BAO and
𝑃1D analyses of the ongoing Dark Energy Spectroscopic In-
strument survey (DESI; DESI Collaboration et al. 2016), which
will quadruple the number of line-of-sights observed by first the
Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al.
2013) and its extension (eBOSS; Dawson et al. 2016). DESI has
already proven the constraining power of Lyman-𝛼 studies by
measuring the isotropic BAO scale with ≃ 1% precision from the
Data Release 1 (DESI Collaboration et al. 2024) and 𝑃1D at 9
redshift bins with a precision of a few percent from the Early Data
Release (Ravoux et al. 2023; Karaçaylı et al. 2024). In addition

1 Publicly available at https://github.com/igmhub/ForestFlow.

to being used for BAO and 𝑃1D studies, forestflow has the po-
tential to extend towards non-linear scales the current full-shape
analyses of 𝜉3D (Cuceu et al. 2023; Gerardi et al. 2023) and 𝑃3D
(Font-Ribera et al. 2018; de Belsunce et al. 2024; Horowitz et al.
2024), and can be used to interpret alternative three-dimensional
statistics (Hui et al. 1999; Font-Ribera et al. 2018; Abdul Karim
et al. 2024).

The outline of this paper is as follows. We describe the emula-
tion strategy in §2 and the suite of cosmological hydrodynamical
simulations we use for training, how we measure 𝑃3D and 𝑃1D
from these simulations, and our approach for computing the best-
fitting parameters of the 𝑃3D analytic model to these statistics in
§3. In §4 and 5, we present forestflow and evaluate its per-
formance using multiple tests. In §6, we discuss some possible
uses for this emulator, and we summarize our main results and
conclude in §7.

Throughout this paper, all statistics and distances are in co-
moving units.

2. Emulation strategy
This paper aims to develop forestflow, a Lyman-𝛼 forest emu-
lator predicting the 2 Lyman-𝛼 linear biases (𝑏 𝛿 and 𝑏𝜂) and 6
parameters capturing small-scale deviations of 𝑃3D from linear
theory. We describe the emulation strategy in §2.1 and detail the
input and output parameters of the emulator in §2.2.

2.1. Parametric model for 𝑃3D

We can express fluctuations in the Lyman-𝛼 forest flux as 𝛿𝐹 (s) =
𝐹̄−1 (s)𝐹 (s) − 1, where 𝐹 = exp(−𝜏) and 𝐹̄ are the transmitted
flux fraction and its mean, respectively, 𝜏 is the optical depth to
Lyman-𝛼 absorption, and s is the redshift-space coordinate. On
linear scales, these fluctuations depend upon the matter field as
follows (e.g.; McDonald 2003)

𝛿𝐹 = 𝑏 𝛿 𝛿 + 𝑏𝜂 𝜂, (2)

where 𝛿 refers to matter density fluctuations, 𝜂 =

−(𝑎 𝐻)−1 (𝜕𝑣r/𝜕𝑟) stands for the dimensionless line-of-sight gra-
dient of radial peculiar velocities, 𝑎 is the cosmological expansion
factor, 𝐻 is the Hubble expansion factor, 𝑣r is the radial velocity,
and 𝑟 stands for the radial comoving coordinate. The linear bias
coefficients 𝑏 𝛿 and 𝑏𝜂 capture the response of 𝛿𝐹 to large-scale
fluctuations in the 𝛿 and 𝜂 fields, respectively.

Following McDonald (2003), we decompose the three-
dimensional power spectrum of 𝛿𝐹 into three terms

𝑃3D (𝑘, 𝜇) = (𝑏 𝛿 + 𝑏𝜂 𝑓 𝜇2)2𝐷NL (𝑘, 𝜇)𝑃lin (𝑘), (3)

where 𝑓 = d log𝐺/d log 𝑎 is the logarithmic derivative of the
growth factor 𝐺, (𝑏 𝛿 + 𝑏𝜂 𝑓 𝜇2)2 accounts for linear biasing
and large-scale redshift space distortions (Kaiser 1987; McDon-
ald et al. 2000), 𝑃lin is the linear matter power spectrum2, and
𝐷NL is a physically-motivated parametric correction accounting
for the nonlinear growth of the density field, nonlinear peculiar
velocities, thermal broadening, and pressure.

The large-scale behavior of 𝑃3D is set by the bias coefficients
𝑏 𝛿 and 𝑏𝜂 together with the linear power spectrum, and the
latter can be computed using a Boltzmann solver (e.g.; Lewis
et al. 2000; Lesgourgues 2011). Therefore, the emulation of the
2 Lyman-𝛼 linear biases enables predicting 𝑃3D on arbitrarily

2 This is the linear power spectrum of cold dark matter and baryons
even for cosmologies with massive neutrinos.
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Fig. 1. Accuracy of the 𝑃3D model (see Eqs. 3 and 4) in reproducing
measurements from the central simulation at 𝑧 = 3. In the top panel,
dotted and solid lines show the ratio of simulation measurements and
model predictions relative to the linear power spectrum, respectively.
Dashed lines do so for the linear part of the best-fitting model (𝐷NL = 1).
Line colors correspond to different 𝜇 wedges, and vertical dashed lines
mark the minimum scale used for computing the best-fitting model, 𝑘 =

5 Mpc−1. The bottom panel displays the relative difference between the
best-fitting model and simulation measurements. The overall accuracy
of the model is 2% on scales in which simulation measurements are not
strongly affected by cosmic variance (𝑘 > 0.5 Mpc−1; see text).

large (linear) scales3. In contrast with direct emulation of power
spectrum modes, this approach only requires simulations large
enough for measuring the 2 Lyman-𝛼 linear biases precisely.

Making predictions for 𝑃3D on small scales is more challeng-
ing than on large scales due to the variety of effects affecting
this statistic on the nonlinear regime (e.g.; McDonald 2003). In
this work, we describe small-scale effects using the physically-
motivated Arinyo-i-Prats et al. (2015) parameterization

𝐷NL = exp

{(
𝑞1Δ

2 + 𝑞2Δ
4
) [

1 −
(
𝑘

𝑘v

)𝑎v

𝜇𝑏v

]
−
(
𝑘

𝑘p

)2
}
, (4)

where Δ2 (𝑘) ≡ (2π2)−1𝑘3𝑃lin (𝑘) is the dimensionless linear
matter power spectrum, 𝜇 is the cosine of the angle between the
Fourier mode and the line of sight, and the free parameters 𝑘v and
𝑘p are in Mpc−1 units throughout this work. The terms involving
{𝑞1, 𝑞2}, {𝑘v, 𝑎v, 𝑏v}, and {𝑘p} account for nonlinear growth,
peculiar velocities and thermal broadening, and gas pressure,
respectively. Note that the previous expression does not include
a shot noise term (e.g.; Iršič & McQuinn 2018). Givans et al.
(2022) accurately described 𝑃3D and 𝑃1D measurements down
to highly nonlinear scales using this expression; however, the
shot noise may have been absorbed in their fit by free parameters
accounting for other effects. We leave a more detailed study of
shot noise for a future work.

3 Aside from nonlinear effects affecting the position and damping of
BAO.

In the top panel of Fig. 1, dotted lines show the ratio of
measurements from the central simulation at 𝑧 = 3 and the
linear power spectrum, while solid lines do so for the best-fitting
model to these measurements (Eqs. 3 and 4) and the linear power
spectrum. See §3 for details about this simulation and the fitting
procedure. The dashed lines depict the results for the best-fitting
model when setting 𝐷NL = 1 after carrying out the fit; i.e., the
behavior of the best-fitting model on linear scales. We can readily
see that nonlinear growth isotropically increases the power with
growing 𝑘 , while peculiar velocities and thermal broadening sup-
press the power of parallel modes as 𝑘 increases. On even smaller
scales, pressure takes over and causes an isotropic suppression.
Nonlinear growth modifies the perpendicular power relative to
linear theory by 10% for scales as large as 𝑘 = 0.5 Mpc−1, indi-
cating that small-scale corrections are important for most of the
scales sampled by our simulations. Nevertheless, in Appendix A,
we show that we can measure the two Lyman-𝛼 linear biases with
percent precision from these simulations. Deviations from linear
theory are less pronounced down to smaller scales for modes
with 𝜇 ≃ 0.5 because nonlinear growth and the combination of
peculiar velocities and thermal broadening tend to cancel each
other out.

On the largest scales, we find strong variations between con-
secutive 𝑘-bins for the same 𝜇-wedge. Some of these oscillations
are driven by differences in the average value of 𝜇 between con-
secutive bins due to the limited number of modes entering each
bin on large scales. To ensure an accurate comparison between
simulation measurements and model predictions, we individually
evaluate the 𝑃3D model for all the modes within each 𝑘 − 𝜇 bin
from our simulation boxes. We then calculate the mean of the re-
sulting distribution and assign this mean value to the bin, thereby
mirroring the approach used to compute 𝑃3D measurements from
the simulations. This process is crucial for large scales where the
number of modes is small and nonlinear scales where the depen-
dence of the number of modes with 𝑘 is strong. We follow the
same approach to evaluate the 𝑃3D model throughout this work.

After accounting for the previous effect, the best-fitting model
reproduces most large-scale oscillations. However, we can read-
ily see a fluctuation at 𝑘 ≃ 0.25 Mpc−1 in the 0 < 𝜇 < 0.25
wedge that it is not captured by the model. The difference be-
tween model predictions and simulation measurements for the
bins adjacent to this one is approximately zero, suggesting that
this fluctuation is caused by cosmic variance. We characterize the
impact of this source of uncertainty in Appendix A, concluding
that it can induce up to 10% errors on scales 𝑘 < 0.5 Mpc−1.
Consequently, cosmic variance hinders our ability to evaluate the
model’s performance on the largest scales shown. However, this
does not necessarily indicate a decrease in the accuracy of the
model; rather, our simulations are simply not large enough to ac-
curately assess the model’s performance on the largest scales. In
the bottom panel of Fig. 1, we can see that the average accuracy
of the model is 2% for 𝑘 > 0.5 Mpc−1, supporting the use of
Eq. 4 for capturing small-scale deviations from linear theory.

2.2. Input and output parameters

In addition to the density and velocity fields, the Lyman-𝛼 forest
depends upon the ionization and thermal state of the IGM (e.g.;
McDonald 2003). Following Pedersen et al. (2021), we use 6
parameters to describe the dependency of this observable with
cosmology and IGM physics:

– Amplitude and slope of the linear matter power spectrum
on small scales. We define the amplitude (Δ2

p) and slope (𝑛p)
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as
Δ2

p (𝑧) = (2𝜋2)−1𝑘3𝑃lin (𝑘p, 𝑧), (5)
𝑛p (𝑧) = (d log 𝑃lin/d log 𝑘) |𝑘=𝑘p , (6)

where we use 𝑘p = 0.7 Mpc−1 as the pivot scale because
it is at the center of the range of interest for DESI small-
scale studies. These parameters capture multiple physical ef-
fects modifying the linear power spectrum on small scales
(see Pedersen et al. 2021, for a detailed discussion), includ-
ing cosmological parameters such as the amplitude (𝐴s) and
slope (𝑛s) of the primordial power spectrum, the Hubble pa-
rameter, and the matter density (ΩM), or ΛCDM extensions
such as curvature and massive neutrinos. The advantage of
using this parameterization rather than ΛCDM parameters is
twofold. First, we reduce the dimensionality of the emulator
input, which decreases the number of simulations required
for precise training. Second, the resulting emulator has the
potential for making precise predictions for variations in cos-
mological parameters and ΛCDM extensions not considered
in the training set (Pedersen et al. 2021; Pedersen et al. 2023;
Cabayol-Garcia et al. 2023). Note that we do not consider cos-
mological parameters capturing changes in the growth rate
or expansion history because the Lyman-𝛼 forest probes cos-
mic times during which the universe is practically Einstein
de-Sitter, and both vary very little with cosmology in this
regime.

– Mean transmitted flux fraction. The mean transmitted flux
fraction (𝐹̄) depends on the intensity of the cosmic ionizing
background and evolves strongly with redshift. One of the
advantages of using this parameter is that it encodes the ma-
jority of the redshift dependence of the signal, serving as a
proxy for cosmic time.

– Amplitude and slope of the temperature-density relation.
The thermal state of the IGM can be approximated by a power
law on the densities probed by the Lyman-𝛼 forest (Lukić et al.
2015): 𝑇0Δ

𝛾−1
b , where Δb is the baryon overdensity, 𝑇0 is the

gas temperature at mean density, and 𝛾 − 1 is the slope of
the relation. These parameters influence the ionization of the
IGM, which is captured by 𝐹̄, and the thermal motion of gas
particles, which causes Doppler broadening that suppresses
the parallel power. Instead of using 𝑇0 as an emulator pa-
rameter, we follow Pedersen et al. (2021) and use the thermal
broadening scale in comoving units. First, we express the ther-
mal broadening in velocity units as 𝜎̃T = 9.1(𝑇0 [K]/104)1/2,
and then we convert it to comoving units, 𝜎T = 𝜎̃T (1+𝑧)𝐻−1.

– Pressure smoothing scale. Gas pressure supports baryons on
small scales, leading to a strong isotropic power suppression
in this regime that depends upon the entire thermal history
of the gas (Gnedin & Hui 1998). We parameterize this ef-
fect using the pressure smoothing scale in units of comoving
Mpc−1, 𝑘F (see Pedersen et al. 2021, for more details).

Our emulator predicts the 8 free parameters of
the 𝑃3D model introduced by Eqs. 3 and 4, y =

{𝑏 𝛿 , 𝑏𝜂 , 𝑞1, 𝑞2, 𝑘v, 𝑎v, 𝑏v, 𝑘p}, as a function of the previous
6 parameters, x = {Δ2

p, 𝑛p, 𝐹̄, 𝜎T, 𝛾, 𝑘F}. In the three next sec-
tions, we generate the training data of the emulator, discuss its
implementation, and evaluate its accuracy.

3. Training and testing set
In this section, we describe how we generate the training and
testing data of our emulator. In §3.1, we present a suite of cos-
mological hydrodynamical simulations from which we generate

mock Lyman-𝛼 forest measurements, and we detail our approach
for extracting 𝑃3D and 𝑃1D measurements from these simula-
tions in §3.2. In §3.3, we compute the best-fitting parameters of
the model introduced by Eqs. 3 and 4 to measurements of these
statistics, and we evaluate the performance of the fits in §3.4.

3.1. Simulations

We extract Lyman-𝛼 forest simulated measurements from a suite
of simulations run with mp-gadget4 (Feng et al. 2018; Bird et al.
2019), a massively scalable version of the cosmological structure
formation code gadget-3 (last described in Springel 2005). This
suite of simulations was first presented and used in Pedersen et al.
(2021); we briefly describe it next. Each simulation tracks the
evolution of 7683 dark matter and baryon particles from 𝑧 = 99
to 𝑧 = 2 inside a box of 𝐿 = 67.5 Mpc on a side, producing
as output 11 snapshots uniformly spaced in redshift between
𝑧 = 4.5 and 2. This configuration ensures convergence for 𝑃1D
measurements down to 𝑘 ∥ = 4 Mpc−1 (the smallest scale used
in this work) at 𝑧 = 2 and less than 10% errors for this scale at
𝑧 = 4. For more details, see the box size and mass resolution tests
carried out in Bolton et al. (2017).

Two realizations were run for each combination of cosmolog-
ical and astrophysical parameters using the “fixed-and-paired”
technique (Angulo & Pontzen 2016; Pontzen et al. 2016), which
significantly reduces cosmic variance for multiple observables,
including the Lyman-𝛼 forest (Villaescusa-Navarro et al. 2018;
Anderson et al. 2019). The initial conditions were generated using
the following configuration of mp-genic (Bird et al. 2020): ini-
tial displacements produced using the Zel’dovich approximation
and baryons and dark matter initialized on an offset grid using
species-specific transfer functions. Some studies have suggested
that this configuration might lead to incorrect evolution of linear
modes (Bird et al. 2020). However, in a recent study, Khan et al.
(2024) showed that variations in the specific settings of mp-genic
initial conditions have a minimal impact on 𝑃1D measurements
across the range of redshifts and scales used in this work.

To increase computational efficiency, the simulations utilize
a simplified prescription for star formation that turns regions of
baryon overdensity Δb > 1000 and temperature 𝑇 < 105 K into
collisionless stars (e.g.; Viel et al. 2004), implement a spatially
uniform ultraviolet background (Haardt & Madau 2012), and do
not consider active galactic nuclei (AGN) feedback (e.g.; Cha-
banier et al. 2020). These approximations are justified because
we focus on emulating the Lyman-𝛼 forest in the absence of astro-
physical contaminants like AGN feedback, damped Lyman-alpha
absorbers (DLAs), or metal absorbers, and we will model these
before comparing our predictions with observational measure-
ments (e.g.; McDonald et al. 2005; Palanque-Delabrouille et al.
2015, 2020).

We train forestflow using data from 30 fixed-and-paired
simulations spanning combinations of cosmological and astro-
physical parameters selected according to a Latin hypercube
(McKay et al. 1979); we refer to these as training simu-
lations hereafter. The Latin hypercube spans the parameters
{Δ2

p (𝑧 = 3), 𝑛p (𝑧 = 3), 𝑧H, 𝐻A, 𝐻S}, where we use 𝑧 = 3 be-
cause it is approximately at the center of the range of interest for
DESI studies (Ravoux et al. 2023; Karaçaylı et al. 2024), 𝑧H is the
midpoint of hydrogen reionization, and the last two parameters
rescale the total photoheating rate 𝜖0 as 𝜖 = 𝐻AΔ

𝐻S
b 𝜖0 (Oñorbe

et al. 2017). Cosmological parameters were generated within the
ranges Δ2

p (𝑧 = 3) ∈ [0.25, 0.45], 𝑛p (𝑧 = 3) ∈ [−2.35, −2.25]

4 https://github.com/MP-Gadget/MP-Gadget/
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by exploring values of the amplitude and slope of the primordial
power spectrum within the intervals 𝐴s ∈ [1.35, 2.71]×10−9 and
𝑛s ∈ [0.92, 1.02]. Any other ΛCDM parameter was held fixed
to values approximately following Planck Collaboration et al.
(2020): dimensionless Hubble parameter ℎ = 0.67, physical cold
dark matter density Ωcℎ

2 = 0.12, and physical baryon density
Ωbℎ

2 = 0.022. As for the IGM parameters, these explored the
ranges 𝑧H ∈ [5.5, 15], 𝐻A ∈ [0.5, 1.5], and 𝐻S ∈ [0.5, 1.5].
All simulation pairs use the same set of initial Fourier phases,
and thus cosmic variance affects in approximately the same way
all combinations of input parameters.

We evaluate different aspects of the emulation strategy using
6 fixed-and-paired simulations with cosmological and astrophys-
ical parameters not considered in the training simulations:

– The central simulation uses cosmological and astrophysical
parameters at the center of the training parameter space:
𝐴s = 2.01 × 10−9, 𝑛s = 0.97, 𝑧H = 10.5, 𝐻A = 1, and
𝐻S = 1. We use this simulation for an out-of-sample test of
the emulator’s performance under optimal conditions, as the
accuracy of machine-learning models typically decreases as
we move closer to the border of the convex hull set by the
training set.

– The seed simulation uses the same parameters as the central
simulation while considering a different distribution of initial
Fourier phases. Given that all training simulations use the
same initial Fourier phases, seed is useful to evaluate the
impact of cosmic variance in the training set on forestflow
predictions.

– The growth, neutrinos, and curved simulations adopt the
same values of Δ2

p (𝑧 = 3), 𝑛p (𝑧 = 3), physical cold dark mat-
ter and baryonic densities, and astrophysical parameters as the
central simulation. However, the growth simulation uses
10% larger Hubble parameter (ℎ = 0.74) and 18% smaller
matter density (ΩM = 0.259) while using the same value of
ΩMℎ2 as the training simulations, the neutrinos simulation
includes massive neutrinos (

∑
𝑚𝜈 = 0.3 eV), and the curved

simulation considers an open universe (Ω𝑘 = 0.03). The neu-
trinos and curved simulations also modify the value of the
cosmological constant while holding fixed ℎ to compensate
for the increase in the matter density and the addition of curva-
ture, respectively. We use the testing simulations to evaluate
the performance of the emulation strategy for cosmologies
not included in the training set.

– The reionisation simulation uses the same cosmological
parameters as the central simulation while implementing a
distinct helium ionization history relative to the central and
training simulations (Puchwein et al. 2019). The main dif-
ference between the ionization histories of these simulations
is that the one implemented in the reionisation simulation
peaks at a later time than the others, leading to a significantly
different thermal history. The reionisation simulation there-
fore tests the emulator’s performance for thermal histories not
considered in the training simulations.

3.2. Simulating Lyman-𝛼 forest data

To extract Lyman-𝛼 forest measurements from each simulation,
we first select one of the simulation axes as the line of sight and
displace the simulation particles from real to redshift space along
this axis. Then, we compute the transmitted flux fraction along
7682 uniformly-distributed line of sights along this axis using
FSFE5 (Bird 2017); these lines of sight are commonly known

5 https://github.com/sbird/fake_spectra.

as skewers. The resolution of the skewers is set to 0.05 Mpc,
which is enough to resolve the thermal broadening and pressure
scales, and are spaced by 0.09 Mpc in the transverse direction.
We checked that 𝑃3D and 𝑃1D measurements within the range
of interest (see §3.3) do not vary by increasing the line-of-sight
resolution or the transverse sampling. After that, we repeat the
previous steps for the three simulation axes to extract further
cosmological information, as each simulation axis samples the
velocity field in a different direction. Finally, we scale the effective
optical depth of the skewers to 0.90, 0.95, 1.05, and 1.10 times
its original value (see Lukić et al. 2015, for more details about
this approach), which is equivalent to running simulations with
different UV background photoionization rates.

Using this data as input, we measure 𝑃3D by first computing
the three-dimensional Fourier transform of the skewers. Then,
we take the average of the square norm of all modes within
20 logarithmically-spaced bins in wavenumber 𝑘 from the fun-
damental mode of the box, 𝑘min = 2π𝐿−1 ≃ 0.09 Mpc−1, to
𝑘max = 40 Mpc−1 and 16 linearly-spaced bins in the cosine of the
angle between Fourier modes and the line of sight from 𝜇 = 0
to 1. We measure 𝑃1D by first computing the one-dimensional
Fourier transform of each skewer without applying any binning,
and then by taking the average of the square norm of all these
Fourier transforms.

We carry out these measurements for the 30 training and
6 test fix-and-paired simulations, ending up with 2 (opposite
Fourier phases) × 3 (simulation axes) × 11 (snapshots) × 5
(mean flux rescalings) = 330 measurements per simulation. To
reduce cosmic variance, we compute the average of measure-
ments from different axes and phases of fixed-and-paired simu-
lations, decreasing the number of measurements per simulation
to 55. The training and testing sets of forestflow are thus com-
prised of 1650 and 330 Lyman-𝛼 power spectrum measurements,
respectively. All these measurements are publicly available at
https://github.com/igmhub/LaCE.

3.3. Fitting the parametric model

To generate training and testing data for our emulator, we com-
pute the best-fitting parameters of Eqs. 3 and 4 to measurements
from the simulations described in §3.1. We fit the model using
𝑃3D measurements from 𝑘 = 0.09 to 5 Mpc−1 and 𝑃1D measure-
ments from 𝑘 ∥ = 0.09 to 4 Mpc−1. The size of our simulation
boxes determines the largest scales used, while the maximum
wavenumbers are set by the smallest scales measured by (Ravoux
et al. 2023; Karaçaylı et al. 2024). We remind the reader that the
large-scale behavior of 𝑃3D is set by the 2 Lyman-𝛼 linear biases
(see Eq. 3); consequently, the model can make accurate predic-
tions for 𝑃3D on arbitrarily large (linear) scales as long as these
2 parameters are measured precisely.

We compute the best-fitting value of model parameters y =

{𝑏 𝛿 , 𝑏𝜂 , 𝑞1, 𝑞2, 𝑘v, 𝑎v, 𝑏v, 𝑘p} to simulation measurements by
minimizing the pseudo-𝜒2:

𝜒2 (y) =
𝑀3D∑︁
𝑖

𝑤3D
[
𝑃data

3D (𝑘𝑖 , 𝜇𝑖) − 𝑃model
3D (𝑘𝑖 , 𝜇𝑖 , y)

]2

+
𝑀1D∑︁
𝑖

𝑤1D
[
𝑃data

1D (𝑘 ∥ , 𝑖) − 𝑃model
1D (𝑘 ∥ , 𝑖 , y)

]2
, (7)

where 𝑀3D = 164 and 𝑀1D = 42 are the number of 𝑃3D
and 𝑃1D bins employed in the fit, respectively, the super-
scripts data and model refer to simulation measurements and
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Fig. 2. Accuracy of the parametric model (see Eqs. 3 and 4) in reproduc-
ing 𝑃3D and 𝑃1D measurements from all the training simulations. Lines
and shaded areas show the mean and standard deviation of the relative
difference between simulation measurements from the 1650 snapshots
of the training simulations and best-fitting models to these, respec-
tively. The accuracy of the model in recovering 𝑃3D and 𝑃1D is 2.4 and
0.6%, respectively, on scales not strongly affected by cosmic variance.

model predictions, and 𝑤3D and 𝑤1D weigh the fit. We use
the Nelder-Mead algorithm implemented in the routine min-
imize of scipy (Virtanen et al. 2020) to carry out the min-
imization 6. The results of the fits are publicly accessible at
https://github.com/igmhub/ForestFlow.

Ideally, we would use the covariance of 𝑃3D and 𝑃1D mea-
surements as weight in the previous expression; however, we lack
multiple realizations of the same simulation with different distri-
butions of initial Fourier phases needed to estimate this covari-
ance. In addition, its theoretical estimation is not straightforward
(Maion et al. 2022). Instead, we disregard correlations between
𝑃3D and 𝑃1D and weigh these by 𝑤3D = 𝑁3D (𝑘, 𝜇)/(1 + 𝜇2)2

and 𝑤1D = 𝛼(1 + 𝑘 ∥/𝑘0)2, where 𝑁3D is the number of modes in
each 𝑘 − 𝜇 bin and 𝑘0 = 2 Mpc−1. The terms involving 𝑁3D, 𝜇,
and 𝑘0 attempt to ensure an unbiased fit of 𝑃3D and 𝑃1D across
the full range of scales used. The parameter 𝛼 = 8000 controls
the relative weight of 𝑃3D and 𝑃1D in the fit, and its value is
motivated by the different impact of cosmic variance on these
(see Appendix A).

We expect significant correlations between the best-fitting
value of the parameters to measurements from relatively small
simulation boxes. As shown by Arinyo-i-Prats et al. (2015), these
correlations are especially significant for the parameters account-
ing for nonlinear growth of structure, 𝑞1 and 𝑞2. Givans et al.
(2022) advocated for setting 𝑞2 = 0 since this parameter is not
necessary for describing 𝑃3D at 𝑧 = 2.8. However, we find non-
zero values of this parameter indispensable for describing 𝑃3D at
redshifts below 𝑧 = 2.5. This is not surprising since the gravi-
tational evolution of density perturbations becomes increasingly
more nonlinear as cosmic time progresses.

6 To ensure that this routine does not get stuck in a local minimum, we
checked that the likelihood is unimodal in all cases using the Affine In-
variant Markov chain Monte Carlo Ensemble sampler emcee (Foreman-
Mackey et al. 2013).

3.4. Accuracy of the model

In the previous section, we compute the best-fitting parameters of
the 𝑃3D model to measurements from the training simulations.
Two main sources of uncertainty can affect these fits: model
inaccuracies and cosmic variance. The first relates to using a
model without enough flexibility to describe Lyman-𝛼 clustering
accurately, while the second has to do with the limited size of
the training simulations. The influence of cosmic variance on
the emulator training set is amplified because all the training
simulations use the same initial distribution of Fourier phases,
meaning all simulations are subject to the same large-scale noise.
We study this source of uncertainty in Appendix A, where we
compare the best-fitting models to the central and seed sim-
ulations, whose only difference is in their initial distribution of
Fourier phases. We proceed to study model inaccuracies next.

In Fig. 2, we evaluate the performance of the parametric
model in reproducing 𝑃3D and 𝑃1D measurements from the 1650
snapshots of the training simulations. As discussed in §2.1,
cosmic variance limits our ability to evaluate the accuracy of the
model for 𝑃3D on scales 𝑘 < 0.5 Mpc−1; therefore, we quote
the model accuracy from 𝑘 = 0.5 Mpc−1 down to the smallest
scale used in the fit, 𝑘 = 5 Mpc−1. In contrast, since cosmic
variance has a much smaller impact on 𝑃1D, we evaluate the
model performance for this statistic using all scales considered
in the fit (0.09 < 𝑘 ∥ [ Mpc−1] < 4). We adopt the same approach
when evaluating the performance of the emulator in §5. Under
these considerations, the overall accuracy of the model is 2.4 and
0.6% for 𝑃3D and 𝑃1D, respectively.

Given that we estimate the accuracy of the model using the
training simulations, the previous numbers account for both
the limited flexibility of the 𝑃3D model and cosmic variance.
As discussed in Appendix A, the impact of cosmic variance on
measurements of 𝑃3D and 𝑃1D from these simulations is 1.3 and
0.5%, respectively. This indicates that the limited flexibility of
the 𝑃3D model introduces additional errors of 1.1 and 0.1% on
these statistics beyond cosmic variance. We can thus conclude
that the 𝑃3D model accurately reproduces 𝑃3D and 𝑃1D over the
full range of scales used in the fit, 0.09 < 𝑘 [ Mpc−1] < 5 and
0.09 < 𝑘 ∥ [ Mpc−1] < 4.

4. ForestFlow

In this section we present forestflow, an emulator based on
conditional normalizing flows that predicts the parameters of the
𝑃3D model introduced by Eqs. 3 and 4 as a function of parameters
capturing the dependence of the Lyman-𝛼 forest on cosmology
and IGM physics. We detail its architecture and implementation
in §4.1 and 4.2, respectively.

4.1. Conditional normalizing flows

Normalizing flows (NFs; Jimenez Rezende & Mohamed 2015)
are a class of machine-learning generative models designed to
predict complex distributions by applying a sequence of bĳective
mappings to simple base distributions. A natural extension to
this framework is conditional NFs (cNFs; Winkler et al. 2019;
Papamakarios et al. 2019), a type of NFs that condition the map-
ping between the base and target distributions on a series of input
variables. Given an input x ∈ 𝑋 and target y ∈ 𝑌 , cNFs predict
the conditional distribution 𝑝𝑌 |𝑋 (y|x) by applying a parametric,
bĳective mapping 𝑓𝜙 : 𝑌 × 𝑋 → 𝑍 to a base distribution 𝑝𝑍 (z)
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Fig. 3. Architecture of forestflow, a Lyman-𝛼 forest emulator based on conditional Normalizing Flows. The blue arrow indicates the training
direction, where forestflow optimizes a bĳective mapping between the best-fitting parameters of the 𝑃3D model to measurements from the
training simulations and an 8-dimensional Normal distribution. The mapping is conditioned on cosmology and IGM physics and performed using
12 consecutive affine coupling blocks. The green arrow denotes the emulation direction, where the emulator applies the inverse of the mapping
to random samples from the base distribution to predict the value of the 𝑃3D model parameters. Outside the cNF, forestflow introduces these
parameters in Eq. 3 and 1 to obtain predictions for 𝑃3D and 𝑃1D, respectively.

as follows

𝑝𝑌 |𝑋 (y|x) = 𝑝𝑍 ( 𝑓𝜙 (y, x) |x)
����𝜕 𝑓𝜙 (y, x)𝜕y

���� , (8)

where 𝜙 are the parameters of the mapping, while the last term of
the previous equation is the Jacobian determinant of the mapping.
In forestflow, the input is given by the parameters capturing
the dependence of the Lyman-𝛼 forest on cosmology and IGM
physics, x = {Δ2

p, 𝑛p, 𝐹̄, 𝜎T, 𝛾, 𝑘F}, the target by the parameters
of the 𝑃3D model, y = {𝑏 𝛿 , 𝑏𝜂 , 𝑞1, 𝑞2, 𝑘v, 𝑎v, 𝑏v, 𝑘p}, and
the base distribution is an 8-dimensional Normal distribution
𝑁8 (0, 1), where the dimension is determined by the number of
𝑃3D model parameters.

Once trained, cNFs are a generative process from x to y. In
our implementation, forestflow first samples randomly from
the base distribution, and then it passes this realization through a
sequence of mappings conditioned on a particular combination of
cosmology and IGM parameters, ỹ = 𝑓 −1

𝜙
(𝑝𝑍 (z), x), ending up

with a prediction for the value of the 𝑃3D parameters. Repeating
this process multiple times, the forestflow yields a distribution
of 𝑃3D parameters 𝑝𝑌̃ |𝑋 that, for a sufficiently large number of
samples, approaches the target distribution 𝑝𝑌 |𝑋. The breadth of
this distribution captures uncertainties arising from the limited
size of the training set. Finally, outside the cNF, we use each
combination of𝑃3D parameters to evaluate Eqs. 3 and 1, obtaining
predictions and uncertainties for 𝑃3D and 𝑃1D.

The main challenge when using cNFs is finding the mapping
between the target and the base distribution, typically done using
an 𝑁-layer neural network with bĳective layers. This process
runs in reverse relative to the generating process: we start by
applying the mapping 𝑓𝜙 to the target data y conditioned on the
input x, yielding z. Then, we optimize the model parameters by
minimizing the loss function

L =
1
2

∑︁
z2 − log

����𝛿 𝑓𝜙 (y, x)𝛿y

���� . (9)

We carry out this optimization process using stochastic gradi-
ent descent applied to minibatches, a methodology commonly
employed for training neural networks.

4.2. Implementation

Neural Autoregressive Flows (Huang et al. 2018) use a series of
invertible univariate operations to build a bĳective transforma-
tion between a conditional distribution and a base distribution.
In forestflow, we create a bĳective mapping between the best-
fitting parameters of the 𝑃3D model and an 8-dimensional Normal
distribution by applying 𝑁ACB = 12 consecutive Affine-Coupling
Block (ACB; Dinh et al. 2016) conditioned on cosmology and
IGM physics. The transformation goes from the best-fitting pa-
rameters of the 𝑃3D model to the base distribution when training
the model, and in the opposite direction when evaluating it.

Each ACB conducts a series of operations 𝑔𝑖, 𝜙̃𝑖
on its input

data w𝑖 , with 𝑖 going from 1 to 𝑁ACB and 𝜙𝑖 standing for the
parameters of the transformation. First, it splits the input data
into two subsamples with approximately the same number of
elements, w′

𝑖 and w′′
𝑖 . Then, it applies an affine transformation

to the first subsample w′
𝑖

𝑇 (w′
𝑖) = 𝛼𝑖 w′

𝑖 + 𝛽𝑖 , (10)

where 𝛼𝑖 and 𝛽𝑖 are neural networks with a single hidden layer
of 128 neuron units. Third, the ACB merges the output from the
affine transformation and the unchanged subsample, and then it
applies a permutation layer to randomly rearrange these elements,
obtaining w̃𝑖 . Fourth, the ACB applies an affine transformation
to this sample, 𝑇 (w̃𝑖). The first and second affine transforma-
tions involve a subset of the training set and the entire training
set, respectively, enabling the model to capture local and global
features.

In Fig. 3, we show the architecture of forestflow. The blue
arrow indicates the training direction, while the green arrow
depicts the emulation direction. In the training direction, the
input to the first ACB, u1 = w1, is a 1650-dimensional array
composed of 14-dimensional vectors, where 1650 is the number
of simulation snapshots in the training set. Each vector includes
the 8 best-fitting 𝑃3D model parameters to each snapshot and the
6 parameters describing the cosmology and IGM physics of this
snapshot. The input to the 𝑖 ACB, u𝑖 , is a 1650-array containing
14-dimensional vectors with the output of the 𝑖 − 1 ACB and,
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once again, the 6 parameters describing the cosmology and IGM
physics of each snapshot. Each ACB applies a transformation
𝑓𝑖,𝜙𝑖

= 𝑔𝑖, 𝜙̃𝑖
, and the consecutive application of all ACBs results

in the mapping between the target and the base distributions
z = 𝑓𝜙 (y, x), where 𝑓𝜙 =

∏𝑁ACB
𝑖=1 𝑓𝑖,𝜙𝑖

.
In the emulation direction, the input to the first ACB, v1 = w1,

is a 14-dimensional vector containing random draws from an 8-
dimensional Normal distribution and the 6 parameters describing
the cosmology and IGM physics for which we want to obtain
predictions. As in the training direction, the input to each sub-
sequent ACB relies on the output from the previous ACB, each
conditioned on cosmology and IGM physics. The ACBs apply
the transformations 𝑓 −1

𝑖,𝜙𝑖
= 𝑔𝑖, 𝜙̃𝑖

, which are the inverse of the
corresponding transformations in the training direction, 𝑓𝑖,𝜙𝑖

.
forestflow makes predictions for 𝑃3D model parameters by ap-
plying the composition of the inverse of all ACBs to random
samples from the base distribution, ỹ = 𝑓 −1

𝜙
(𝑝𝑍 (z), x), where

𝑓 −1
𝜙

=
∏𝑁ACB

𝑖=1 𝑓 −1
𝑖,𝜙𝑖

.
We implement the emulator within the FreIA framework

(Ardizzone et al. 2018-2022), which uses PyTorch (Ansel et al.
2024) in the backend. forestflow is trained by minimizing Eq. 9
using an Adam optimizer (Kingma & Ba 2014) for 300 epochs
with an initial learning rate of 10−3. We use the Optuna frame-
work (Akiba et al. 2019) to select the number of ACBs and
epochs, as well as the value of the learning rate. First, Optuna
trains forestflow for a particular combination of these hyper-
parameters. Then, it computes the average value of Eq. 7 for all
simulations in the training set. After that, depending on the good-
ness of the fit to 𝑃3D and 𝑃1D measurements, Optuna selects a
new value of the hyperparameters. We iterate with Optuna 50
times through a hyperparameter grid, selecting the hyperparam-
eters that yield the highest accuracy. We checked that the perfor-
mance of the emulator depends weakly on small variations in the
value of the hyperparameters. forestflow is publicly available
at https://github.com/igmhub/ForestFlow.

5. Emulator performance
In this section, we evaluate the performance of forestflow. In
§5.1, we assess its performance throughout the parameter space
of the training set. Then, in §5.2, we examine the accuracy of the
emulator using simulations with cosmologies and IGM models
not included in the training set.

5.1. Throughout the parameter space of the training set

In this section, we evaluate the performance of forestflow in
recovering the 2 Lyman-𝛼 linear biases, which determine the be-
havior of 𝑃3D on linear scales, as well as 𝑃3D and 𝑃1D measure-
ments from simulations on the intervals 0.5 < 𝑘 [ Mpc−1] < 5
and 0.09 < 𝑘 ∥ [ Mpc−1] < 4, respectively. These are the ranges
of scales used when fitting the parametric model in §3 that are
not strongly affected by cosmic variance (see §2.1). We begin by
assessing the accuracy of the emulator at the center of the train-
ing set, where machine-learning methods typically perform best,
and then extend our evaluation across the entire input parameter
space.

In Fig. 4, we compare measurements of 𝑃3D and 𝑃1D from
the central simulation at 𝑧 = 3 with forestflow predictions.
Dotted lines show simulation measurements, while solid lines
and shaded areas display the average and 68% credible inter-
val of forestflow predictions, respectively. We characterize the
accuracy of the credible intervals in Appendix B. As we can
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Fig. 4. Accuracy of the emulator in recovering 𝑃3D and 𝑃1D measure-
ments from the central simulation at 𝑧 = 3. Dotted lines show mea-
surements from simulations, solid lines and shaded areas display the
average and 68% credible interval of forestflow predictions, respec-
tively, and vertical dashed lines indicate the minimum scales considered
for computing the training data of the emulator. The overall performance
of the emulator in recovering 𝑃3D is 2.0% on scales not strongly affected
by cosmic variance and 0.6% for 𝑃1D.

see, the emulator captures the amplitude and scale-dependence
of 𝑃3D and 𝑃1D precisely. To better characterize the emulator’s
performance, we compute the average accuracy of forestflow
in recovering measurements from central across redshift. We
find that it is 1.2 and 0.3% for 𝑏 𝛿 and 𝑏𝜂 , respectively, which
translates into 1.1 and 1.2% for perpendicular and parallel 𝑃3D
modes on linear scales, and 2.6 and 0.8% for 𝑃3D and 𝑃1D. Note
that cosmic variance hinders our ability to test the performance of
the model; however, this does not necessarily indicate a decrease
in the model’s accuracy for 𝑃3D on the largest scales sampled by
our simulation.

We expect the emulator’s efficiency to decrease away from
the center of the input space. Ideally, we would have multiple
test simulations covering the entire input space to evaluate the
performance, but such simulations are unavailable. Instead, we
conduct leave-one-out tests, which are widely used to assess the
performance of an emulator when the number of training points
is insufficient for out-of-sample tests (e.g.; Hastie et al. 2001). In
a leave-one-out test, we optimize forestflow after removing a
subsample from the training set; for example, all measurements
from one of the training simulations. We then check the ac-
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Fig. 5. Accuracy of the emulator across the input parameter space estimated via leave-simulation-out (top panels) and leave-redshift-out tests (bottom
panels). Top panels. Each leave-simulation-out test involves training 1 independent emulator with measurements from 29 distinct simulations, and
then using the measurements from the remaining simulation as the validation set. Lines and shaded areas show the average and standard deviation of
30 leave-simulation-out tests, and each panel shows the results for a different redshift. Bottom panels. Leave-redshift-out tests require optimizing
1 emulator with all measurements but the ones at a particular redshift, and then using measurements from this redshift as validation. Each panel
shows the results of a different test.

curacy of the new emulator using the subsample held back. By
repeating this process for other subsamples, we can estimate the
performance of forestflow across the parameter space. Since
each emulator is trained without using the entire dataset, leave-
one-out tests provide a lower bound on emulator performance.
Additionally, leave-one-out tests may require extrapolating the
emulator’s predictions, and it is widely known that machine-
learning methods do not extrapolate well.

In the top panels of Fig. 5, lines and shaded areas display the
average and standard deviation of 30 leave-simulation-out tests.
Each test requires optimizing an emulator with 29 distinct train-
ing simulations, and then using the remaining simulation as the
validation. Each panel shows the results for a different redshift,
and we check that the results are similar for redshifts not shown.
As we can see, the large-scale noise is similar for all training

simulations; this is because they use the same initial distribution
of Fourier phases. The overall performance of forestflow in
recovering 𝑏 𝛿 and 𝑏𝜂 is 1.0 and 3.1%, respectively, which trans-
lates into 2.0 and 2.9% for perpendicular and parallel 𝑃3D modes
on linear scales, and 3.4 and 1.8% for 𝑃3D and 𝑃1D.

In Table 1, we gather the accuracy of forestflow at the center
and across the parameter space, as well as the expected level of
uncertainties due to cosmic variance and the limited flexibility
of the 𝑃3D model. Due to the limited size of our simulations,
the maximum levels of accuracy we can test for 𝑃3D and 𝑃1D
are 1.3 and 0.5% (see Appendix A), respectively. These levels
would decrease by evaluating the accuracy of the emulator using
bigger simulations with the same resolution. On the other hand,
the combined impact of impact of cosmic variance on the training
data and the limited flexibility of the 𝑃3D model are 2.4 and 0.6%
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Table 1. Percent accuracy of the 𝑃3D model (Eqs. 3 and 4) and forest-
flow in recovering 𝑃3D and 𝑃1D, as well as the impact of cosmic
variance on these statistics. The second and third columns show the re-
sults for 𝑃3D and 𝑃1D over the intervals 0.5 < 𝑘 [ Mpc−1] < 5 and
0.09 < 𝑘 ∥ [ Mpc−1] < 4 intervals, respectively, while the last two
columns do so for the perpendicular and parallel modes of 𝑃3D on
linear scales.

Type 𝑃3D 𝑃1D 𝑏 𝛿 𝑏𝜂 𝑃lin
3D,⊥ 𝑃lin

3D, ∥
Cvar. fita 0.8 0.1 0.6 1.8 1.2 1.8

Cvar. datab 1.3 0.5 – – – –
Cvar. & modelc 2.4 0.6 – – – –
Emu. centerd 2.6 0.8 1.2 0.3 1.1 1.2
Emu. overalle 3.4 1.8 1.0 3.1 2.0 2.9

Notes. (a) Impact of cosmic variance on the best-fitting fitting 𝑃3D model
to simulation measurements (see Appendix A). (b) Impact of cosmic
variance on simulation measurements (see Appendix A). (c) Joint impact
of cosmic variance and the limited flexibility of the𝑃3D model (see §3.4).
(d) Performance of forestflow at the center of the parameter space,
estimated using the central simulation (see §5.1). (e) Accuracy of
forestflow across the parameter space, estimated via leave-simulation-
out tests (see §5.1).

for 𝑃3D and 𝑃1D, respectively, which is 1.1 and 0.1% worse than
the minimum accuracy we can test for these statistics. At the
center of the parameter space, the accuracy of forestflow for
𝑃3D and 𝑃1D is only 0.2% worse than the previous levels, letting
us conclude that the primary factors limiting the performance of
forestflow at the center of the parameter space are the size of
the training simulations and model inaccuracies.

The efficiency of forestflow across the parameter space is
1.2 and 1.0% worse than at the center for 𝑃3D and 𝑃1D, respec-
tively. Consequently, the accuracy of the emulator would likely
improve by increasing the number of training simulations. How-
ever, leave-one-out tests significantly underestimate the perfor-
mance of an emulator at the edges of the training set, especially
for a small number of simulations, because it often requires ex-
trapolating the emulator’s predictions. We can thus conclude that
the quality of the training data, the accuracy of the model, and the
number of training simulations have a similar impact on the per-
formance of forestflow. Given that leave-simulation-out tests
tend to provide a lower bound for the emulator’s performance, we
conclude that the overall accuracy of forestflow in predicting
𝑃3D from linear scales to 𝑘 = 5 Mpc−1 is approximately 3%, and
≃ 1.5% for 𝑃1D down to 𝑘 ∥ = 4 Mpc−1.

As discussed in §2.2, forestflow does not use as input "tra-
ditional" cosmological parameters such as Ω𝑚, 𝐴𝑠 , or 𝐻0. In-
stead, it uses a set of parameters measured from the outputs of
individual simulation snapshots. This strategy enables training
forestflow without specifying the input redshift and making
predictions for redshifts not present in the training set. To test
this assumption, we carry out two leave-redshift-out tests. The
first involves optimizing one emulator with all training mea-
surements but the ones at 𝑧 = 2.5, and then validating it with data
from this redshift. For the second, we follow the same approach
but using measurements at 𝑧 = 3.5. We display the results of these
tests in the bottom panels of Fig. 5. The performance of the em-
ulator is similar for leave-redshift-out and leave-simulation-out
tests, validating the approach mentioned above. We find similar
results for leave-redshift-out tests at other redshifts.

5.2. Cosmologies and IGM histories outside the training set

In Fig. 6, we examine the accuracy of forestflow reproducing
𝑃3D and 𝑃1D measurements from simulations not included in the
training set. Lines indicate the redshift average of the relative
difference between model predictions and simulation measure-
ments. The first two rows show the results for the central and
seed simulations, whose only difference is their initial distri-
bution of phases. Consequently, the predictions of forestflow
are the same for both. As we can see, these simulations present
a different large-scale pattern of fluctuations, signaling that are
caused by cosmic variance. Once we ignore these, we find that
the performance of forestflow is practically the same for both
simulations. We can thus conclude that forestflow predictions
are largely insensitive to the impact of cosmic variance on the
training set.

In the third, fourth, and fifth rows of Fig. 6, we use the
growth, neutrinos, and curved simulations to evaluate the
accuracy of forestflow for three different scenarios not con-
templated in the training set: different growth history, massive
neutrinos, and curvature. As we can see, the performance of
forestflow for all these simulations is approximately the same
as for the central simulation. These results support that using
the small-scale amplitude and slope of the linear power spectrum
to capture cosmological information enables setting precise con-
straints on growth histories and ΛCDM extensions not included
in the training set (see also Pedersen et al. 2021; Pedersen et al.
2023; Cabayol-Garcia et al. 2023).

In the last row of Fig. 6, we examine the accuracy of forest-
flow for the reionisation simulation, which employs a He ii
reionization history significantly different from those used by
the training simulations. The performance of the emulator for
this and the central simulation is similar, which is noteworthy
given that the performance of 𝑃1D emulators for the reionisation
is significantly worse than for the central simulation (Cabayol-
Garcia et al. 2023). The outstanding performance of forestflow
is likely because the relationship between IGM physics and the
parameters of the 𝑃3D model is more straightforward than with
𝑃1D variations.

6. Discussion
Cosmological analyses of the Lyman-𝛼 forest come in two flavors:
one-dimensional studies focused on small, non-linear scales and
three-dimensional analyses of large, linear scales. With forest-
flow, we can now consistently model Lyman-𝛼 correlations from
nonlinear to linear scales, enabling a variety of promising analy-
ses that we discuss next.

6.1. Connecting large-scale biases with small-scale physics

Small-scale Lyman-𝛼 analyses use emulators to predict 𝑃1D as
a function of cosmology and IGM physics (e.g.; Cabayol-Garcia
et al. 2023), while large-scale analyses use linear or perturba-
tion theory models to predict 𝜉3D together with Lyman-𝛼 linear
bias parameters that need to be marginalized over. forestflow
provides a relationship between IGM physics and linear biases,
enabling the use of 𝑃1D studies to inform three-dimensional anal-
yses and vice versa.

We could use forestflow to set constraints on 𝑏 𝛿 and 𝑏𝜂

by fitting 𝑃1D measurements, and then use these constraints as
priors in three-dimensional studies. As a result, we would break
degeneracies between Lyman-𝛼 linear bias parameters and cos-
mology, allowing us to measure the amplitude of linear density
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Fig. 6. Performance of the emulator in recovering 𝑃3D and 𝑃1D for test simulations not included in the training set. Lines and shaded areas display
the average and standard deviation of the results for 11 snapshots between 𝑧 = 2 and 4.5, respectively. From top to bottom, the rows show the results
for the central, seed, growth, neutrinos, curved, and reionisation simulations, where the central and seed simulations are at the center
of the input parameter space and employ the same and different initial distribution of Fourier phases as the training simulations, respectively, the
growth and reionisation simulations use a different growth and reionization history relative to those used by the training simulations, and the
neutrinos and curved simulations consider massive neutrinos and curvature. The efficiency of forestflow is approximately the same for all
simulations.

and velocity fluctuations, 𝜎8 (𝑧) and 𝑓 𝜎8 (𝑧), rather than 𝑏 𝛿𝜎8
and 𝑏𝜂 𝑓 𝜎8 like in traditional Lyman-𝛼 forest analyses. To illus-
trate this application, we proceed to compare measurements of
𝑏 𝛿 and 𝛽 ≡ 𝑏−1

𝛿
𝑏𝜂 𝑓 from BAO analyses with forestflow pre-

dictions for these parameters based on small-scale 𝑃1D analyses.
The analysis of BAO in the Lyman-𝛼 forest from the first data
release of DESI yields 𝑏 𝛿 = −0.108± 0.005 and 𝛽 = 1.74± 0.09
at 𝑧 = 2.33 (DESI Collaboration et al. 2024). On the other hand,
forestflow predicts 𝑏 𝛿 = −0.118 and 𝛽 = 1.57 at 𝑧 = 2.33 for a
Planck cosmology when using as input the best-fitting constraints
on IGM parameters from table 4 of Walther et al. (2019), which
were derived from high-resolution 𝑃1D measurements. The con-
straints on IGM parameters were derived using a 𝑃1D emulator
trained on a suite of simulations with the same input cosmol-
ogy and possibly slightly different definitions of IGM parameters
relative to those used in this work. Nonetheless, forestflow
predictions and DESI measurements agree at the 2 sigma level,
encouraging this new type of study.

In the left panels of Fig. 7, we display forestflow predic-
tions for the response of the Lyman-𝛼 linear biases and 𝛽 to
variations in cosmology and IGM physics. The response of 𝑏 𝛿

to these changes is strong and has a different redshift depen-
dence for cosmology and IGM parameters; therefore, we could
use forestflow to analyze 𝑃3D measurements from different
redshifts to further break degeneracies between 𝑏 𝛿 and 𝜎8. On

the other hand, the response of 𝑏𝜂 to these changes is weak, and it
is thus challenging to use this approach to break degeneracies be-
tween 𝑏𝜂 and 𝑓 𝜎8. Note that the response of the Lyman-𝛼 linear
biases and 𝛽 to 𝐴s variations broadly agrees with measurements
from simulations run while only varying 𝜎8 (Arinyo-i-Prats et al.
2015).

Similarly, we could use measurements of linear bias param-
eters from three-dimensional analyses (du Mas des Bourboux
et al. 2020; DESI Collaboration et al. 2024) to make predic-
tions for IGM parameters, which could be used in 𝑃1D studies to
break degeneracies between cosmology and IGM physics. In the
right panels of Fig. 7, we display forestflow predictions for the
response of 𝑃3D and 𝑃1D to variations in cosmology and IGM
physics. As we can see, the response of 𝑃1D to 𝐴s and 𝐹̄ varia-
tions is largely scale-independent down to 𝑘 ∥ = 1 Mpc−1 where
many other effects are at play, and thus these two parameters are
largely degenerated. On the other hand, this is not the case for
𝑃3D; consequently, we could use information from 𝑃3D analyses
to break degeneracies in 𝑃1D studies. Note that the response of
𝑃3D and 𝑃1D to 𝐴s, 𝐹̄, and 𝜎T variations broadly agrees with
measurements from simulations run varying only one of these
parameters at a time (McDonald 2003; McDonald et al. 2005).

We also observe that 𝑃3D and 𝑃1D respond significantly to
variations in ΩMℎ2, suggesting that the Lyman-𝛼 clustering is
highly sensitive to the expansion and growth history. However, we
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Fig. 7. Response of Lyman-𝛼 clustering to variations in cosmology and IGM physics according to forestflow. The top, middle, and bottom panels
of the left column show the results for 𝛽, 𝑏𝛿 , and 𝑏𝜂 , respectively, while those of the right column do so for the perpendicular modes of 𝑃3D, the
parallel modes of 𝑃3D, and 𝑃1D. Blue, orange, and red lines show the response of the previous quantities to a 5% increase in 𝐴s, ΩMℎ2, and 𝜎T,
respectively, while green lines do so for a 1% increase in 𝐹̄.

find that variations in 𝐴s and 𝑛s can absorb the changes in 𝑃3D and
𝑃1D to the 2% level, and completely do so for𝑃3D at the pivot scale
of the cosmological parameters of forestflow, 𝑘p = 0.7 Mpc−1.
Furthermore, Planck measuredΩMℎ2 with 0.8% precision Planck
Collaboration et al. (2020), and 𝐴s and 𝑛s absorb 1% variations
inΩMℎ2 to the ≃ 0.4% level. This result supports the approach of
not considering any cosmological parameter related to variations
in the expansion of growth history as input for forestflow (see
also §5.2).

6.2. Alcock-Paczyński on mildly non-linear scales

Thanks to the increasing precision of galaxy surveys, there is
a growing interest in extracting cosmological information from
increasingly smaller scales in three-dimensional analyses. An av-
enue to do so is to analyze anisotropies in the correlation function
Alcock & Paczynski (AP test; 1979), first proposed in the context
of the Lyman-𝛼 forest by McDonald & Miralda-Escudé (1999);
Hui et al. (1999). Recently, Cuceu et al. (2023) followed this ap-
proach to analyze Lyman-𝛼 forest measurements from the Sloan
Digital Sky Survey (SDSS) data release 16 (DR16; Ahumada

et al. 2020), yielding constraints on some cosmological parame-
ters a factor of two tighter than those from BAO-only analyses.

This study modeled three-dimensional correlations using lin-
ear theory, which restricted the range of scales analyzed to those
larger than 25ℎ−1 Mpc. We could significantly extend the range of
scales used in this type of analysis by modeling three-dimensional
correlations using forestflow. As a result, the constraining
power of AP analyses would be much larger. Furthermore, we
could use forestflow to extract information from 𝑃1D analyses
to reduce degeneracies between cosmology and the parameters
describing 𝜉3D (see §6.1).

6.3. Extending 3D analyses to the smallest scales

The ultimate goal of forestflow is to perform a joint anal-
ysis of one- and three-dimensional measurements from small
to large scales. An interesting approach to do so is to measure
the Lyman-𝛼 forest cross-spectrum (𝑃×; e.g.; Hui et al. 1999;
Font-Ribera et al. 2018), which captures the correlation between
one-dimensional Fourier modes from two neighboring quasars
separated by a transverse separation (𝑟⊥). We can model this
statistic by taking the inverse Fourier transform of 𝑃3D only along
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Fig. 8. Accuracy of the parametric model and the emulator in describ-
ing 𝑃× measurements from the central simulation at 𝑧 = 3. Dots
show simulation measurements, dashed lines depict predictions from
the best-fitting parametric model to 𝑃3D and 𝑃1D measurements, and
solid lines and shaded areas display the average and 68% credible in-
terval of forestflow predictions. The color of the lines indicates the
results for different bins in transverse separation 𝑟⊥. The middle panel
shows the residual between simulation measurements and model predic-
tions, while the bottom panel displays the residual between model and
emulator predictions. The performance of forestflow in reproducing
simulation measurements is similar to that of the best-fitting model.

the perpendicular directions

𝑃× (𝑘 ∥ , 𝑟⊥) ≡
1

(2𝜋)2

∫
d𝒌⊥ 𝑒𝑖 𝒌⊥ ·𝒓⊥ 𝑃3D (𝑘 ∥ , 𝑘⊥)

=
1

2𝜋

∫ ∞

0
d𝑘⊥ 𝑘⊥ 𝐽0 (𝑘⊥𝑟⊥) 𝑃3D (𝑘 ∥ , 𝑘⊥) . (11)

Comparing this equation with Eq. 1, it becomes clear that 𝑃1D
is a special case of 𝑃× , corresponding to the limit where the
transverse separation is zero.

In §3.3, we optimize the 𝑃3D model to describe measure-
ments of 𝑃3D and 𝑃1D from the training simulations. Then, in
§4, we use the distribution of best-fitting parameters as the train-
ing set for forestflow, which predicts the value of 𝑃3D model
parameters as a function of cosmology and IGM physics. Even
though neither the best-fitting model nor forestflow use 𝑃× for
their optimization, we can make predictions of 𝑃× for both. To do
so, we first estimate 𝑃3D using the value of the model parameters
using Eq. 3, and then we integrate it using Eq. 11. We carry out
the integration using the fast Hankel transform algorithm FFTlog
(Hamilton 2000) implemented in the hankl package (Karamanis
& Beutler 2021).

We use 𝑃× measurements from the simulations described in
§ 3.1 to evaluate the accuracy of forestflow for this statistic.
We first define four bins in 𝑟⊥, the transverse separation between

skewers in configuration space, with edges 0.13, 0.32, 0.80, 2,
and 6 Mpc. Then, we measure 𝑃× using all pairs of skewers with
𝑟⊥ separation within the previous bins

𝑃× (𝑟⊥, 𝑘 ∥ ) =
〈
ℜ
[
𝛿i (𝑘 ∥ )𝛿j

∗ (𝑘 ∥ )
]〉

(12)

where 𝛿i and 𝛿∗j stand for the Fourier transform of a skewer 𝑖 and
the complex conjugate of its partner 𝑗 , respectively, the average
⟨⟩ includes all possible pairs in the bin without repetition or
permutation, and ℜ indicates that we only use the real part of the
expression between brackets because the average of the imaginary
part is zero. The 𝑟⊥ on the left-hand side denotes the effective
center of the bin, accounting for the skewed distribution of 𝑟⊥
within each bin: the number of skewers separated by a small
distance d𝑟⊥ is proportional to 𝑟⊥, and therefore the effective
center is not at the halfway point. To compute 𝑃× at the effective
center, we perform the integration using ten sub-bins within each
𝑟⊥ bin and calculate the average of these weighted by 𝑟⊥.

In Fig. 8, we study the performance of forestflow in re-
producing 𝑃× measurements from the central simulation at
𝑧 = 3. Dots display simulation measurements, dashed lines the
best-fitting model to 𝑃3D and 𝑃1D measurements from this simu-
lation, and the solid lines forestflow predictions. As we can see,
𝑃× decreases as the 𝑟⊥ separation increases; this is because more
distant sightlines are sampling increasingly uncorrelated regions.
In the middle panel, we examine the accuracy of the best-fitting
model in describing simulation measurements, finding that it is
better than 10% throughout all the scales shown. The perfor-
mance of the model improves for smaller 𝑟⊥ separations. This is
likely because the fit’s likelihood function (Eq. 7) considers 𝑃1D,
which is equivalent to 𝑃× at 𝑟⊥ = 0 separation, but not 𝑃× . The
bottom panel addresses the performance of forestflow relative
to the best-fitting model; in this way, we approximately evaluate
the performance of the emulator in reproducing the training data.
The accuracy of forestflow in recovering the best-fitting model
is better than 5% for all the scales shown.

Future studies could use forestflow for extracting con-
straints on cosmology and IGM physics from the analysis of 𝑃×
measurements (e.g.; Abdul Karim et al. 2024). Nevertheless, as
with 𝑃1D, these analyses would also require modeling multiple
systematics affecting Lyman-𝛼 measurements such as damped
Lyman-𝛼 systems, metal line contamination, and AGN feedback.

7. Conclusions
We present forestflow, a cosmological emulator that predicts
Lyman-𝛼 clustering from linear to nonlinear scales. Using an
architecture based on conditional normalizing flows, forest-
flow emulates the 2 linear Lyman-𝛼 biases (𝑏 𝛿 and 𝑏𝜂) and
6 physically-motivated parameters capturing small-scale devia-
tions of the three-dimensional flux power spectrum (𝑃3D) from
linear theory. We summarize the main results of this work below:

– The main advantage of our strategy, compared to emulat-
ing 𝑃3D at a set of 𝑘-bins, is that forestflow can predict
Lyman-𝛼 clustering on arbitrarily large (linear) scales when
combined with a Boltzmann solver. Additionally, the emu-
lator can make predictions for any statistics derived from
𝑃3D without interpolation or extrapolation, including the two-
point correlation function (𝜉3D, main statistic of large-scale
studies), the one-dimensional Lyman-𝛼 flux power spectrum
(𝑃1D, main statistic of small-scale studies), and the cross-
spectrum (𝑃× , promising statistic for full-scale studies).
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– To train the emulator, we use the best-fitting value of the 8
model parameters to 𝑃3D and 𝑃1D measurements from a suite
of 30 fixed-and-paired cosmological hydrodynamical simula-
tions spanning 11 equally-spaced redshifts between 𝑧 = 2 and
4.5. We emulate these parameters as a function of the small-
scale amplitude and slope of the linear power spectrum, the
mean transmitted flux fraction, the amplitude and slope of
the temperature-density relation, and the pressure smoothing
scale (see Pedersen et al. 2021). We use this parameteriza-
tion because it has the potential for making predictions for
extensions to the ΛCDM model and ionization histories not
included in the training set (Pedersen et al. 2023; Cabayol-
Garcia et al. 2023).

– In §5.1, we show that the accuracy of forestflow in pre-
dicting 𝑃3D from linear scales to 𝑘 = 5 Mpc−1 is 3% and
1.5% for 𝑃1D down to 𝑘 ∥ = 4 Mpc−1. We find that the size
and number of training simulations have a similar impact on
the emulator’s performance as uncertainties arising from the
limited flexibility of the 8-parameter model.

– In §5.2, we show that forestflow displays similar perfor-
mance as before for two extensions to the ΛCDM model —
massive neutrinos and curvature — and ionization histories
not included in the training set.

The release of forestflow is timely for Lyman-𝛼 forest anal-
yses with the ongoing Dark Energy Spectroscopic Instrument
(DESI) survey. As noted in §6, forestflow enables a series
of novel multiscale studies with DESI data, including connect-
ing large- and small-scale analyses as well as extending three-
dimensional analyses towards smaller scales.
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Fig. A.1. Impact of cosmic variance on 𝑃3D (top panel) and 𝑃1D (bottom
panel) measurements from our simulations at 𝑧 = 3. Lines show the dif-
ference between measurements from the central and seed simulations,
which only differ on their initial distribution of Fourier phases, divided
by

√
2 times their average. Cosmic variance induces errors as large as

10% on 𝑃3D for 𝑘 ≃ 0.3 Mpc−1, while these are of the order of 1% for
𝑃1D.

Appendix A: Cosmic variance
Throughout this work, we train and test forestflow using simu-
lations run employing the "fixed-and-paired" technique (Angulo
& Pontzen 2016; Pontzen et al. 2016), which significantly reduces
cosmic variance for the clustering of the Lyman-𝛼 forest (Ander-
son et al. 2019). We could further mitigate the impact of cosmic
variance by using control variates (Kokron et al. 2022), but this
is outside the scope of the current work. The impact of cosmic
variance on fixed-and-paired simulations is not straightforward
(Maion et al. 2022), and thus we would ideally use multiple
fixed-and-paired simulations with different initial distributions
of Fourier phases to estimate the precision of measurements
from our simulations. However, we only have two simulations
with these properties: central and seed. In this section, we use
these two simulations to estimate the impact of cosmic variance
on simulation measurements and best-fitting models. It is crucial
to acknowledge that our findings are subject to significant noise
because we only have access to two independent realizations.

In Fig. A.1, we display the difference between measurements
from the central and seed at 𝑧 = 3 divided by

√
2 times their

average7. The central and seed simulations only differ on their
initial distribution of Fourier phases, and thus their difference
isolates the impact of cosmic variance. In contrast to traditional
simulations, where cosmic variance is inversely proportional to
the square root of the number of modes for 𝑃3D, this source of un-
certainty reaches ≃ 10% at 𝑘 ≃ 0.3 Mpc−1 and decreases at both
larger and smaller scales. This trend can be explained as follows:
the reduction at the largest scales is due to the fix-and-paired tech-
nique, which completely cancels out cosmic variance for linear
density modes. Conversely, the increase at intermediate scales
is attributed to non-linear evolution, particularly mode coupling,
which reintroduces cosmic variance on mildly non-linear scales.
For even smaller scales, the number of modes increases, lead-
ing to a decrease in cosmic variance, similar to what is observed
in traditional simulations. Consequently, cosmic variance hinders

7 We use the factor
√

2 to estimate the noise for a single simulation.
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Fig. A.2. Impact of cosmic variance on predictions from the 𝑃3D para-
metric model. Lines show the difference between the best-fitting models
to 𝑃3D and 𝑃1D measurements from the central and seed simulations,
divided by

√
2 times the best-fitting model to their average. The top panel

shows the results for the Lyman-𝛼 linear biases (𝑏𝛿 and 𝑏𝜂), while the
middle and bottom panels display the results for 𝑃3D and 𝑃1D at 𝑧 = 3,
respectively. The impact of cosmic variance on model predictions is
approximately an order of magnitude smaller than on simulation mea-
surements (see Fig. A.1).

our ability to evaluate the accuracy of both the model and the em-
ulator using our simulations. To mitigate the impact of this source
of uncertainty, we quote the performance of both the model and
emulator for 𝑃3D on scales 𝑘 > 0.5 Mpc−1 throughout the main
body of the test. Conversely, the impact of cosmic variance on
𝑃1D is approximately 1.5% at 𝑘 ∥ < 2 Mpc−1, much smaller than
for 𝑃3D, letting us include all scales in the tests without concern.

For a more precise estimation of the impact of cosmic
variance on simulation measurements, we compute the stan-
dard deviation of the results shown in Fig. A.1 across red-
shift. We do so within the intervals 0.5 < 𝑘 [ Mpc−1] < 5 and
0.09 < 𝑘 ∥ [ Mpc−1] < 4 for 𝑃3D and 𝑃1D, respectively, motivated
by the previous discussion and the range of scales used when fit-
ting the 𝑃3D model in §3.3. We find that the average impact of
cosmic variance on 𝑃3D and 𝑃1D is 1.3 and 0.5%, respectively.

We now proceed to study the impact of cosmic variance on
the best-fitting model for simulation measurements of 𝑃3D and
𝑃1D. We anticipate that the impact of cosmic variance on the
best-fitting model will be weaker than on individual simulation
measurements because multiple 𝑃3D and 𝑃1D bins collectively
contribute to determining the values of the 8 model parameters.
In Fig. A.2, we show the difference between the best-fitting model
to the central and seed simulations, divided by the

√
2 times

the best-fitting model to their average. In the top panel, we show
the results for the 2 Lyman-𝛼 linear biases (𝑏 𝛿 and 𝑏𝜂). The
standard deviation of the differences is 0.6 and 1.8% for 𝑏 𝛿 and
𝑏𝜂 , respectively, and thus we can measure the 2 Lyman-𝛼 linear
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Fig. B.1. PIT distribution for 𝑃1D (blue) and 𝑃3D (red). This plot vali-
dates the uncertainties predicted by forestflow across training simu-
lations via a leave-simulation-out approach. The PIT distribution is ap-
proximately uniform, indicating well-calibrated uncertainties for most
samples, while the peaks at the edges indicate underestimated uncer-
tainties for some samples.

biases with percent level accuracy from our simulations. We can
achieve this precision because the combination of small and large
scales in the fits breaks degeneracies between the 2 Lyman-𝛼
linear biases and the other 6 model parameters. By propagating
these uncertainties to the behavior of 𝑃3D on linear scales, we
find that the impact of cosmic variance on perpendicular and
parallel modes is 1.2 and 1.8%, respectively. In the middle and
bottom panels of Fig. A.2, we address the influence of cosmic
variance on model predictions for 𝑃3D and 𝑃1D, respectively.
The overall impact of this source of error on 𝑃3D and 𝑃1D is 0.8
and 0.1%, respectively, confirming that the best-fitting model is
less sensitive to cosmic variance than simulation measurements.
Consequently, forestflow is more robust against this type of
uncertainty than emulators predicting the power spectrum at a
set of 𝑘-bins.

Appendix B: Validation of uncertainties predicted
for 𝑷3D and 𝑷1D

Normalizing flows predict the full posterior distribution of the
target data rather than only their mean like fully-connected neu-
ral networks or their mean and width like Mixture Density Net-
works (see Ramachandra et al. 2022; Cabayol-Garcia et al. 2023,
for some applications in cosmology). This is achieved through
multiple sampling iterations from the target latent distribution, an
8-dimensional Gaussian in our case. In forestflow, each sam-
pled realization of the 𝑃3D model parameters is propagated to
generate predictions for 𝑃3D and 𝑃1D (see §4.1), producing a co-
variance matrix for these statistics. In this appendix, we validate
its diagonal elements. Note that well-calibrated uncertainties are
critical for future uses of the emulator such as cosmology infer-
ence.

We validate the uncertainty in 𝑃3D and 𝑃1D predictions using
the Probability Integral Transform test (PIT), which is the value
of the cumulative distribution function (CDF) of a distribution

evaluated at the ground-truth value 𝑧t

PIT = CDF[p, zt] =
∫ zt

−∞
p(z)dz , (B.1)

where 𝑝 is in our case the distribution of forestflow predictions
for 𝑃3D or 𝑃1D and 𝑧t stands for measurements of these statistics
from the simulations. A model that displays a well-calibrated
uncertainty distribution yields PIT values that are uniformly dis-
tributed between zero and one. This indicates that the observed
outcomes have an equal likelihood of falling at any point along
the predicted CDF. In contrast, an excess of values close to zero or
one indicates that the width of the distribution is underestimated.

In Fig. B.1, we display a PIT test produced using all the
training simulations via a leave-simulation-out approach (see
§5.1). This process validates average predictions and uncertain-
ties against simulations excluded in the training process. The red
and blue lines display the results for 𝑃3D and 𝑃1D, respectively,
which were generated by combining results from different scales
and redshifts. As we can see, the PIT distribution is approxi-
mately uniform for both statistics but it presents peaks at the low
and high ends, indicating underestimated uncertainties for some
samples. The cause behind this feature is unclear and it demands
further investigation beyond the scope of this project.
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