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Abstract
We present results from the first lattice QCD calculation of the two-pion contributions to the

light-quark connected vector-current correlation function obtained from staggered-quark operators.

We employ the MILC collaboration’s gauge-field ensemble with 2+1+1 flavors of highly improved

staggered sea quarks at a lattice spacing of a ≈ 0.15 fm with a light sea-quark mass at its physical

value. The two-pion contributions allow for a refined determination of the noisy long-distance

tail of the vector-current correlation function, which we use to compute the light-quark connected

contribution to HVP with improved statistical precision. We compare our results with traditional

noise-reduction techniques used in lattice QCD calculations of the light-quark connected HVP,

namely the so-called fit and bounding methods. We observe a factor of roughly three improvement

in the statistical precision in the determination of the HVP contribution to the muon’s anoma-

lous magnetic moment over these approaches. We also lay the group theoretical groundwork for

extending this calculation to finer lattice spacings with increased numbers of staggered two-pion

taste states.
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I. INTRODUCTION

The long-standing tension between experimental measurements and Standard Model ex-
pectations for the anomalous magnetic moment of the muon aµ ≡ (gµ − 2)/2 has been an
intriguing hint of new physics for many years. On the experimental side, the Fermilab g− 2
collaboration (E989) released their second measurement result from their runs 2 and 3 data
in August 2023 [1], finding it in excellent agreement with all previous measurements [2, 3].
The resulting experimental uncertainty is now at 190 ppb, and the Fermilab experiment is
on track to reach their uncertainty goal of 140 ppb with the ongoing analysis of their runs
4, 5, and 6 data. They are expected to release their final result in 2025.

On the theory side, contributions to aµ from all SM particles and interactions must be
quantified with commensurate precision in order to maximize the discovery potential of
the experimental effort. Hadronic corrections, comprised of hadronic vacuum polarization
(HVP) and hadronic light-by-light (HLbL), are the main source of theory uncertainty, due
to their nonperturbative nature, being governed by quantum chromodynamics (QCD). The
HVP contribution to the muon g − 2, aHVP,LO

µ , which enters at order α2, is the larger
of the two and the dominant source of error. The Standard Model prediction of aµ in
the Muon g − 2 Theory Initiative white paper [4] was based on a dispersive evaluation of
aHVP,LO
µ , in which experimental measurements of e+e− → hadrons cross-sections serve as

nonperturbative inputs [5–24].
Lattice QCD offers an ab initio approach to computing the hadronic corrections and

hence allows for an entirely SM theory based evaluation.1 While lattice QCD calculations
of aHVP,LO

µ have not yet reached the needed precision level, in 2021 the BMW collaboration
published a lattice HVP result with a quoted uncertainty of 0.8% [25]. Compared with
Ref. [4], the BMW result for aHVP,LO

µ is higher by about 2σ and implies a SM value for aµ that

is about 1.5σ lower than the experimental average.2 Independent lattice-QCD calculations,
with improved precision, are needed to address this theoretical discrepancy and to obtain
a consolidated lattice QCD average for this important quantity. The purpose of this paper
is to develop the methodology to better control the systematic uncertainty of long-distance
contributions to HVP, as part of a larger undertaking [27, 28].

The HVP is typically computed in lattice QCD as an integral over Euclidean time t
of two-point correlation functions with vector-current operators (representing the corre-
sponding EM current) at the source and sink [29, 30]. As is well known, vector-current
correlation functions of light-quark operators suffer from rapidly increasing statistical un-
certainty at large Euclidean times, which in turn limits statistical precision of the integral.
Noise-reduction methods, such as the truncated solver method, low-mode averaging or im-
provement [31–35] coupled with high-statistics computations have been used to improve
statistical precision at large Euclidean times. In addition, analysis methods such as the
bounding [36] and fit [27] methods can yield further improvements. However, to obtain
lattice QCD results of aHVP,LO

µ at the required few permille level, better control over the
long-distance tail of the correlation function is needed. In the spectral decomposition of

1 Apart from the experimental inputs (usually hadron masses) needed to fix the quark masses and lattice

spacing in the QCD Lagrangian.
2 Very recently, a new, hybrid result for aHVP,LO

µ with a quoted uncertainty of 0.5% was presented in

Ref. [26]. It combines an updated lattice QCD calculation with a data-driven evaluation of the contribu-

tions at long distances, and yields an increased tension with the data-driven prediction in Ref. [4].
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the vector-current correlation function, the dominant contributions at large Euclidean times
come from two-pion states (where the pions have back-to-back momenta) with energies be-
low the ρ0 meson. Hence, a robust strategy is to compute additional correlation functions
to obtain the energies and amplitudes of all contributing low-energy two-pion states. This
approach, which requires the computation of two-, three-, and four-point functions, has
already been implemented for order-a-improved Wilson [37] and domain wall fermions [38].

In this work, we perform the first such computation for the case of staggered quarks with
the full set of staggered two-meson operators. First results from this study were presented in
Ref. [39].3 The staggered formulation [42–45] of lattice QCD, which uses the so-called dou-
bling symmetry of the naively discretized Dirac action to reduce the number of spin degrees of
freedom from 4 to 1, results in a more complicated group structure with an additional quan-
tum number which is called ‘taste.’ Hence, careful treatment of the modified group structure
is needed to correctly resolve the low-lying spectra. This includes obtaining the irreducible
representations of the staggered group, computing the corresponding Clebsch-Gordan coeffi-
cients and constructing the multi-particle two-pion operators. With the staggered operator
basis in hand, the remaining steps are similar to those in Refs. [37, 38]. After computing
the correlation functions on the a ≈ 0.15 fm HISQ ensemble with a light-sea quark mass
at its physical value [46], we obtain the spectrum of the two-pion energies and amplitudes
from a generalized-eigenvalue-problem (GEVP) analysis and finally use it to reconstruct the
two-point vector-current correlation function at large t. We find a significant reduction in
the statistical uncertainty of the resulting aHVP,LO

µ over the traditional methods of large-t
noise reduction, in agreement with the studies using other discretizations. Hence, we plan
to incorporate this approach into our ongoing effort within the Fermilab Lattice, HPQCD,
and MILC Collaborations [27, 28] to compute aHVP,LO

µ at the less than 0.5% level.
The rest of the paper is organized as follows. Section II introduces the vector-current

correlation function and its relation to aHVP,LO
µ . Section III details our calculation strategy,

from constructing our operator basis (Secs. III A and III C), computing the correlation func-
tions (Secs. III B and IIID) and determination of the two-pion energies and amplitudes from
the GEVP (Sec. III F). In Sec. IV, we present our final results on the a ≈ 0.15 ensemble,
for the two-pion spectrum (Sec. IVA) and our subsequent reconstruction of the correlation
function and computation of aHVP,LO

µ (Sec. IVB). Section V provides a summary and outlook
of the potential impact of this approach. In Appendices A to C, we cover the prerequisite
details of the staggered-quark formalism, namely the notation employed for the irreducible
representations, treatment of staggered states at non-zero momentum and connection to
the continuum. We include the theoretical details to perform this calculation at any lattice
spacing with any number of two-pion states. We note that our work builds on the results
presented in Refs. [47–49] and we restate the pertinent parts using our notation (and in-
clude minor corrections). Appendix D contains tables of the Clebsch-Gordan coefficients
and Appendix E discusses the correct weighting of connected and disconnected diagrams
with rooted staggered quarks. Finally, Appendix F details a slight modification made to the
two-pion operators and how it impacts the analysis.

3 See also Ref. [40] for a detailed description of the group theoretic derivation, analysis steps, and additional

background information. Preliminary results from a similar effort were reported in Ref. [41].

3



II. PRELIMINARIES

In lattice QCD, the hadronic vacuum polarization contribution to the muon’s anomalous
magnetic moment, aHVP,LO

µ , is, typically, obtained from weighted integrals of Euclidean
vector-current correlation functions [30, 50],

C(t) =
1

3

∑
x⃗,k

〈
Jk(x⃗, t)Jk(0)

〉
, k = 1, 2, 3, (2.1)

Jµ(x) =
∑
f

qf ψ̄f (x)γ
µψf (x), (2.2)

where the electromagnetic current Jµ(x) is summed over all quark flavors f = {u, d, s, c, b, t}
and qf are the corresponding electric charges in units of e. The RHS of Eq. (2.1) contains
both quark-line connected and disconnected Wick contractions. The leading-order HVP
contribution to aµ is obtained from the following formulae [30]:

aHVP,LO
µ = 4α2

∫ ∞

0

dt C(t)K̃(t) (2.3)

K̃(t) = 2

∫ ∞

0

dQ

Q
KE(Q

2)

[
Q2t2 − 4 sin2

(
Qt

2

)]
. (2.4)

The integration kernel KE(Q
2) [29], which contains the muon mass dependence, is given as

KE

(
Q2
)
=
m2

µQ
2Z3(1−Q2Z)

1 +m2
µ

, (2.5)

where Z = [(Q4 + 4m2
µQ

2)1/2 − Q2]/(2m2
µQ

2). In lattice-QCD calculations of aHVP,LO
µ the

contributions from each quark flavor and from connected and disconnected Wick contractions
are typically computed separately and then summed up. Here we focus on the dominant
light-quark connected contribution in the isospin-symmetric limit, allµ(conn.). Therefore,
our electromagnetic vector current Jµ(x) includes only the up and down terms with both
masses equal, ml = (mu +md)/2. Additionally, the correlation function C(t) includes only
the connected contractions. This can be straightforwardly related to the pure isospin 1
contribution. Splitting the flavor components of the vector current operator from Eq. (2.2)
into isospin 1 and isospin 0 components, Ji = J I=1

i + J I=0
i , gives

J I=1
i = ρ0i =

1

2

(
ūγiu− d̄γid

)
, (2.6)

J I=0
i =

1

6

(
ūγiu+ d̄γid− 2s̄γis+ . . .

)
. (2.7)

We note that J I=1
i has I3 = 0 and is equivalent to a ρ0 meson bilinear. (In most of the rest

of this work the ρ0 notation is employed.) Hence, once charge factors are accounted for,
the following linear relationship between the light-quark connected and I = 1 correlation
functions is obtained, 〈

J l
i(x)J

l
i(0)

〉
conn.

=
10

9

〈
ρ0i (x)ρ

0
i (0)

〉
, (2.8)
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⇒ C ll(t)(conn.) =
10

9
Cρ→ρ(t). (2.9)

The light-quark connected correlation function, therefore, has the following spectral repre-
sentation,

C ll(t)(conn.) =
10

9

∑
n=0

∣∣⟨0|ρ0|n⟩∣∣2 e−Ent . (2.10)

The average over the spatial direction in Eq. (2.10) is implicit. The overlap amplitudes
⟨0|ρ0|n⟩ select the states |n⟩ of the Hamiltonian with the same quantum numbers as the ρ0.

The signal-to-noise issue discussed in the introduction can be traced to the fact that the
variance of this correlation function falls off with an exponent of 2mπ [51]

lim
t→∞

σ2
Cll(t)(conn.) ∼ lim

t→∞

[
⟨
(
ρ0i (t)ρ

0
i (0)

)2⟩ − ⟨ρ0i (t)ρ0i (0)⟩2
]
∼ lim

t→∞
⟨
(
ρ0i (t)ρ

0
i (0)

)2⟩ ∼ e−2mπt .

(2.11)

while the signal falls off with the lowest energy I = 1, I3 = 0 state, which is a two-pion
state with the smallest non-zero back-to-back momentum possible in the finite volume of
the lattice,

lim
t→∞

C ll(t)(conn.) ∼ e−E0
ππ(p ̸=0)t . (2.12)

The noise, the square root of the variance in Eq. (2.11), falls off more slowly and overwhelms
the two-pion signal in the large-time region.

At present, there are two commonly employed analysis-based approaches to address the
signal-to-noise issue when computing allµ(conn.), namely, the “bounding” and “fit” methods:

• Bounding method [36]: Two series of allµ(conn.) values are obtained by replacing

the correlation function, C ll(t)(conn.), with

Cbounded(t) =

{
C ll(t)(conn.) if t ≤ tcut,

C ll(tcut)(conn.)e
−Ebound(t−tcut) if t > tcut,

(2.13)

for upper and lower bounding energies, resulting in lower and upper bounds on
C ll(t)(conn.), respectively. Here, tcut is a free parameter that ranges over the temporal
extent of the lattice. The final result for allµ(conn.) is obtained at the value of tcut
where the two bounds meet. The lower energy bound is taken to be the free, lattice
two-pion energy [25, 36], Ebound = 2

√
(2π/L)2 +M2

π , where the pion mass, Mπ, is
computed on the same lattice ensemble. The energy appearing in Eq. (2.12) is the
interacting energy, which is smaller than the free energy due to the binding energy of
the ππ state. However, this approximation is reasonable because the binding energy
is small enough to shift allµ(conn.) by only a small fraction of the total uncertainties

currently achievable [52].4 The upper energy bound, usually taken to be Ebound = ∞,
can be improved by, instead, taking the ground state from a fit to C ll(t)(conn.). In
the case of staggered fermions, the final choice of tcut is complicated by the presence of

4 We find that this is true for the differences between interacting and free energies obtained in this work.
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oscillations in the correlation function. Compared with direct integration, the bound-
ing method improves the statistical precision of allµ(conn.). However, the improvement
is limited, because the bounds typically meet well into the noisy part of the tail, at
roughly 2.5–3.5 fm.

• Fit method [53]: For this approach, the correlation function is fit over a time range
suitable for determining the spectrum. The determined spectrum can be improved
via combined fits to, for example, smeared correlated functions. The energies and
C ll(t)(conn.) amplitudes are then used to reconstruct it after some time t ≥ t⋆. Here,
there is a systematic uncertainty associated with how well the fit correctly parameter-
izes the behavior of the lowest-energy states that determine C ll(t)(conn.) in the region
where it is being replaced.

In this work, we treat the signal-to-noise problem by obtaining an accurate spectral
representation of the vector-current correlation function at large Euclidean times. For this
purpose, we generate correlation functions using suitably constructed two-pion operators,
from which the following matrix of correlation functions is formed:

C(t) =

(
Cρ,ρ̃→ρ,ρ̃(t) Cρ,ρ̃→ππ(t)
Cππ→ρ,ρ̃(t) Cππ→ππ(t)

)
. (2.14)

The upper left 2×2 block, Cρ,ρ̃→ρ,ρ̃(t), contains the correlation function constructed with the
ρ0 operator of Eq. (2.6) along with additional correlation functions obtained by including a
smeared version of the operator ρ̃0. This smearing improves the overlap with the ground state
[27]. The bottom right block consists of the two-pion to two-pion correlation functions, and
the size of the block is given by the number of two-pion operators included. The off-diagonal
blocks are correlation functions constructed from the (ρ0,ρ̃0) and two-pion operators. With
this matrix, the lowest lying states for the I = 1, I3 = 0 channel can be precisely resolved
and the tail of C ll(t)(conn.) can be reconstructed from this information. A similar approach
was implemented in Ref. [54] in a study of the ρ resonance parameters with staggered
valence quarks, where, however, only the simplest case of Goldstone-boson pion operators
was considered. Ours is the first study of this system based on a complete description of the
staggered two-pion operators.

III. METHODOLOGY

In this section, we describe all the steps of the calculation. Section IIIA describes the
computation of the Clebsch-Gordan coefficients for the symmetry group of the staggered-
fermion transfer matrix and, hence, the construction of the two-pion operators used here. In
Sec. III B, we give the required Wick contractions corresponding to the correlation functions
in the matrix of Eq. (2.14). We tabulate the complete staggered operator bases on the
physical-mass HISQ ensembles in Sec. III C. Section IIID describes the numerical strategy
we employ to compute the Wick contractions of Sec. III B. In Sec. III E, we give our preferred
approach for dealing with finite-time effects in the diagonal four-point correlation functions
of Eq. (2.14). Finally, in Sec. III F, we discuss our GEVP based approach for extracting the
desired energies and amplitudes from our matrix using a correlated fit.
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A. Operator construction

For the case of staggered quarks, the two-pion states that couple to the ρ0 need to
transform correctly under isospin and the staggered symmetry group. Under isospin, the
two-pion operators need to transform as I = 1, I3 = 0, where the single pion operators have
the following I = 1 quantum numbers,

π+ = −d̄u I3 = 1, (3.1)

π− = ūd I3 = −1, (3.2)

π0 =
1√
2

(
ūu− d̄d

)
I3 = 0. (3.3)

and the two-pion operator then takes the form

(ππ)I=1,I3=0 =
1√
2
π+π− − 1√

2
π−π+. (3.4)

The π± states transform into each other under charge conjugation, so the minus sign on the
right-hand side of Eq. (3.4) ensures that these two-pion states have C = −1, just like ρ0. The
factors ±1/

√
2 are SU(2) Clebsch-Gordan coefficients—the rest of this subsection explains

how to set up the analogous construction for the staggered symmetry group, to obtain
two-pion operators with the same quantum numbers as staggered ρ0 states.

Here, “quantum numbers” refer to irreducible representations (irreps) of the symmetry
group of the transfer matrix of staggered quarks for N3

s spatial lattices. This group is

GT0(Ns) = Z3
Ns/2 ⋊ (Γ4,1 ⋊Oh), (3.5)

where T0 refers to the two timeslice transfer matrix [44], and ⋊ denotes semi-direct product.
The factors are, respectively, two-hop translations, the Clifford group of taste and charge
conjugation, and the symmetry group of a cube. Eigenstates of translations are labeled by
momentum p⃗, where each component satisfies,

pi =
2π

aNs

ℓi, ℓi = −Ns

4
+ 1, . . . ,−1, 0, 1, . . . ,

Ns

4
, (3.6)

for periodic boundary conditions; below it is more convenient to use ℓ⃗ to label irreps. For
mesons, taste is denoted by a four-vector with entries ±1 or, equivalently, eiξµ , ξµ ∈ {0, π}.
Similarly, charge conjugation is eiξC = ±1. The irreps of Oh are A±

0 , A
±
1 , E

±, T±
0 , T±

1 , with
the superscript for parity. We denote a general (bosonic) irrep

(ℓ1, ℓ2, ℓ3)⋊ [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊R, (3.7)

where the ⋊ is reminder that the formalism of semi-direct groups is needed to construct the

irrep; the last factor R denotes an irrep of Oh or a so-called little group appropriate to ℓ⃗
and ξµ. Appendices A to D contains a full discussion of the staggered group irreps; below
we refer to them for details.

The staggered two-pion operators must transform under the same irreducible represen-
tation (irrep) as the vector current operator. At zero momentum, the sixteen tastes are
collected into five irreps; see Appendix C 1. We choose the taste-singlet ρ0 (see Eq. (C3))
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because it couples to a ground two-pion state of two pseudo-Goldstone boson pions, the
lowest-energy two-pion state possible for any taste. Furthermore, all two-pion states which
couple to the taste-singlet ρ0 are taste singlets as well, meaning the two pions in the two-
pion state must be in the same taste irrep. Alongside the taste irreps, we must also consider
the momentum and rotation irreps. This is achieved by computing the Clebsch-Gordan
coefficients (CGs) for GT0 ×GT0 → GT0 as follows:

π(α)(p⃗)⊗ π(α′)(−p⃗) → (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ T−
0 , (3.8)

where π(α)(p⃗) denotes some non-zero momentum pion irrep, with the full list of such irreps
given in Appendix C 2. The right-hand side of Eq. (3.8) is the taste-singlet ρ0 irrep from
Eq. (C3).

In order to compute these CGs, the irreps from Appendix A 3 must be constructed.
For values of Ns typically used in numerical simulations, GT0(Ns) is enormous, but we are
interested only in two-pion states below ρ0 threshold (see Sec. III C). For the MILC HISQ
ensembles with spatial size around 5–6 fm, that means we can restrict our attention to states
with momenta ℓi ∈ {0,±1}. According to Eq. (3.6), the smallest group needed to construct
these irreps has Ns = 6. The corresponding transfer-matrix symmetry group (Eq. (A32))
has only |GT0(6)| = 82944 elements.

The non-zero momentum irreps correspond to matrices of dimensions between 6 and 24,
depending on the taste- and momentum-dimension. Happily, one does not need to construct
and store matrices for each of the 82944 elements of the group. A smaller subset can be used
to form the tensor product representations in Eq. (3.8) and decompose them into irreps. If
this decomposition contains the taste singlet irrep of Eq. (3.8), we then compute the CGs.

For the first step, forming the tensor product representation and decomposing it, one
needs only a representative element for each conjugacy class to perform the character de-
composition [55]. For Ns/2 = 3, this corresponds to 404 classes. The second step, computing
the CGs, is typically done by summing over all the group elements. However, for semi-direct
product groups, the sum can be reduced by breaking up the group into subgroups and corre-
sponding cosets [56]. The Clebsch-Gordan matrix U relates a tensor product representation
to the block-diagonal reduced matrix DR,

D(α)(g)⊗D(β)(g) = UDR(g)U
†, ∀g ∈ G. (3.9)

where the two representations on the left correspond to the two single-pion representations
on the LHS of Eq. (3.8). The approach to obtaining U , given in Ref. [56], is summarized by
the following equation,

U = unitarity:
∑
g∈G

[
D(α)(g)⊗D(β)(g)

]
ADR(g)

†, (3.10)

where A is a matrix of entries to be determined from the unitarity constraint. As mentioned,
the staggered group has the natural structure (nested semi-direct product) to reduce this
sum to one over subgroups and cosets. First, the cosets of the full staggered group under
the subgroup Γ4,1 ⋊ Oh are obtained. This gives (Ns/2)

3 momentum cosets, with only one
representative element from each coset needed. Then, the cosets of the group Γ4,1 ⋊ Oh

under Oh are obtained, of which there are 64. So in total, for Ns/2 = 3, one needs only
to store 27 + 64 + 48 = 139 matrices for this step, where 48 is the order of Oh, the final

8



subgroup. The sum is thus reduced as

U = unitarity:
∑

z̃∈Z̃3
Ns/2

D(z̃)

 ∑
γ̃∈Γ̃4,1

D(γ̃)

[∑
o∈Oh

D(o)AD†(o)

]
D†(γ̃)

D†(z̃), (3.11)

where the tilde, for example Γ̃4,1, denotes the coset representatives of the corresponding
set. Hence, in combination with the 404 class representative elements, the total number of
essential matrices needed per irrep, for Ns/2 = 3, is around 500. This is a significant storage
and computational cost reduction over the total order of the group.

To illustrate the steps outlined above, we perform the procedure for two specific cases
of Eq. (3.8). The first is the case of the staggered pion irreps that are one-dimensional
at zero momentum, i.e., the irreps of Eqs. (C27)–(C30). As taste singlets, they have the
same CGs as Wilson fermions. The second case is for the staggered pion irreps that are
three-dimensional at zero momentum, i.e., the irreps of Eqs. (C31)–(C34). As described
in Appendix A 3 a, these irreps can undergo “taste-orbit splitting” at non-zero momentum,
typically, into a one- and two-dimensional taste-orbit irrep. The one-dimensional taste irrep
is, again, akin to Wilson quarks, while the two-dimensional irrep is unique to staggered
quarks.

To help illustrate these examples, we introduce the familiar notation for a general stag-
gered operator with momentum and spin and taste quantum numbers ΓS and ΓT , respec-
tively,

OΓS⊗ΓT (ℓ1, ℓ2, ℓ3), (3.12)

which are described in Appendix A 4, with the precise meaning of this notation defined
through Eqs. (A53)–(A57). The operators excite the states of the staggered irreps of
Eq. (3.7). Hence, just as we label a staggered irrep by a single representative state of
that irrep, as in Eq. (3.7), we can correspondingly label the irrep by a representative
operator which excites this specific state. The correspondence between staggered irrep
states and the operators which excite them is given by Eqs. (A58)–(A61). We denote
this correspondence with the : symbol throughout the rest of this work, for example
Oγ5⊗γ5(0, 0, 1) : (0, 0, 1) ⋊ [(π, π, π, π), 0] ⋊ A0 for the irrep with pseudoscalar spin and
taste and one unit of momentum.

a. Example 1 For the first case, we take the above-mentioned pseudoscalar with one
unit of momentum, Eq. (C38), as the representative example irrep. We have the following
decomposition of the tensor product representation into irreps:

Oγ5⊗γ5(0, 0, 1)⊗Oγ5⊗γ5(0, 0, 1) :

(0, 0, 1)⋊ [(π, π, π, π), 0]⋊ A0 ⊗ (0, 0, 1)⋊ [(π, π, π, π), 0]⋊ A0

= (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ A+
0 : Oγ0⊗1(0, 0, 0)

⊕ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ E+
0 :

⊕ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ T−
0 : Oγi⊗1(0, 0, 0) (3.13)

⊕ (0, 0, 1)⋊ [(0, 0, 0, 0), π]⋊ A0 : Oγ3⊗1(0, 0, 1)

⊕ (1, 1, 0)⋊ [(0, 0, 0, 0), π]⋊ A0 : Oγ0⊗1(1, 1, 0)

⊕ (1, 1, 0)⋊ [(0, 0, 0, 0), π]⋊ A2 : Oγ1γ2⊗1(1, 1, 0).

9



TABLE I. Clebsch-Gordan table for (0, 0, 1) ⋊ [(π, π, π, π), 0] ⋊ A0 ⊗ (0, 0, 1) ⋊ [(π, π, π, π), π] ⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1 ⊗ 1 (0, 0, 0) Oγ2 ⊗ 1 (0, 0, 0) Oγ3 ⊗ 1 (0, 0, 0)

Oγ5 ⊗ γ5 (1, 0, 0) ⊗ Oγ5 ⊗ γ5 (−1, 0, 0) 1√
2

0 0

Oγ5 ⊗ γ5 (−1, 0, 0) ⊗ Oγ5 ⊗ γ5 (1, 0, 0) − 1√
2

0 0

Oγ5 ⊗ γ5 (0, 1, 0) ⊗ Oγ5 ⊗ γ5 (0,−1, 0) 0 1√
2

0

Oγ5 ⊗ γ5 (0,−1, 0) ⊗ Oγ5 ⊗ γ5 (0, 1, 0) 0 − 1√
2

0

Oγ5 ⊗ γ5 (0, 0, 1) ⊗ Oγ5 ⊗ γ5 (0, 0,−1) 0 0 1√
2

Oγ5 ⊗ γ5 (0, 0,−1) ⊗ Oγ5 ⊗ γ5 (0, 0, 1) 0 0 − 1√
2

Here we have implicitly incorporated the form of Eq. (3.4) in the above direct product to
ensure the desired staggered charge conjugation, ξC = π, is obtained in the decomposition.
At zero momentum, there are 16× 16 = 256 staggered bilinears and 448 irrep rows (states)
in total (see Table VIII). Hence, some irreps, like the irrep including E+

0 above, have no
associated simple staggered bilinear which excite them. This irrep is instead excited by a
more complicated staggered operator with a derivative insertion.

We are interested in the zero-momentum taste-singlet vector irrep which is the third irrep
in the decomposition on the right-hand side of Eq. (3.13), with the corresponding operator
Oγi⊗1(0, 0, 0). The CGs are computed for the states of this irrep using Eq. (3.10) and are
given in Table I. For clarity, we use the more familiar, operators instead of the states to
label the rows and columns in the table.

The two-pion operators are constructed from linear combinations of products of staggered
single-pion operators with the CGs as coefficients. The staggered single-pion and two-pion
operators are defined as

π+
⊗γξ

(p⃗, t) ≡ − 1

N
3/2
S

∑
n⃗

eiap⃗·n⃗d̄(n)γ5 ⊗ γξu(n), (3.14)

π−
⊗γξ

(p⃗, t) ≡ 1

N
3/2
S

∑
n⃗

eiap⃗·n⃗ū(n)γ5 ⊗ γξd(n), (3.15)

Oππ(p⃗1 + p⃗2, t) ≡
∑

ξ1,ξ2,I13 ,I
2
3 ,p⃗1,p⃗2

CGGT0
, iso.(ξ1, ξ2, p⃗1, p⃗2, I

1
3 , I

2
3 )π

I13
⊗γξ1

(p⃗1, t)π
I23
⊗γξ2

(p⃗2, t). (3.16)

Combining the results of Table I with Eq. (3.4) we obtained the normalized5 staggered-
isospin two-pion operator, built from ⊗γ5 taste pions, that couples to the third component
of the taste-singlet ρ0:[

O⊗ γ5
ππ (⃗0, t)

]
γ3 ⊗ γ1, I=1,I3=0 =

1√
2

[
π+
⊗γ5

((0, 0, 1), t) π−
⊗γ5

((0, 0,−1), t)− π−
⊗γ5

((0, 0,−1), t) π+
⊗γ5

(0, 0, 1), t)
]
.

(3.17)

5 We are interested only in the overall overlap amplitudes of the ρ0 operator, so are free to normalize the

two-pion operators as we choose.
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TABLE II. Clebsch-Gordan table for (0, 0, 1) ⋊ [(0, 0, π, 0), 0] ⋊ A2 ⊗ (0, 0, 1) ⋊ [(0, 0, π, 0), π] ⋊
A2 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1 ⊗ 1 (0, 0, 0) Oγ2 ⊗ 1 (0, 0, 0) Oγ3 ⊗ 1 (0, 0, 0)

Oγ5 ⊗ γ5γ2 (1, 0, 0) ⊗ Oγ5 ⊗ γ5γ2 (−1, 0, 0) 1√
4

0 0

Oγ5 ⊗ γ5γ3 (1, 0, 0) ⊗ Oγ5 ⊗ γ5γ3 (−1, 0, 0) 1√
4

0 0

Oγ5 ⊗ γ5γ2 (−1, 0, 0) ⊗ Oγ5 ⊗ γ5γ2 (1, 0, 0) − 1√
4

0 0

Oγ5 ⊗ γ5γ3 (−1, 0, 0) ⊗ Oγ5 ⊗ γ5γ3 (1, 0, 0) − 1√
4

0 0

Oγ5 ⊗ γ5γ3 (0, 1, 0) ⊗ Oγ5 ⊗ γ5γ3 (0,−1, 0) 0 1√
4

0

Oγ5 ⊗ γ5γ1 (0, 1, 0) ⊗ Oγ5 ⊗ γ5γ1 (0,−1, 0) 0 1√
4

0

Oγ5 ⊗ γ5γ3 (0,−1, 0) ⊗ Oγ5 ⊗ γ5γ3 (0, 1, 0) 0 − 1√
4

0

Oγ5 ⊗ γ5γ1 (0,−1, 0) ⊗ Oγ5 ⊗ γ5γ1 (0, 1, 0) 0 − 1√
4

0

Oγ5 ⊗ γ5γ1 (0, 0, 1) ⊗ Oγ5 ⊗ γ5γ1 (0, 0,−1) 0 0 1√
4

Oγ5 ⊗ γ5γ2 (0, 0, 1) ⊗ Oγ5 ⊗ γ5γ2 (0, 0,−1) 0 0 1√
4

Oγ5 ⊗ γ5γ1 (0, 0,−1) ⊗ Oγ5 ⊗ γ5γ1 (0, 0, 1) 0 0 − 1√
4

Oγ5 ⊗ γ5γ2 (0, 0,−1) ⊗ Oγ5 ⊗ γ5γ2 (0, 0, 1) 0 0 − 1√
4

b. Example 2 Differences from the Wilson case appear only when one considers spin-
pseudoscalar irreps that have a larger dimension than one at zero momentum. For example,
starting with the taste pseudo-vector Eq. (C32), which is three-dimensional, giving it one
unit of momentum and taking the irrep where taste orbit is two-dimensional as our starting
point (second line of Eq. (C40)). Here the taste-vector is orthogonal to the momentum .
The tensor product representation then has the following decomposition,

Oγ5⊗γ5γi ̸=3(0, 0, 1)⊗Oγ5⊗γ5γi ̸=3(0, 0, 1) :

(0, 0, 1)⋊ [(0, 0, π, 0), 0]⋊ A2 ⊗ (0, 0, 1)⋊ [(0, 0, π, 0), 0]⋊ A2

= (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ A+
0 : Oγ0⊗1(0, 0, 0)

⊕ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ E+
0

⊕ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ E+
0

⊕ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ E+
0

⊕ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ T−
0 : Oγi⊗1(0, 0, 0) (3.18)

⊕ . . . ,

where again we use the form of Eq. (3.4) to obtain the desired charge conjugation in the
decomposition. There are now multiple copies of the same irrep appearing in the tensor
product representation, as it corresponds to a 12× 12 = 144 dimensional reducible matrix.
The sixth irrep listed is the one we are after, and the CGs for this are given in Table II.
When combining these results with Eq. (3.4), we obtain the following normalized two-pion
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operator which couples to the third component of the taste-singlet ρ0,

[
O⊗ γ5γi ̸=3

ππ (⃗0, t)
]γ3 ⊗ γ1, I=1,I3=0

=

1√
4

[
π+
⊗γ5γ1

((0, 0, 1), t) π−
⊗γ5γ1

((0, 0,−1), t) + π+
⊗γ5γ2

((0, 0, 1), t) π−
⊗γ5γ2

((0, 0,−1), t)

−π−
⊗γ5γ1

((0, 0,−1), t) π+
⊗γ5γ1

(0, 0, 1), t)− π−
⊗γ5γ2

((0, 0,−1), t) π+
⊗γ5γ2

(0, 0, 1), t)
]
, (3.19)

When computing the correlation functions of this operator and the ρ0 operator that appear
in the matrix of Eq. (2.14), all four terms in Eq. (3.19) give identical contributions to the
correlation functions, which follows from the taste and rotation symmetry. However, for the
C(t)ππ→ππ correlation functions that also appear in Eq. (2.14), there are cross terms which
are not equivalent. The Clebsch-Gordan coefficients for all the other cases (momentum and
taste) are given in Appendix D.

B. Correlation functions

1. Two-points

With the operators in hand, the correlation functions in Eq. (2.14) can be constructed
and the Wick contractions computed. The taste-singlet ρ0 two-point correlation function,
in the isospin-symmetric limit, is

C(t)ρ→ρ =
1

3

∑
i

〈
ρ0i (⃗0, t)ρ

0†
i (⃗0, 0)

〉
conn.

=
∑
n

∣∣⟨0|ρ0|n⟩∣∣2 e−Ent (3.20)

= 2 · 1
4
· 1
4
· 1

N3
S

· 1
3

∑
i

γi ⊗ 1

(⃗0, 0)

γi ⊗ 1

(⃗0, t)

D−1
l

D−1
l

(3.21)

=
1

24N3
S

∑
i,n⃗0,n⃗1,{±δj}

φγi⊗1(n)tr
[
D−1

l (n⃗0 + δγi⊗1, 0|n⃗1, t)D
−1
l (n⃗1 + δγi⊗1, t|n⃗0, 0)

]
, (3.22)

where D−1
l are staggered light-quark propagators. The formulas for obtaining φ(n) and δ

from the spin and taste structure are given in Eqs. (A55) and (A56) with φγi⊗1(n), δγi⊗1

given explicitly in Eq. (A62). The {±δj} in the sum is a symmetrization over all components
of each δ that appear. We leave the gauge fields implicit, with the trace just over the color
index. The individual multiplicative factors are left explicit in the second line to illustrate
the different sources of normalization. The factor of two arises from taking the isospin
symmetric limit. The first factor of 1

4
is from the operator normalization in Eq. (2.6), and

the 1/N3
S is from the Fourier transformation of these operators to momentum space. The

second factor of 1
4
comes from the staggered rooting procedure (Appendix E).
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2. Three-points

The two-pion operators, Eqs. (3.17) and (3.19) and all others considered here, are built
out of hermitian sub-operators of the form,

O⊗γξ
ππ (⃗0, t) = π+

⊗γξ
(p⃗, t)π−

⊗γξ
(−p⃗, t)− π−

⊗γξ
(p⃗, t)π+

⊗γξ
(−p⃗, t). (3.23)

Hence, all correlation functions containing two-pion operators can be broken up into a
linear combination of sub-correlation functions each containing an operator of this form.
In following discussions, for simplicity, we just use Eq. (3.23) when computing the Wick
contractions. The ρ operator, Eq. (2.6), at zero momentum is given by

ρ0i (⃗0, t) =
1

2N
3/2
S

∑
n⃗

ū(n)γi ⊗ 1u(n)− d̄(n)γi ⊗ 1 d(n) (3.24)

The C(t)ππ→ρ three-point function, in the isospin symmetric limit, is then

C(t)ππ→ρ =
1

3

∑
i

〈
ρ0i (⃗0, t)O

⊗γξ
ππ (⃗0, 0)

〉
=
∑
n

⟨0|ρ0|n⟩⟨n|O⊗γξ
ππ |0⟩e−Ent (3.25)

= 4 · 1
2
· 1
4
· 1

N
9/2
S

· 1
3

∑
i

γ5 ⊗ γξ

(p⃗, 0)

γ5 ⊗ γξ

(−p⃗, 0)

γi ⊗ 1

(⃗0, t)

D−1
l

D−1
lD−1

l
(3.26)

=
1

6N
9/2
S

∑
i,n⃗0,n⃗1,n⃗2,{±δj}

φγ5⊗γξ(n0)φ
γ5⊗γξ(n1)φ

γi⊗1(n2)e
iap⃗·(n⃗0−n⃗1)

× tr
[
D−1

l (n⃗0 + δγ5⊗γξ , 0|n⃗1, 0)D
−1
l (n⃗1 + δγ5⊗γξ , 0|n⃗2, t)D

−1
l (n⃗2 + δγi⊗1, t|n⃗0, 0)

]
.

(3.27)

Disconnected Wick contributions cancel in the isospin symmetric limit. The factor of four
in the second line comes from four connected Wick contractions, of which we only show
one, which are all equivalent under isospin and parity. The 1

2
is the normalization from

the ρ0 operator, and the 1
4
is from the rooting procedure. The factor of 1/N

9/2
S arises from

the Fourier transform of the three operators. We do not generate the C(t)ρ→ππ correlation
functions, because they are significantly noisier with the random-wall source approach used
here (see Sec. IIID), and it is equivalent to C(t)ππ→ρ under time-reversal symmetry.

3. Four-points

The ππ → ππ four point function, in the isospin-symmetric limit, is

C(t)ππ→ππ =
〈
O⊗γξ2

ππ (⃗0, t)O⊗γξ1 ,†
ππ (⃗0, 0)

〉
=
∑
n

⟨0|O⊗γξ2
ππ |n⟩⟨n|O⊗γξ1

ππ |0⟩e−Ent (3.28)
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= −4 · 1
4
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 0)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t)

+ 4 · 1
4
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 0)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t)

+ 2 · 1

16
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 0)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t)

− 2 · 1

16
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 0)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t)

,

=
1

N6
S

∑
n⃗0,n⃗1,n⃗2,n⃗3,{±δj}

φγ5⊗γξ1 (n0)φ
γ5⊗γξ1 (n1)φ

γ5⊗γξ2 (n2)φ
γ5⊗γξ2 (n3)e

iap⃗·(n⃗0−n⃗1+n⃗2−n⃗3)
[

− tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗1, 0)D
−1
l (n⃗1 + δγ5⊗γξ1 , 0|n⃗2, t)

×D−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗3, t)D

−1
l (n⃗3 + δγ5⊗γξ2 , t|n⃗0, 0)

]
+ tr

[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗1, 0)D
−1
l (n⃗1 + δγ5⊗γξ1 , 0|n⃗3, t)

×D−1
l (n⃗3 + δγ5⊗γξ2 , t|n⃗2, t)D

−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗0, 0)

]
+

1

8
tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗2, t)D
−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗0, 0)

]
× tr

[
D−1

l (n⃗1 + δγ5⊗γξ1 , 0|n⃗3, t)D
−1
l (n⃗3 + δγ5⊗γξ2 , t|n⃗1, 0)

]
− 1

8
tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗3, t)D
−1
l (n⃗3 + δγ5⊗γξ2 , t|n⃗0, 0)

]
× tr

[
D−1

l (n⃗1 + δγ5⊗γξ1 , 0|n⃗2, t)D
−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗1, 0)

] ]
. (3.29)

The individual factors of 4, 4, 2, 2 in front of the respective diagrams are independent-diagram
multiplicities. The 1

4
, 1
4
, 1
16
, 1
16

are rooting factors (1
4
for each trace).

The numerical simulation presented here actually employs time-split two-pion opera-
tors instead of Eq. (3.28) to address a potential Fierz-rearrangement issue discussed in
Ref. [57]. This modification and the additional considerations it introduces are described
in Appendix F. It turns out that the Fierz-rearrangement problem does not arise with the
random-wall sources used in this work, hence our ongoing studies employ Eq. (3.28).
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TABLE III. Operator basis on the a ≈ 0.15 fm ensemble. The single pion operators in the two-

pion states have equal taste and equal-but-opposite momentum. We indicate the irrep splitting by

listing the operators separately.

Operator Momenta (back-to-back)

ρ0, ρ̃0

O⊗γ5
ππ (0, 0, 1), (1, 1, 0)

O⊗γ5γ1/2
ππ , O⊗γ5γ3

ππ (0, 0, 1)

O⊗γ1/2γ0
ππ , O⊗γ3γ0

ππ (0, 0, 1)

4. Effective energies and amplitudes

We make use of the following formula for extracting the effective energy and amplitudes
from the correlation functions used in this work. The effective energy is obtained from

aE0,eff(t) =
1

2
arccosh

[
C(t+ 2) + C(t− 2)

2C(t)

]
, (3.30)

where the averaging is performed over a time separations of (t ± 2) to remove staggered
oscillatory effects. The effective amplitude is then given by the following,

Z2
0,eff(t) = eNtE0,eff/2

C(t)

cosh(E0,eff(Nt/2− t))
, (3.31)

where the parameter E0,eff is obtained from Eq. (3.30), once the function has plateaued.

C. Choosing the operator basis

For the two-pion operators in the matrix, Eq. (2.14), we choose a range of pion momenta
and tastes corresponding to two-pion energies up to the mass of the ρ0 meson [59]. For this
purpose, we construct the non-interacting two-pion energies using

Efree = 2
√
p⃗2 +M2

ξ , (3.32)

whereMξ are the measured ground-state masses of pion correlation functions obtained from
Eqs. (C27)–(C34) and pi = 2πℓi/L, ℓi = 0, 1 . . .. This spectrum is shown in Fig. 1 for the
four physical mass HISQ ensembles currently used in related g − 2 work from the Fermilab
Lattice, HPQCD and MILC Collaborations [28]. Figure 1 does not account for interactions
or the taste-orbit splittings described in Appendix A 3 a, but suffices for deciding which ππ
operators to use.

At 0.15 fm, which is the focus of this work, we see there are four states below or near
the threshold. We include the taste-tensor (red cross) even though it is above the ρ0 mass.
We select an eight-operator basis, shown in Table III. From the irreps listed in Eqs. (C27)–
(C34), we leave out operators for the taste pseudo-vector with a temporal taste component,
Eq. (C28), and the taste tensors without a temporal taste component Eq. (C34). This choice
is based on the fact these operators, in the form of Oγ5⊗ ξ, have links in the time-direction.
Averaging over the forward and backward time-links removes the oscillating contribution,
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γ5 ⊗ γ5γµ
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FIG. 1. Continuum, non-interacting energy spectrum for πξπξ → ρ case on four physical-mass

HISQ ensembles for the relevant tastes, ξ. The ensembles’ parameters are given in Ref. [28].

The tastes of the single pions in the two-pion state are indicated by the color. The back-to-back

momentum is indicated by the symbol shape. Also given is the ρ0 Particle Data Group mass (blue

band) [58] which is used as the cut-off energy to select the operator basis.

but results in non-local time dependence in the corresponding correlation functions. The
time-link can be removed by modifying the operators as Oγ5⊗ξ → Oγ5γ0⊗ξ, which preserves
the original quantum numbers (see Eq. (A64)). We generate additional correlation functions
with these modified operators to check that the variational basis in Table III is complete, i.e.,
to check that including them does not resolve any additional states beneath the threshold.
This is expected based on the degeneracy’s at zero-momentum, and confirmed in our analysis.
These Oγ5γ0⊗ξ operators, however, are found to have significant overlap with excited states,
resulting in very noisy correlation functions; hence, they are not included in the main analysis
presented here.

D. Numerical setup

The 0.15 fm HISQ ensemble parameters are given in Table IV. We use the same numer-
ical strategy as described in Ref. [28] for the two-point correlation functions in Eqs. (3.22)
and (3.29). For the three-point, Eq. (3.27), and single-trace four-point contractions of
Eq. (3.29), we employ sequential sources [62]. For these four-point contractions, this ap-
proach requires an additional solve for each time separation in the correlation function. To
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TABLE IV. Ensemble parameters used in this work; from Ref. [27]. Shown are the approximate

lattice spacing in fm, the spatial length L of the lattice in fm, the size of the lattice, the sea-quark

masses in lattice-spacing units, the gradient-flow scale w0/a [27, 60], the taste-Goldstone pion mass

[46], the number of configurations analyzed, the number of loose-residual solves per configuration

used in the truncated solver method [31, 32], and the time-slice range computed for the four point

functions. We take w0 = 0.1715(9) fm [61].

≈ a (fm) L (fm) N3
s ×Nt amsea

l /amsea
s /amsea

c w0/a Mπ5 (MeV) Nconf Nloose tsep

0.15 4.85 323 × 48 0.002426/0.0673/0.8447 1.13215(35) 134.73(71) 3473 16 [3,17]

reduce computational expense, we generate a subset of the total possible time separations,
which are shown in the last column of Table IV. The total number of configurations for
which we compute the correlation matrix Eq. (2.14) is given in the third-to-last column of
Table IV. We calculate two-point correlators Eq. (3.22) on ≈ 6000 additional configurations,
as the reconstructed tail accounts for only about ≈ 20% of the total value of the integrand,
Eq. (2.3), with the rest coming from the two-point data. We renormalize the vector operator
using the results from Ref. [63]. Uncertainties are propagated through the analysis using
the gvar package [64]. We find that the gvar uncertainties are in excellent agreement with
jackknife resampling, while being computationally faster.

E. Finite time effects

A complication which must be addressed with the matrix Eq. (2.14) is the wrap-around
contribution that arises in the diagonal C(t)ππ→ππ correlation functions due to the finite
temporal size of the lattice employed. In general, the spectral decomposition of C(t) =
⟨O(t)O†(0)⟩ is

C(t) =
1

Z

∑
mn

⟨m|Ô|n⟩⟨n|Ô†|m⟩e−Ent−Em(T−t), (3.33)

Z =
∑
n

e−EnT , (3.34)

with the states ordered by increasing energy E0 < E1 ≤ E2 ≤ · · · . In the case of interest
here, the T < ∞ correction from Z will be absorbed into the amplitudes ⟨m|Ô(†)|n⟩. The
leading correction to C(t) comes from m = 1 or n = 1, namely

C(t) = · · ·+ e−E1T
∑
m̸=0

⟨1|Ô|n⟩⟨n|Ô†|1⟩e−(En−E1)t +

e−E1T
∑
n̸=0

⟨1|Ô†|m⟩⟨m|Ô|1⟩e−(Em−E1)(T−t) + · · · . (3.35)

After the vacuum, the lowest-energy states are the pions. For |1⟩ = |π0⟩, the two-pion
operator Oπ+π− connects to states like |π0π+π−⟩. For |1⟩ = |π±⟩, however, the intermediate
state can also be |π±⟩. In this case, the t dependence drops out:

C(t) = · · ·+ 2e−Eπ±T ⟨π±|Ôπ+π−|π±⟩⟨π±|Ô†
π+π−|π±⟩+ · · · , (3.36)
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ππ (⃗0, 0)⟩ uncorrected
(empty) and corrected (filled) purple crosses for the wrap around contribution using the method

described in this section. Also shown is the result of a fit to corrected correlation function.

with the factor of 2 arising from both contributions in Eq. (3.35) contributing equally. If
Oππ contains pions with back-to-back momentum p⃗, then the relevant state for Eq. (3.36) is
|π(p⃗)⟩. With the weakly-interacting approximation [65],

⟨π±|Ôπ+π− |π±⟩ ≈
∣∣⟨0|π±∣∣π±⟩

∣∣2 , (3.37)

the constant term 2
∣∣〈0∣∣π±

∣∣π±〉∣∣4 e−Eπ±T is then the leading wrap-around contribution.
While this t-independent term is formally small, it is not small in practice in the region
of interest, where t is a bit shorter than T/2. This contribution is especially relevant for this
calculation as T on the 0.15 fm physical mass HISQ ensemble is ≈ 0.8 fm smaller than on
the other HISQ ensembles in Fig. 1.

We explicitly subtract this term from the diagonal correlators in Eq. (2.14) after obtain-
ing ⟨0

∣∣π±
∣∣π±〉 and Eπ± from a fit to the single-pion two-point correlation functions (third

diagram in Eq. (3.29)). Shown in Fig. 2 is the result of applying this procedure to the

ground state correlation function ⟨O⊗ γ5
ππ (⃗0, t)O⊗ γ5

ππ (⃗0, 0)⟩, where we plot the effective energy,
Eq. (3.30), for the original and subtracted correlation functions.

In the limit t → ∞ ∼ T/2, the effective energy, aE0,eff(t), should plateau to the ground
state energy if there is no constant term. From the plot, one sees this is indeed the case for the
subtracted version. Moreover, the effective energy of the subtracted correlation function now
agrees with the fit result (purple band), while the unsubtracted effective energy shows clear
contamination from the wrap-around contribution. All following results use the subtracted
version of Eq. (2.14) in which the diagonal two-pion correlators are replaced with the versions
that have the leading wrap-around contribution subtracted.
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FIG. 3. Qualitative picture of the composition of the optimized operators χn as constructed from

the original operator basis in Table III for a value of t0/a = 5. The picture is qualitative, as

the operators all must be normalized to some common value. This is achieved by setting their

corresponding diagonal correlation functions equal at a reference time t. Here t/a = 10 is chosen,

the picture varies slightly depending on the choice of reference time. The horizontal line divides

the negative and positive contributions to the optimized operatorsa.

F. The GEVP and optimized operators

To obtain the energies and amplitudes from the matrix, Eq. (2.14), eigenvectors vn(t, t0)
are first extracted through a generalized eigenvalue problem (GEVP) [66],

C(t)v = λC(t0)v. (3.38)

Here, the reference time t0 is a free parameter, which we vary later in the analysis to check
for stability. A smaller value of t0 yields eigenvectors and eigenvalues with better statistical
precision, albeit with potentially larger excited state contamination. The resulting vn(t) are
functions of Euclidean time. Their asymptotic values, vn, at large enough t = t′ are the
coefficients of the ‘optimized operators’ [67]. We find that at t′/a = 10 all the vn(t) appear
to have plateaued to constants. The optimized operators with maximal overlap with the
states |n⟩ are, then:

χn(t) =
∑
i

(vn)i Oi(t). (3.39)

Figure 3 provides a visual display of the components of vn for the full operator basis in Ta-
ble III. In the plot, the relative contributions of the original operators to the χn are shown.
For this purpose, the original operators are first normalized, so their diagonal correlators
are equal at time t/a = 10. One observes that the ground state optimized operator, χ0,
is predominantly made up of O⊗γ5

ππ with (0, 0, 1) back-to-back momenta as expected. The
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TABLE V. Fit parameters used to extract energies and amplitudes from Eqs. (3.40) and (3.41). The

D (diagonal) and OD (off-diagonal) labels correspond to the first and second equations, respectively.

We display the fit quality through the χ2/DoF value, which does not include the contribution from

priors. We also display the BAIC weight [68], which we use to select these preferred fit parameters

over other variations.

state tmin, D/a tmax, D/a tmin, OD/a tmax, OD/a (Nstates, Nosc. states) χ2/DoF BAIC

0 6 18 6 20 (2, 1) 0.54 66.2

1 6 18 6 20 (2, 1) 0.65 68.3

2 6 16 6 20 (2, 1) 0.91 75.4

3 6 18 6 20 (2, 1) 0.66 68.6

4 6 18 6 20 (2, 1) 0.79 71.0

5 6 18 6 19 (2, 1) 0.84 73.2

6 6 18 6 20 (2, 1) 0.66 68.5

first and second excited states are primarily built out of the taste-pseudo vector, one-link
operators, where the first excited state is an additive combination while the second is sub-
tractive. The third operator is primarily the O⊗γ5

ππ operator with [1, 1, 0] momentum, but
with significant mixing from the other taste operators. The fourth and fifth are analogous
to the first and second but for the taste-tensor, two-link operators. The sixth is primarily
the smeared ρ0 operator and the last is essentially a “junk” operator with the normal and
smeared ρ0 operators almost cancelling out.

The lowest energies En and overlap amplitudes ⟨0|ρ0|n⟩, that appear in Eq. (2.10), are
obtained from the following correlation functions constructed from the optimized operators

v†nC(t)vn =
〈
χn(t)χ

†
n(0)

〉
=
∑
n

[
Z2

ne
−Ent + (−1)tZ2

n,osce
−En,osct

]
, (3.40)

(C(t)vn)0 =
〈
χn(t) ρ

0†(0)
〉
=
∑
n

[
Zn

〈
0
∣∣ρ0∣∣n〉 e−Ent + (−1)tZn,osc

〈
0
∣∣ρ0∣∣n, osc〉 e−En,osct

]
.

(3.41)

The t→ T − t terms, from periodic boundary conditions, in the spectral representation are
implicit. In the following sections, we will also consider variations of the original operator
basis which do not contain the ρ0, in this case we simply pad the vn with a zero as the first
element so that these formulas still hold.

1. Extracting the energies and amplitudes

In order to extract the energies and amplitudes from Eqs. (3.40) and (3.41), we perform
a combined fit to the functional forms on the right-hand side of these equations, including
the t → T − t contributions. The sum is truncated with independent limits for the regular
and oscillating states, Nstates and Nosc. states. With a Bayesian fit approach, we use prior
information for the ground state energies and overlap amplitudes extracted from the plateaus
of the effective energy, Eq. (3.30), and amplitude, Eq. (3.31). These effective energies and
amplitudes are shown in Fig. 4. We take the results of these as estimates for the prior central
values and assign a 20% width. The effective amplitude for ⟨0 |ρ0|n⟩ is obtained by taking
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FIG. 4. Energies (top), optimized operator overlap amplitudes (middle) and ρ0 operator overlap

amplitudes (bottom) for the two-pion states, extracted from a generalized eigenvalue analysis on

the ≈ 0.15 fm ensemble with t0/a = 5. Bands are results from fits, data points are effective masses

and amplitudes. The sixth state is left out due to the significant oscillations and overlapping error

bands, rendering the plot unclear.

a ratio of the respective effective amplitudes of Eqs. (3.40) and (3.41). We use a prior of
∆E = 0.5(0.5) GeV for the energy splitting to higher states. The higher-state amplitudes
are given the same prior as the ground state but with 100% widths. These higher state
priors have little effect on the fits beyond helping with stability in some cases. Fits are
performed up to Nstates ≤ 3 and Nosc. states ≤ Nstates but we find that states beyond the first
excited state and the first oscillating state are not well determined, even when including the
earliest time-slices. Additionally, we vary tmin and tmax independently on the two datasets
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for Eqs. (3.40) and (3.41). This is beneficial as the two correlation functions have differing
excited state contamination and noise-to-signal profiles. The stability of the fit results with
respect to these parameter variations (as well as t0 and operator basis variation) is discussed
in Sec. IVA1. In order to select our preferred set of fit parameters, we simply choose the fit
for each n with the highest weight according to the Bayesian Akaike information criterion
(BAIC) [68]. In general, they correspond to what one would obtain from a more traditional
‘stability analysis,’ i.e., the lowest tmin and highest tmax in the region of fit stability. Applying
a full model-averaging procedure, discussed in Ref. [68], yields consistent results. Table V
lists the fit parameters for our preferred reference time t0/a = 5 (reasoning discussed in
Sec. IVA1).

IV. RESULTS

A. Staggered two-pion spectrum

In Fig. 4 we show the resultant GEVP fit energies and amplitudes for the first six states
as color-coded bands. We find, as expected, that they agree very well with the effective
mass and effective amplitude plateaus shown in this plot. We also find similar consistency
for the highest well-determined state, n = 6, which is not shown here 6 as it renders the plot
unclear. In Fig. 5 we compare the free, continuum energy spectrum (symbols) with these
extracted energies (bands). We find that the ground state interacting energy (purple band)
is roughly 2% smaller than that of the free case. The expected taste-orbit splitting can
be seen in the two-pion states built from the zero-momentum, three-dimensional single-pion
irreps, Eqs. (C40) and (C42). We see that these states, namely, n = 1 and 2, and n = 4 and 5
are non-degenerate. Of these, the two-pion states containing pions that are two-dimensional

6 The n = 6 state is included in the displayed spectra of Figs. 6 and 7.
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FIG. 6. GEVP spectrum comparison for three different operator bases. The first is the full eight-

operator basis, the second contains seven operators with the ρ0 operator dropped, and the third

has six operators with both the ρ0 and ρ̃0 omitted.

in the taste dimension are strongly interacting, while the opposite is true for the states that
are one-dimensional (see Fig. 3). This enhanced (suppressed) interaction results in a larger
(smaller) binding energy, and larger (smaller) overlap amplitudes, as seen in Fig. 4 (bottom
panel).

1. Stability

There are many choices that need to be made in order to arrive at a finalized energy
spectrum and, hence, reconstruction of the vector-current correlation function and value
for allµ(conn.), namely, the choice the operator basis, the reference time t0, asymptotic time
t′, and the fit parameters for the optimized correlation functions, Eqs. (3.40) and (3.41), of
which there are two sets of tmin and tmax for each n. Our selections are made as objectively as
possible, using the BAIC weight, and after checking for stability under reasonable variations,
among other considerations.

We first consider variations in the operator basis by dropping the ρ0 operators. In Fig. 6,
from left to right, we observe stability in the energies and amplitudes of the first six states
as we drop first the ρ0 operator (middle panel) and then the ρ̃0 operator (right panel) from
the basis. The energy and amplitude of the seventh state, n = 6, changes slightly, albeit
well within the uncertainty when the ρ0 is omitted, which is not surprising given that the
operator used to resolve it contains a significant contribution from the ρ0 (see Fig. 3). As is
well known, to obtain a reliable spectral decomposition of the first n states, at least n + 1
independent operators (correlators) are needed. Hence, in our following reconstructions of
the vector current, which include the n = 7 state, we use the full eight operator basis.

In the left-hand side of Fig. 7, we show the eigenvector (top) and corresponding energy,
extracted from the eigenvalue for the n = 2 state as function of t0. The full resultant
spectrum for the same values of t0 is shown in the right-hand side of Fig. 7. The spectra
are broadly consistent with each other as t0 is varied with the n = 6 state showing some
fluctuation, although still being comfortably within uncertainties. We choose t0/a = 5 as
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mass formula, Eq. (3.30), to the eigenvalue and performing a correlated average over the data

points t/a > 10. Right: Full GEVP spectrum comparison, energies (top) and amplitudes (bottom)

for the same three choices of t0. See legend of Fig. 6 for state labels. The ground state energy is

omitted to improve the visibility of the rest of the spectrum, as the gap to the first excited state

is large (see Fig. 6).

our preferred choice for this parameter, as it is consistent with other choices and results in
the best agreement with the raw correlator in the intermediate time range (see Fig. 9).

Finally, we examine the fit stability, in Fig. 8, for a select number of states as a function
of tmin, D and tmin, OD, the lowest time included in the fit range for Eqs. (3.40) and (3.41),
respectively. We find that the fit results are consistent across the values we consider, includ-
ing the preferred choices from Table V, which are shown as bands. We do find for higher
values of tmin, OD, namely, 9a that the fit to the n = 6 state fails to converge. Overall, all
our stability checks indicate our final analysis choices result in well-determined energies and
overlap amplitudes that are consistent with respect to reasonable parameter and operator
basis variations.

B. Correlator reconstruction and noise reduction

With the determined energies and overlap amplitudes, the correlation function is recon-
structed using the sum in Eq. (2.10) truncated to nmax. The corresponding reconstructed
integrand of Eq. (2.3) is given in Fig. 9. Reconstructions as more states are included up to
the maximum at nmax = 6 are shown. For visibility, we do not show the nmax = 2 and 5
reconstructions as they lie on top of the preceding reconstructions, due to the reduced over-
lap amplitudes (see bottom panel of Fig. 4). Additionally, we do not include any oscillating
contributions determined from the fits. The reconstructions are compared to the raw vector-
current two-point data (orange open circles), after applying improved parity averaging [69]
to suppress the oscillatory behavior for better visualization.
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For nmax = 4, there is already good agreement between the raw data and the reconstruc-
tion at t/a > 16. Once the highest state is included, we have agreement as early as t/a = 7,
but the reconstruction is actually noisier than the raw data here. In order to select a t⋆

at which to replace the vector-current correlator data with the reconstruction, we examine
both the stability of allµ(conn.) with respect to t⋆ and also the relative error. In Fig. 10, we

show the value allµ(conn.) as t
⋆ is varied for a range of nmax. We see for nmax = 6 we have

stability starting around t⋆/a > 7 in agreement with visual indication from Fig. 9. In the
bottom panel, the relative error of these determinations is given. As mentioned, although
the result stabilizes at t⋆/a ≈ 9, precision is lost if the raw correlator data is replaced this
early, as the reconstruction is noisier; hence, we select t⋆/a = 13.

Our results for the light-quark connected contribution to aHVP,LO
µ are given in Fig. 11

for the analysis variations discussed in Sec. IVA1. Our preferred final result is the value
obtained at the reference time t0/a = 5 using the full basis (blue band). We make this
choice over t0/a = 4 to avoid possible excited state contamination from the ρ0 operator
at early times. However, we find all variations give consistent determinations of allµ(conn.).
The numerical value for our final result is given in Table VI, second column, for the case
of using the 3473 configs of the two-pion data (first row) and also for the case of using
the additional ≈ 6300 additional configurations for the vector current two-point function
(second row). For comparison, shown in the third and fourth columns respectively and in
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TABLE VI. Numerical results for allµ(conn.) from the different noise-reduction strategies discussed

in this work. The values for allµ(conn.) from the two-pion spectrum reconstruction are given in the

column labelled by aµ(ππ recon.). The results from the fit and bounding methods discussed in

Sec. II are given in the columns aµ(fit) and aµ(bound), respectively. Also included is aµ(direct),

the results obtained by direct integration of the data with no noise-reduction applied.

Nconf:
〈
J l
i (x)J

l
i (0)

〉
conn.

aµ(ππ recon.) aµ(fit) aµ(bound) aµ(direct)

3473 477.1(5.1) 479(11) 470(17) 550(41)

9800 480.0(3.6) 482.7(9.0) 485(10) 510(25)

Fig. 11 are results from the bounding and fit methods, discussed at the end of Sec. II. Also
given is the result from direct integration of the raw data, which is in mild tension with
the other results, albeit with a much larger uncertainty, due to the badly behaved tail of
the correlation function, visible in Fig. 9. We find all noise-reduction strategies address this
issue and indeed are all consistent; however, we obtain an improvement, from the two-pion
reconstruction, in statistical precision over the bounding approach of roughly a factor of 2.5.

V. SUMMARY AND OUTLOOK

The last few years have seen great progress in lattice QCD calculations of HVP observables
in short- and intermediate-distance Euclidean time ranges [25, 26, 70–77]. However, the well-
known signal-to-noise problem is still a limiting factor in calculations of the full HVP and
the long-distance observable. In this paper, we address this issue by explicitly computing the
contributions from exclusive channel two-pion states to the vector-current two-point function
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at large Euclidean times. Ours is the first study of a staggered multi-hadron system which
includes the full set of staggered operators. To construct the two-pion operators, we follow
Refs. [47–49] to obtain the irreducible representations of the staggered group and compute
the Clebsch-Gordan coefficients. The detailed information needed to construct two-pion
operators, transforming under any staggered vector-current irrep, is given in the Appendices.
The I = 1 three- and four-point correlation functions for ρ → ππ, ππ → ρ, and ππ → ππ
are generated on the MILC collaboration’s physical mass ensemble at a ≈ 0.15 fm [46]. A
GEVP analysis is used to extract the finite-volume amplitudes and energies of the interacting
two-pion system. As shown in Fig. 10, the resulting spectral reconstructions of the vector-
current correlation functions are obtained with greatly reduced statistical errors at large
Euclidean times, while correctly reproducing the original vector-current correlation function
over a range of Euclidean times down to t ≳ 0.8 fm. We find that results, for allµ(conn.),
obtained with the reconstructed correlation function are consistent with estimates using the
bounding and fit methods, while improving the statistical precision by roughly a factor of
2.5 (see Table VI and Fig. 11). In summary, we show that the two-pion reconstruction offers
a viable path towards lattice HVP calculations at the few permille level, also for simulations
based on staggered fermions.

The next step is to extend this study to finer lattice spacings so that the statistical gains
survive the continuum limit. This poses new challenges, because the smaller taste splittings
at finer lattice spacings result in an increasing number of two-pion operators (see Fig. 1).
In particular, for the MILC collaboration’s physical mass ensemble at the next-finest lattice
spacing, a ≈ 0.12 fm, a total of eighteen two-pion operators are needed to resolve the
spectrum below the ρ-meson mass, including two-pion operators made of three-link (taste
vector) and four-link (taste scalar) pions, which are expected to yield noisier correlation
functions. These challenges will be investigated in a follow-up study on this ensemble that
is already underway.

Finally, the finite-volume amplitudes and energies of an interacting two-pion system can
be related, in the Lüscher formalism [78], to the corresponding ππ scattering parameters in
infinite-volume. Utilizing this connection for the case at hand, is, however, not straightfor-
ward, because the staggered formulation employed in this work violates unitarity, a result
of the taking the fourth root of the staggered-fermion determinant to represent one quark
flavor in the generation of the gauge-field ensembles. Since the unitarity violations enter as
O(a2) discretization errors [79], it may be possible to extend the Lüscher formalism to in-
corporate them. This question was investigated in Ref. [80] using partially-quenched ChPT
for a non-unitary set-up involving twisted-mass fermions, while in Ref. [81] an extension of
the Lüscher formalism to incorporate discretization effects was recently presented. Further
investigations into this possibility are worthwhile; if successful, they could enable ab-initio
studies of scattering processes and resonance physics on the large library of HISQ ensembles
generated by the MILC collaboration.
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Appendix A: Staggered quark theory primer

As this work involves multiparticle states constructed from staggered mesons, a topic not
often studied in detail, this Appendix serves as a primer on the group theoretical details
and notation used here. We rely primarily on the methodology introduced in Ref. [47], as it
includes a natural extension for studying states at non-zero momentum. The construction of
the irreducible representations of the staggered group in that work is repeated here, including
the aforementioned decomposition to states at non-zero momentum. Construction of the
associated operators and the connection to continuum states is also repeated, correcting
some examples discussed in that work and expanding on some pertinent results relevant
here.

1. Staggered lattice QCD

The staggered action has one fermion component (per color) at each site [43–45]. It can
be obtained from the four-component naive action,

SF [qf , q̄f , U ] = a4
∑
f

∑
n∈Λ

q̄f (n)

(
3∑

µ=0

γµ
Uµ(n)qf (n+ µ̂)− U−µ(n)qf (n− µ̂)

2a
+mqf (n)

)
.

(A1)
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through the Kawamoto-Smit transformation [45],

q(n) = Ω(n)q′(n), q̄(n) = q̄′(n)Ω†(n), (A2)

Ω(n) ≡ (γ0)
n0 (γ1)

n1 (γ2)
n2 (γ3)

n3 . (A3)

which diagonalizes the action as

SF

[
q′f , q̄

′
f , U

]
= a4

∑
f

∑
n∈Λ

q̄′f (n)

(
3∑

µ=0

ηµ(n)
Uµ(n)q

′
f (n+ µ̂)− U †

µ(n− µ̂)q′f (n− µ̂)

2a
+mq′f (n)

)
,

(A4)

with

ηµ(n) ≡ Ω†(n)γµΩ(n± µ̂) = (−1)
∑

ρ<µ nρ . (A5)

The spacetime directions are ordered (t, x, y, x) as in the MILC code, instead of the (x, y, z, t)
order in Ref. [47]. Three of the four identical spin degrees of freedom are dropped to obtain
the staggered quark action [44, 45]

SF [χf , χ̄f , U ] = a4
∑
f

∑
n∈Λ

χ̄f (n)

(
3∑

µ=0

ηµ(n)
Uµ(n)χf (n+ µ̂)− U †

µ(n− µ̂)χf (n− µ̂)

2a
+mχf (n)

)
,

(A6)

where the χ field has one fermion degree of freedom per site. The reason for the reduction
is that the naive action leads to 16 Dirac fermions in the continuum limit. Now only four
‘tastes’ survive.

2. Staggered symmetries and group structure

This work employs a lattice with Nt = 48 sites in the temporal direction and Ns = 32
sites in the spatial directions, and Nt > Ns holds on the other 2+1+1-flavor HISQ ensembles
[ref] that will be used in the future. Thus, symmetry between (Euclidean) time and space is
absent 7, which is fine, as the objective here is the transformation properties of eigenstates of
the transfer matrix and the operators that create them. Here, we show how the symmetries
of staggered fermions combine to form the symmetry group of the transfer matrix.

a. Symmetries

The Kawamoto-Smit transformation in Eq. (A2) depends on nµ, and hence modifies spin
structure, differently at different spacetime points. Because of this, the original symmetries
from the naive action, now have mixed spacetime-spin dependence when applied to q′(n).
Translations acting on the fields in the diagonalized action, for example, become

q′(n) → ζµ(n)γµq
′(n− µ̂), (A7)

7 The effect of this symmetry breaking is not detectable in the analysis described here. We find, for example,

that the 3-fold and 1-fold multiplet of spatial and temporal ‘one-link’ pions are degenerate.
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where

ζµ(n) ≡ Ω−1(n)Ω(n± µ̂)γµ = (−1)Σσ>µnσ . (A8)

It is preferable to have symmetry transformations which are also diagonal in the spinor
index, as these can be associated with the one-component staggered action in Eq. (A6) and
hence, can be used to classify the irreps (states) of the theory. The spin-diagonal set of
transformations are obtained by combining the original symmetry transformations of the
QCD action, after discretization, with the doubling transformations of the naive action,

q(n) → eω
ABA(x)q(n), q̄(n) → q̄(n)e−ωABA(x). (A9)

The generating set BA(x) are anti-Hermitian and given by

Bµ(n) = γµγ5(−1)nµ , B5(n) = iγ5ε(n), Bµ(n)B5(n), Bµ(n)Bν(n)(µ < ν), (A10)

where

ε(n) = (−1)n0+n1+n2+n3 . (A11)

The resultant spin-diagonal symmetry operations are then

1. Translations x→ x− aµ̂ or n→ n− µ̂:
Choosing Bµ(n)B5(n) results in a spin-diagonal operator, leading to the staggered
shift

Sµ :

{
χ(n) → ζµ(n)χ(n− µ̂),

χ(n) → ζµ(n)χ (n− µ̂).
(A12)

2. Rotations by π/2 in the µν plane, Rµν :
Choosing Bµ(n)Bν(n) leads to the transformation rule for the staggered field

Rµν :

{
χ(n) → SRµν (R

−1n)χ (R−1n)

χ(n) → SRµν (R
−1n)χ (R−1n)

, (A13)

where

SRµν

(
R−1n

)
=

1

2

[
1 + ηµ(R

−1
µν n)ην(R

−1
µν n)ζµ(R

−1
µν n)ζν(R

−1
µν n)

−ζµ(R−1
µν n)ζν(R

−1
µν n) + ηµ(R

−1
µν n)ην(R

−1
µν n)

]
, (A14)

where

ηµ(n) ≡ (−1)Σσ<µnσ . (A15)

Upon applying Rµν four times, the product of the SRµν factors yields −1, as it should
for a fermion.

31



3. Spatial inversion IS : n0 → n0, ni → −ni:
Choosing B0B5 leads to,

IS :

{
χ(n) → (−1)n1+n2+n3χ (ISn)

χ(n) → (−1)n1+n2+n3χ (ISn)
, (A16)

so staggered fermions at odd and even spatial sites have opposite intrinsic parity. For
inversion of a single axis, Iµ : χ(n) → (−1)nµχ(Iµn) and similarly for χ. As discussed
below, IS = I1I2I3 is not quite the parity operator of the continuum limit.

4. Charge conjugation:
Choosing B2(n)B5(n) = iγ2(−1)n2ε(n) gives the transformation rule for staggered
charged conjugation

C0 :

{
χ(n) → ε(n)χ(n)

χ(n) → −ε(n)χ(n) . (A17)

As discussed below, C0 is not quite continuum-limit charge conjugation, hence the
subscript.

5. Chiral symmetry:
The global chiral flavor symmetries also have spinor structure. In going to the reduced
action, a remnant of this symmetry still exists as

χ′ = eiαε(n)Tiχ, χ̄′ = χ̄eiαε(n)Ti , (A18)

χ′ = eiαε(n)χ, χ̄′ = χ̄eiαε(n), (A19)

where Ti is a flavor-symmetry generator, and Eq. (A19) show the flavor singlet case,
which is not, however, a taste singlet.

b. Group structure

The symmetry group of the transfer matrix is generated by {Rij, Sµ, IS, C0}.8 It is nec-
essary to know their commutation relations. As always, the rotations Rµν , Eq. (A13), and
axis inversions, Iµ, satisfy

RµνIµR
−1
µν = Iν = RνµIµR

−1
νµ , (A20)

RµνIρR
−1
µν = Iρ, ρ ̸= µ, ν. (A21)

The shifts anti-commute,

SµSνS
−1
µ = −Sν , ν ̸= µ. (A22)

With Ns sites (Ns must be even) in the spatial directions, repeating a spatial shift Ns

times yields SNs
i = ±1, with the upper (lower) sign for (anti)periodic boundary conditions.

Similarly, SNt
0 = ±1. The shifts and rotation-reflections satisfy

R−1
µνSµRµν = Sν , (A23)

8 The temporal-spatial rotations R0j are not symmetries.
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R−1
µνSνRµν = −S−1

µ , (A24)

R−1
µνSρRµν = Sρ, ρ ̸= µ, ν (A25)

ISSiI
−1
S = −S−1

i , i = 1, 2, 3, (A26)

ISS0I
−1
S = S0. (A27)

Charge conjugation commutes with all reflections and rotations and anti-commutes with the
shifts,

C0Sµ = −SµC0. (A28)

The flavor and color symmetries commute with all geometric symmetries and charge conju-
gation.

The transfer matrix for staggered fermions, Eq. (A6), is a Hilbert-space operator acting
on physical states, evolving them two temporal spacings forward [44]. It is thus the Hilbert-
space operator corresponding to

T0 = S2
0 . (A29)

T0, of course, commutes with S0. It is convenient to take the formal square root

Ξ0 = T
−1/2
0 S0, (A30)

i.e., if the eigenvalue of T̂0 is e−2E, then T−1/2 = eE. In the same vein, it is convenient to
introduce the same construction for the spatial directions, Ti = S2

i and

Ξi = T
−1/2
i Si, (A31)

where T
−1/2
i is again defined via the eigenvalue of Ti. It is customary to call the Ξµ taste

operators, to distinguish them from the shifts. They satisfy the same commutation rules
as the Sµ, Eqs. (A23)–(A27). In particular, the Ξµ generate the Clifford group Γ4, or
incorporating charge conjugation, Eq. (A28), Γ4,1 [47].

Thus, ignoring flavor and color, the symmetry group of the staggered transfer matrix is

GT0 = {Ti}⋊ [{Ξµ, C0}⋊ {Rij, IS}]
= Z3

Ns/2 ⋊ (Γ4,1 ⋊Oh) , (A32)

with the octahedral group Oh consisting of the rotation-reflection symmetries of the cube.

3. Irreducible representations of the staggered group

Classifying the irreps of Eq. (A32) involves applying Wigner’s method [82] for semi-
direct products, G = N ⋊H. Wigner’s method needs to applied twice, first with the normal
subgroup given by N = Z3

Ns/2
and H = Γ4,1⋊Oh, and then with N = Γ4,1 and H = Oh. Only

the bosonic representations are relevant for this work, as meson states appear exclusively.
Considering just the bosonic representations of Γ4,1 simplifies the construction, as the group
homomorphism Γ4,1 → Z5

2 can be exploited in this case.
When N is Abelian, Wigner’s method proceeds as follows [55]:

1. Determine all (one-dimensional) irreps ‘σ’ of the normal Abelian subgroup N .
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2. For each irrep σ, determine the subgroup H(σ) ⊆ H of elements h satisfying the
character equation

χ
(σ)
N (hnh−1) = χ

(σ)
N (n),∀n ∈ N, (A33)

where χ
(σ)
N denotes the character of σ in the normal subgroup N . The H(σ) are the

so-called little groups.

3. Classify the irreps, σ, into orbits(also called ‘stars’ [49]), which is achieved by breaking
H into right cosets under the little group H(σ),

H = H(σ)h1 +H(σ)h2 + . . .+H(σ)h|H|/|H(σ)|, (A34)

where h1 = E (identity element) and hi ̸∈ H(σ)hj for all i ̸= j. From Eq. (A34) we
can then choose a set of coset representatives,

{h1, h2, . . . , h|H|/|H(σ)|}. (A35)

The orbit is then the list of irreps, each with the same little group,

{h1(σ) = σ, h2(σ), . . . , h|H|/|H(σ)|(σ)}, (A36)

determined from

χ
(hi(σ))
N (n) = χ

(σ)
N (hinh

−1
i ),∀n ∈ N. (A37)

4. Determine the irreps ρ of the little groups H(σ).

5. Form irreps of the semi-direct groups G(σ) = N ⋊H(σ) for a single representative σ
in each orbit as

D
(σ,ρ)
G(σ)(nh) = χ

(σ)
N (n)D

(ρ)
H(σ)(h). (A38)

6. Induce an irrep for the full group G through the formula

D
(γ)
G (g)it,jr =

{
χ
(hi(σ))
N (n)D

(ρ)
H(σ)(hihh

−1
j )tr, if hihh

−1
j ∈ H(σ)

0, if hihh
−1
j /∈ H(σ)

. (A39)

A complete set of irreps is obtained by preforming the above step for each orbit.
As mentioned, the approach described above needs to applied twice for the nested semi-

direct products appearing in Eq. (A32). In the first case, where the normal subgroup is
given by N = Z3

Ns/2
, and H = Γ4,1 ⋊Oh, the one dimensional irreps of Z3

Ns/2
are given by

Ti|p⃗⟩ = exp (i2pi) |p⃗⟩, pi =
2π

aNs

ℓi, (A40)

with ℓi as specified in Eq. (3.6). In the bosonic case, as mentioned above, the irreps of Γ4,1

can be obtained by the homomorphism to the Abelian group Z5
2 and are

D(Ξµ) = ei(πξ)µ , πξ ≡ (ξ0, ξ1, ξ2, ξ3), ξµ = 0, π, (A41)
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TABLE VII. Momentum orbits under the staggered rotation group. First column: The list of

the momentum orbits (with 2π/aNs factored out) under the staggered rotation group, given by a

representative element and the dimension. Second column: The corresponding little group given

by its group generators and the corresponding group structure and order.

Orbit representative Size Little group generators and structure Order

(0, 0, 0) 1 {Ξµ, Rij , IS} ∼= Γ4,1 ⋊Oh 48

(0, 0, ℓ) 6
{
Ξµ, R12, R

2
13IS

} ∼= Γ4,1 ⋊D4 8

(ℓ, ℓ, 0) 12
{
Ξµ, R

2
13R21, R

2
12IS

} ∼= Γ4,1 ⋊ C2v 4

(ℓ, ℓ, ℓ) 8
{
Ξµ, R

2
13R12IS , R

2
12R13IS

} ∼= Γ4,1 ⋊D3 6

(ℓ, ℓ,m) 24
{
Ξµ, R

2
12IS

} ∼= Γ4,1 ⋊ Z2 2

(0, ℓ,m) 24
{
Ξµ, R

2
23IS

} ∼= Γ4,1 ⋊ Z2 2

(ℓ,m, n) 48 {Ξµ} ∼= Γ4,1 ⋊ {E} 1

D(C0) = eiξC , ξC = 0, π. (A42)

The elements of Γ4,1 leave the momentum invariant, hence orbits consist of the list of mo-
menta obtained through application of elements of Oh to the vector pi. The corresponding
little groups are the subgroups of Γ4,1 ⋊ Oh which leave the orbit representatives invariant.
The complete set of orbits and little groups are listed in Table VII.

To classify irreps of these little groups, Wigner’s method must be employed again where
the normal subgroup is now N = Γ4,1 and H are the rotation subgroups Oh, D4, C2v, D3,
Z2. From Eqs. (A41) and (A42) there are 25 = 32 one-dimensional bosonic irreps of Γ4,1. By
comparison of Eq. (A40) to Eq. (A41), the spatial part of the taste irrep vector will behave
similarly to the momentum orbits under the momentum little groups in Table VII. More
specifically, labelling the irreps of Γ4,1 by

[πξ, ξC ] = [(ξ0, ξ1, ξ2, ξ3), ξC ], (A43)

the little group H([πξ, ξC ]) is the group of all elements h of H such that h : [(ξ0, ξ1, ξ2, ξ3), ξC ]
→ [(ξ0, ξ1, ξ2, ξ3), ξC ]. And the orbits are then the unique set {[πξ, ξC ]} obtained from h :
[(ξ0, ξ1, ξ2, ξ3), ξC ] ∀ h ∈ H. As ξ0 commutes with everything (there are no R0i), ξ0 = 0 and
ξ0 = π always correspond to different orbits. Similarly, for ξC = 0 and ξC = π. Because of
the mod2π associated with πξ any element hIS in H will be in the little group H([πξ, ξC ])
if h is. The complete list of bosonic taste orbits and taste little groups are given in the
Table VIII. The character tables defining these bosonic irreps9 are given in Appendix B 1.

Staggered irreps are uniquely labelled by a momentum orbit representative, a taste-charge
conjugation orbit representative and a rotation little group irrep. As an example, a zero
momentum, taste-singlet, rotation-vector irrep, with negative staggered charge conjugation
and negative staggered parity is denoted by

(0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ T−
0 . (A44)

9 These (non-projective) irreps are labelled bosonic as they result in staggered bosonic irreps once combined

with the Abelian irreps of Γ4,1. Similarly, the non-Abelian irreps of Γ4,1 combine with the projective irreps

of the rotation little groups to give fermionic irreps.
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TABLE VIII. Taste orbits, little groups and irreps for each momentum orbit under the staggered

group. The first column is the taste orbit, indicated by a representative element. The second

column lists the orbit size. The third and fourth columns show the taste little groups (giving their

generating elements and conventional name) and order. The final column shows the irreps of these

groups. Irreps labelled A are 1D, E are 2D and T are 3D. Zero momentum irreps are also labelled

by the sign under spatial inversion ±. The character tables defining the irreps of the little groups

are given in Appendix B 1. Also given is the total number of staggered group irreps resulting from

these orbits and little group irreps and their dimensions.

Orbit representative Orbit size Little group Order Little-group irreps

(momentum) [(taste), C0] total # irreps (dimensions)

(0, 0, 0) 160 irreps (32 1D, 16 2D, 96 3D and 16 6D)

[(ξ0, 0, 0, 0), ξC ]

[(ξ0, π, π, π), ξC ]
1 {Rij , IS} ∼= Oh 48 A±

0 , A
±
1 , E

±
0 , T

±
0 , T±

1

[(ξ0, π, 0, 0), ξC ]

[(ξ0, 0, π, π), ξC ]
3

{
R12, R

2
13, IS

} ∼= D4h 16 A±
0 , A

±
1 , A

±
2 , A

±
3 , E

±
0

(0, 0, ℓ) 112 irreps (64 1D and 48 2D)

[(ξ0, 0, 0, ξ3), ξC ]

[(ξ0, π, π, ξ3), ξC ]
1

{
R12, R

2
13IS

} ∼= D4 8 A0, A1, A2, A3, E0

[(ξ0, 0, π, ξ3), ξC ] 2
{
R2

12, R
2
13IS

} ∼= C2v 4 A0, A1, A2, A3

(ℓ, ℓ, 0) 80 irreps (64 1D and 16 2D)

[(ξ0, 0, 0, ξ3), ξC ]

[(ξ0, π, π, ξ3), ξC ]
1

{
R2

13R21, R
2
12IS

} ∼= C2v 4 A0, A1, A2, A3

[(ξ0, 0, π, ξ3), ξC ] 2 {R12IS} ∼= Z2 2 A0, A1

(ℓ, ℓ, ℓ) 40 irreps (16 1D, 8 2D and 16 3D)

[(ξ0, 0, 0, 0), ξC ]

[(ξ0, π, π, π), ξC ]
1

{
R2

13R12IS , R
2
12R13IS

} ∼= D3 6 A0, A1, E0

[(ξ0, π, 0, 0), ξC ]

[(ξ0, 0, π, π), ξC ]
3

{
R2

13R12IS
} ∼= Z2 2 A0, A1

(ℓ, ℓ,m) 40 irreps (32 1D and 8 2D)

[(ξ0, 0, 0, ξ3), ξC ]

[(ξ0, π, π, ξ3), ξC ]
1

{
R2

12IS
} ∼= Z2 2 A0, A1

[(ξ0, 0, π, ξ3), ξC ] 2 {E} 1 A0

(0, ℓ,m) 64 irreps (64 1D)

[(ξ0, ξ1, ξ2, ξ3), ξC ] 1
{
R2

23IS
} ∼= Z2 2 A0, A1

(ℓ,m, n) 32 irreps (32 1D)

[(ξ0, ξ1, ξ2, ξ3), ξC ] 1 {E} 1 A0
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In Appendix A 4, one sees this is excited by a one-link staggered spatial vector current
operator. This is three-dimensional, which can be seen from the product of the dimensions
of the two orbits and the rotation irrep dimension.

Momentum orbit: {(0, 0, 0)} − 1D,

Taste orbit: {(0, 0, 0, 0)} − 1D,

Oh irrep: T−
0 − 3D,

giving a total irrep dimension of 1× 1× 3. As another example, a second irrep which also
has the quantum numbers of the vector current operator is the zero momentum, taste-vector
rotation-singlet irrep with positive charge conjugation and parity

(0, 0, 0)⋊ [(π, 0, π, π), 0]⋊ A+
0 , (A45)

with the dimension breakdown

Momentum orbit: {(0, 0, 0)} − 1D,

Taste orbit: {(π, 0, π, π), (π, π, 0, π), (π, π, π, 0)} − 3D,

D4h irrep: A+
0 − 1D.

This also has the total dimension of 3, but it is now coming from the taste orbit rather
than the rotation irrep. As a final example, a taste-vector, rotation-singlet irrep with one
component of momentum, and negative charge conjugation,10

(0, 0, ℓ)⋊ [(π, 0, π, π), π]⋊ A2, (A46)

with the following breakdown,

Momentum orbit: {(0, 0, ℓ) + 5 perms.} − 6D,

Taste orbit: {(π, 0, π, π), (π, π, 0, π)} − 2D,

C2v irrep: A2 − 1D, (A47)

giving a total dimension of 12. This irrep corresponds to a pseudo-scalar meson in flight in
the continuum, i.e., a pion if one considers light-quark flavors.

In this work, we employ operators which excite the taste-singlet vector meson Eq. (A44),
for the reasons discussed in Sec. III A. For each continuum bosonic state, there are 4× 4 =
16 staggered states which have all the same quantum numbers except for the taste. The
pseudoscalar irrep, Eq. (A46), is one of the multiple tastes of pion we study here, the full set
is given in Appendix C 2. Depending on the taste and the momentum direction, these states
can have degenerate or non-degenerate energies. In this work, the multi-particle states are
built from single-particle states with momentum. Hence, understanding the relationship
between staggered states at rest and states in flight is vital.

10 Parity is not a good quantum number for states in flight.
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a. Non-zero momentum decomposition

In order to decompose a staggered irrep at zero momentum to irrep(s) at non-zero mo-
mentum, one needs to

• Decompose the zero momentum taste orbit into the non-zero momentum taste orbit(s).

• Restrict the zero momentum little group irrep to the corresponding non-zero mo-
mentum taste little group(s) and determine what irrep(s) are contained in the (now)
reducible representation.

To illustrate this, consider giving momentum in the z-direction to the following zero mo-
mentum state

(0, 0, 0)⋊ [(π, π, 0, 0), π]⋊ A+
1 − 3D; Oh (p⃗, [πξ, ξC ]) = D4h. (A48)

The {(0, 0, ℓ)} momentum little group only mixes ξ1, ξ2 in orbits, so ξ3 becomes independent.
Hence, the (0, 0, 0) momentum taste-orbit {(π, 0, 0, π), (π, 0, π, 0), (π, π, 0, 0)} splits into two
parts. A two-dimensional orbit {(π, 0, π, 0), (π, π, 0, 0)} with little group Oh (p⃗, [πξ, ξC ]) ∼=
C2v and a one-dimensional orbit {(π, 0, 0, π)} with little group Oh (p⃗, [πξ, ξC ]) ∼= D4. One
then restricts the original little group, D4h, to the two new little groups giving the following
irrep decomposition

A+
2

∣∣
D4h→C2v

= A3, (A49)

A+
2

∣∣
D4h→D4

= A1. (A50)

This restriction is performed by considering the characters of the conjugacy classes which
remain after removing the elements not contained in the respective subgroups. The standard
character decomposition [55] is employed to obtain the irreps of the subgroups. In both cases
here, there is only one irrep contained, A3 and A1 respectively. Hence, there are now two
(0, 0, ℓ) momentum irreps from the original single zero-momentum irrep

(0, 0, ℓ)⋊ [(π, π, 0, 0), π]⋊ A3 − 6× 2D, (A51)

(0, 0, ℓ)⋊ [(π, 0, 0, π), π]⋊ A1 − 6× 1D. (A52)

This splitting of the taste-orbit into separate irreps is observed in the pion spectrum com-
puted in Sec. III F.

4. Staggered operators

Following the form of the staggered action in the hypercubic representation [83, 84],
one formally writes a staggered quark operator in the hypercubic representation (spin-taste
basis) as

OΓS⊗ΓT (h) = q̄(h)ΓS ⊗ ΓT q(h). (A53)

This operator has a spin quantum number from ΓS and a taste quantum number from ΓT .
11

Numerical simulations, however, are typically performed in the representation of Eq. (A6).

11 The gauge links are left out for simplicity.
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Recasting the operator in this form results in ‘phase-shift’ operators,

Oφ
(δ)(p⃗, t) =

∑
n⃗

e−iap⃗·n⃗χ̄(n)χ(n+ δ)φ(n). (A54)

where the operator has now also been given a momentum p. The unbarred field is shifted
by a spatial offset δ and there is an associated spacetime dependent staggered phase φ(n).
The relationship between these two representations is given by

φ(n) =
1

4
tr
(
Γ†
TΩ(n)

†ΓSΩ(n+ t+ s)
)
, (A55)

δ = t+ s mod 2, (A56)

where Ω(n) is defined in Eq. (A3) and s and t are four vectors which specify the spin and taste
gamma structure. In this work, we use the ΓS ⊗ ΓT labelling to denote the operators, but
the phase-shift form is used in the computation. Only symmetric-non-time-shift operators
are considered,

Oφ
(±δ)(p⃗, t) =

1

Nsym

∑
±δi

Oφ
(δ)(p⃗, t). (A57)

With an average over forward and backward directions for each component of δ performed.
Symmetrizing in this way guarantees the operators have well-defined parity and, for flavor
singlets, charge conjugation.

The phase-shift operators can be straight-forwardly related to the rows of the irreps from
above by acting on them with the staggered symmetry transformations and reading off the
quantum numbers:

Ξi : Oφ
(±δ)(p⃗) → ζi(δ)φ(̂ı)Oφ

(±δ)(p⃗), (A58)

IS : Oφ
(±δ)(p⃗) → (−1)

∑
i δiOφ

(∓δ)(−p⃗), (A59)

Rij : Oφ
(±δ)(p⃗) → Oφ′

(±δ′) (p⃗
′) , (A60)

C0 : Oφ
(±δ)(p⃗) → eip⃗·δ⃗(−1)

∑
i δiφ(δ)Oφ

(∓δ)(p⃗), (A61)

where φ′ (p⃗′) is obtained from φ (p⃗) via the given rotation. The momentum is specified
through Eq. (A54). As the sum in Eq. (A54) does not include t, the operator is local in
time and hence can excite irreps with any energy. Similarly, this results in ξ0 not being
fixed, hence the operators in Eq. (A54) excite states with ξ0 = 0 and ξ0 = π—without
a full construction of the transfer matrix, operators of definite ξ0 cannot be constructed.
This is the source of the well known issue with local-time staggered operators, whereby
states with both positive and negative continuum parity are excited, resulting in temporal
oscillations in staggered correlation functions. Under the action of rotation group, Eq. (A60),
the transformed operators {(φ′

i, δ
′
i)} form a basis of the taste little group. Constructing the

representation from this basis then allows one to determine the rotation irrep.
Operators corresponding to the examples considered in Eqs. (A44)–(A46) are given by

• taste singlet, spin vector, (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ T−
0

Oγi⊗1(p⃗ = 0) : φ(n) = ηi(n), δj = δj,i. (A62)
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• taste vector, spin vector, (0, 0, 0)⋊ [(π, 0, π, π), 0]⋊ A+
0

Oγi⊗γi(p⃗ = 0) : φ(n) = (−1)
∑

ρ̸=i nρ , δ = (0, 0, 0, 0). (A63)

• taste vector, spin pseudo-scalar, (0, 0, ℓ)⋊ [(π, 0, π, π), π]⋊ A2

Oγ5γ0⊗γi(p⃗ = [0, 0, l]) : φ(n), δ =

{
(−1)n0+n3 , (0, 0, 1, 1) if i = 1

(−1)n0+n2+n3 , (0, 1, 0, 1) if i = 2
. (A64)

As mentioned, the first operator corresponds to taste-singlet vector meson; it contains a one
component shift. To preserve gauge invariance, these operators have gauge links connecting
fields on different sites. Hence, this operator is referred to as a ‘1-link’ operator for the single
link connecting χ̄ and χ. The second operator is local and is named so. For the last irrep,
the taste vector pseudo-scalar, the operator Oγ5⊗γi also excites the same states but contains
a shift in the time direction, so we do not use it.

For the non-zero momentum example irreps considered above, Eqs. (A48) and (A52), we
have

• (0, 0, 0)⋊ [(π, π, 0, 0), π]⋊ A+
1

Oγ5⊗γi(p⃗ = 0) : φ(n), δ =


(−1)n0+n1+n2 , (0, 0, 1, 1) if i = 1

(−1)n0+n1 , (0, 1, 0, 1) if i = 2

(−1)n0+n1+n3 , (0, 1, 1, 0) if i = 3

. (A65)

• (0, 0, ℓ)⋊ [(π, π, 0, 0), π]⋊ A3

Oγ5⊗γi(p⃗ = [0, 0, l]) : φ(n), δ =

{
(−1)n0+n1+n2 , (0, 0, 1, 1) if i = 1

(−1)n0+n1 , (0, 1, 0, 1) if i = 2
. (A66)

• (0, 0, ℓ)⋊ [(π, 0, 0, π), π]⋊ A1

Oγ5⊗γ3(p⃗ = [0, 0, l]) : φ(n) = (−1)n0+n1+n3 , δ = (0, 1, 1, 0). (A67)

Here, the first operator excites the rows of an irrep which then splits into two non-zero
momentum irreps which are excited by the second and third operators.

5. Connecting staggered observables to the continuum

There are two considerations when connecting an observable computed with staggered
quarks to a continuum observable. The first is the subduction from the states in the con-
tinuum to the states of the staggered lattice group. As mentioned in Appendix A 2 b, for
staggered quarks a SU(4)T symmetry emerges in the continuum, meaning all states with the
same quantum numbers, but different tastes, are degenerate and have the same properties
as the same physical state. This degeneracy is lifted at finite lattice spacing, hence there
is a non-trivial spectrum of states for each physical state. A central part of this work is
understanding this taste-split spectrum as it pertains to two-pion states. The second con-
sideration is the contribution of the four quark-tastes to the staggered fermion determinant.
This is resolved by so-called (fourth-) rooting, the effect of this on the observables computed
in this work is discussed in Appendix E.
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a. Continuum decomposition

The decomposition from the continuum symmetry group irreps to the lattice irreps dis-
cussed above is laid out in Ref. [47]. However, there are some errors in that work, so we
reproduce the full discussion here with corrections. Ignoring flavor, subduction from the
continuum group to the lattice group is given by the following map:

Continuum Group

SU(4)T × SU(2)S × P × C

[SU(2)L × SU(2)S]× [SU(2)R × P × C]

Staggered Rest Frame Group
(SW4 × Γ2,2)

(−E ×−E)
{Rij, RjkΞkj} × {C0,Ξ0,Ξ123, C0Ξ0IS}

Staggered Group w/o Translations

Γ4,1 ⋊Oh

{Ξµ, C0}⋊ {Rij, IS}

Full Staggered Group: GT0

(Z3
Ns/2

× Γ4,1)⋊Oh
,

where the meaning and role of SW4 × Γ2,2 is explained below. The symmetry group in
the continuum for a flavorless state is SU(4)T × SU(2)S × P × C. 12 Here, P and C are
continuum parity and charge conjugation, which are distinct but related to spatial inversion
IS and staggered charge conjugation C0; SU(2)S is the standard continuum spin group with
integer and half-integer spin representations; SU(4)T is the continuum symmetry group of
four degenerate tastes.We have two bosonic representations of SU(4)T labelled 0 and 15.
The SU(4) singlet 0 is one dimensional and decomposes to the taste-singlet, πξ = (0, 0, 0, 0),
while the SU(4) fundamental irrep 15 is fifteen dimensional and decomposes to all other
tastes.

The 15 taste transformations Ξµ, Ξ5, ΞµΞ5, Ξµν are generators of the continuum SU(4)T
but also exist as a subgroup inside it as is the case for the doubling symmetry, Eq. (A10),
which has the equivalent group structure. By examining the action of these transformations
in momentum space [48], one finds that Ξij lie in a SU(2)L subgroup while Ξ0 and Ξ123 ≡
Ξ1Ξ2Ξ3 lie in a commuting SU(2)R subgroup, i.e. SU(2)L × SU(2)R ⊂ SU(4)T . The bosonic
irrep decomposition for this step is given by,

SU(4) → SU(2)× SU(2), (A68)

0 → (0, 0), (A69)

15 → (0, 1)⊕ (1, 0)⊕ (1, 1), (A70)

where 0 and 1 on the RHS are the familiar one-dimensional ‘spin 0’ and three-dimensional
‘spin 1’ irreps of SU(2).

12 Apart from the inconsequential UV (1) that corresponds to baryon number conservation.
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For the second step of the decomposition, parity and charge conjugation correspond to
their continuum counterparts, with an additional taste transformation. The relationship
between spatial inversion and parity is straightforward to read off from Eq. (A16)

IS = PΞ0. (A71)

Charge conjugation is more complicated, but the process of extracting it is described
Ref. [47]. It amounts to the following procedure, first count the zeros, #0s, in the taste
irrep orbit representative vector πξ. Then the relationship between the continuum charge
conjugation C and lattice charge conjugation C0 is

C0 =

{
C, if #0s = 0, 3, 4

−C, if #0s = 1, 2
. (A72)

Lattice rotations correspond to simultaneous rotations of staggered taste and spin,
Eq. (A60), and sit inside the diagonal subgroup of SU(2)L×SU(2)S, which is subduced into
the group generated by {Ξkj, Rij}. Rewriting this generating set as

{R̃4i, Rij}, (A73)

R̃4i ≡ RjkΞkj, (A74)

gives a group isomorphic to SW4, the symmetry group of the hypercube, which appears in
the map shown above. Below, SW4 is a useful tool for decomposing continuum states into
staggered irreps.

The group SU(2)R × P × C is subduced into the group generated by the remaining
staggered symmetries {Ξ0,Ξ123, IS, C0}. Using Eqs. (A71) and (A72), where again, rewriting
generators

{Ξ0,Ξ123, C0Ξ0IS, C0}, (A75)

gives the defining set of mutually anti-commuting generators of Γ2,2,

Ξ2
0 = (C0Ξ0IS)

2 = −C2
0 = −Ξ2

123 = 1. (A76)

The group,

(SW4 × Γ2,2)/(−E ×−E), (A77)

is the staggered rest frame group and is isomorphic to the group Γ4,1 ⋊ Oh in Eq. (A32).
The quotient factor, (−E×−E),13 ensures only bosonic-type and fermionic-type irreps exist
in the direct product, i.e., Abelian irreps of Γ2,2 are combined with non-projective irreps of
SW4, while the faithful four dimensional irrep of Γ2,2 is combined with the projective irreps
of SW4. The irreps and characters of SW4 are given in Refs. [47, 85], however, there are
some errors in Table 6 of Ref. [47]. In Ref. [85], Table 3 2a for SW4 is correct, even though
it is subduced from Table 3 3b, which interchanges the characters for (1, 0) and (0, 1). The
bosonic irrep part of the character table is reproduced in Table XVI with the classes labelled
by class representatives corresponding to Eq. (A73). In the case of bosonic (Abelian) irreps

13 E denotes the identity element of the respective group.
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of Γ2,2, the homomorphism Γ2,2 → Z4
2 furnishes 16 one-dimensional irreps. These irreps are

labeled by πΓ = (ξ0, ξ123, ξIS , ξC), taking values 0 or π. The characters are straightforward
and are given in Eq. (B1).

The subduction from SU(2)L × SU(2)S ∼= O(4) → SW4 is described in Ref. [85].14 One
restricts SU(2)L×SU(2)S to SW4 using the natural mapping with O(4). It is then straightfor-
ward to decompose the representations of the restricted group using the standard character
vector algebra (the same process as in Appendix A 3 a). Explicit results for spin 0, 1, 2 are
given here,

(0, 0) → , (A78)

(1, 0) → (1, 0), (A79)

(0, 1) → (0, 1), (A80)

(1, 1) → ⊕ 6, (A81)

(0, 2) → ⊕ (0, 1), (A82)

(1, 2) → ⊕ 6⊕ (1, 0)⊕ (1, 0). (A83)

The irrep in Table XVI appears first in the spin 3 subduction.
For SU(2)R×P ×C → Γ2,2, one just needs to subduce SU(2)R → {Ξ0,Ξ123} ∼= D4, which

is straightforward for the bosonic case via the homomorphism D4 → Z2 × Z2. C0 and P
follow from Eqs. (A71) and (A72). The mapping is given in Ref. [47],

SU(2)R → Z2 × Z2, (A84)

0 → (0, 0), (A85)

1 → (π, 0)⊕ (0, π)⊕ (π, π), (A86)

where the irreps and characters for the group Z2×Z2 are given in Table XVII. This completes
the second step of the continuum decomposition map. The isomorphism between the rest
frame group and Eq. (A32) without translations is straightforward, as they contain the same
generating elements, just rearranged. One makes the identification between the classes and
matches the character vectors of the irreps. There are 17 irreps/classes in Γ2,2 and 13
irreps/classes in SW4 giving a total of 22115 in the direct product, however 58 of them are
removed through the Z2 × Z2 quotient giving 163 classes corresponding to the 160 zero
momentum bosonic irreps in Table VIII and the 3 fermionic irreps which are not considered
here. The similarity between the irreps are given in Table IX.

With this similarity, the first three steps of the decomposition are completed. The final
step just follows what is described in Appendix A 3 a. To illustrate the full procedure, the
decomposition of the spin-zero meson with P = −1 and C = 116 and momentum in the
z direction is performed. The decomposition for other momenta is given in Appendix C 2.
Also given in Appendix C 1 is the decomposition of the ρ meson, including the example from

14 The ordering of SU(2)L × SU(2)S is the correct one given the definitions of the (0, 1) and (1, 0) irreps in

Refs. [47, 85], but Ref. [47] subsequently flips the order when carrying out its subduction analysis.
15 It is a coincidence that the number of irreps/classes coincides with the recurrence of periodical cicadas.
16 A pion if the correct isospin is chosen.
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TABLE IX. Irreps for the isomorphic groups (SW4 × Γ2,2)/(−E × −E) and Γ4,1 ⋊ Oh. The first

five rows are the irreps corresponding to row one in Table VIII, the next five are the irreps in row

two of that table.

(SW4 × Γ2,2)/(−E ×−E) Γ4,1 ⋊Oh Dimension

⊗(ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊Ae
ξIS

0
1

⊗(ξ0, ξ123, ξIS , ξC)
[(ξ0, ξ1, ξ2, ξ3), ξC ]⋊Ae

ξIS

1
1

⊗(ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊ Ee
ξIS

0
2

(0, 1)⊗ (ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊ T e
ξIS

0
3

(0, 1)⊗ (ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊ T e
ξIS

1
3

⊗(ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊Ae
ξIS

0
3

⊗(ξ0, ξ123, ξIS , ξC)
[(ξ0, ξ1, ξ2, ξ3), ξC ]⋊Ae

ξIS

1
3

(1, 0)⊗ (ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊Ae
ξIS

2
3

(1, 0)⊗ (ξ0, ξ123, ξIS , ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊Ae
ξIS

3
3

6⊗ (ξ0, ξ123, ξIS ,ξC) [(ξ0, ξ1, ξ2, ξ3), ξC ]⋊ Ee
ξIS

0
6

Ref. [47] which is repeated but with a corrected decomposition. The continuum spin-zero
state can be in the taste-singlet irrep 0 or the taste-fifteen irrep 15, hence we have

(0, 0) → (0, 0)⊗ 0 → ⊗ (0, 0), (A87)

(15, 0) → (1, 0)⊗ 1⊕ (1, 0)⊗ 0 ⊕ (0, 0)⊗ 1 →
(1, 0)⊗ (π, 0)⊕ (1, 0)⊗ (0, π)⊕ (1, 0)⊗ (π, π)⊕ (1, 0)⊗ (0, 0) ⊕

⊗ (π, 0)⊕ ⊗ (0, π)⊕ ⊗ (π, π). (A88)

Proceeding with the mapping from Table IX, using Eqs. (A71) and (A72) with P = −1 and
C = 1 and the characters from Table XVII

⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, 0, 0, 0), 0]⋊ A−
0 : Oγ5⊗1(0, 0, 0), (A89)

⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, 0, 0, 0), 0]⋊ A+
0 : Oγ5⊗γ5γ0(0, 0, 0), (A90)

⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, π, π, π), π]⋊ A−
0 : Oγ5⊗γ0(0, 0, 0), (A91)

⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, π, π, π), 0]⋊ A+
0 : Oγ5⊗γ5(0, 0, 0), (A92)

(1, 0)⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, π, π, 0), π]⋊ A+
2 : Oγ5⊗γi(0, 0, 0), (A93)

(1, 0)⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, 0, 0, π), 0]⋊ A−
2 : Oγ5⊗γ5γi(0, 0, 0), (A94)

(1, 0)⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, 0, 0, π), π]⋊ A+
2 : Oγ5⊗γiγ0(0, 0, 0), (A95)
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(1, 0)⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, π, π, 0), π]⋊ A−
2 : Oγ5⊗γiγj(0, 0, 0), (A96)

where corresponding operators, using Appendix A 4, are also given. The first four irreps
are one-dimensional, the last four are three-dimensional, giving 4+ 12 = 16 ‘pion’ states, as
expected. For non-zero momentum in the continuum, one decomposes the zero momentum
lattice irreps. For momentum (0, 0, pz) one has,

(0, 0, 0)⋊ [(0, 0, 0, 0), 0]⋊ A−
0 →

{
(0, 0, 1)⋊ [(0, 0, 0, 0), 0]⋊ A1 : Oγ5⊗1(0, 0, 1) (A97)

(0, 0, 0)⋊ [(π, 0, 0, 0), 0]⋊ A+
0 →

{
(0, 0, 1)⋊ [(π, 0, 0, 0), 0]⋊ A0 : Oγ5⊗γ5γ0(0, 0, 1)

(A98)

(0, 0, 0)⋊ [(0, π, π, π), π]⋊ A−
0 →

{
(0, 0, 1)⋊ [(0, π, π, π), π]⋊ A1 : Oγ5⊗γ0(0, 0, 1) (A99)

(0, 0, 0)⋊ [(π, π, π, π), 0]⋊ A+
0 →

{
(0, 0, 1)⋊ [(π, π, π, π), 0]⋊ A0 : Oγ5⊗γ5(0, 0, 1)

(A100)

(0, 0, 0)⋊ [(π, π, π, 0), π]⋊ A+
2 →

{
(0, 0, 1)⋊ [(π, 0, π, π), π]⋊ A2 : Oγ5⊗γi̸=3(0, 0, 1)

(0, 0, 1)⋊ [(π, π, π, 0), π]⋊ A1 : Oγ5⊗γ3(0, 0, 1)

(A101)

(0, 0, 0)⋊ [(0, 0, 0, π), 0]⋊ A−
2 →

{
(0, 0, 1)⋊ [(0, 0, 0, π), 0]⋊ A0 : Oγ5⊗γ5γ3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, 0), 0]⋊ A2 : Oγ5⊗γ5γi ̸=3(0, 0, 1)

(A102)

(0, 0, 0)⋊ [(π, 0, 0, π), π]⋊ A+
2 →

{
(0, 0, 1)⋊ [(π, 0, 0, π), π]⋊ A1 : Oγ5⊗γ3γ0(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, 0), π]⋊ A3, Oγ5⊗γi ̸=3γ0(0, 0, 1)

(A103)

(0, 0, 0)⋊ [(0, π, π, 0), π]⋊ A−
2 →

{
(0, 0, 1)⋊ [(0, 0, π, π), π]⋊ A3 : Oγ5⊗γi ̸=3γ3(0, 0, 1)

(0, 0, 1)⋊ [(0, π, π, 0), π]⋊ A0 : Oγ5⊗γi ̸=3γj ̸=3(0, 0, 1)

(A104)

Here, again the last four irreps undergo taste orbit splitting at non-zero momentum. It is
also important to note that the operators given will excite states in irreps of both parities
for ξ0 and ξ3.

Appendix B: Character tables

This appendix contains the character tables used to construct the irreducible representa-
tions in Appendix A. These are, again, contained in Ref. [47]. However, we repeat them here
to address slight notational differences in irrep labelling and minor errors in some tables in
that work.

1. Character tables for little groups

Here we given the character tables for the little groups of the taste-orbit under rotations
defined in Table VIII. The two (0, 0, 0) momentum taste little groups, Oh and D4h, are given
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in Tables X and XI. For momentum (0, 0, n), the two little groups, D4 and C2v, are given in
Tables XII and XIII. The remaining unique group character tables, D3 and Z2, are given in
Tables XIV and XV. Where the little group structure is repeated for different momentum
and taste orbits, we indicate in the caption and include the unique rotation group elements
for each case in the table.

TABLE X. Character table for the p⃗ = 2π(0, 0, 0)/L, πξ = (ξ0, π, π, π) little group Oh.

Rep. element Class size A+
0 A−

0 A+
1 A−

1 E+
0 E−

0 T+
0 T−

0 T+
1 T−

1

E 1 1 1 1 1 2 2 3 3 3 3

IS 1 1 −1 1 −1 2 −2 3 −3 3 −3

R12R12 3 1 1 1 1 2 2 −1 −1 −1 −1

R12R12IS 3 1 −1 1 −1 2 −2 −1 1 −1 1

R12 6 1 1 −1 −1 0 0 1 1 −1 −1

R12IS 6 1 −1 −1 1 0 0 1 −1 −1 1

R12R12R23 6 1 1 −1 −1 0 0 −1 −1 1 1

R12R12R23IS 6 1 −1 −1 1 0 0 −1 1 1 −1

R12R23 8 1 1 1 1 −1 −1 0 0 0 0

R12R23IS 8 1 −1 1 −1 −1 1 0 0 0 0

TABLE XI. Character table for the p⃗ = 2π(0, 0, 0)/L, πξ = (ξ0, 0, π, π) little group D4h.

Rep. element Class size A+
0 A−

0 A+
1 A−

1 A+
2 A−

2 A+
3 A−

3 E+
0 E−

0

E 1 1 1 1 1 1 1 1 1 2 2

IS 1 1 −1 1 −1 1 −1 1 −1 2 −2

R23R23 1 1 1 1 1 1 1 1 1 −2 −2

R23R23IS 1 1 −1 1 −1 1 −1 1 −1 −2 2

R12R12 2 1 1 1 1 −1 −1 −1 −1 0 0

R12R12IS 2 1 −1 1 −1 −1 1 −1 1 0 0

R12R12R23 2 1 1 −1 −1 −1 −1 1 1 0 0

R12R12R23IS 2 1 −1 −1 1 −1 1 1 −1 0 0

R23 2 1 1 −1 −1 1 1 −1 −1 0 0

R23IS 2 1 −1 −1 1 1 −1 −1 1 0 0
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TABLE XII. Character table for the p⃗ = 2π(0, 0, ℓ)/L, πξ = (ξ0, π, π, ξ3) little group D4.

Rep. element Class size A0 A1 A2 A3 E0

E 1 1 1 1 1 2

R12R12 1 1 1 1 1 −2

R12 2 1 1 −1 −1 0

R12R23R23IS 2 1 −1 −1 1 0

R23R23IS 2 1 −1 1 −1 0

TABLE XIII. Character table for the p⃗ = 2π(0, 0, ℓ)/L, πξ = (ξ0, 0, π, ξ3) and the p⃗ = 2π/(ℓ, ℓ, 0)/L,

πξ = (ξ0, π, π, ξ3) little group C2v.

Rep. element Class size A0 A1 A2 A3

E 1 1 1 1 1

R12R12 / R12R12IS 1 1 1 −1 −1

R23R23IS / R12R23R23IS 1 1 −1 1 −1

R31R31IS / R23R23R12 1 1 −1 −1 1

TABLE XIV. Character table for the p⃗ = 2π(ℓ, ℓ, ℓ)/L, πξ = (ξ0, π, π, π) little group D3.

Rep. element Class size A0 A1 E0

E 1 1 1 2

R23R12 2 1 1 −1

R12R12R23IS 3 1 −1 0

TABLE XV. Character table for the p⃗ = 2π/(ℓ, ℓ, 0)/L, πξ = (ξ0, 0, π, ξ3), p⃗ = 2π(ℓ, ℓ, ℓ)/L,

πξ = (ξ0, 0, π, π), p⃗ = 2π(ℓ, ℓ,m)/L, πξ = (ξ0, π, π, π) and p⃗ = 2π(0, ℓ,m)/L, πξ = (ξ0, π, π, π) little

group Z2.

Rep. element Class size A0 A1

E 1 1 1

R12R12IS / R12R12R23IS / R12R23R23IS / R23R23IS 1 1 −1
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TABLE XVI. Character table for the bosonic irreps of SW4, in agreement with Ref. [85] but

correcting errors in , , and of Ref. [47].

Label Rep. element Class size (1, 0) (0, 1) (1, 0) (0, 1) 6

I E 1 1 1 2 3 3 3 3 3 3 6

II R12R12 6 1 1 2 3 3 −1 −1 −1 −1 −2

III R12R12R̃43R̃43 1 1 1 2 3 3 3 3 3 3 6

IV R12 12 1 −1 0 1 −1 1 1 −1 −1 0

V R12R12R23 24 1 −1 0 1 −1 −1 −1 1 1 0

VI R̃43R12R12 12 1 −1 0 1 −1 1 1 −1 −1 0

VII R12R23 32 1 1 −1 0 0 0 0 0 0 0

VIII R̃43R12R12R23 32 1 1 −1 0 0 0 0 0 0 0

IX R12R23R̃43 24 1 −1 0 −1 1 1 −1 −1 1 0

X R12R23R̃42 24 1 −1 0 −1 1 −1 1 1 −1 0

XI R12R̃43R23R23 12 1 1 2 −1 −1 −1 −1 −1 −1 2

XII R̃43R12R12R12 6 1 1 2 −1 −1 −1 3 −1 3 −2

XIII R12R̃43 6 1 1 2 −1 −1 3 −1 3 −1 −2

2. Character tables for staggered rest frame groups

The characters for the bosonic irreps of the group SW4 are given in Table XVI. A mapping
to the class labelling in Refs. [47, 85] is given in the first column. The first four irreps are
induced from the symmetric group S4. The irreps, (1, 0) and (0, 1), are subduced from the full
four-dimensional rotation O(4) ∼= SU(2) × SU(2) and remain irreducible. The penultimate

two, (1, 0) and (0, 1) are the product of the previous two with . In the last column, 6 is a
six-dimensional irrep obtained from O(4) [85].

For the bosonic case, any group element g of Γ2,2 can be represented as a four vector Γ
which takes values 0 or 1 depending on what generators g contains. The characters for the
bosonic irreps, labelled by πΓ, of Γ2,2 are then given by

χπΓ(g) = eiπΓ·Γ (B1)

Leaving charge conjugation, C0, and spatial inversion, IS, out of this group gives the corre-
sponding character table for the bosonic representations of Z2 × Z2, Table XVII.

3. Rest frame groups isomorphism

The staggered lattice group has two useful representations at zero momentum, the first
representation,

(SW4 × Γ2,2)/(−E ×−E), (B2)
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TABLE XVII. Character table for the Z2×Z2 group corresponding to the bosonic representations

of {Ξ0,Ξ123}.
Rep. element Class size (0, 0) (π, 0) (0, π) (π, π)

E 1 1 1 1 1

Ξ0 1 1 −1 1 −1

Ξ123 1 1 1 −1 −1

Ξ0Ξ123 1 1 −1 −1 1

is useful for subducing from the continuum. It has the generating elements,

{Rij, R̃4i ≡ RjkΞkj} × {Ξ0,Ξ123, C0Ξ0IS, C0} (B3)

{Ξ0,Ξ123, C0Ξ0IS, C0} ≡ {Γ1,Γ2,Γ3,Γ4}. (B4)

The second representation of the group,

Γ4,1 ⋊Oh, (B5)

is useful for considering states at non-zero momentum by the natural extension, Ti⋊Γ4,1⋊Oh.
It has generating elements,

{Ξ0,Ξ1,Ξ2,Ξ3, C0}⋊ {Rij, Is} (B6)

The similarity between the irreps is given in Table IX.

Appendix C: Staggered irreps

1. The staggered rho

Using the tools described in Appendix A 5 a, the full the decomposition of the vector me-
son with negative parity and negative charge conjugation is given here for zero momentum.

(0, 1) → (0, 1)⊗ 0 → (0, 1)⊗ (0, 0) (C1)

(15, 1) → (1, 1)⊗ 1 ⊕ (1, 1)⊗ 0 ⊕ (0, 1)⊗ 1 →
⊗ (π, 0) ⊕ ⊗ (0, π) ⊕ ⊗ (π, π) ⊕ ⊗ (0, 0) ⊕

6⊗ (π, 0) ⊕ 6⊗ (0, π) ⊕ 6⊗ (π, π) ⊕ 6⊗ (0, 0) ⊕
(0, 1)⊗ (π, 0) ⊕ (0, 1)⊗ (0, π) ⊕ (0, 1)⊗ (π, π) (C2)

The term (0, 1) ⊗ ((π, 0)⊕ (0, π)⊕ (π, π)) was mistakenly written with as (1, 0) ⊗ . . . in
Ref. [47]. Proceeding with the mapping from Table IX, using Eqs. (A71) and (A72) with
P = −1 and C = −1 and the characters from Table XVII

(0, 1)⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, 0, 0, 0), π]⋊ T−
0 : Oγi⊗1(0, 0, 0) (C3)

(0, 1)⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, 0, 0, 0), π]⋊ T+
0 : Oγi⊗γ5γ0(0, 0, 0) (C4)

(0, 1)⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, π, π, π), 0]⋊ T−
0 : Oγi⊗γ0(0, 0, 0) (C5)

(0, 1)⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, π, π, π), π]⋊ T+
0 : Oγi⊗γ5(0, 0, 0) (C6)
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⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, π, π, 0), 0]⋊ A−
0 : Oγi⊗γjγk(0, 0, 0) (C7)

⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, π, π, 0), 0]⋊ A+
0 : Oγi⊗γi(0, 0, 0) (C8)

⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, 0, 0, π), π]⋊ A−
0 : Oγi⊗γ5γi(0, 0, 0) (C9)

⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, 0, 0, π), 0]⋊ A+
0 : Oγi⊗γiγ0(0, 0, 0) (C10)

6⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, π, π, 0), 0]⋊ E+
0 : Oγi⊗γj(0, 0, 0) (C11)

6⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, 0, 0, π), π]⋊ E−
0 : Oγi⊗γ5γj(0, 0, 0) (C12)

6⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, 0, 0, π), 0]⋊ E+
0 : Oγi⊗γjγ0(0, 0, 0) (C13)

6⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, π, π, 0), 0]⋊ E−
0 : Oγi⊗γiγj(0, 0, 0) (C14)

In this work, we use the states and operators associated with Eq. (C3), called the ‘one-link’
or taste-singlet ρ. Continuing with the example from Ref. [47], giving the ρ momentum
(0, 0, pz) results in

(0, 0, 0)⋊ [(π, 0, 0, 0), π]⋊ T+
0 →

{
(0, 0, 1)⋊ [(π, 0, 0, 0), π]⋊ A1 : Oγ3⊗γ5γ0(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, 0, 0), π]⋊ E0 : Oγi̸=3⊗γ5γ0(0, 0, 1)

(C15)

(0, 0, 0)⋊ [(0, π, π, π), 0]⋊ T−
0 →

{
(0, 0, 1)⋊ [(0, π, π, π), 0]⋊ A0 : Oγ3⊗γ0(0, 0, 1)

(0, 0, 1)⋊ [(0, π, π, π), 0]⋊ E0 : Oγi ̸=3⊗γ0(0, 0, 1)

(C16)

(0, 0, 0)⋊ [(π, π, π, π), π]⋊ T+
0 →

{
(0, 0, 1)⋊ [(π, π, π, π), π]⋊ A1 : Oγ3⊗γ5(0, 0, 1)

(0, 0, 1)⋊ [(π, π, π, π), π]⋊ E0 : Oγi̸=3⊗γ5(0, 0, 1)

(C17)

(0, 0, 0)⋊ [(0, π, π, 0), 0]⋊ A−
0 →

{
(0, 0, 1)⋊ [(0, π, π, 0), 0]⋊ A1 : Oγ3⊗γj ̸=iγk ̸=i(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, π), 0]⋊ A1 : Oγi̸=3⊗γj ̸=iγk ̸=i(0, 0, 1)

(C18)

(0, 0, 0)⋊ [(π, π, π, 0), 0]⋊ A+
0 →

{
(0, 0, 1)⋊ [(π, π, π, 0), 0]⋊ A0 : Oγ3⊗γ3(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, π), 0]⋊ A0 : Oγi ̸=3⊗γi(0, 0, 1)

(C19)

(0, 0, 0)⋊ [(0, 0, 0, π), π]⋊ A−
0 →

{
(0, 0, 1)⋊ [(0, 0, 0, π), π]⋊ A1 : Oγ3⊗γ5γ3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, 0), π]⋊ A1 : Oγi̸=3⊗γ5γi(0, 0, 1)

(C20)

(0, 0, 0)⋊ [(π, 0, 0, π), 0]⋊ A+
0 →

{
(0, 0, 1)⋊ [(π, 0, 0, π), 0]⋊ A0 : Oγ3⊗γ3γ0(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, 0), 0]⋊ A0 : Oγi̸=3⊗γiγ0(0, 0, 1)

(C21)

(0, 0, 0)⋊ [(0, π, π, 0), 0]⋊ E−
0 →


(0, 0, 1)⋊ [(0, π, π, 0), 0]⋊ E0 : Oγi ̸=3⊗γiγj ̸=i,3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, π), 0]⋊ A0 : Oγi ̸=3⊗γiγ3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, π), 0]⋊ A2 : Oγ3⊗γi ̸=3γ3(0, 0, 1)

(C22)
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(0, 0, 0)⋊ [(π, π, π, 0), 0]⋊ E+
0 →


(0, 0, 1)⋊ [(π, π, π, 0), 0]⋊ E0 : Oγi ̸=3⊗γ3(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, π), 0]⋊ A1 : Oγi ̸=3⊗γj ̸=3γ3(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, π), 0]⋊ A3 : Oγ3⊗γj ̸=3(0, 0, 1)

(C23)

(0, 0, 0)⋊ [(0, 0, 0, π), π]⋊ E−
0 →


(0, 0, 1)⋊ [(0, 0, 0, π), π]⋊ E0 : Oγi ̸=3⊗γ5γ3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, 0), π]⋊ A0 : Oγi ̸=3⊗γ5γj ̸=3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, 0), π]⋊ A3 : Oγ3⊗γ5γj ̸=3(0, 0, 1)

(C24)

(0, 0, 0)⋊ [(π, 0, 0, π), 0]⋊ E+
0 →


(0, 0, 1)⋊ [(π, 0, 0, π), 0]⋊ E0 : Oγi ̸=3⊗γ3γ0(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, 0), 0]⋊ A1 : Oγi ̸=3⊗γj ̸=3γ0(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, 0), 0]⋊ A2 : Oγ3⊗γj ̸=3γ0(0, 0, 1)

(C25)

Giving a different breakdown as to what is described in Ref. [47]. The breakdown in that
work is likely incorrect due to the aforementioned issue in footnote 8 of this appendix.
Alongside this, there is also a further error in the decomposition to non-zero momentum
which the above breakdown corrects.

2. The staggered pion

The full the decomposition of the pseudo-scalar with P = −1, and C = 1 is given here
for the range of momentum considered in this work. Using the results from Appendix A 5 a,
the zero-momentum irreps and operators are

(0, 0) → (0, 0)⊗ 0 → ⊗ (0, 0),

(15, 0) → (1, 0)⊗ 1 ⊕ (1, 0)⊗ 0 ⊕ (0, 0)⊗ 1 →
(1, 0)⊗ (π, 0) ⊕ (1, 0)⊗ (0, π) ⊕ (1, 0)⊗ (π, π) ⊕ (1, 0)⊗ (0, 0) ⊕

⊗ (π, 0) ⊕ ⊗ (0, π) ⊕ ⊗ (π, π). (C26)

Relating these irreps to the irreps of Eq. (A32),

⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, 0, 0, 0), 0]⋊ A−
0 : Oγ5⊗1(0, 0, 0), (C27)

⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, 0, 0, 0), 0]⋊ A+
0 : Oγ5⊗γ5γ0(0, 0, 0), (C28)

⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, π, π, π), π]⋊ A−
0 : Oγ5⊗γ0(0, 0, 0), (C29)

⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, π, π, π), 0]⋊ A+
0 : Oγ5⊗γ5(0, 0, 0), (C30)

(1, 0)⊗ (π, 0) ∼ (0, 0, 0)⋊ [(π, π, π, 0), π]⋊ A+
2 : Oγ5⊗γi(0, 0, 0), (C31)

(1, 0)⊗ (0, π) ∼ (0, 0, 0)⋊ [(0, 0, 0, π), 0]⋊ A−
2 : Oγ5⊗γ5γi(0, 0, 0), (C32)

(1, 0)⊗ (π, π) ∼ (0, 0, 0)⋊ [(π, 0, 0, π), π]⋊ A+
2 : Oγ5⊗γiγ0(0, 0, 0), (C33)

(1, 0)⊗ (0, 0) ∼ (0, 0, 0)⋊ [(0, π, π, 0), π]⋊ A−
2 : Oγ5⊗γiγj(0, 0, 0). (C34)

The (0, 0, 1) momentum subduction is given by

(0, 0, 0)⋊ [(0, 0, 0, 0), 0]⋊ A−
0 →

{
(0, 0, 1)⋊ [(0, 0, 0, 0), 0]⋊ A1 : Oγ5⊗1(0, 0, 1) (C35)
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(0, 0, 0)⋊ [(π, 0, 0, 0), 0]⋊ A+
0 →

{
(0, 0, 1)⋊ [(π, 0, 0, 0), 0]⋊ A0 : Oγ5⊗γ5γ0(0, 0, 1)

(C36)

(0, 0, 0)⋊ [(0, π, π, π), π]⋊ A−
0 →

{
(0, 0, 1)⋊ [(0, π, π, π), π]⋊ A1 : Oγ5⊗γ0(0, 0, 1) (C37)

(0, 0, 0)⋊ [(π, π, π, π), 0]⋊ A+
0 →

{
(0, 0, 1)⋊ [(π, π, π, π), 0]⋊ A0 : Oγ5⊗γ5(0, 0, 1) (C38)

(0, 0, 0)⋊ [(π, π, π, 0), π]⋊ A+
2 →

{
(0, 0, 1)⋊ [(π, 0, π, π), π]⋊ A2 : Oγ5⊗γi ̸=3(0, 0, 1)

(0, 0, 1)⋊ [(π, π, π, 0), π]⋊ A1 : Oγ5⊗γ3(0, 0, 1)

(C39)

(0, 0, 0)⋊ [(0, 0, 0, π), 0]⋊ A−
2 →

{
(0, 0, 1)⋊ [(0, 0, 0, π), 0]⋊ A0 : Oγ5⊗γ5γ3(0, 0, 1)

(0, 0, 1)⋊ [(0, 0, π, 0), 0]⋊ A2 : Oγ5⊗γ5γi̸=3(0, 0, 1)

(C40)

(0, 0, 0)⋊ [(π, 0, 0, π), π]⋊ A+
2 →

{
(0, 0, 1)⋊ [(π, 0, 0, π), π]⋊ A1 : Oγ5⊗γ3γ0(0, 0, 1)

(0, 0, 1)⋊ [(π, 0, π, 0), π]⋊ A3 : Oγ5⊗γi̸=3γ0(0, 0, 1)

(C41)

(0, 0, 0)⋊ [(0, π, π, 0), π]⋊ A−
2 →

{
(0, 0, 1)⋊ [(0, 0, π, π), π]⋊ A3 : Oγ5⊗γi̸=3γ3(0, 0, 1)

(0, 0, 1)⋊ [(0, π, π, 0), π]⋊ A0 : Oγ5⊗γi̸=3γj ̸=3(0, 0, 1)

(C42)

The (1, 1, 0) momentum momentum subduction is given by

(0, 0, 0)⋊ [(0, 0, 0, 0), 0]⋊ A−
0 →

{
(1, 1, 0)⋊ [(0, 0, 0, 0), 0]⋊ A1 : Oγ5⊗1(1, 1, 0) (C43)

(0, 0, 0)⋊ [(π, 0, 0, 0), 0]⋊ A+
0 →

{
(1, 1, 0)⋊ [(π, 0, 0, 0), 0]⋊ A0 : Oγ5⊗γ5γ0(1, 1, 0)

(C44)

(0, 0, 0)⋊ [(0, π, π, π), π]⋊ A−
0 →

{
(1, 1, 0)⋊ [(0, π, π, π), π]⋊ A1 : Oγ5⊗γ0(1, 1, 0) (C45)

(0, 0, 0)⋊ [(π, π, π, π), 0]⋊ A+
0 →

{
(1, 1, 0)⋊ [(π, π, π, π), 0]⋊ A0 : Oγ5⊗γ5(1, 1, 0) (C46)

(0, 0, 0)⋊ [(π, π, π, 0), π]⋊ A+
2 →

{
(1, 1, 0)⋊ [(π, 0, π, π), π]⋊ A1 : Oγ5⊗γi ̸=3(1, 1, 0)

(1, 1, 0)⋊ [(π, π, π, 0), π]⋊ A2 : Oγ5⊗γ3(1, 1, 0)

(C47)

(0, 0, 0)⋊ [(0, 0, 0, π), 0]⋊ A−
2 →

{
(1, 1, 0)⋊ [(0, 0, 0, π), 0]⋊ A3 : Oγ5⊗γ5γ3(1, 1, 0)

(1, 1, 0)⋊ [(0, 0, π, 0), 0]⋊ A0 : Oγ5⊗γ5γi ̸=3(1, 1, 0)

(C48)

(0, 0, 0)⋊ [(π, 0, 0, π), π]⋊ A+
2 →

{
(1, 1, 0)⋊ [(π, 0, 0, π), π]⋊ A2 : Oγ5⊗γ3γ0(1, 1, 0)

(1, 1, 0)⋊ [(π, 0, π, 0), π]⋊ A1 : Oγ5⊗γi ̸=3γ0(1, 1, 0)

(C49)

(0, 0, 0)⋊ [(0, π, π, 0), π]⋊ A−
2 →

{
(1, 1, 0)⋊ [(0, 0, π, π), π]⋊ A0 : Oγ5⊗γi ̸=3γ3(1, 1, 0)

(1, 1, 0)⋊ [(0, π, π, 0), π]⋊ A3 : Oγ5⊗γi ̸=3γj ̸=3(1, 1, 0)

(C50)
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The (1, 1, 1) momentum subduction is given by

(0, 0, 0)⋊ [(0, 0, 0, 0), 0]⋊ A−
0 →

{
(1, 1, 1)⋊ [(0, 0, 0, 0), 0]⋊ A1 : Oγ5⊗1(1, 1, 1) (C51)

(0, 0, 0)⋊ [(π, 0, 0, 0), 0]⋊ A+
0 →

{
(1, 1, 1)⋊ [(π, 0, 0, 0), 0]⋊ A0 : Oγ5⊗γ5γ0(1, 1, 1)

(C52)

(0, 0, 0)⋊ [(0, π, π, π), π]⋊ A−
0 →

{
(1, 1, 1)⋊ [(0, π, π, π), π]⋊ A1 : Oγ5⊗γ0(1, 1, 1) (C53)

(0, 0, 0)⋊ [(π, π, π, π), 0]⋊ A+
0 →

{
(1, 1, 1)⋊ [(π, π, π, π), 0]⋊ A0 : Oγ5⊗γ5(1, 1, 1) (C54)

(0, 0, 0)⋊ [(π, π, π, 0), π]⋊ A+
2 →

{
(1, 1, 1)⋊ [(π, 0, π, π), π]⋊ A1 : Oγ5⊗γi(1, 1, 1) (C55)

(0, 0, 0)⋊ [(0, 0, 0, π), 0]⋊ A−
2 →

{
(1, 1, 1)⋊ [(0, 0, 0, π), 0]⋊ A0 : Oγ5⊗γ5γi(1, 1, 1)

(C56)

(0, 0, 0)⋊ [(π, 0, 0, π), π]⋊ A+
2 →

{
(1, 1, 1)⋊ [(π, 0, 0, π), π]⋊ A1 : Oγ5⊗γiγ0(1, 1, 1)

(C57)

(0, 0, 0)⋊ [(0, π, π, 0), π]⋊ A−
2 →

{
(1, 1, 1)⋊ [(0, 0, π, π), π]⋊ A0 : Oγ5⊗γiγj(1, 1, 1)

(C58)

Appendix D: Staggered two-pion Clebsch-Gordan coefficients

In this Appendix, the Clebsch-Gordan coefficents (CGs) for the two cases of staggered
two-pion states which couple to the taste-singlet vector current are given. These are two-
pion states built out of single pion states, which are either one- or three-dimensional at
zero momentum. We only consider the case for momentum p⃗, pi = 0, 1 i.e the irreps and
operators described in Appendix C 2 (see Sec. III C for en explanation of this).

1. One-dimensional pion irreps

These irreps correspond to Eqs. (C27)–(C30). All these cases are equivalent and have
the same decomposition as appears with Wilson fermions. We use the pseudo-Goldstone
boson pion, Eq. (C30), for illustration. The case for one unit of momentum, (0, 0, 1), is
given in Sec. III A but we give the results again here in Table XVIII, along with the higher
momentum CGs, (1, 1, 0) and (1, 1, 1) in Tables XIX and XX, respectively.
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TABLE XVIII. Clebsch-Gordan table for (0, 0, 1)⋊ [(π, π, π, π), 0]⋊A0⊗ (0, 0, 1)⋊ [(π, π, π, π), π]⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5(1, 0, 0)⊗Oγ5⊗γ5(−1, 0, 0) 1√
2

0 0

Oγ5⊗γ5(−1, 0, 0)⊗Oγ5⊗γ5(1, 0, 0) − 1√
2

0 0

Oγ5⊗γ5(0, 1, 0)⊗Oγ5⊗γ5(0,−1, 0) 0 1√
2

0

Oγ5⊗γ5(0,−1, 0)⊗Oγ5⊗γ5(0, 1, 0) 0 − 1√
2

0

Oγ5⊗γ5(0, 0, 1)⊗Oγ5⊗γ5(0, 0,−1) 0 0 1√
2

Oγ5⊗γ5(0, 0,−1)⊗Oγ5⊗γ5(0, 0, 1) 0 0 − 1√
2

TABLE XIX. Clebsch-Gordan table for (1, 1, 0)⋊ [(π, π, π, π), 0]⋊A0 ⊗ (1, 1, 0)⋊ [(π, π, π, π), π]⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5(1, 1, 0)⊗Oγ5⊗γ5(1, 1, 0) 1√
8

1√
8

0

Oγ5⊗γ5(−1,−1, 0)⊗Oγ5⊗γ5(−1,−1, 0) − 1√
8

− 1√
8

0

Oγ5⊗γ5(−1, 1, 0)⊗Oγ5⊗γ5(−1, 1, 0) − 1√
8

1√
8

0

Oγ5⊗γ5(1,−1, 0)⊗Oγ5⊗γ5(1,−1, 0) 1√
8

− 1√
8

0

Oγ5⊗γ5(1, 0, 1)⊗Oγ5⊗γ5(1, 0, 1) 1√
8

0 1√
8

Oγ5⊗γ5(−1, 0,−1)⊗Oγ5⊗γ5(−1, 0,−1) − 1√
8

0 − 1√
8

Oγ5⊗γ5(−1, 0, 1)⊗Oγ5⊗γ5(−1, 0, 1) − 1√
8

0 1√
8

Oγ5⊗γ5(1, 0,−1)⊗Oγ5⊗γ5(1, 0,−1) 1√
8

0 − 1√
8

Oγ5⊗γ5(0, 1,−1)⊗Oγ5⊗γ5(0, 1,−1) 0 1√
8

− 1√
8

Oγ5⊗γ5(0,−1, 1)⊗Oγ5⊗γ5(0,−1, 1) 0 − 1√
8

1√
8

Oγ5⊗γ5(0, 1, 1)⊗Oγ5⊗γ5(0, 1, 1) 0 1√
8

1√
8

Oγ5⊗γ5(0,−1,−1)⊗Oγ5⊗γ5(0,−1,−1) 0 − 1√
8

− 1√
8
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TABLE XX. Clebsch-Gordan table for (1, 1, 1)⋊ [(π, π, π, π), 0]⋊A0 ⊗ (1, 1, 1)⋊ [(π, π, π, π), π]⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5(1, 1, 1)⊗Oγ5⊗γ5(1, 1, 1) 1√
8

1√
8

1√
8

Oγ5⊗γ5(−1,−1,−1)⊗Oγ5⊗γ5(−1,−1,−1) − 1√
8

− 1√
8

− 1√
8

Oγ5⊗γ5(−1, 1, 1)⊗Oγ5⊗γ5(−1, 1, 1) − 1√
8

1√
8

1√
8

Oγ5⊗γ5(1,−1,−1)⊗Oγ5⊗γ5(1,−1,−1) 1√
8

− 1√
8

− 1√
8

Oγ5⊗γ5(1,−1, 1)⊗Oγ5⊗γ5(1,−1, 1) 1√
8

− 1√
8

1√
8

Oγ5⊗γ5(−1, 1,−1)⊗Oγ5⊗γ5(−1, 1,−1) − 1√
8

1√
8

− 1√
8

Oγ5⊗γ5(1, 1,−1)⊗Oγ5⊗γ5(1, 1,−1) 1√
8

1√
8

− 1√
8

Oγ5⊗γ5(−1,−1, 1)⊗Oγ5⊗γ5(−1,−1, 1) − 1√
8

− 1√
8

1√
8
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2. Three-dimensional pion irreps

For the case of the irreps which are three-dimensional at zero momentum, Eqs. (C31)–
(C34), we use the taste-pseudo vector ‘one-link’ pion as the representative example. Again
we start with repeating the results from Sec. III A while including the one-dimensional
split irrep here before the higher momentum cases. The (0, 0, 1) momentum irreps and
operators are given in Table XXI for the one-dimensional case and Table XXII for the two-
dimensional case. For (1, 1, 0) momentum, the one- and two-dimensional irrep CGs are given
in Tables XXIII and XXIV respectively. Finally at (1, 1, 1), we have a restoration of the
three-dimensional symmetry and hence only set of CGs given in Table XXV. The (1, 1, 0)

TABLE XXI. Clebsch-Gordan table for (0, 0, 1)⋊ [(0, 0, 0, π), 0]⋊A0 ⊗ (0, 0, 1)⋊ [(0, 0, 0, π), π]⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5γ1(1, 0, 0)⊗Oγ5⊗γ5γ1(−1, 0, 0) 1√
4

0 0

Oγ5⊗γ5γ1(−1, 0, 0)⊗Oγ5⊗γ5γ1(1, 0, 0) − 1√
4

0 0

Oγ5⊗γ5γ2(0,−1, 0)⊗Oγ5⊗γ5γ2(0, 1, 0) 0 − 1√
4

0

Oγ5⊗γ5γ2(0, 1, 0)⊗Oγ5⊗γ5γ2(0,−1, 0) 0 1√
4

0

Oγ5⊗γ5γ3(0, 0, 1)⊗Oγ5⊗γ5γ3(0, 0,−1) 0 0 1√
4

Oγ5⊗γ5γ3(0, 0,−1)⊗Oγ5⊗γ5γ3(0, 0, 1) 0 0 − 1√
4

TABLE XXII. Clebsch-Gordan table for (0, 0, 1)⋊ [(0, 0, π, 0), 0]⋊A2 ⊗ (0, 0, 1)⋊ [(0, 0, π, 0), π]⋊
A2 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5γ2(1, 0, 0)⊗Oγ5⊗γ5γ2(−1, 0, 0) 1√
4

0 0

Oγ5⊗γ5γ3(1, 0, 0)⊗Oγ5⊗γ5γ3(−1, 0, 0) 1√
4

0 0

Oγ5⊗γ5γ2(−1, 0, 0)⊗Oγ5⊗γ5γ2(1, 0, 0) − 1√
4

0 0

Oγ5⊗γ5γ3(−1, 0, 0)⊗Oγ5⊗γ5γ3(1, 0, 0) − 1√
4

0 0

Oγ5⊗γ5γ3(0, 1, 0)⊗Oγ5⊗γ5γ3(0,−1, 0) 0 1√
4

0

Oγ5⊗γ5γ1(0, 1, 0)⊗Oγ5⊗γ5γ1(0,−1, 0) 0 1√
4

0

Oγ5⊗γ5γ3(0,−1, 0)⊗Oγ5⊗γ5γ3(0, 1, 0) 0 − 1√
4

0

Oγ5⊗γ5γ1(0,−1, 0)⊗Oγ5⊗γ5γ1(0, 1, 0) 0 − 1√
4

0

Oγ5⊗γ5γ1(0, 0, 1)⊗Oγ5⊗γ5γ1(0, 0,−1) 0 0 1√
4

Oγ5⊗γ5γ2(0, 0, 1)⊗Oγ5⊗γ5γ2(0, 0,−1) 0 0 1√
4

Oγ5⊗γ5γ1(0, 0,−1)⊗Oγ5⊗γ5γ1(0, 0, 1) 0 0 − 1√
4

Oγ5⊗γ5γ2(0, 0,−1)⊗Oγ5⊗γ5γ2(0, 0, 1) 0 0 − 1√
4

momentum irreps and operators are given in Table XXIII for the one-dimensional case and

56



Table XXIV for the two-dimensional case . The (1, 1, 1) momentum irreps and operators

TABLE XXIII. Clebsch-Gordan table for (1, 1, 0)⋊ [(0, 0, 0, π), 0]⋊A3 ⊗ (1, 1, 0)⋊ [(0, 0, 0, π), π]⋊
A3 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5γ3(1, 1, 0)⊗Oγ5⊗γ5γ3(1, 1, 0) 1√
8

1√
8

0

Oγ5⊗γ5γ3(−1,−1, 0)⊗Oγ5⊗γ5γ3(−1,−1, 0) − 1√
8

− 1√
8

0

Oγ5⊗γ5γ3(−1, 1, 0)⊗Oγ5⊗γ5γ3(−1, 1, 0) − 1√
8

1√
8

0

Oγ5⊗γ5γ3(1,−1, 0)⊗Oγ5⊗γ5γ3(1,−1, 0) 1√
8

− 1√
8

0

Oγ5⊗γ5γ2(1, 0, 1)⊗Oγ5⊗γ5γ2(1, 0, 1) 1√
8

0 1√
8

Oγ5⊗γ5γ2(−1, 0,−1)⊗Oγ5⊗γ5γ2(−1, 0,−1) − 1√
8

0 − 1√
8

Oγ5⊗γ5γ2(−1, 0, 1)⊗Oγ5⊗γ5γ2(−1, 0, 1) − 1√
8

0 1√
8

Oγ5⊗γ5γ2(1, 0,−1)⊗Oγ5⊗γ5γ2(1, 0,−1) 1√
8

0 − 1√
8

Oγ5⊗γ5γ1(0, 1,−1)⊗Oγ5⊗γ5γ1(0, 1,−1) 0 1√
8

− 1√
8

Oγ5⊗γ5γ1(0,−1, 1)⊗Oγ5⊗γ5γ1(0,−1, 1) 0 − 1√
8

1√
8

Oγ5⊗γ5γ1(0, 1, 1)⊗Oγ5⊗γ5γ1(0, 1, 1) 0 1√
8

1√
8

Oγ5⊗γ5γ1(0,−1,−1)⊗Oγ5⊗γ5γ1(0,−1,−1) 0 − 1√
8

− 1√
8

are given in Table XXV for the three-dimensional case.
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TABLE XXIV. Clebsch-Gordan table for (1, 1, 0)⋊ [(0, 0, π, 0), 0]⋊A0 ⊗ (1, 1, 0)⋊ [(0, 0, π, 0), π]⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5γ1(1, 1, 0)⊗Oγ5⊗γ5γ1(−1,−1, 0) 1
4

1
4 0

Oγ5⊗γ5γ2(1, 1, 0)⊗Oγ5⊗γ5γ2(−1,−1, 0) 1
4

1
4 0

Oγ5⊗γ5γ1(−1,−1, 0)⊗Oγ5⊗γ5γ1(1, 1, 0) −1
4 −1

4 0

Oγ5⊗γ5γ2(−1,−1, 0)⊗Oγ5⊗γ5γ2(1, 1, 0) −1
4 −1

4 0

Oγ5⊗γ5γ1(−1, 1, 0)⊗Oγ5⊗γ5γ1(1,−1, 0) −1
4

1
4 0

Oγ5⊗γ5γ2(−1, 1, 0)⊗Oγ5⊗γ5γ2(1,−1, 0) −1
4

1
4 0

Oγ5⊗γ5γ1(1,−1, 0)⊗Oγ5⊗γ5γ1(−1, 1, 0) 1
4 −1

4 0

Oγ5⊗γ5γ2(1,−1, 0)⊗Oγ5⊗γ5γ2(−1, 1, 0) 1
4 −1

4 0

Oγ5⊗γ5γ2(1, 0, 1)⊗Oγ5⊗γ5γ2(−1, 0,−1) 1
4 0 1

4

Oγ5⊗γ5γ3(1, 0, 1)⊗Oγ5⊗γ5γ3(−1, 0,−1) 1
4 0 1

4

Oγ5⊗γ5γ2(−1, 0,−1)⊗Oγ5⊗γ5γ2(1, 0, 1) −1
4 0 −1

4

Oγ5⊗γ5γ3(−1, 0,−1)⊗Oγ5⊗γ5γ3(1, 0, 1) −1
4 0 −1

4

Oγ5⊗γ5γ2(−1, 0, 1)⊗Oγ5⊗γ5γ2(1, 0,−1) −1
4 0 1

4

Oγ5⊗γ5γ3(−1, 0, 1)⊗Oγ5⊗γ5γ3(1, 0,−1) −1
4 0 1

4

Oγ5⊗γ5γ2(1, 0,−1)⊗Oγ5⊗γ5γ2(−1, 0, 1) 1
4 0 −1

4

Oγ5⊗γ5γ3(1, 0,−1)⊗Oγ5⊗γ5γ3(−1, 0, 1) 1
4 0 −1

4

Oγ5⊗γ5γ3(0, 1, 1)⊗Oγ5⊗γ5γ3(0,−1,−1) 0 1
4

1
4

Oγ5⊗γ5γ1(0, 1, 1)⊗Oγ5⊗γ5γ1(0,−1,−1) 0 1
4

1
4

Oγ5⊗γ5γ3(0,−1,−1)⊗Oγ5⊗γ5γ3(0, 1, 1) 0 −1
4 −1

4

Oγ5⊗γ5γ1(0,−1,−1)⊗Oγ5⊗γ5γ1(0, 1, 1) 0 −1
4 −1

4

Oγ5⊗γ5γ3(0, 1,−1)⊗Oγ5⊗γ5γ3(0,−1, 1) 0 1
4 −1

4

Oγ5⊗γ5γ1(0, 1,−1)⊗Oγ5⊗γ5γ1(0,−1, 1) 0 1
4 −1

4

Oγ5⊗γ5γ3(0,−1, 1)⊗Oγ5⊗γ5γ3(0, 1,−1) 0 −1
4

1
4

Oγ5⊗γ5γ1(0,−1, 1)⊗Oγ5⊗γ5γ1(0, 1,−1) 0 −1
4

1
4
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TABLE XXV. Clebsch-Gordan table for (1, 1, 1)⋊ [(0, 0, 0, π), 0]⋊A0 ⊗ (1, 1, 1)⋊ [(0, 0, 0, π), π]⋊
A0 = (0, 0, 0) ⋊ [(0, 0, 0, 0), π] ⋊ T−

0 ⊕ · · · . The irreps in the rows and columns are labeled by the

corresponding operators.

Tensor product row Oγ1⊗1(0, 0, 0) Oγ2⊗1(0, 0, 0) Oγ3⊗1(0, 0, 0)

Oγ5⊗γ5γ1(1, 1, 1)⊗Oγ5⊗γ5γ1(−1,−1,−1) 1
4

1
4
√
2

1
4
√
2

Oγ5⊗γ5γ2(1, 1, 1)⊗Oγ5⊗γ5γ2(−1,−1,−1) 1
4
√
2

1
4

1
4
√
2

Oγ5⊗γ5γ3(1, 1, 1) ⊗ Oγ5⊗γ5γ3(−1,−1,−1) 1
4
√
2

1
4
√
2

1
4

Oγ5⊗γ5γ1(−1,−1,−1)⊗Oγ5⊗γ5γ1(1, 1, 1) −1
4 − 1

4
√
2

− 1
4
√
2

Oγ5⊗γ5γ2(−1,−1,−1)⊗Oγ5⊗γ5γ2(1, 1, 1) − 1
4
√
2

−1
4 − 1

4
√
2

Oγ5⊗γ5γ3(−1,−1,−1)⊗Oγ5⊗γ5γ3(1, 1, 1) − 1
4
√
2

− 1
4
√
2

−1
4

Oγ5⊗γ5γ1(−1, 1, 1)⊗Oγ5⊗γ5γ1(1,−1,−1) −1
4

1
4
√
2

1
4
√
2

Oγ5⊗γ5γ2(−1, 1, 1)⊗Oγ5⊗γ5γ2(1,−1,−1) − 1
4
√
2

1
4

1
4
√
2

Oγ5⊗γ5γ3(−1, 1, 1)⊗Oγ5⊗γ5γ3(1,−1,−1) − 1
4
√
2

1
4
√
2

1
4

Oγ5⊗γ5γ1(1,−1,−1)⊗Oγ5⊗γ5γ1(−1, 1, 1) 1
4 − 1

4
√
2

− 1
4
√
2

Oγ5⊗γ5γ2(1,−1,−1)⊗Oγ5⊗γ5γ2(−1, 1, 1) 1
4
√
2

−1
4 − 1

4
√
2

Oγ5⊗γ5γ3(1,−1,−1)⊗Oγ5⊗γ5γ3(−1, 1, 1) 1
4
√
2

− 1
4
√
2

−1
4

Oγ5⊗γ5γ1(1,−1, 1)⊗Oγ5⊗γ5γ1(−1, 1,−1) 1
4 − 1

4
√
2

1
4
√
2

Oγ5⊗γ5γ2(1,−1, 1)⊗Oγ5⊗γ5γ2(−1, 1,−1) 1
4
√
2

−1
4

1
4
√
2

Oγ5⊗γ5γ3(1,−1, 1)⊗Oγ5⊗γ5γ3(−1, 1,−1) 1
4
√
2

− 1
4
√
2

1
4

Oγ5⊗γ5γ1(−1, 1,−1)⊗Oγ5⊗γ5γ1(1,−1, 1) −1
4

1
4
√
2

− 1
4
√
2

Oγ5⊗γ5γ2(−1, 1,−1)⊗Oγ5⊗γ5γ2(1,−1, 1) − 1
4
√
2

1
4 − 1

4
√
2

Oγ5⊗γ5γ3(−1, 1,−1)⊗Oγ5⊗γ5γ3(1,−1, 1) − 1
4
√
2

1
4
√
2

−1
4

Oγ5⊗γ5γ1(1, 1,−1)⊗Oγ5⊗γ5γ1(−1,−1, 1) 1
4

1
4
√
2

− 1
4
√
2

Oγ5⊗γ5γ2(1, 1,−1)⊗Oγ5⊗γ5γ2(−1,−1, 1) 1
4
√
2

1
4 − 1

4
√
2

Oγ5⊗γ5γ3(1, 1,−1)⊗Oγ5⊗γ5γ3(−1,−1, 1) 1
4
√
2

1
4
√
2

−1
4

Oγ5⊗γ5γ1(−1,−1, 1)⊗Oγ5⊗γ5γ1(1, 1,−1) −1
4 − 1

4
√
2

1
4
√
2

Oγ5⊗γ5γ2(−1,−1, 1)⊗Oγ5⊗γ5γ2(1, 1,−1) − 1
4
√
2

−1
4

1
4
√
2

Oγ5⊗γ5γ3(−1,−1, 1)⊗Oγ5⊗γ5γ3(1, 1,−1) − 1
4
√
2

− 1
4
√
2

1
4
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Appendix E: Rooting and staggered observables

In quantum field theory, observables can be obtained through taking functional derivatives
of a generating functional. For the case of staggered fermions, the fermion determinant,
detDf [U ], describes four tastes of staggered fermions for each flavor. This is addressed by
taking the fourth root of the fermion determinant. The rooted-staggered path integral is
then

Z =

∫
D[U ]

∏
f

[detDf [U ]]
1
4 e−SG . (E1)

Rooting results in additional factors of 1
4
that need to be included when computing physical

observables. As illustration, we obtain the vector current two-point correlation function
using the staggered action, Eq. (A6). Coupling to a background photon field Cµ(n), we
have,

SF [χf , χ̄f , U, C] = a4
∑
f

∑
n,m∈Λ

χ̄f (n)Df [U,C](n|m)χf (m), (E2)

Df [U,C](n|m) =
∑
µ

ηµ(n)

[
Uµ(n)e

iaQfCµ(n)δm,n+µ̂

2a
− H.c.

]
+mδn,m, (E3)

where H.c.is the Hermitian conjugate. The generating functional is

Z[C] =

∫
D[U ]

∏
f

detDf [U,C] e
−SG . (E4)

The vector current two-point function is obtained by taking the second derivative with
respect to the source field, giving

δ2 logZ[C]

δCµ(x)δCµ(x′)

∣∣∣∣
C=0

=
1

Z[C(x′)]

δ2Z[C]

δCµ(x)δCµ(x′)

∣∣∣∣
C=0

− 1

Z2[C(x′)]

δZ[C]

δCµ(x)

∣∣∣∣
C=0

(E5)

The second term on the right-hand side is zero by the lattice rotation-reflection symmetries.
Then using

detM = exp tr logM, (E6)

first without rooting, gives

1

Z[C(x′)]

δ2Z[C]

δCµ(x)δCµ(x′)
=

1

Z[C(x′)]

δ

δCµ(x)

∫
D[U ]e−SG

∏
f

detDf [U,C]

× tr

[∑
f

D−1
f [U,C](x′) iQfηµ(x

′)

[
Uµ(x

′)eiaQfCµ(x′)δm,x′+µ̂

2
− h.c.

]]
(E7)

Taking the second derivative and setting C = 0 gives

=

∫
D[U ]e−SG

∏
f

detDf [U,C]

{
tr
[∑

f

D−1
f [U,C](x)Qfj

µ(x)D−1
f [U,C](x′)Qfj

µ(x′)
]
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− tr
[∑

f ′

D−1
f ′ [U,C](x)Q

′
fj

µ(x)
]
× tr

[∑
f

D−1
f [U,C](x′)Qfj

µ(x′)
]}
(E8)

where the lattice current operator, jµ(x), was introduced

Jµ(x) ≡ 1

2
[ηµ(x)Uµ(x)δm,x+µ̂ − h.c.] (E9)

The trace on the first line Eq. (E8) is the ‘connected’ Wick contraction while the product
of the two traces on the second line is the ‘disconnected’ contraction, corresponding to the
following two diagrams,

∑
f

Cµ

qf

Cν

q̄f

−
∑
f,f ′

Cµ

qf

q̄f

Cµ

qf ′

q̄f ′

, (E10)

where the × implies the background fields are set to zero as above. The effect of the 4 tastes
is to add three additional quark loops for each flavor.

Re-computing Eq. (E8) for the case of a rooted determinant results in

=

∫
D[U ]e−SG

∏
f

[detDf [U,C]]
1
4

{
1

4
tr
[∑

f

D−1
f [U,C](x)QfJ

µ(x)D−1
f [U,C](x′)QfJ

µ(x′)
]

− 1

16
tr
[∑

f ′

D−1
f ′ [U,C](x)Q

′
fJ

µ(x)
]
× tr

[∑
f

D−1
f [U,C](x′)QfJ

µ(x′)
]}

.

(E11)

There is now a factor of 1
4
in the connected component and a factor of 1

16
in the discon-

nected component. From this and Eq. (E10), one can infer the diagrammatic rule that for
every fermion loop in a staggered Wick contraction, a factor of 1

4
is added to obtain the

corresponding physical observable.

Appendix F: Time-split two-pion operators

1. Operator definitions

As mentioned in Sec. III B, the correlation functions used in this work are generated
with time-split two-pion operators. This modification, introduced in Ref. [54] to address
possible Fierz rearrangement of pions on the same time slice, is not actually necessary with
the random-wall sources used here.17 Here, for completeness, we describe the additional
considerations these operators require.

17 This was not realized at the time of data generation.
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The time-split operators, which are non-Hermitian to start with, are defined as

OTS
ππ (⃗0, t) ≡ π+

⊗γξ
(p, t)π−

⊗γξ
(−p, t+ 1)− π+

⊗γξ
(−p, t)π−

⊗γξ
(p, t+ 1), (F1)

OTS †
ππ (⃗0, t) ≡ π+

⊗γξ
(p, t+ 1)π−

⊗γξ
(−p, t)− π+

⊗γξ
(−p, t+ 1)π−(p, t), (F2)

using the notation of Secs. III A and III B on the right-hand side. To make apparent the
effects of these operators on the correlation functions described in Sec. III B, it is useful to
pull out the time dependence,

OTS
ππ (⃗0, t) ≡ eHtOππ (⃗0)e

−H(t+1), (F3)

OTS †
ππ (⃗0, t) ≡ eH(t+1)Oππ (⃗0)e

−Ht, (F4)

with

Oππ (⃗0p⃗) = π+(p⃗)π−(−p⃗)− π+(−p⃗)π−(p⃗), (F5)

now Hermitian.

2. Correlation functions

The two-point function, Eq. (2.10), is unchanged. The C(t)ππ→ρ three-point function,
Eq. (3.27), is modified as

C(t)ππ→ρ =
1

3

∑
i

〈
ρ0i (⃗0, t)OTS †

ππ (⃗0p⃗, 0)
〉
=
∑
n

⟨0|ρ0|n⟩⟨n|O⊗γξ
ππ |0⟩e−En(t−1)

= 4 · 1
2
· 1
4
· 1

N
9/2
S

· 1
3
×
∑
i

γ5 ⊗ γξ

(p⃗, 0)

γ5 ⊗ γξ

(−p⃗, 1)

γi ⊗ 1

(⃗0, t)

D−1
l

D−1
lD−1

l
, (F6)

=
1

6N
9/2
S

∑
i,n⃗0,n⃗1,n⃗2,{±δj}

φγ5⊗γξ(n0)φ
γ5⊗γξ(n1)φ

γi⊗1(n2)e
ip⃗·(n⃗0−n⃗1)

× tr
[
D−1

l (n⃗0 + δγ5⊗γξ , 0|n⃗1, 1)D
−1
l (n⃗1 + δγ5⊗γξ , 1|n⃗2, t)D

−1
l (n⃗2 + δγi⊗1, t|n⃗0, 0)

]
. (F7)

with the same normalizations defined in Sec. III B 2. The ππ → ππ four point function
becomes

C(t)ππ→ππ =
〈
OTS

ππ (⃗0p⃗, t)OTS †
ππ (⃗0p⃗, 0)

〉
=
∑
n

⟨0|OTS,⊗γξ1
ππ |n⟩⟨n|OTS,⊗γξ2

ππ |0⟩e−Ent
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= −4 · 1
4
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 1)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t+ 1)

+ 4 · 1
4
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 1)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t+ 1)

+ 2 · 1

16
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 1)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t+ 1)

− 2 · 1

16
· 1

N6
S

×

γ5 ⊗ γξ1

(p⃗, 0)

γ5 ⊗ γξ1

(−p⃗, 1)

γ5 ⊗ γξ2

(−p⃗, t)

γ5 ⊗ γξ2

(p⃗, t+ 1)

,

(F8)

=
1

N6
S

∑
n⃗0,n⃗1,n⃗2,n⃗3,{±δj}

φγ5⊗γξ1 (n0)φ
γ5⊗γξ1 (n1)φ

γ5⊗γξ2 (n2)φ
γ5⊗γξ2 (n3)e

ip⃗·(n⃗0−n⃗1+n⃗2−n⃗3)
[

− tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗1, 1)D
−1
l (n⃗1 + δγ5⊗γξ1 , 1|n⃗2, t)

×D−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗3, t+ 1)D−1

l (n⃗3 + δγ5⊗γξ2 , t+ 1|n⃗0, 0)
]

+ tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗1, 1)D
−1
l (n⃗1 + δγ5⊗γξ1 , 1|n⃗3, t+ 1)

×D−1
l (n⃗3 + δγ5⊗γξ2 , t+ 1|n⃗2, t)D

−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗0, 0)

]
+

1

8
tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗2, t)D
−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗0, 0)

]
× tr

[
D−1

l (n⃗1 + δγ5⊗γξ1 , 1|n⃗3, t+ 1)D−1
l (n⃗3 + δγ5⊗γξ2 , t+ 1|n⃗1, 1)

]
− 1

8
tr
[
D−1

l (n⃗0 + δγ5⊗γξ1 , 0|n⃗3, t+ 1)D−1
l (n⃗3 + δγ5⊗γξ2 , t+ 1|n⃗0, 0)

]
× tr

[
D−1

l (n⃗1 + δγ5⊗γξ1 , 1|n⃗2, t)D
−1
l (n⃗2 + δγ5⊗γξ2 , t|n⃗1, 1)

] ]
. (F9)
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