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We study the behavior of the vacuum in Euclidean dynamical triangulations (EDT). Algorith-
mic improvements and better lattice spacing determinations allow us to test the properties of the
emergent de Sitter geometries of our simulations to higher precision than previously possible. Al-
though the agreement with de Sitter is good, the improved precision reveals deviations that can
be interpreted as non-trivial vacuum dynamics, well-described by a cosmological constant that runs
with scale. The simulations show that the dominant running is quadratic and that the scale can
be identified with the Hubble rate. Several key cross-checks support this picture, including con-
sistent results across multiple lattice spacings and the fact that covariant energy conservation is
maintained. The parameters of the running are fully determined by simulations, enabling predic-
tions when extrapolated to the scales relevant for our universe. This leads to a model for dark
energy that is compatible with current observations, but which predicts deviations from ΛCDM at
the O(10−3) level in cosmological observables that could be tested with future improvements in
precision measurements.

I. INTRODUCTION

The formulation of quantum gravity is one of the great
outstanding problems in theoretical physics. The most
straightforward quantization of general relativity as a
field theory using a small coupling expansion is not renor-
malizable by power counting, and explicit calculation
shows that there are counterterms at two-loop order in
pure gravity [1] and at one-loop order when including
matter fields [2]. Although the theory can be viewed as
a low energy effective theory [3], there is a loss of predic-
tive power due to the need to introduce new parameters
at each order in the perturbative expansion.

Another problem with gravity is the difficulty explain-
ing the smallness of the vacuum energy. The vacuum
energy should see contributions from quantum fluctua-
tions of all fields in a theory, including graviton degrees of
freedom, and these should contribute at scales up to the
Planck scale, absent any special symmetries. Although
this leads to an unobservable overall shift in the energy of
a flat-space quantum field theory, gravity should be sen-
sitive to all energy sources, including the vacuum energy.
A bare cosmological constant would have to be extraor-
dinarily fine-tuned to cancel these vacuum fluctuations
if it is to produce the very small renormalized cosmolog-
ical constant observed in our universe [4]. This is the
cosmological constant fine-tuning problem.
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Weinberg introduced the asymptotic safety scenario [5]
as a possible solution to the first problem, where a quan-
tum field theory of general relativity, possibly supple-
mented by higher curvature operators, would be renor-
malizable nonperturbatively. This scenario would be re-
alized if there existed a non-trivial fixed point, with a
finite-dimensional ultraviolet critical surface of trajecto-
ries attracted to the fixed point at short distances. Inves-
tigations of this scenario require nonperturbative meth-
ods, since the couplings at the fixed point may not be
small. Efforts in this direction have mainly included func-
tional renormalization group [6–11] and lattice [12–15]
methods. This work focuses on Euclidean dynamical tri-
angulations (EDT), one of the first attempts at a lattice
formulation of gravity [16, 17]. In order to successfully
realize the asymptotic safety scenario, the phase diagram
of EDT must have a continuous phase transition, the ap-
proach to which would define a continuum limit. The
physics of the universality class associated with the phase
transition must also lead to general relativity in the clas-
sical limit if it is to reproduce our world. A final require-
ment for any successful theory of gravity is that it must
lead to predictions beyond the classical theory that can
be tested against observations.

Recent simulations of EDT suggest that it has a semi-
classical limit consistent with general relativity [15, 18,
19]. It was shown that the fine-tuning of a parameter
associated with a local measure term [20] is necessary to
recover physical geometries, and a prescription for per-
forming this tuning and for taking a continuum limit was
suggested [15]. Evidence for the emergence of de Sitter
space in EDT was presented in Refs. [15, 18, 19], where
it was shown that the global Hausdorff dimension is com-
patible with four and that the agreement with the classi-

ar
X

iv
:2

40
8.

08
96

3v
1 

 [
he

p-
la

t]
  1

6 
A

ug
 2

02
4

FERMILAB-PUB-24-0519-T

mailto:mdai07@syr.edu
mailto:wafreema@syr.edu
mailto:jwlaiho@syr.edu
mailto:mschiffer@perimeterinstitute.ca
mailto:jfunmuthyockey@gmail.com


2

cal de Sitter solution improves as the lattice spacing gets
smaller. Ref. [21] showed that the Euclidean partition
function is dominated by the de Sitter instanton, and us-
ing a saddle-point approximation, used this to determine
Newton’s constant. This sets the Planck length in lat-
tice units, thus determining the absolute lattice spacing
of the simulated ensembles. Calculations with quenched
matter, including scalars [22] and Kähler-Dirac fermions
[23], are consistent with the expectations for gravitational
interactions of matter fields.

Although there is no obvious barrier to taking the con-
tinuum limit in EDT with the appropriate tuning (other
than the practical issues confronting a numerical simu-
lation), more work is needed. To this end, Ref. [19] in-
troduced a new rejection free algorithm that leads to a
significant speedup of the simulations in the region of the
phase diagram where finer lattices are expected. Ref. [19]
also provided a first look at the new, finer ensembles that
became feasible to generate using the new algorithm. In
this work we turn to a detailed study of these new en-
sembles. We find that some of our previous methods
for determining the lattice spacing within EDT lead to
ambiguous results on our new ensembles, which makes
these methods insufficient for meeting our target preci-
sion. In previous work [15, 21], a diffusion process on the
geometries was used to set the relative lattice spacing
and to determine the ratio of the dual and direct lat-
tice spacings. Despite the fact that the direct and dual
spacings are short-distance quantities, their ratio is fixed
by the long-distance emergent properties of the geome-
try. We show that this ratio can be computed in multiple
ways and that the good agreement between these deter-
minations gives confidence both in the results and in the
assumptions that go into the determination.

The machinery introduced here and in Ref. [19] thus
enables a strong test of our simulation results against
expectations from the semiclassical de Sitter solution.
This new precision allows us to show that despite the
good overall agreement with this picture, there are de-
viations from semiclassical de Sitter that can be associ-
ated with nontrivial vacuum dynamics. This dynamics is
well-described by a power-law running of the cosmolog-
ical constant, where the renormalization scale is associ-
ated with the Hubble scale. This coincides with one of
the simplest of a family of running vacuum models stud-
ied by Solà and collaborators [24–28]. These models have
been compared to observations, thus constraining the free
parameters of the models and testing whether the new
physics implied by these models can resolve the emerg-
ing tensions in observational cosmology [27, 29]. We are
able to turn this around by fitting lattice data directly
to a specific running vacuum model, thus determining
the free parameters of the model from first principles via
our calculations. We find that only one parameter, a di-
mensionless coupling, is compatible with a nonzero value.
The evidence for this parameter being different from zero
is compelling, with high statistical significance and good
agreement across four lattice spacings, making it unlikely

that this effect is merely a lattice artifact.

Remarkably, the model selected by our lattice calcu-
lation is compatible with covariant energy conservation,
which is itself a consequence of diffeomorphism invari-
ance. The sign of the effect seen here also ensures that
it does not violate the null-energy condition. There are
strong constraints on theories that are inconsistent with
either of these conditions [30–32], so the fact that our lat-
tice result does not run afoul of them is a significant point
in its favor. Although our results are found on lattices
that are no larger than several Planck volumes, it is inter-
esting to ask what would happen if the model singled out
by this work was assumed to hold throughout cosmic his-
tory. One consequence is that the running of the vacuum
energy would lead to a large vacuum energy density in
the early universe compared to the current era. It turns
out that the computed size of the coupling of the model
ensures that the effects of the vacuum on the evolution
of the universe remain subdominant throughout cosmic
history, thus making it compatible with present observa-
tional bounds. Nonetheless, the corrections to standard
cosmology would not be negligible, with the effects of the
running vacuum giving rise to deviations from the ΛCDM
model at the part-per-mil level across many cosmological
observables, including the dark energy equation of state.

This paper is organized as follows. In Section II we
review the EDT formulation and discuss the details of
the simulations. In Section III we introduce two meth-
ods for determining the ratio of the direct to dual lat-
tice spacing using the classical de Sitter solution. Details
and results from our numerical analysis of this ratio are
presented. We also use the semiclassical approximation,
where the de Sitter instanton dominates the Euclidean
partition function, to extract Newton’s constant at each
of our four lattice spacings, thus fixing the lattice scale
in terms of the Planck scale. In Section IV we show that
the emergent behavior of the EDT geometries is consis-
tent with a cosmological constant that exhibits a power
law running with scale. We use our lattice calculation
to constrain this behavior, to provide a number of non-
trivial cross-checks, and to determine the parameters of
the running. Subsection IVA provides an introduction
to the running vacuum model that we consider, while
subsections IV B, IVC, IV D, and IV E give an in depth
treatment of the numerical analysis used to constrain the
parameters of this model. Subsection IV F summarizes
the model and provides the final parameter values that
we obtain from our calculation. In Section V we discuss
the implications of the running vacuum model picked out
by EDT for observational cosmology. We conclude in
Section VI.
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II. LATTICE FORMULATION

A. Euclidean Dynamical Triangulations

The Euclidean quantum gravity partition function is
formally given by a path integral over all geometries

ZE =

∫
D[g]e−SEH [g], (1)

where the Euclidean Einstein-Hilbert action is

SEH = − 1

16πG

∫
d4x

√
g(R− 2Λ), (2)

with R the Ricci curvature scalar, g the determinant of
the metric tensor, G Newton’s constant, and Λ the cos-
mological constant.

The path integral of dynamical triangulations is for-
mulated directly as a sum over geometries, without the
need for gauge fixing or the introduction of a metric.
The dynamical triangulations approach is based on the
conjecture that the path integral for Euclidean gravity is
given by the partition function [17, 33]

ZE =
∑

T

1

CT




N2∏

j=1

O(tj)
β


 e−SER (3)

where CT is a symmetry factor that divides out the num-
ber of equivalent ways of labeling the vertices in the
triangulation T . The term in brackets in Eq. (19) is a
nonuniform measure term [20, 33], where the product is
over all triangles, and O(tj) is the order of triangle j,
i.e. the number of four-simplices to which the triangle
belongs. This corresponds in the continuum to a nonuni-
form weighting of the measure in Eq. (1) by

∏
x

√
gβ ,

where we leave β an adjustable parameter in the simula-
tions.

In four dimensions the discretized version of the
Einstein-Hilbert action is the Einstein-Regge action [34]

SE = −κ

N2∑

j=1

V2δj + λ

N4∑

j=1

V4, (4)

where δj = 2π − O(tj) arccos(1/4) is the deficit angle
around a triangular hinge tj , with O(tj) the number of
four-simplices meeting at the hinge, κ = (8πG)

−1, λ =
κΛ, and the volume of a d-simplex is

Vd =

√
d+ 1

d!
√
2d

adlat, (5)

where the equilateral d-simplex has a side of length alat.
After performing the sums in Eq. (4) one finds

SE = −
√
3

2
πκN2 +N4

(
κ
5
√
3

2
arccos

1

4
+

√
5

96
λ

)
, (6)

where Ni is the number of simplices of dimension i. We
rewrite the Einstein-Regge action in the simple form

SER = −κ2N2 + κ4N4, (7)

introducing the parameters κ4 and κ2 in place of κ and
λ for convenience in the numerical simulations.

B. Details of the simulations

Geometries are constructed by gluing together four-
simplices along their (4−1)-dimensional faces. The four-
simplices are equilateral, with fixed edge length alat. The
set of all four-geometries is approximated by gluing to-
gether four-simplices, and the dynamics is encoded in
the connectivity of the simplices. We work with a set
of degenerate triangulations in which the combinatorial
manifold constraints are relaxed. The set of degener-
ate triangulations is larger than that of combinatorial
triangulations, and the degeneracy allows distinct four-
simplices to share the same 5 distinct vertex labels [35].
It was shown that the finite size effects of degenerate
triangulations are a factor of ∼10 smaller than those of
combinatorial triangulations [35], giving it some advan-
tages over combinatorial triangulations. A comparison
between the two approaches shows no essential difference
in the phase diagram between degenerate and combina-
torial triangulations in four dimensions [36, 37].

We use Markov Chain Monte Carlo methods to eval-
uate the partition function in Eq. (3). In particular,
we use the new rejection free algorithm introduced in
Ref. [19], which is tailored for EDT simulations. This
algorithm mimics the Metropolis-Hastings algorithm in
that the partition function is sampled using a Markov
chain constructed from a series of local moves, but the
moves are always accepted, with a weight that is used
to reconstruct the proper distribution. This has allowed
us to push to finer lattice spacings than were previously
accessible, since the region of the phase diagram that
corresponds to finer lattice spacings is characterized by
a very low Metropolis acceptance rate. This has led to
a speedup of one to two orders of magnitude compared
to standard Metropolis in the relevant part of the phase
diagram. Thus, almost all of the ensembles used in this
work have been generated with the new rejection free
algorithm.

The simulations are done at approximately fixed lattice
four-volumes. The local moves that evolve the lattices in
Monte Carlo time are the same Pachner moves [38] that
are used in the standard Metropolis-Hastings algorithm.
The Pachner moves are topology preserving, making it
straightforward to restrict the sum over geometries to
those with fixed topology. In this and previous works
[15, 19] the topology is fixed to S4. The Pachner moves
require the volume to vary in order for them to be er-
godic, though in practice the volume fluctuations about
the target four-volume are constrained to be small. This
is done by introducing a volume preserving term in the
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Figure 1: Schematic of the phase diagram as a function
of κ2 and β.

action δλ|Nf
4 −N4|, which keeps the four-volume close to

a fiducial value Nf
4 . In principle one should take the limit

in which δλ goes to zero, but setting it too small leads to
large volume fluctuations and long autocorrelation times.
We choose δλ sufficiently large so that it does not lead
to very long simulation times and sufficiently small that
it does not lead to significant systematic errors; in this
work we take δλ = 0.04. Once the volume is specified,
the parameter κ4 is constrained to a particular value, as
discussed in the following section. The other parameters,
κ2 and β, form a two-dimensional parameter space for the
phase diagram in which to search for a fixed point.

C. The phase diagram and recovering physical
results

The phase diagram for this model has been studied in
previous work [15, 19, 37], and a schematic is shown in
Fig. 1. There are two unphysical phases, the collapsed
phase and the branched polymer phase, which were iden-
tified already in early EDT simulations [16, 17, 39–42].
The solid line AB is a first order line that separates the
two phases [36, 37, 43–45]. The phases are not smooth,
with emergent fractal dimensions that differ from four.
One useful definition of fractal dimension is the Haus-
dorff dimension, which is a measure of geometry and is
defined by the scaling of the volume of a sphere with its
radius. The branched polymer phase has Hausdorff di-
mension 2, while the collapsed phase has a large dimen-
sion that may diverge in the infinite volume limit. The
crinkled region and the collapsed phase do not appear

to be distinct phases; rather the crinkled region appears
to be connected to the collapsed phase by an analytic
crossover. The crinkled region requires large volumes to
see the characteristic behavior of the collapsed phase,
suggesting that it is a part of the collapsed phase with
large finite-size effects [36, 37].

In the EDT formulation of gravity, one must tune to
close to the first-order line in order to recover semiclas-
sical physics [15]. This tuning was originally motivated
by an analogy to lattice QCD with Wilson fermions [46],
where one must tune the quark mass parameter to a crit-
ical value in order to take the zero-mass limit. At the
critical mass value of Wilson fermions there is a first-
order phase transition (when using Symanzik improved
lattice QCD actions [47]), and this softens to a continu-
ous phase transition as one follows the first order line to
zero gauge coupling, allowing the continuum limit to be
taken. Ref. [15] showed that similar behavior is seen in
EDT when one applies an analogous prescription. Thus,
tuning to the first-order transition line of EDT is needed
to recover physical, semiclassical behavior, and follow-
ing that line out to large, possibly infinite κ2, is needed
to approach the continuum limit. The reason this tun-
ing is necessary in EDT is still under debate. In lattice
QCD the need for the fine-tuning is well-understood to
be due to the lattice regulator breaking the chiral sym-
metry of the continuum fermion action, thus requiring a
fine-tuning of the bare fermion mass term in the lattice
action. There are still remnants of that explicit symme-
try breaking at finite lattice spacing, and chiral symmetry
is only fully restored in the continuum limit.

Reference [15] argued that the analogy to QCD can
be taken further and that the symmetry that is broken
by the regulator in the case of EDT is continuum dif-
feomorphism invariance, where a fine-tuning of the local
measure term is needed to recover the correct continuum
theory. Further evidence that this is the case is provided
by the need to perform a subtraction in the bare cou-
plings in order to recover the physical running, and by
the presence of long-distance lattice artifacts that appear
to vanish as the continuum limit is approached. These
are all signs that a symmetry is broken by the regulator.
If this is the case, and the associated symmetry is con-
tinuum diffeomorphism invariance, then there would be
more relevant parameters in the lattice theory than in the
symmetry preserving theory, since diffeomorphism invari-
ance is expected to be exact even in the quantum theory,
and additional parameters would need to be included and
fine-tuned in order to restore the symmetry on the lattice.
This would mean that in the symmetry preserving theory
there would be less than three relevant couplings. In fact,
Ref. [15] argued that the ultraviolet (UV) critical surface
of the symmetry preserving theory is one-dimensional,
which would be the maximally predictive case. This is
in tension with results coming from truncations of the
functional renormalization group, where calculations us-
ing many different truncations find a three-dimensional
UV critical surface [48–51] (but see the recent work [52],
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where a one-dimensional UV critical surface of essential
operators was found).

A different motivation for why the parameter β needs
to be tuned to recover a continuum limit while main-
taining correct classical behavior comes from a compari-
son to FRG studies. There, indications are found that a
higher-curvature operator might become relevant at the
asymptotically safe fixed point, see, e.g., [50, 53, 54][55].
To approach that fixed point on the lattice, the lattice
action would need to have overlap with the relevant op-
erators, and the corresponding lattice couplings would
therefore need to be tuned. Exponentiating the local
measure term in (19), it can be interpreted as a part
of the action with coupling β. Since the triangle-order
O(tj) is an ingredient of the Regge curvature (see (4))
the resulting term in the action might correspond to a
resummation of some higher-order curvature operators.
Hence, tuning this term might lead to an approach to
the fixed point discovered in FRG studies, see [56–58] for
overviews. If this is the case, then the fixed point of the
theory would have several physically realizable relevant
directions, so that it would not be maximally predictive.
It is thus of high importance to decide between these
possible scenarios.

The tuning of the bare lattice parameters to the phase
transition is performed as follows: The emergent shape of
the lattice geometries differs markedly between the two
phases, allowing us to use a measurement of the shape
to identify the transition. To do this, we introduce the
shelling function N shell

4 (τ), which is defined as the num-
ber of four-simplices lying exactly a geodesic distance τ
away from a source four-simplex, comprising a spheri-
cal shell with the source at its center. This function is
averaged over multiple random sources on a given config-
uration and over all configurations of an ensemble. We
account for autocorrelation errors present in the data for
the shelling function by blocking the data before averag-
ing. We study the variation of the error with block size,
increasing the block size until the standard error obtained
from a jackknife average over configurations no longer in-
creases. The height of the peak of the shelling function
N shell

4,peak varies significantly across the phase transition
and thus serves as a good order parameter for studying
the phase diagram.

We consider the rescaled shelling function

n4(ρ) =
1

N
1−1/DH

4

N shell
4 (N

1/DH

4 ρ), (8)

where ρ = τ/N
1/DH

4 is the rescaled Euclidean distance,
and DH is the Hausdorff dimension. Fig. 2 shows a
series of plots of the peak height of the rescaled shelling
function n4(ρ) for ensembles with many different κ2 and
β values in the vicinity of the phase transition. In the
rescaling of all of the peak heights, DH is set to four.
In Fig. 2, the phase to the left (more negative beta) is
the collapsed phase, and the phase to the right is the
branched polymer phase.

As described in Ref. [19], there is a “knee” in the plots
at each volume, just before the slope becomes large and
negative, that marks the onset of the phase transition.
We take a fixed value of κ2 to define our nominal lattice
spacing, and we then tune β by matching the rescaled
peak heights in the region just to the left of the phase
transition. The β value is chosen so that the tuned point
is sufficiently far from the phase transition that there is
no evidence of the tunneling between metastable states
that is expected in the vicinity of a first-order phase tran-
sition. Adjusting the rescaling of the peak height so that
the location of the “knee" is at the same height across dif-
ferent volumes leads to a DH close to the physical value
of four. We thus assume that the peak height rescal-
ing is four-dimensional, and we choose β as a function
of volume so that the rescaled peak heights match the
rescaled peak height of one of our smaller volumes near
the transition. The choice of that smaller volume varies
across the different lattice spacings, with its correspond-
ing peak height given as the cyan band in each plot of
Fig. 2. It is the 8k volume at κ2 = 2.45, the 8k volume at
κ2 = 3.0, the 8k volume at κ2 = 3.4, and the 32k volume
at κ2 = 3.8. As we show in Section III, this collection
of ensembles passes a broad set of consistency checks, in-
cluding the recovery of the semiclassical limit, suggesting
that this tuning procedure is a valid one.

D. Lattice ensembles

We have generated a number of tuned lattice ensem-
bles across a range of volumes and many different lattice
spacings. Table I gives the parameters for the ensembles
used in this work. Almost all of these ensembles are new,
having been generated by the rejection free algorithm
introduced in Ref. [19]. In order to have controlled cal-
culations of the various quantities that we consider here,
we require several volumes at each lattice spacing so that
the large volume limit can be taken.

The tuning of the bare lattice parameters described in
the previous subsection requires that we simulate close to
the phase transition, which means that the cost of gen-
erating ensembles grows rapidly with increasing volume.
One simple approach to speeding up the lattice gener-
ation, which we adopt, is to use multiple streams. We
branch multiple streams off of a single thermalized run
and then allow the separate streams to run for a full au-
tocorrelation time before we begin to take measurements
on them. As noted earlier we estimate the error using a
jackknife resampling procedure, and to account for auto-
correlation errors we block our data sets, increasing the
block size until the jackknife error no longer increases.
The integrated autocorrelation time τint can then be es-
timated using

σ2 = 2τint σ
2
0 , (9)

where σ0 is the naive jackknife error (assuming indepen-
dent measurements) and σ is the maximal binned jack-
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Figure 2: Rescaled peak heights for multiple volumes at four lattice spacings. The horizontal cyan line represents
the peak height to which the tuning is performed for all volumes at that lattice spacing.

knife error. Note that the integrated autocorrelation time
is not the same quantity as the block size needed to ac-
count for the autocorrelation. Usually, the block size is
much larger than the integrated autocorrelation time.

We choose an observable that is representative of the
long-distance behavior of our geometries when we esti-
mate the autocorrelation time and perform our thermal-
ization tests, because those are expected to be the slowest
to evolve through Monte Carlo time. We use the peak
height of the shelling function, since this is also closely
related to the analysis that is the subject of this work.
Fig. 3 shows the evolution of the peak height with Monte
Carlo time, measured in units of the number of saved
configurations. Each point in the plot corresponds to
the mean of 100 consecutive saved configurations. The
correct block size determined from the larger data set is
found to exceed 100 configurations, such that these points
do not represent independent measurements. Thus, the
error bars of the individual data points in the plots of
Fig. 3 are expected to be underestimated. However, the
main purpose of this plot is to view the evolution of the
peak height with respect to MC time in order to ensure
that the runs have thermalized. The horizontal bars over-
laid on the plots are the mean and absolute error of the
first half and the second half of the data sets. The agree-
ment between the two halves of the runs indicate that
the runs are thermalized and that the statistical errors

are properly estimated.

Table I shows the bare parameters κ2 and β used in
the simulations, as well as the target number of four-
simplices, N4. Once N4 is chosen, κ4 is tuned so that
the four-volume fluctuates about the target volume. Ta-
ble I also gives the number of saved configurations in
each ensemble, as well as the autocorrelation time τ of
an ensemble, as measured by the Monte Carlo time series
for the peak height of the shelling function. The ratio of
the direct to dual lattice spacings alat/ℓ and the relative
(dual) lattice spacings ℓrel are also given, including the
errors in their determinations, for future reference. At
our two finest lattice spacings for larger volumes there
is some ambiguity in determining the tuned β value, so
more than one ensemble is used to estimate a tuning er-
ror. We discuss in Sections III and IV how we propagate
this tuning error to our analyses.

III. DE SITTER SPACE AND SETTING THE
LATTICE SPACING

This section presents the method and numerical anal-
ysis used to determine the lattice spacing in our calcula-
tion. The large number of new ensembles at finer lattices
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Figure 3: The rescaled peak height evolution for N4 = 16000, κ2 = 3.0 and β = −0.771 (left) and N4 = 32000,
κ2 = 3.8 and β = −0.88 (right) ensembles in Monte Carlo time tMC where tMC is measured in number of

configurations saved.

used in this work, as well as our current target precision,
makes it necessary to revisit the methods of determining
relative and absolute lattice spacings used in previous
work. Given that our lattices are not hypercubic, and
the geometry at long distance scales is emergent, it is
necessary to determine the ratio of direct and dual lat-
tice spacings, alat/ℓ (where ℓ is the dual lattice spacing),
from the simulations. Some quantities are more natu-
rally measured in terms of one or the other, requiring
that we know their relative sizes at each nominal lattice
spacing (i.e., at fixed κ2). We also require the relative
lattice spacing ℓrel across different κ2 values. In previous
work [15, 21] we used the return probability of a diffu-
sion process to determine sets of alat/ℓ and ℓrel values.
However, we find that there are large finite-volume and
discretization effects in the return probability, making it
difficult to reach a useful precision with this quantity. In
order to improve on this situation, we introduce two new
methods for determining alat/ℓ based on the identifica-
tion of our lattice geometries with de Sitter space. The
good agreement between these determinations provides a
strong foundation for using our values of alat/ℓ as inputs
to determinations of other quantities.

We also use the semiclassical expansion of the Eu-
clidean partition function about the de Sitter instanton
to compute the absolute and relative lattice spacings, fol-
lowing the method introduced in Ref. [21] for computing
Newton’s constant. We revisit this determination here
with new data at several lattice spacings and many dif-
ferent volumes. This establishes the Planck length of our
simulations and allows us to normalize our calculations
in physical units.

A. The classical de Sitter solution

In the absence of matter, the homogeneous, isotropic
Einstein equations reduce to a single equation for the

scale factor a,

ȧ2

a2
+

1

a2
=

Λ

3
, (10)

in the presence of a positive cosmological constant. This
equation leads to the de Sitter solution, where the scale
factor undergoes exponential expansion,

a(t) =

√
3

Λ
cosh

(√
Λ

3
t

)
. (11)

Since the lattice calculation is done in Euclidean signa-
ture, for comparison we should analytically continue the
classical solution, which becomes

a(τ) =

√
3

Λ
cos

(√
Λ

3
τ

)
, (12)

under t → −iτ .
Given that the shape of the lattice is an emergent prop-

erty of the numerical simulations, we would like to re-
late the numerical computation of the shelling function
characterizing that shape (described in Section II C), to
Eq. (12). To do this, we consider the convenient param-
eterization [59],

N shell
4 =

3

4
N4

1

s0N
1
4
4

sin3

(
τ

s0N
1
4
4

)
, (13)

where s0 is a free parameter and τ is the Euclidean time
in lattice units. It is normalized so that a sum over all
time slices gives the total number of four-simplices of
the geometry. This expression can be interpreted as Eu-
clidean de Sitter space. It differs from Eq. (12) by a shift
in origin of the Euclidean time τ , and by the fact that the
shelling function is a three-volume and therefore corre-
sponds to the scale factor cubed. This expression is a fair
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Table I: Ensembles used in this work. The first column
is the κ2 value of a given lattice spacing. The second is

the tuned β value of the ensemble. The third is the
target volume in four-simplices of the ensemble. The

fourth column is the number of configurations
generated, and the fifth column is the autocorrelation

time on that ensemble as determined by the peak height
of the shelling function. The sixth column is the ratio of
the direct to dual lattice spacing at the given κ2 value,
and the seventh is the (dual) relative lattice spacing at

the given κ2 value.

κ2 β N4 Nconfig τint alat/ℓ ℓrel

2.45

-0.590 6000 2275 5

9.02(19) 1.45(12)

-0.575 8000 4748 9
-0.555 12000 5145 15
-0.544 16000 8233 14
-0.530 24000 9041 27
-0.520 32000 10074 50

3.0

-0.800 8000 1486 67

11.66(16) 1.00

-0.782 12000 17350 3
-0.771 16000 21114 6
-0.756 24000 30555 19
-0.746 32000 36142 45
-0.735 48000 24295 99

3.4

-0.910 8000 2533 8

16.34(19) 0.618(49)

-0.870 12000 2781 21
-0.853 16000 2282 8
-0.839 24000 3242 49
-0.830 32000 3431 36
-0.822 48000 2832 16
-0.821 48000 2721 33
-0.815 64000 1430 15
-0.814 64000 1052 40

3.8

-0.920 16000 6096 10

23.67(52) 0.386(51)

-0.906 16000 2229 26
-0.893 24000 4866 24
-0.880 32000 13137 49
-0.864 48000 5805 154
-0.863 64000 10959 62
-0.864 64000 1902 49
-0.857 96000 37684 187
-0.855 96000 42803 1020

description of the lattice result for the shelling function,
but the presence of discretization effects leads to difficul-
ties in fitting the data, given its precision. In order to
obtain good fits, we need to add additional parameters
to the expression,

N shell
4 =

3

4
ηN4

1

s0N
1
4
4

sin3

(
τ

s0N
1
4
4

+ b

)
, (14)

where the parameter b is an offset in the Euclidean time,
and η is the fraction of the volume of the universe that
is actually well-described by the classical solution.

Fits to lattice data for the shelling function thus use
the functional form

N shell
4 = As sin

3(Bsτ + Cs), (15)

where As, Bs, and Cs are free parameters. Because the
Euclidean time in the shelling function is measured in
dual lattice units, and the lattice scale factor is a measure
of the three volume obtained by counting four-simplices
in concentric shells, they are not determined in the same
units. We can use the fact that we must make con-
tact with a solution to the classical Einstein equations
in the appropriate limit in order to find a conversion fac-
tor between these two sets of lattice units. If the cor-
rect solution is Euclidean de Sitter space, then Eq. 12
provides a relationship between the constant multiplying
the trigonometric function and the coefficient in the ar-
gument of that function. Then the renormalized units ℓ
and ℓV must satisfy

1

A
1/3
s Bs

=
ℓV
ℓ

(16)

where ℓ is the dual lattice spacing and ℓV is the unit
length derived from taking the cube root of the volume
factor as measured by the shelling function. These units
of measurement can be related via a comparison of the
total four-volume of a thin slice of de Sitter space mea-
sured either by summing the volumes of four-simplices
making up that slice, or by taking the integral over a
four-dimensional shell. This leads to the relation

NsliceC4a
4
lat = 2π2Nsliceℓ

3
V ℓ, (17)

where C4 =
√
5/96, and Nslice is the number of four-

simplices in a given shell. This expression can be solved
for the ratio of direct and dual lattice spacings

alat
ℓ

=

(
2π2

C4

(
ℓV
ℓ

)3
) 1

4

. (18)

We refer to the calculation of alat/ℓ via Eq. (18) as
Method 1.

Note that alat/ℓ is a renormalized, emergent quan-
tity and is not necessarily given by the expectation from
short-distance simplicial geometry. The short-distance
geometrical result can be obtained by considering two
equilateral d-simplexes with edge length alat glued to-
gether. The distance between the centers is

√
2

d(d+1)alat,

so that the ratio alat/ℓ is a fixed number
√

d(d+1)
2 . How-

ever, the effective long-distance value of this ratio is mod-
ified from what one would infer from the local geometry,
and its value must be determined from the simulations
at each lattice spacing.

In summary, alat/ℓ is determined in Method 1 using
the fact that the de Sitter radius is measured in two dif-
ferent ways when we construct the shelling function, each
in different units. Setting these measures of the radius
equal gives a value for the conversion factor alat/ℓ. Even
though alat and ℓ are short-distance quantities, their ra-
tio is fixed by the long-distance emergent properties of
the geometry. Thus, we obtain alat/ℓ using Eqs. (16)
and (18) and fits of lattice data to the de Sitter solution.
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B. Semiclassical fluctuations about the de Sitter
solution

The shape of the lattice can be matched to Euclidean
de Sitter space; this allows for a determination of the
renormalized cosmological constant, which is fixed once
the four-volume is specified. However, the Newton cou-
pling does not appear in the de Sitter solution, Eq. (12),
so matching lattice data to this classical solution cannot
by itself determine the absolute lattice spacing in Planck
units. However, by examining the semiclassical fluctua-
tions about de Sitter space, we are able to make contact
with an expression involving the Planck scale and thus
determine the absolute lattice spacing. A consideration
of the semiclassical fluctuations also provides us with an
alternative expression for alat/ℓ, leading to a different
strategy for obtaining this quantity.

1. Determining the Newton constant

We revisit the theory of the semiclassical fluctuations
about de Sitter space, reviewing the approach to comput-
ing the Planck scale on our lattices that was presented
in Ref. [21] and introducing an additional method for ob-
taining alat/ℓ. The Euclidean partition function takes a
simplified form after integrating out all degrees of free-
dom except for the four-volume of the geometry [60],

Z(κ4, κ2) =
∑

N4

e−(κ4−κc
4)N4f(N4, κ2), (19)

where f(N4, κ2) is sub-exponential in N4, and κc
4 is

the pseudo-critical value of the coupling κ4. The limit
κ4 → κc

4 allows one to take the infinite lattice-volume
limit N4 → ∞. However, this does not necessarily corre-
spond to the infinite physical-volume limit, since this pro-
cedure is equally valid in the unphysical crumpled phase,
where the numerical simulations show that the emergent
geometries are on the order of the size of the cutoff. The
critical value κc

4 is not known a priori, but emerges from
the nonperturbative sum over triangulations. In practice
it is determined by adjusting the constant κ4 at a par-
ticular target volume until the moves are equally likely
to cause an upward fluctuation in volume as a downward
one.

The term in the exponential corresponds in the con-
tinuum to the renormalized cosmological constant term
in the classical action, such that we identify

(κ4 − κc
4)N4 =

Λ

8πG
V, (20)

with V = C4N4a
4
lat. Once the bare parameters κ2 and

β are chosen so that the simulations are in the physical
region of the phase diagram, the size of the semiclassical
universe is specified when we input the target volume
N4. The size of the de Sitter universe at a given κ2 and β

uniquely fixes κ4, and thus the renormalized cosmological
constant Λ.

In order for the partition function in Eq. (19) to re-
produce semiclassical gravity, the subleading exponential
behavior should be given by the Einstein-Hilbert term.
By power counting, the 4-volume dependence of this term
should scale like

1

16πG

∫
d4x

√
gR ∝

√
V

G
. (21)

Thus, the partition function with all other degrees of free-
dom integrated out except for the four-volume should
take the form [60]

Z(κ4, κ2) =
∑

N4

e−(κ4−κc
4)N4+k(κ2)

√
N4 , (22)

where the expected scaling of k is

k(κ2) ∝
a2lat
G

. (23)

In order for a continuum limit to exist, k must go to zero
as N4 goes to infinity, so that the volume in physical units
remains finite.

The value of k at a given lattice spacing must be deter-
mined from the simulations, as it is an emergent, long-
distance quantity. It can be obtained using the expec-
tation value of the number of four-simplices ⟨N4⟩, which
can be approximated using a saddle-point expansion of
the partition function in Eq. (22),

⟨N4⟩ =
∑

N4
N4e

−(κ4−κc
4)N4+k(κ2)

√
N4

∑
N4

e−(κ4−κc
4)N4+k(κ2)

√
N4

≈ k2(κ2)

4(κ4 − κc
4)

2
. (24)

In our simulations we fix N4, so the expectation value
⟨N4⟩ = N4 is an input to our simulations. Solving
Eq. (24) for k we find

k = 2|κ4 − κc
4|
√
N4, (25)

and from this we see that a plot of κ4 as a function of
1/
√
N4 should be linear if the semiclassical limit is real-

ized in the simulations. This was found to be the case
in Ref. [21]; we extend that study to finer-lattice-spacing
ensembles generated for this work.

Once we have determined k we can obtain G/a2, since
by Eq. (23), they are inversely proportional. We review
here the derivation of that proportionality constant. The
same saddle-point expansion used in Eq. (24) gives for the
partition function

Z(κ4, κ2) ≈ exp

(
k2(κ2)

4(κ4 − κc
4)

)
= exp

(
3π

GΛ

)
, (26)

where the equality follows from the semiclassical approx-
imation in the continuum. This continuum result for the
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partition function is the well-known Hawking-Moss in-
stanton production amplitude [61], and in making this
identification we are assuming that de Sitter space is the
semiclassical solution that dominates the saddle-point
approximation. The emergence of semiclassical geometry
can be tested by showing that κ4 plotted versus 1/

√
N4

is linear; this behavior was seen in Ref. [21].
The renormalized Newton’s constant G can be

obtained from the partition function by combining
Eqs. (20), (25), and (26) to get

G =
5

1
4 a2lat

16
√
N4|κ4 − κc

4|
, (27)

which implies

G

a2lat
=

5
1
4

16|sG|
, (28)

with sG the slope determined by a fit to κ4 as a function
of 1/

√
N4. A comparison of G/a2lat at different lattice

spacings allows us to determine the relative (direct) lat-
tice spacing arel with reference to a fiducial lattice spac-
ing. The ratios alat/ℓ allow us to compute as well the
relative dual lattice spacing ℓrel.

2. Determination of alat/ℓ from Method 2

An alternative determination of alat/ℓ can be obtained
as follows. Combining Eqs. (20), (25), and (26), and solv-
ing for the renormalized cosmological constant in terms
of the four-volume, we find

Λ =

√
24π2

C4N4

1

a2lat
. (29)

We can turn this into a relation between the renormalized
cosmological constant in dual lattice units and the ratio
alat/ℓ by multiplying through by ℓ2,

Λℓ2 =

√
24π2

C4N4

ℓ2

a2lat
. (30)

This relation can be corrected to account for the fact that
the de Sitter solution is not a good description of the lat-
tice data over the entire range of the shelling function for
coarse lattices, especially at long distances. The fraction
of the four-volume that appears under the classical curve
is given by the parameter η introduced in Eq. (14) and
can be obtained from fits of lattice data to the classical
de Sitter curve. In terms of the fit parameters As and
Bs of Eq. (15), η is given by

η =
4As

3BsN4
. (31)

With the substitution ηN4 in place of N4, Eq. (30) be-
comes

Λℓ2 =

√
24π2

C4ηN4

ℓ2

a2lat
. (32)

We can extract the slope sΛ from a linear fit to Λℓ2

versus 1/
√
N4

Λℓ2 =
sΛ√
N4

, (33)

and from this definition and Eq. (32), we find an expres-
sion for alat/ℓ,

alat
ℓ

=

(
24

C4η

) 1
4
(

π

sΛ

) 1
2

. (34)

We refer to the calculation of alat/ℓ from Eq. (34) as
Method 2. Note that this formula could also be obtained
by comparing the total four-volume of the lattice (cor-
rected by η) to the time integral of the classical expres-
sion for the cube of the scale factor. Thus, both methods
for determining alat/ℓ can be derived from the classical
solution. Even so, they require different numerical pro-
cedures and have different systematic errors, allowing for
a useful cross-check.

C. Numerical results for alat/ℓ

1. alat/ℓ from Method 1

For our first method of determining the ratio alat/ℓ, we
fit the lattice data to the functional form of the classical
de Sitter solution Eq. (15). Figure 4 shows the theoret-
ical expectation Eq. (15) along with lattice data for the
shelling function at various lattice spacings. The data
has been rescaled along the vertical and horizontal axes
so that it coincides with the classical curve to the left of
the peak for all lattice spacings. There is a large discrep-
ancy between the classical curve and the lattice data at
large Euclidean time, as Fig. 4 shows, but this discrep-
ancy gets smaller as the continuum limit is approached.

The computation of the shelling function requires that
we choose a 4-simplex source randomly on a given lat-
tice. For each configuration, we choose between 1 and
60 sources to compute the shelling function, depending
on the size and lattice spacing of the ensemble. The av-
erage of the shelling function over different sources on
a given configuration is first taken, and then the en-
semble average over configurations is performed. Here,
as in the rest of this work, the error is computed using
single-elimination jackknife resampling, and the autocor-
relation error is accounted for by blocking configurations
until the jackknife error stops increasing. Based on the
number of blocks that are required before the errors sat-
urate, we can estimate the autocorrelation time for the
shelling function in the vicinity of the peak. From this,
we estimate that we have between 15 and 5000 indepen-
dent samples, depending on ensemble, with the smallest
number corresponding to the largest volume at our finest
lattice spacing.

Examples of fits to the de Sitter form are shown in
Fig. 5 for ensembles across three different lattice spac-
ings. The fit is to Eq. (15), and the range of the fit is
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de Sitter

Figure 4: The rescaled shelling function n4(ρ) at
different lattice spacings. The black curve is the
classical de Sitter solution. All curves have been
rescaled to overlap in the region that matches the

classical solution. The asymmetry at large Euclidean
time decreases as the lattice spacing gets finer, so that

the lattice results approach the classical curve.
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Figure 5: The fit of the shelling function to Eq. (15) on
16k ensembles at three lattice spacings. The horizontal
and vertical axes have been rescaled by N

1/4
4 and N

3/4
4 ,

respectively.

chosen to be in the vicinity of the peak, with a starting
point around the inflection point to the left of the peak
and the final point at, or slightly to the right of, the peak.
On the finer lattice spacings, we can include a few points
to the right of the peak and still get decent fits, as mea-
sured by the fits’ p-values. The fits are performed under
a jackknife, where the estimate of the χ2/d.o.f. uses the
full correlation matrix, which is remade for every jack-
knife entry. The correlation matrix is estimated from the
data sample, and the fits are done on the unblocked data
in order to provide more points from which to sample the
correlation matrix, but the unblocked errors are inflated
to account for the autocorrelation determined from our
blocking studies. The estimation of p-values includes a
correction due to the finite-sample size of the ensemble
[62]. In order to estimate a fitting systematic error, we

vary the fit range and, keeping only the fit ranges with
an average p-value>0.01, we use the spread of the differ-
ent fit results to estimate the error. We choose as our
central value the results of a fit that sits in the middle
of the fit variations, and a fit systematic error is deter-
mined by taking the standard error of the distribution
of all acceptable fits on a given ensemble. At our finest
lattice spacing (κ2 = 3.8), we find that it is necessary to
thin the number of data points included in the fits, given
the large number of points and the difficulty of measur-
ing the correspondingly large correlation matrix. At this
lattice spacing our fitting procedure only includes every
other τ value to the left of the peak and every point to
the right of the peak.

Given the fit parameters As, Bs, and Cs determined
from fits to the Euclidean de Sitter form, Eq. (15), we can
reconstruct alat/ℓ using Eqs. (16) and (18). Fig. 6 shows
the resulting alat/ℓ values for the different acceptable fit
windows on representative ensembles at four lattice spac-
ings, some of which correspond to the fits shown in Fig.
5. This figure gives a sense of the variation of alat/ℓ with
the chosen fit range. For some of our tuned β values, the
uncertainty is large enough that we choose two ensembles
to estimate a tuning systematic error. For example, at
N4 = 96k, κ2 = 3.8, we do the usual analysis on ensem-
bles with two different β values close to the tuned point,
and then we take the weighted average of the alat/ℓ val-
ues obtained from the two separate ensembles. The error
of the combined point is taken to be the maximum of
the weighted standard error and the difference between
the weighted average and the original two points. This
is to make sure that both of the original alat/ℓ values are
encompassed by the error of the combined result. The
values of alat/ℓ determined from this procedure are given
in Table XII.

The construction of alat/ℓ using Eqs. (16) and (18) re-
quires that the lattice geometries be well-described by
the classical de Sitter solution. As presented in Sect. IV,
small but significant deviations from classical de Sitter
space can be resolved in our data even in the region to
the left of the classical peak, and these effects are more
pronounced for smaller volume ensembles. Thus, we ex-
pect our procedure for constructing alat/ℓ to be valid
only in the infinite volume limit, where corrections to
the classical de Sitter solution should be small. We there-
fore extrapolate alat/ℓ to infinite volume, determining a
value for this ratio independently at each lattice spacing.
We estimate a systematic error for this extrapolation by
dropping either the largest or smallest volume from the
extrapolation. For ensembles with κ2 = 3.4 and 3.8, the
extrapolation error estimate involves dropping the two
largest volumes or the smallest single volume from the
extrapolation. This is because our finer lattice spacings
suffer more than the others from the difficulty of esti-
mating autocorrelation errors, especially for the largest
volumes. The largest deviation of these fit choices from
the central fit is taken as an additional systematic error
for the infinite-volume extrapolation.
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Figure 6: Stability plot showing results for different fit
ranges on the N4 = 16000 ensembles at four lattice

spacings. The horizontal axis enumerates the fits. Only
acceptable fits, which we take to be those fits with

p-value ≥ 0.01, are shown here. All twelve of our fits at
κ2 = 3.8 are above our p-value cutoff, and all nine of

our κ2 = 3.4 and κ2 = 2.45 fits are above the threshold,
but only three out of nine of our fits at κ2 = 3.0 are.
The darker bands indicate the central fits with 1σ

statistical error. The lighter bands also include the fit
error added in quadrature.

The infinite volume extrapolations for alat/ℓ are shown
in Fig. 7 and the extrapolated values are given in Ta-
ble II, along with the χ2/d.o.f. and the p-value of each fit.
Extrapolations assuming a three parameter fit quadratic
in 1/N4 give a good description of the extrapolation, as
can be seen by the p-values of the central fits in Fig. 7.
Figure 7 also shows the values of alat/ℓ obtained from
Method 2 outlined in subsection III B 2. The details of
the numerical analysis for this alternative alat/ℓ determi-
nation are given in the following subsection.

Table II: Fit results for the alat/ℓ infinite-volume
extrapolation at four lattice spacings.

κ2 alat/ℓ χ2/d.o.f. p-value
2.45 8.90(59) 1.35 0.26
3.0 11.62(26) 1.13 0.34
3.4 16.35(25) 0.90 0.46
3.8 23.39(122) 1.26 0.29

2. alat/ℓ from Method 2

Our second method of determining alat/ℓ from lattice
data makes use of Eq. (34), which itself makes use of
the relation between the number of four-simplices and
the effective cosmological constant of the lattice “uni-
verse”. This requires as input sΛ, which can be obtained
from Eq. (33), as well as η, which can be determined
via Eq. (31) from the results of our fits to the classi-

cal de Sitter solution. The determination of sΛ requires
as input the renormalized cosmological constant in dual
lattice units, Λℓ2, which can be obtained as follows. We
relate the lattice shelling function to the scale factor a
and its time derivatives. Given this, we can infer the
value of the emergent cosmological constant at long dis-
tances by constructing the Einstein equation for the scale
factor from our lattice data. In Euclidean space, the ho-
mogeneous, isotropic Einstein equations in the presence
of a positive cosmological constant reduce to

− ȧ2

a2
+

1

a2
=

Λ

3
, (35)

where ȧ is now understood to be the derivative da
dτ ,

i.e. the derivative with respect to Euclidean time. The
shelling function Eq. (13) is identified as the cube of the
scale factor, so the shelling function obtained from our
lattice simulations allows us to reconstruct the scale fac-
tor a as a function of Euclidean time τ , as well as its time
derivatives.

If we identify A ≡ (N shell
4 )1/3 as the scale factor de-

termined from the lattice, then we have a(τ) = ℓV
ℓ A(τ),

where a(τ) is measured in simplex units. To emphasize
the dependence on the lattice conversion factors, Eq. (35)
written in terms of A becomes

− Ȧ2

A2
+

ℓ2

ℓ2V

1

A2
=

Λℓ2

3
, (36)

where the ratio ℓV /ℓ converts the scale factor A into dual
lattice units, with ℓV /ℓ related to the ratio of direct and
dual lattice spacings alat/ℓ by Eq. 18. The Euclidean
time in the time derivative of the first term of Eq. 36 is
already in dual lattice units, so the linear combination
of terms on the left side of Eq. 36 gives the cosmological
constant in dual lattice units ℓ.

In practice, we find that the cosmological constant in-
ferred from this method is not strictly a constant as a
function of τ , but acquires some dynamics that are well-
described by the model [25]

Λ(H) = Λ0 + 3νH2, (37)

where Λ0 is a fixed constant, ν is a dimensionless run-
ning coupling constant of the model, and H = Ȧ/A is
obtained from the (numerical) time derivative of the lat-
tice scale factor. A discussion of the motivation for this
model and the analysis of our lattice data in terms of it
is given in the following section. For the purposes of this
subsection, it is enough to observe that the parameter Λ0

plays the role of the classical cosmological constant, while
the second term contains non-trivial dynamics, similar to
quintessence models of cosmology [63]. It is Λ0 that en-
ters the derivation of Eq. (33), as this derivation assumes
a constant term for the vacuum energy. Using the val-
ues of Λ0 extracted from our analysis at different four-
volumes (discussed in more detail in the following sec-
tion), we find that Λ0 versus 1/

√
N4 is nicely described
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Figure 7: Plots of alat/ℓ versus 1/N4 for four different lattice spacings, which from top left to bottom right are
κ2 = 2.45, κ2 = 3, κ2 = 3.4, and κ2 = 3.8. The errors on the individual data points are the statistical and systematic
error (associated with varying the fit window of the shelling function) combined in quadrature. The central fit curve
for the extrapolation to infinite volume is shown in black, with the statistical error on the extrapolated point of the
central fit shown in light blue. Alternative extrapolations dropping the largest or smallest volume ensembles from

the fit are shown in dashed (red) and dot-dashed (green), respectively. The infinite-volume extrapolated point (dark
blue) includes a systematic error coming from these alternate fit variations. The magenta points are the results of
the alternate (Method 2) determination of alat/ℓ, which is discussed in Section III C 2, shown for comparison. They

are offset horizontally to stand out from the Method 1 value.

by a linear function that passes through zero, as can be
seen in Fig. 8 for all four of our lattice spacings. Thus,
our data for Λ0 is well-described by Eq. (33) and can be
used to obtain sΛ, which in turn allows us to compute
alat/ℓ.

Note, however, that this determination of alat/ℓ from
the slope of Λ0 versus 1/

√
N4 is complicated by the fact

that in order to construct Λ0 using Eqs. (36) and (37), we
need as input ℓV /ℓ, which itself depends on alat/ℓ. Thus,
we must determine alat/ℓ in a self-consistent way, such
that the input to Eq. (36) matches the output of Eq. (34).
This is done by scanning over input values of alat/ℓ until
a near match with the output is found, and then refining
the window used for the scan until the input and output
values match to the third decimal place. The fit results
with or without the origin fixed to zero are presented in
Table III. When the y-intercepts are allowed to vary, they
are consistent with zero. Since the one-parameter linear
fits with the y-intercept fixed to zero describe the data

well and are compatible with the semiclassical theory ex-
pectation, we choose the results of those fits as input to
our alat/ℓ determinations in order to minimize the errors
in the rest of the analysis.

The determination of alat/ℓ from Eq. (34) also requires
as input the correction factor η, which accounts for the
fraction of the four-volume under the classical de Sitter
curve. This factor is needed to correct for the asymmet-
ric tail seen in Fig. 5, and it gets closer to one as the
continuum limit is approached. The determination of η
proceeds from the same fits to the shelling function that
yield alat/ℓ using Method 1, where these fit results can be
used to construct η from Eq. (31); see Table XII for our
numerical results. The values of η are then extrapolated
to their infinite volume limits at each lattice spacing.
Figure 9 shows these extrapolations for all four lattice
spacings. We adopt the same procedure and method for
estimating the systematic errors of these extrapolations
as we did for the infinite volume extrapolation of alat/ℓ,
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Λ0 = sΛ/
√
N4 Λ0 = sΛ/

√
N4 + b

κ2 sΛ χ2/d.o.f. p-value sΛ b χ2/d.o.f. p-value
2.45 1.72(1) 0.813 0.444 1.79(7) -0.007(7) 0.571 0.565
3.0 0.935(1) 1.510 0.210 0.949(10) -0.00012(8) 1.296 0.274
3.4 0.461(2) 0.155 0.927 0.464(13) -0.00003(11) 0.194 0.900
3.8 0.216(1) 0.190 0.903 0.208(7) 0.00004(4) 1.275 0.281

Table III: Fit results for Λ versus 1/
√
N4 for two different choices of fit function, shown above (see Eq. (33)).
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Figure 8: Data for Λ0 versus 1/
√
N4 at four lattice

spacings. Also shown are linear fits to the functional
form Λ0 = sΛ√

N4
. The inset figures show sample points

with enough resolution to see the error bars compared
to the fit line. Data points highlighted in black are

included in the fits. The results of the linear fits to this
data are given in Table III.

where we take the spread in values from dropping the
largest and smallest volumes from the extrapolation fit
as an estimate of the systematic error. As in the alat/ℓ
extrapolations, we use a three-parameter fit function that
is quadratic in 1/N4. At our two finest lattice spacings,
where κ2 = 3.4 and κ2 = 3.8, we drop the largest two
volumes as part of our systematic error estimate when
extrapolating to infinite volume, just as we do for the
alat/ℓ analysis. The results of the η extrapolation fits are
given in Tab. IV.

Table IV: Fit results for the infinite-volume
extrapolation of η at four lattice spacings, based on the

values reported in Table XII.

κ2 η χ2/d.o.f. p-value
2.45 0.517(44) 0.853 0.465
3.0 0.627(33) 1.498 0.214
3.4 0.672(30) 2.063 0.085
3.8 0.688(59) 3.382 0.018

Table V: alat/ℓ for four lattice spacings from the two
methods and their weighted average.

κ2 Method 1 Method 2 Combined
2.45 8.90(59) 9.03(19) 9.02(19)
3.0 11.62(26) 11.67(16) 11.66(16)
3.4 16.35(25) 16.34(19) 16.34(19)
3.8 23.39(122) 23.72(52) 23.67(52)

3. Summary and combination of alat/ℓ from different
methods

The results for alat/ℓ are in excellent agreement be-
tween the two different methods, as can be seen in Fig. 7,
where the result for Method 2 is shown alongside the
result from the Method 1 infinite-volume extrapolation.
The agreement is good at all lattice spacings, and for our
most precise determinations, the agreement is within er-
rors at the 1-2% level. This is a good cross-check of the
determination, since each method suffers from different
systematic errors and makes different assumptions.

In order to make best use of these results for the down-
stream analyses that depend on alat/ℓ, we combine the
results from the two methods. The error bar for each
of the two methods is dominated by the systematic er-
ror associated with an infinite-volume extrapolation; in
Method 1 it is the infinite-volume extrapolation of alat/ℓ,
and in Method 2 it is that of η. Since the estimate
of this extrapolation error uses the same approach, and
these quantities come from the same fits to the de Sit-
ter shelling function, we assume that the errors are 100%
correlated when combining the results for alat/ℓ from the
two methods. This leads to a weighted average for the
central value, with no reduction in error over the method
with the smaller error [64]. These results are summarized
in Table V.

D. Determining Newton’s constant and setting the
lattice spacing

In order to relate our lattice calculations to experiment
it is necessary to determine the absolute lattice spacing
in our simulations, thus allowing us to express our lat-
tice lengths alat or ℓ in units of the Planck length. This
requires a calculation of Newton’s constant G in lattice
units, which therefore requires that the simulations make
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Figure 9: Plots of η versus 1/N4 for four different lattice spacings, which from top left to bottom right are κ2 = 2.45,
κ2 = 3, κ2 = 3.4, and κ2 = 3.8. The errors on the individual data points include the statistical error and a
systematic error associated with varying the fit window, added in quadrature. The central fit curve for the

extrapolation to infinite volume is shown in black, with the statistical error on the extrapolated point of the central
fit shown in light blue. Alternative extrapolations dropping the largest or smallest volume ensembles from the fit are

shown in dashed (red) and dot-dashed (green), respectively. The infinite-volume extrapolated point (dark blue)
includes a systematic error coming from these alternate fit variations.

Table VI: Infinite-volume extrapolated values of
Newton’s constant at different lattice spacings, where

the first error is statistical and the second is an estimate
of the systematic error associated with the

infinite-volume extrapolation. Also quoted are the
resulting relative direct and dual lattice spacings with

errors. The fit qualities for the infinite-volume
extrapolations of Newton’s constant are also included.

κ2 Ga arel ℓrel χ2/d.o.f p-value
2.45 0.477(27)(57) 1.125(92) 1.45(12) 0.61 0.61
3.0 0.604(38)(35) 1.00 1.00 0.47 0.71
3.4 0.805(81)(50) 0.866(67) 0.618(49) 0.39 0.76
3.8 0.98(23)(06) 0.78(10) 0.386(51) 1.55 0.20

contact with semiclassical physics. In previous work us-
ing EDT simulations, G was computed from a study of
the binding energy of two scalar particles [22] and from
a study of the semiclassical fluctuations of the Euclidean
partition function about the de Sitter instanton solution
[21]. In order to meet the precision requirements of the

current analysis, we revisit the semiclassical de Sitter cal-
culation of Ref. [21], following the theoretical method re-
viewed here in Sec. III B 1.

Our new determination of Newton’s constant requires
that we generate a large number of new ensembles, in ad-
dition to those listed in Table I. The de Sitter instanton
analysis requires a finite-volume study for each nominal
tuned volume at every lattice spacing. Each finite-volume
study requires ensembles at several different volumes, and
the shift in the phase boundary with volume means that
in order to minimize systematic errors due to wrong-
phase contamination, the volumes in the finite-volume
study should be larger than the nominal tuned volumes.
These new runs would not have been feasible without the
rejection-free algorithm introduced in Ref. [19].

The analysis proceeds as follows. For a given nominal
volume, a given κ2, and a tuned β value, we generate en-
sembles at several volumes, all larger than the nominal
volume, and measure the tuned κ4 value of those runs
with the same κ2 and β values. The κ4 values deter-
mined from these runs are given for all ensembles across
four lattice spacings in Table XIII, Table XIV, Table XV,
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and Table XVI. These results include the statistical er-
ror in κ4, where the data is blocked before averaging to
account for autocorrelations. The first line in these ta-
bles at each distinct value of β corresponds to one of the
nominal volumes listed in Table I. Note, however, that
there is a slight mismatch in some of the tuned β values
between these ensembles and the ones listed in Table I.
This is because our estimates of the tuned β values can
shift as statistics is accumulated in the β tuning analysis,
and the long run times needed to generate the ensembles
needed for the κ4 finite-volume study make it difficult to
redo these runs quickly when the tuned β is adjusted.
In principle, one could calculate how the results of the
κ4 finite-volume study depend on small shifts in β and
correct for the slight mistunings. We leave this as an
excercise for future work, for now ignoring the error as-
sociated with these mistunings.

Our analysis requires that the combination sG =√
N4|κ2 − κc

4| be extracted from a finite-volume study
with κ2 and β held fixed (see Eq. (25)). The finite-volume
study involves the linear fit

κ4(N4) = Aκ4
+ sG

1√
N4

, (38)

with κ4 taken as a function of 1/
√
N4, and Aκ4

and sG
the free fit parameters. The parameter sG thus obtained
can be used to construct G/a2lat from Eq. (28). That
the linear relation Eq. (38) is a good description of the
κ4 data and can be used to construct Newton’s constant
was shown in Ref. [21]. The fit results presented in Ta-
ble XVII, Table XVIII, Table XIX, and Table XX show
that this trend continues to hold in the current analysis,
as can be seen by the p-values of the fits. For some of
our scaling studies, mainly those at coarser lattice spac-
ing or smaller nominal volume, we find that in order to
get good fits we need to drop the smallest volume ensem-
ble from the scaling fit. This may be due to corrections
to the linear relation Eq. (38) at smaller volumes and/or
coarser lattice spacings, or to mistunings of the β value
that cause the simulations to be contaminated by their
proximity to the phase transition. Such effects are very
small in absolute terms, but even small shifts in κ4 could
lead to deviations from the scaling of Eq. (38), given the
precision needed for the analysis. Figure 10 shows some
plots of our fits to data for κ4 versus 1/

√
N4 that are

representative of our finite-volume scaling studies.
Table XVII, Table XVIII, Table XIX, and Table XX

show the results for |sG| from all of our scaling studies.
The first error is statistical, and the second is an estimate
of the systematic error due to varying the κ4 data points
included in the fits. Adding these errors in quadrature
and constructing G/a2lat from Eq. (28) leads to the val-
ues of G/a2lat shown in Fig. 11, plotted as a function of
1/N4. We have determined G/a2lat at multiple volumes
at each lattice spacing, allowing us to use the infinite-
volume limit of G/a2lat, evaluated separately for each κ2

value, to determine a relative lattice spacing. In previous
work [21] there was only one lattice spacing available with

multiple volumes, so this was not possible. In that case,
the relative lattice spacing was determined using the dif-
fusion process of a random walk. In revisiting the return
probability to obtain the relative lattice spacing on our
new ensembles, we find that there is significant ambiguity
in rescaling the return probability curve, given how much
the shape changes with lattice spacing. Using our G/a2lat
for this purpose removes that ambiguity, while also be-
ing systematically improvable with more computing re-
sources. We take the κ2 = 3.0 ensembles to define our
fiducial lattice spacing, so that arel at this lattice spacing
is by definition one. The other lattice spacings are mea-
sured relative to this, being inversely proportional to the
square root of the ratio of their G/a2lat values. The value
of G/a2lat at κ2 = 3.0 then sets our absolute lattice spac-
ing, allowing us to convert our measurements to units of
the Planck length.

The infinite volume extrapolation is carried out using
the fit function

G

a2lat
= Ga +

HG

N4
+

IG
N2

4

, (39)

where we only include the term quadratic in 1/N4 on
the κ2 = 3.0 lattice spacing, since the precision of the
data demands it in order to get a good fit. Figure 11
shows the central fits for all of the infinite-volume ex-
trapolations of G/a2lat, along with their extrapolated val-
ues. The dark blue riser line represents the statistical
error on the infinite-volume result, while the light blue
includes an extrapolation systematic error added to the
statistical error in quadrature. This systematic error is
estimated by considering alternate fits for the extrapola-
tion. On the κ2 = 3.0 ensemble, the central fit includes
the term quadratic in 1/N4, while a linear fit neglect-
ing this term leads to a larger reduced χ2 and a still
acceptable p-value of 0.25. The difference between the
quadratic central fit and the linear fit is taken as an esti-
mate of the infinite-volume extrapolation error. For the
κ2 = 2.45 and 3.4 lattice-spacing data, the central fit ne-
glects the 1/N2

4 term, but the alternate fit includes it,
and again the extrapolation systematic error is taken as
the full difference between these two fit choices. For the
κ2 = 3.8 lattice spacing data, the errors on G/a2lat are
much larger, owing to the expense of simulating at this,
our finest, lattice spacing. A quadratic fit in 1/N4 gives
a large difference from the central, linear in 1/N4 fit, and
would lead to a ∼ 100% error. However, this is likely
an overestimate of the error, since the data at other lat-
tice spacings constrains the size of possible curvature in
1/N4. We take the same estimate for the extrapolation
systematic that we obtained for the extrapolation of our
second finest lattice data (at κ2 = 3.4) as an estimate
of the systematic error at our finest lattice spacing. This
can be tested with more data at our finest lattice spacing,
and these runs are in progress.

The results for G/a2lat in the infinite-volume limit, de-
noted by Ga in the fit function Eq. (39), are given in
Tab. VI for all four lattice spacings. Taking κ2 = 3.0
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Figure 10: Tuned κ4 plotted versus 1/
√
N4 for two representative κ2 and tuned β values, fitted to (38). We show the

fits for κ2 = 2.45, N4 = 16000 (left), and for κ2 = 3.4, N4 = 12000 (right). See also Table XIII and Table XV for
detailed fit results. These fits have p-value=0.53 (left), and p-value=0.84 (right).

as our fiducial lattice spacing, the values of arel can
be obtained from these results; these are also shown in
Tab. VI. We see that as κ2 increases, arel decreases, so
that larger κ2 corresponds to finer lattice spacing, as ex-
pected. Knowing the dimensionless ratio G/a2lat allows
us to convert alat into units of the Planck length, where
G/a2lat > 1 would indicate that alat is sub-Planckian.
Thus, we see that our finest lattice spacing measured in
alat units is very nearly the Planck length, though there
appears to be no limitation other than practical for push-
ing it smaller. Using our alat/ℓ values from Sec. III C
to express our lattice spacings in dual lattice units, and
again taking κ2 = 3.0 as the fiducial spacing so that
ℓrel = 1 there, we find the values of ℓrel given in Tab. VI.
Note that our results for G/a2lat, combined with our re-
sults for alat/ℓ, imply that ℓ is significantly smaller than
the Planck length. The dual length ℓ is around 23 times
smaller than the Planck length on our finest lattice spac-
ing. The relative dual length ℓrel also decreases as κ2 is
taken larger, further confirming our picture that a con-
tinuum limit can be taken by following the first order line
in the phase diagram of Figure 1 out to large κ2 values.

IV. RUNNING VACUUM ENERGY

A. Theory and motivation

Our lattice geometries are well-described by the semi-
classical Euclidean de Sitter solution, which is solid evi-
dence that EDT could define a non-perturbative formu-
lation of quantum gravity. Interestingly, a more careful
study shows that there are corrections to this picture.
As pointed out in Section III C 2, we find that the cos-
mological constant is not strictly constant as a function
of Euclidean time, particularly on our smaller volume
ensembles. Figure 12 shows the cosmological constant
inferred from Eq. 36 as a function of Euclidean time τ on
one of our smaller physical-volume ensembles. Eq. 36 re-

quires as input the infinite-volume limit of alat/ℓ, which
is needed to set ℓV /ℓ. Although all of our ensembles
are consistent with the classical de Sitter solution, at
least within a chosen fit window, this implies a particular
finite-volume value of alat/ℓ. Because the lattice volumes
at which we are simulating are rather small in Planck
units, and the classical de Sitter solution that is used
to fix alat/ℓ only applies at large volumes, we must ex-
trapolate our values of alat/ℓ to the infinite-volume limit
before we can use them as conversion factors. When we
use the appropriate infinite-volume extrapolated values
of alat/ℓ in Eq. 36, the behavior of Λ versus τ on a fi-
nite volume shows significant deviations from the pure
de Sitter solution, where a constant Λ is expected. We
find that these results are broadly consistent across lat-
tice spacings and that the Euclidean time dependence of
the effective cosmological constant does not appear to be
a lattice artifact. In the remainder of this work we show
that these deviations can be described by nontrivial vac-
uum dynamics and that they pass a number of important
consistency checks in this interpretation.

We find that our lattice geometries are well-described
by assuming that the effective long-distance cosmological
constant has a power law running with renormalization
scale

Λ(µ) = Λ0 + 3ν|µ|2, (40)

where Λ0 is a constant fixed by the physical volume of the
lattice, which acts as an infrared cutoff, µ is the renor-
malization scale, and ν is a dimensionless coupling that
absorbs the logarithmic running of the term quadratic in
µ, so that

ν(µ2
f ) =

ν(µ2
i )

1 + b log(
µ2
i

µ2
f
)
, (41)

for some constant b. We find Eq. 40 is a good description
of the lattice data if we identify the scale µ with the Hub-
ble rate H = Ȧ/A. The absolute value in Eq. (40) reflects
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Figure 11: G/a2lat versus 1/N4 at all four lattice spacings, for data summarized in Table XVII, Table XVIII,
Table XIX, Table XX, and using the fit function Eq. (39) (with the quadratic term neglected unless required for a

good fit). The resulting extrapolations and estimates of the fit quality are given in Table VI. We display our central
fit here, though alternate fits are used to estimate an infinite-volume extrapolation error. The infinite-volume result
is shown, with the statistical error in light blue and the total error in dark blue, where the total error includes the

statistical error and an estimate of the systematic error due to the infinite-volume extrapolation added to it in
quadrature.

the fact that the renormalization scale should be identi-
fied with the magnitude of the Hubble rate, and that the
µ2 term does not pick up a minus sign due to the Eu-
clidean continuation of the time derivative appearing in
H. Note that in our simulations H is not a constant as a
function of Euclidean time because the spatial curvature
term is not negligible, as it would be for pure de Sitter
space in Lorentzian signature at large times. Figure 13
(bottom-right panel) shows the same data for Λ(τ) as in
Fig. 12, now plotted as a function of H2, which is re-
constructed from the first derivative of the scale factor
A(τ). This set of data is well-described by a fit linear
in H2, hinting that our results could be consistent with
a picture in which the vacuum energy runs according to
Eq. 40, with a renormalization scale associated with the
Hubble rate. A more comprehensive study incorporating
multiple lattice spacings and volumes shows that our re-
sults are well-described by this picture, allowing a first
principles determination of the parameters ν and b.

A power law running of the cosmological constant was
conjectured by Polyakov [65], where conformal fluctua-
tions of the metric provide the underlying mechanism.

40 45 50 55 60
τ

1.7

1.8

1.9

2.0

Λ

×10−3

Figure 12: Λ versus τ at our finest lattice spacing, with
κ2 = 3.8 and N4 = 16000.

Work by Solà et al. [24–28] considered a series of models
with a running of the vacuum energy given by Eq. 40; the
various models differ in the identification of the scale µ
and in the choice of the vacuum equation of state. One of
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the main goals of that work was to constrain the possible
models and their parameter space from fits to cosmolog-
ical data [27, 29]. In this work we turn this around and
apply similar fits to the data we have generated from
our lattice simulations. We find strong constraints on
this picture, as the lattice data is not compatible with a
large swath of model choices and parameter values. The
picture that emerges from the lattice calculations is in
fact one of the simplest of the model variants, and it is
compatible with observations, as discussed in Section V.

For our lattice study we consider the most general ver-
sion of the running vacuum models of Ref. [26], which
has the following parameterization,

Λ(H) = Λ0 + 3νH2 + 3ν̃Ḣ. (42)

This model includes all of the terms in a derivative ex-
pansion to O(H2) and reduces to Eq. (40) if we identify
µ with the Hubble scale and set ν̃ = 0. We allow for ν̃ to
be non-zero in our analysis, though the lattice data con-
strains it to be significantly smaller than ν and consistent
with zero.

In order to determine the parameters ν and ν̃ from the
lattice, we first work through the consequences of the
model defined in Eq. (42) for cosmological evolution in
Euclidean space. To do this, we take the vacuum energy
to have the form of a perfect fluid,

Tµν = −pΛgµν + (pΛ + ρΛ)uµuν , (43)

with u = (1, 0, 0, 0) and pΛ the vacuum pressure.
With this, the Friedmann-Lemaître-Robertson-Walker
(FLRW) equations in Euclidean space become

− ȧ2

a2
+

1

a2
=

8πGρΛ
3

, (44)

− ä

a
= −4πG

3
(ρΛ + 3pΛ), (45)

where

ρΛ = ρΛ0
+

3

8πG

(
νH2 + ν̃Ḣ

)
, (46)

with ρΛ0
= Λ0/(8πG) the constant contribution to the

energy density of the vacuum energy model.
In order to satisfy diffeomorphism invariance, the evo-

lution must obey covariant energy conservation. The var-
ious models of Solà et al. [26, 29] differ in the way that
this condition is satisfied. The lattice uniquely singles out
one of these, as we show. We find that the vacuum pres-
sure adjusts itself so that the vacuum sector (interpreted
as an exotic form of matter) independently satisfies co-
variant energy conservation, Tµν

;µ = 0, leading to

ρ̇Λ = −3H(ρΛ + pΛ). (47)

Taking the model for vacuum energy defined by Eq. 46,
covariant energy conservation then implies that the vac-
uum pressure is

pΛ =
1

8πG

(
−Λ0 − (ν − ν̃)H2 − 2ν

ä

a
− ν̃

...
a

ȧ

)
. (48)

This therefore implies the existence of non-trivial dynam-
ics for the vacuum equation of state w ≡ pΛ/ρΛ.

Inserting the vacuum energy density of Eq. (46) and
the vacuum pressure of Eq. (48) into the FLRW equa-
tions, we find

3

(
− ȧ2

a2
+

1

a2

)
= Λ0 + 3(ν − ν̃)H2 + 3ν̃

ä

a
, (49)

− ä

a
=

Λ0

3
+

(
ν − 1

2
ν̃

)
ä

a
+

1

2
ν̃

...
a

ȧ
. (50)

We can construct all of the terms in this pair of equa-
tions that involve a and its time derivatives from the
lattice shelling function. This allows us to solve for the
parameters ν and ν̃ appearing in these equations. For
the purposes of comparing to lattice data, it is helpful to
introduce a set of approximations, starting with

ä

a
≡ S = S0 +O(H2). (51)

We also introduce
...
a

ȧ
≡ T = T0 +O(H2), (52)

where classically, T = T0 = S0 = −Λ0/3. We only apply
these approximations to the terms in Eqs. (49) and (50)
that contain a prefactor ν̃. This is a good approximation
under the assumption that ν̃ is much smaller than ν, an
assumption that is justified by the analysis of Sec. IVD.

We can then rewrite Eq. (49) as

3

(
− ȧ2

a2
+

1

a2

)
= IH2 + 3ν′H2, (53)

where

ν′ ≡ ν − ν̃, (54)

and IH2 ≡ Λ0 + 3ν̃S. Our determination of the lattice
scale factor allows us to construct the left side of this
equation, thus providing a determination of the effective
cosmological constant. We can then extract the combi-
nation ν′ = ν − ν̃ from a linear fit to a reconstruction of
the left side of Eq. (53) versus H2.

We also combine IH2 determined from fits to Eq. (53)
and ä/a constructed from the lattice scale factor, and
making use of Eq. (50), construct the useful combination

IH2 + 3
ä

a
= −3

(
ν − 3

2
ν̃

)
ä

a
− 3

2
ν̃

...
a

ȧ
. (55)

Eq. (55) provides an alternative determination of ν
within this model for running vacuum energy under the
assumption that we can neglect the terms proportional
to ν̃. The agreement between the different determina-
tions of ν provides a non-trivial check that the model is
consistent with lattice data across observables.
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B. Determining model parameters from the lattice

The calculation of the parameters of the running vac-
uum model ν and ν̃ in Eq. (42) using our lattice results
proceeds as follows. The scale factor measured in sim-
plex units is obtained directly from the lattice scale factor
from

a(τ) =
ℓV
ℓ
A(τ), (56)

where we use the notation A(τ) ≡ (N shell
4 (τ))

1
3 intro-

duced in Sec. III C 2 to emphasize the dependence on
the lattice spacing conversion factors. The factor ℓV /ℓ is
obtained from the results for alat/ℓ from our combined
analysis in Section III using

ℓV
ℓ

=

(
C4

2π2

) 1
3 (alat

ℓ

) 4
3

. (57)

The parameters of the dark energy model can then be
constructed from the scale factor A(τ) and its derivatives
with respect to τ , including the Hubble rate H = Ȧ/A,
and the quantities S = Ä/A and T =

...
A/Ȧ, where all

three of these are measured in dual lattice units.
The numerical derivatives are all approximated using

the five-point stencil

f ′(x) ≈ −f(x+ 2d) + 8f(x+ d)− 8f(x− d) + f(x− 2d)

12d
,

f ′′(x) ≈ −f(x+ 2d) + 16f(x+ d)− 30f(x)

12d2

+
16f(x− d)− f(x− 2d)

12d2
,

f (3)(x) ≈ f(x+ 2d)− 2f(x+ d) + 2f(x− d)− f(x− 2d)

2d3
,

and the derivatives are all taken under a jackknife to
correctly propagate the errors through to the next stage
of the analysis.

In order to determine the parameters ν and ν̃, we first
consider the parameter ν′ ≡ ν − ν̃ introduced in the pre-
vious subsection, as this combination is more convenient
to extract from the simulations. A value for ν′ can be
extracted from

3

(
− Ȧ2

A2
+

ℓ2

ℓ2V

1

A2

)
= Λ(H) = IH2 + 3ν′H2. (58)

The sign difference between the two terms on the left
side of Eq. (58) leads to a substantial cancellation be-
tween these terms. In order to construct this combina-
tion with sufficient precision to extract ν′, we require a
precise determination of ℓV /ℓ (which itself depends on
having a precise alat/ℓ). This partial cancellation sets
the precision level needed for the alat/ℓ determination of
Sect. III, which must be at the percent level in order to
resolve a ν′ statistically and systematically different from

zero. The value of ν′ is obtained from the slope of a lin-
ear fit to the left side of Eq. (58) as a function of H2,
and IH2 ≡ Λ0 + 3ν̃S is obtained from the intercept. As
we show in the following subsections, ν̃ is consistent with
zero. Taking ν̃ = 0, we have IH2 = Λ0, and this becomes
the input to our Method 2 determination of alat/ℓ, as
detailed in Sect. III C 2.

An alternative determination of ν′ allows for a powerful
crosscheck of the model. Forming the combination

IH2 + 3
Ä

A
≈ −3ν′

Ä

A
, (59)

which follows from Eq. (55). Note that in the limit that
ν̃ → 0, this approximate equality becomes exact. As ν̃
turns out to be much less than ν in our analysis, this
equation is sufficient for our purposes. In our calculation
we also assume that Ä/A is a constant, independent of
H2. This follows identically from Eq. (50) in the limit
that ν̃ → 0 if we also ignore the logarithmic running of
ν. This turns out to be a good approximation in the fit
window of H2 that we choose.

We are able to constrain ν̃ from lattice data by consid-
ering IH2 directly. The intercept of the Λ(H) versus H2

fit provides a determination of IH2 = Λ0 + 3ν̃S0, with
S0 the result of a constant fit to Ä/A. Although we have
no way to determine Λ0 independently at fixed volume,
if we make assumptions about the volume dependence of
the two terms making up IH2 , we can put constraints on
the size of ν̃. We take the volume dependence of Λ0 to be
that of the semiclassical theory, proportional to 1/

√
N4.

As discussed in Sec. III, this is a good description of
our lattice data for IH2 at all four lattice spacings. The
volume dependence of ν̃ is taken to be the logarithmic
dependence of Eq. (41), with the scale associated with
the fourth root of the four-volume of the lattice. This
is equivalent to using the curvature radius for the scale.
This logarithmic running turns out to be a good descrip-
tion of the volume dependence of ν′, implying that it
should also describe the running of ν̃, since ν′ is a linear
combination of ν and ν̃. The result of fitting IH2 versus
1/
√
N4 puts strong constraints on any deviations from

linearity, leading to bounds on the size of ν̃. Note that in
Sec. III C 2, we identify Λ0 with IH2 , implicitly setting ν̃
to zero in our Method 2 determination of alat/ℓ. We also
examine the constraints on ν̃ when we do not make this
assumption, using only the Method 1 determination of
alat/ℓ, which does not depend on any assumptions about
the size of ν̃.

C. Calculation of ν′

1. Fits to Λ(H) versus H2

As discussed in the previous subsection, the value of ν′
is obtained by using the lattice shelling function to con-
struct the left side of Eq. (58). This leads to an effective
cosmological constant Λ(H), which must be linear in H2
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if it is to be consistent with Eq. (42). Fig. 13 shows
the effective Λ plotted versus H2 for representative en-
sembles across four lattice spacings, where we find solid
evidence that Λ(H) is linear in H2. The linear fit region
that we chose is marked with black points in Fig. 13.

We parameterize the linear fit as

Λ(H) = IH2 + 3ν′H2 (60)

where the slope gives a determination of ν′ = ν − ν̃, and
the intercept gives the parameter IH2 . Eq. (60) should be
a good approximation in the limit that ν̃ is small com-
pared to ν. The fit region is chosen to be to the left
of the classical peak in order to avoid the asymmetric
tail, which is most likely unphysical and contaminated
by large lattice artifacts, while also not extending to too
small a value of τ , in order to avoid contamination from
short-distance discretization effects.

For the shelling function used to compute the effec-
tive cosmological constant Λ(H), we use 60 sources per
configuration on every ensemble. There is a (correlated)
statistical error on the horizontal axis, since H2 is also a
quantity derived from the lattice shelling function. The
fit to Λ(H2) versus H2 uses orthogonal distance regres-
sion and includes the correlations between errors on the
vertical and horizontal axes when minimizing χ2.

The range of the linear fit to Λ(H) is varied in order to
estimate a fitting systematic error in our determinations
of ν′ and IH2 . For the fits at κ2 = 2.45 and κ2 = 3.0, we
vary either end of the fit range by plus and minus one or
two. For κ2 = 3.4, we vary either end of the fit range by
plus and minus 2 and 4. For κ2 = 3.8, we vary by plus and
minus 3 and 6 if N4 ≤ 32k, and by plus and minus 4 and 8
if N4 > 32k. Thus, for each ensemble, we have a total of
25 different fit ranges centered on our preferred window
in the linear regime. We estimate the fitting systematic
error from the distribution of these fits. We take our
central value and statistical error for ν′ from a fit that is
close to the middle of the distribution of fit values, and
we take the systematic error from the standard deviation
of the distribution of fit results. For fits to be included in
the systematic error estimate, the Λ versus H2 fit has to
satisfy p ≥ 0.01. We also include an error from alat/ℓ that
is propagated through the analysis for ν′ and IH2 . We
vary alat/ℓ by its upper and lower 1 σ error and repeat
the analysis used to extract ν′ and IH2 with these values.
Although the error inferred from varying alat/ℓ by its
upper and lower 1σ range is not quite symmetric about
its central value, the upper and lower errors are very
similar. For simplicity, we symmetrize the alat/ℓ error,
taking the error from the larger of the two variations of
alat/ℓ.

For volumes where the β tuning error is non-negligible
and we have a pair of tuned β values, we do the fits
on both ensembles separately to get the intercepts and
slopes. Then, instead of taking the weighted average of
the two ensembles as we did for alat

ℓ , we use one ensem-
ble as the central value of the quantity, and we take the
difference between that and the result on the second en-

semble as a systematic error and add the systematic error
in quadrature to the original error. This is different from
our approach to combining the different tuned ensembles
in the analysis of Sec. III C 1, since here it is important to
preserve the correlations between observables measured
on the same ensemble, especially for the ν̃ analysis of the
following subsection.

Table XXI shows the fit parameters for the Λ(H) anal-
ysis on all the ensembles considered in this work, where
the first error includes the statistical and fit systematic
error added in quadrature, and the second error is the
alat/ℓ error. The good quality of the linear fits to Λ(H)
versus H2 in Fig. 13 shows that our lattice data is com-
patible with Eq. (40), and it allows us to determine the
running coupling ν′, evaluated at a distance scale compa-
rable to the de Sitter radius on any given ensemble across
many different physical volumes.

2. Fits to ν′ as a function of four-volume

We expect the dimensionless coupling ν′ to run loga-
rithmically as a function of the renormalization scale as
in Eq. (41). In the de Sitter solution with Lorentz sig-
nature, the various measures of the size of the universe
at large times are proportional, with the scalar curvature
R ∝ Λ ∝ H2. In our Euclidean simulations, the Hub-
ble rate vanishes at the classical peak (since ȧ is zero at
the maximum of the shelling function). However, Fig. 13
shows that the slope, and thus the parameter ν′, does
not appear to vanish in the limit that H2 → 0. This
suggests that the appropriate cut-off scale at the longest
distances on our lattices is not H2 but the spatial cur-
vature 1/a2 ∝ Λ ∝ 1/

√
V4. We thus associate the renor-

malization scale of the logarithmic running of ν′ with the
(fourth-root of the) physical lattice volume

V4 = ηC4N4a
4
rel. (61)

Identifying the renormalization scale µ2 of Eq. (41)
with 1/

√
V4, we parameterize the logarithmic running of

Eq. (41) by

ν′ =
A′

log(B′
√
V4)

, (62)

where A′ and B′ are free fit parameters. We find that
a large subset of our data set for ν′ is compatible with
Eq. (62). This is true across many volumes and multiple
lattice spacings, and the parameters determined from our
fits are fairly stable under different fit variations that
consider smaller subsets of the data or introduce lattice
spacing dependence into Eq. (62). In the remainder of
this subsection we discuss those fit variations and our
best estimates of the resulting fit parameters. We also
discuss the motivation for our cut on the data for ν′ and
why we believe that the points that have been left out
of the fits are likely contaminated by significant lattice
artifacts. Finally, we discuss how the variation of ν′ with
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Figure 13: Λ versus H2 plotted for four lattice spacings, along with a linear fit to the form Eq. (60). The points
included in the fits are highlighted in black. Top left panel: N4 = 6k, κ2 = 2.45. Top right panel: N4 = 16k,

κ2 = 3.0. Bottom left panel: N4 = 16k, κ2 = 3.4. Bottom right panel: N4 = 16k, κ2 = 3.8.

the volume of the lattice is also visible in the linear fits of
Λ(H) versus H2 by shifting the fit window on our larger
volume lattices to larger values of H2 (smaller distance
scales). This shows that the running of ν′ with volume is
not merely an artifact of the way the tuning is performed
to produce ensembles at different lattice volumes and the
same nominal lattice spacing, since a similar running of
ν′ with scale is seen on individual lattice ensembles.

Figure 14 shows ν′ plotted as a function of
√
V4 for

the subset of the ν′ data that we consider for our main
analysis. The errors on ν′ are those quoted in Table XXI,
where the solid riser line represents the statistical and fit-
ting error, and the dashed riser line includes the alat/ℓ er-
ror added in quadrature. The horizontal errors stem from
the dependence of

√
V4 on arel and η. The central values

and uncertainties on these quantities are taken from Sec-
tion III, and we assume that arel and η are uncorrelated
when combined to produce V4, since they come from an
almost completely non-overlapping set of ensembles and
different analyses. The statistics and fitting errors on
each ensemble are treated as uncorrelated across ensem-
bles, but the alat/ℓ errors are treated as 100% correlated
across ensembles at the same lattice spacing and uncor-
related for ensembles at different lattice spacings. The
same is true of the η and arel errors.

In order to correctly account for correlated systematic
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Figure 14: A combined fit of ν′ versus
√
V4 to data at all

four lattice spacings for all ensembles that pass our cut,
as discussed in the body of this subsection. The vertical
errors in ν′ are the statistical and fitting errors added in

quadrature (solid riser line), and the sum of the
statistical/fitting errors and the alat/ℓ systematic error
added in quadrature (dashed riser line). The fit of this
data to the form Eq. (62), which assumes a logarithmic
running, is shown with its 1σ statistical error band.
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errors in our fits to ν′ as a function of
√
V4, we find it

convenient to generate a synthetic data set that contains
the information extracted from the Λ versus H2 fits. The
statistical errors on the individual data points for ν′ are
uncorrelated, since each point comes from a different en-
semble. The fit error is also assumed to be uncorrelated
across ensembles, so just like the statistical error, it only
contributes to the diagonal elements of the covariance
matrix.

Our synthetic data sample is obtained from 10,000 ran-
dom Gaussian draws for every ensemble, with a mean
given by the central value of ν′ and the error given by the
statistical and fit systematic error added in quadrature.
We account for the error coming from alat/ℓ to the arrays
as follows: We assume that when alat/ℓ for a given lattice
spacing deviates from its central value by some percent-
age of one σalat/ℓ, all ν′ values at the same lattice spacing
also shift by the same percentage of its alat/ℓ systematic
error, σν′,alat/ℓ. Therefore, for each lattice spacing, we
generate an array of 10, 000 samples from a Gaussian ran-
dom number generator, Aran ∼ N (0, 1). This allows us
to construct the array

(
alat

ℓ

)
avg

+ Aranσ alat
ℓ

, which gives
a distribution for alat

ℓ with the correct central value and
standard deviation at each lattice spacing. To obtain the
final correlated array for ν′ we use the fact that for two in-
dependent normal distributions, N1(µ1, σ1), N2(µ2, σ2),
their sum N1 + N2 = N (µ1 + µ2,

√
σ2
1 + σ2

2). We then
get ν′ for each ensemble by subtracting Aranσν′,

alat
ℓ

from
the original ν′ sample thereby including the alat/ℓ sys-
tematic error in quadrature with the statistical and fit
systematic error in ν′, and maintaining the correlation
with alat/ℓ. The minus sign is due to the fact that the
larger alat/ℓ is, the smaller ν′ is. Because the random
array for alat/ℓ is shared by all ensembles at the same
lattice spacing, the alat/ℓ error is fully correlated across
different volumes at a single lattice spacing. The fully
correlated alat/ℓ error covariance matrix is added to the
diagonal matrix containing the statistical and fitting er-
rors of ν′ in quadrature. This gives the full covariance
matrix for ν′, which is reused when performing the fits
over a jackknife array of 10, 000 random samples.

Figure 14 shows the fit of ν′ data to Eq. (62), including
a 1 σ statistical error band on the fit curve. We obtain
A′ = 0.146(28) and B′ = 0.138(10), with a χ2/d.o.f. of
1.100 and p-value of 0.355. There is no need to include
discretization effects in order to describe the data using
Eq. (14), at least for this subset of the data. Because
the agreement of the running of ν′ across multiple lat-
tice spacings is very good, it is unlikely that this effect
is simply a lattice artifact. Also, the statistical error of
the normalization parameter A′ is ∼ 5σ from zero, so the
non-trivial running of Λ we observe in our EDT simula-
tions is very unlikely to be due to a statistical fluctuation.

To test the stability of this fit, we perform a number
of fit variations. These variations include dropping the
largest volume at each lattice spacing, the smallest two
volumes across all ensembles, and the finest or coarsest
lattice spacing in the analysis. We also consider a fit

where we add ℓ2rel dependence to the normalization of
the coupling,

ν′ =
A′ + k′ℓ2rel
log(B′

√
V4)

. (63)

These fit results are shown in Table VII, and the varia-
tion of the parameters A′ and B′ across different fits is
shown in Fig. 15. This illustrates the stability of our
fits to dropping subsets of the data. The analysis is not
very sensitive to dropping either the finest or the coarsest
of our lattice spacings, as the lattice spacing dependence
is quite small. The fits are more sensitive to dropping
the smallest or largest volumes, since these are needed
to constrain the shape of the fit. The coefficient k′ of
the ℓ2rel dependence in the fit form of Eq. (63) that we
include to estimate discretization effects is found to be
−0.032(42), so consistent with zero. We take the stan-
dard error of the distribution of these fit variations in
Table VII as an estimate of the systematic error in our
result for ν′ due to fit-range variations and discretization
effects. We thus quote the values A′ = 0.146(28)(27) and
B′ = 0.138(10)(2) as the inputs for our discussion on the
implications for cosmology in Secs. IV F and V. The first
error quoted is statistical, and the second is an estimate
of the fitting and discretization errors.

3. Tests of the model

As pointed out above, we exclude some of our data
from the fits to determine ν′, due to the fact that they
are likely contaminated by lattice artifacts. To illustrate
this, we show the full set of data for our coarsest and
finest lattice spacings in Fig. 16, along with the best fit
curve from the analysis described above and its 1σ error
band. As can be seen in Fig. 14 and Table VII, the fit
function Eq. (62) is an excellent description of the subset
of the data that makes our cut. All of the data points
in this subset are in good agreement not only with the
model fit function but with each other across four lattice
spacings. However, as we go to larger volumes, particu-
larly at coarser lattice spacings, this agreement is not as
good, as can be seen in Fig. 16. Despite the large errors, a
trend can be seen. Both lattice spacings begin to deviate
from the model fit function and from each other at larger
volumes, but the deviation from the model fit function is
bigger and happens at smaller physical volumes for the
coarsest lattice spacing, suggesting non-universal behav-
ior. Even the finest lattice spacing begins to deviate from
the model fit at a sufficiently large volume, though the
errors are still quite large on the largest volume point
at the finest lattice spacing. Modeling the discretiza-
tion effects in the large volume regime where there are
deviations from the model fit function (and between the
lattice data at different lattice spacings) is difficult, so we
restrict our main analysis to the region where the overlap
between different lattice spacings is better.
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Table VII: Results for various fits to the ν′ versus
√
V4 data set. The first row is the result of the central fit to the

full data set that passes our cut on volume and lattice spacing. This fit is shown with 1σ statistical error band in
Fig. 14. The other rows show the results for different fit variations. The second row shows the fit where the largest
volume at each lattice spacing is dropped from the fit. The third row shows a fit that drops the smallest volume at

κ2 = 3.4 and at κ2 = 3.8. The fourth and fifth rows show the fits that drop the coarsest (κ2 = 2.45) and finest
(κ2 = 3.8) lattice spacings, respectively. The sixth row shows the fit to Eq. 63, using all of the same data as the

central fit.

Fit scheme A′ B′ k′ χ2/d.o.f. p-value
Fig. 14 0.146(28) 0.138(10) NA 1.100 0.355
w/o largest 0.206(52) 0.167(25) NA 0.178 0.996
w/o smallest 2 0.124(26) 0.131(8) NA 0.934 0.507
w/o κ2 = 2.45 0.155(31) 0.140(10) NA 1.197 0.283
w/o κ2 = 3.8 0.140(29) 0.136(9) NA 1.589 0.123
ℓ2rel term 0.173(48) 0.136(9) -0.032(42) 1.140 0.323
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Figure 15: A stability plot for visualizing the fits of Table VII. The fits are labeled (left to right) in the same order
as Table VII (up to down). The central value and 1σ error band is shown in the plot as the darker shaded region.

The lighter bands represent the total error, which includes a systematic error accounting for the size of the
variations of the alternative fits.
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Figure 16: The full data set of all volumes at our
coarsest lattice spacing, κ2 = 2.45, and at our finest

lattice spacing, κ2 = 3.8. The black curve is the
combined fit from Fig. 14. The data points highlighted
in black are the ones that are included in the combined

fit.

This hint of non-universal behavior at long distance
scales is reminiscent of the deviation of our lattice data
for the shelling function from the classical de Sitter so-
lution, as seen in Fig. 4. There as well, the long-
distance physics displays non-universal behavior, which
approaches theoretical expectations as the continuum
limit is approached, with the notable difference that the
effect in the de Sitter comparison is much more signifi-
cant, given the smaller errors there. This type of long-
distance lattice artifact appears when the lattice regu-
lator breaks an underlying symmetry of the theory, re-
quires a fine-tuning of bare lattice parameters, and only
vanishes in the continuum limit. Regardless of its origin,
it is plausible that other long-distance quantities, like ν′,
may similarly be contaminated by lattice artifacts. Not
only is there an indication that the behavior of ν′ at long
distances and coarse lattices is non-universal, but we ar-
gue that it is also not physical, as it turns out that a
negative value of ν′ for the model picked out by our lat-
tice calculations would lead to a vacuum equation of state
w < −1, a result in violation of the null energy condi-
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Figure 17: Λ versus H2 for one of our larger volumes at
our second finest lattice spacing, with κ2 = 3.4,

N4 = 32k. The range in H2 extends further than in
Figure 13 in order to show the nonlinear behavior at

larger H2 values. There are three fit windows,
highlighted in black, where a linear fit is performed.

The left-most one is the central value fit used to extract
ν′ for this ensemble. The two to the right are

alternative fits used to study the scale dependence of ν′
as H2 is increased.

tion. Such a result would be severely constrained from
theoretical expectations and from observation [30, 31].
However, the trend in our data suggests that this behav-
ior corrects itself as the continuum limit is approached.
Further reduction in the errors of ν′ and in the relative
lattice spacings would help to clarify this picture.

We further test the running of ν′ with scale by study-
ing its extraction from fits to different windows in H2

from the Λ(H) versus H2 data. We restrict the study to
our two finest lattice spacings, since these are expected
to have the smallest systematic errors from lattice arti-
facts. We also restrict this study to the largest or second
largest volumes at these lattice spacings. This choice fol-
lows straightforwardly from the fact that we can probe
scales shorter than the maximum distance scale on our
largest volumes, but we cannot probe distances longer
than this on our smaller volumes. We assume that in
the linear regime at large distances that the value of ν′
is effectively determined at a scale of order the minimum
spatial curvature (∼ 1/a2) on a given volume ensemble.
If the renormalization scale of the logarithmic running in
the model is to be identified with the Hubble scale H,
just as the quadratic running of Λ(H) is, then we must
see a variation of ν′ with H2 on individual ensembles
that is similar to the variation of ν′ across ensembles at
different physical volumes.

To illustrate this, we consider the largest volume at
our second finest lattice spacing, with N4 = 32k and
κ2 = 3.4. As can be seen in Fig. 17, the linear regime
extends out to values of H2 around 3 × 10−4, which we
denote by H2

cutoff . Beyond that, the slope increases with
increasing H2. If we consider larger values of H2, for
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Figure 18: Plot of ν′ versus
√
V4 showing only data at

the two finest lattice spacings (κ2 = 3.4 and 3.8), as
well as the central fit to all four lattice spacings with 1σ

error band. Also shown are values of ν′ measured at
larger H2 values beyond the linear regime on some of
our larger volume ensembles. These alternate values of
ν′ are measured at larger H2 than our central fit values.

They are plotted at smaller values of
√
V4, which are

taken to be in the same proportion as H2
cutoff/H

2,
where H2

cutoff marks the upper bound on the linear
regime for ν′. This gives a rough estimate of the scale

at which ν′ in the non-linear regime should be evaluated
in comparison to other determinations of ν′ in the linear
regime on smaller volumes. The ν′ points in pink are
measured on the κ2 = 3.4, N4 = 32k ensemble in the

non-linear regime. The ν′ points in gray are measured
on the κ2 = 3.8, N4 = 48k ensemble in the non-linear

regime.

example H2 =
√
2H2

cutoff and H2 = 2H2
cutoff , these cor-

respond to scales that are 1/2 and 1/4, respectively, the
four-volume of the lattice. Thus, we might compare the
value of ν′ extracted from linear fits at these larger H2

values on the 32k, κ2 = 3.4 ensemble to the values of
ν′ determined from the standard linear fits probing the
largest distance scales on smaller volumes, in particular
the 16k and 8k volumes at the same lattice spacing. To
extract the values of ν′ from Λ(H) at higher H2 values
where the trend is no longer linear, we have to restrict
the fit range to just a few points, as shown in Fig. 17.
To estimate a fit systematic error for these additional ν′
points, we consider variations of the fit window where
the starting point of the window is fixed and the ending
point is allowed to vary by ±1 or ±2. We keep only the
fits with p ≥ 0.01 when using the range of these alter-
nate fits to estimate a systematic error. The values of
ν′ extracted from the linear fits at these larger H2 val-
ues on the 32k, κ2 = 3.4 ensemble are shown in pink in
Fig. 18 at the horizontal points corresponding to four-
volumes that are 1/2 and 1/4 that of the 32k ensemble.
The data for ν′ from lattice spacings at κ2 = 3.4 and
3.8 are also shown in Fig. 18, along with the combined
fit across volumes and lattice spacings discussed above,
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for comparison. The running of ν′ with H2 on an indi-
vidual ensemble is thus in good overall consistency with
the running of the coupling with scale set by the phys-
ical volume. We find a similar trend when comparing
the determination of ν′ on the 48k volume of our finest
lattice spacing (κ2 = 3.8) for values of H2 =

√
2H2

cutoff

and H2 =
√
3H2

cutoff , which should be compared to the
smaller volumes at 24k and 16k at the same lattice spac-
ing, respectively. These two points appear in grey in
Fig. 18, and they are also in good agreement with the
overall trend from the combined fit across volumes and
lattice spacings.

D. Calculation of ν̃

1. The method

As discussed in Sec. IV B, we can constrain ν̃ from
IH2 = Λ0+3ν̃S. It is not possible to separately determine
Λ0 at a fixed volume, so the determination of ν̃ must
exploit the difference in finite-volume scaling between the
two terms making up IH2 . We associate Λ0 with the
classical cosmological constant, which is strictly constant
as a function of Euclidean time, and in our simulations
it is fixed by the four-volume of our geometries. It scales
as in Eq. (32), so that its volume dependence is ∝ 1√

V4
,

with V4 given by Eq. (61). Since ν̃ is a dimensionless
coupling, its running can be parameterized analogously
to Eq. (62) for ν′, leading to

ν̃ =
Ã

log(B̃
√
V4)

, (64)

with free parameters Ã and B̃. Within the family of run-
ning vacuum models considered in Refs. [26, 28, 29], it is
assumed that ν and ν̃ are dimensionless couplings that
run with the same functional form. Given that ν′ = ν−ν̃,
if this linear relation is to be maintained across scales,
the couplings must share the same scale dependence. We
thus assume that B̃ = B′ and use the value of B′ from
our ν′ fits as an input to our determination of ν̃. The
normalization parameter, Ã, we leave free. Thus, we ex-
pect the intercept IH2 to be described by a function of√
V4 of the form

IH2 =
C̃√
V4

+
3ÃS

log(B′
√
V4)

. (65)

where Ã and C̃ are free parameters.
Before presenting this finite-size analysis, we note a

complicating factor due to our method for extracting
alat/ℓ and how we work around it. The determination of
IH2 requires as input a value for alat/ℓ. In our Method
2 determination of alat/ℓ, its value is computed using
Eq. (34) by adjusting the input alat/ℓ value that enters
IH2 to match the output value, so that alat/ℓ is deter-
mined in a self-consistent way. One of the implicit as-

sumptions entering Eq. (34) is that IH2 = Λ0, with ν̃ set
to zero.

It is possible to use the determination of IH2 that
comes from the combined (Methods 1 and 2) result for
alat/ℓ in the finite-size scaling analysis of Eq. (65), and we
do find that ν̃ is compatible with zero in this analysis.
This provides a consistency check that the assumption
that ν̃ = 0 in our Method 2 alat/ℓ determination is valid.
Still, we would like to test the quality of the bound on ν̃
when we do not make the assumption that it is zero at
an intermediate step of the analysis. We do this by using
only the Method 1 determination of alat/ℓ to obtain IH2 ,
since this makes no implicit assumptions about the value
of ν̃. This does not significantly worsen the bounds on
ν̃, which remains consistent with zero, and is constrained
to be at most only a few percent of the magnitude of ν.

2. Determining S

In order to carry out the finite-size scaling analysis of
IH2 suggested by Eq. (65), it remains to specify how we
determine S ≡ Ä/A, and how we parameterize its volume
dependence. One way to determine S is to extract it
directly from the second derivative of the lattice scale
factor. Figure 19 shows S plotted as a function of H2

in the same fit region that is used for the ν′ analysis,
which is the region of the shelling function that is best
described by the classical de Sitter solution. Figure 19
shows S versus H2 at our two finest lattice spacings, the
κ2 = 3.4 and 3.8 ensembles, for N4 = 16k.

Within the running vacuum model with ν̃ small, the
corrections to a constant S as a function of H2 are also
small. There are complicating factors in testing this ex-
pectation, which include the substantial statistical noise
involved when evaluating a second derivative numerically,
and the possible presence of lattice artifacts at coarse
lattice spacings. On our two finest ensembles, the value
of S is compatible with a constant as a function of H2

within the standard fit window chosen for other observ-
ables. On our two coarsest lattice spacings, the value of S
versus H2 has some nontrivial structure. In order to in-
corporate the coarser data, we smooth over these effects
by averaging the first half and second half of the data
points in the H2 range. These smoothed data points are
shown as red circles in Fig. 19. We fit these two points
to a constant on each ensemble. The results for S0 from
these constant fits are shown in Table XXII, along with
the p-values of the fits, showing that the smoothed data
is indeed consistent with a constant over this H2 range.
On our two finest lattice spacings it is not necessary to
do the smoothing, and we get consistent results between
the smoothed fits and the fits to a constant across the
H2 window. The numbers quoted in XXII are all from
the fits to the smoothed data.

Once S0 is determined from these fits, we must param-
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Figure 19: Left panel: S versus H2 for κ2 = 3.4, N4 = 16k. Right panel: S versus H2 for κ2 = 3.8, N4 = 16k. Red
circles represent the weighted averages of the data points in the first half and second half of the fit range. The fit

ranges over which these averages are performed are denoted by the light red bands. The final result for S0, given by
the red horizontal line, comes from a constant fit to the smoothed points (red circles).
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Figure 20: S0 versus
√
V4 at lattice spacing κ2 = 3.4,

with linear fit S0 = a0 + b0
√
V4.

eterize its volume dependence. We chose the fit function

S0 = a0 + b0
√
V4, (66)

with a0 and b0 free parameters. This simple interpolat-
ing function does an excellent job of describing the S0

data across volumes in the region where we have data.
Table VIII shows the results of our S0 versus volume fits
at all four of our lattice spacings, and Fig. 20 illustrates
one of these fits. We only include data on ensembles that
were used in the ν′ analysis. This means that we only
have two points at the coarsest lattice spacing, so we are
unable to estimate a χ2/d.o.f. for this two-parameter fit.

An alternative determination of S0 is possible, if we al-
low ourselves to use theory input as a guide. We estimate
S0 using the FLRW equations, particularly Eq. (50),
which has the dynamics of the running vacuum model
inserted; this requires as input our values for IH2 and ν′.
In the spirit of a consistency check, we assume that ν̃ is

Table VIII: Results of the linear fits to S0 versus
√
V4,

such as the one shown in Fig. 20. At κ2 = 2.45 there
are only two data points in the acceptable region, so

there is not enough data to estimate a χ2/d.o.f.

κ2 a0 × 103 b0 × 103 χ2/d.o.f. p-value
2.45 -7.13(169) 0.144(148) NA NA
3.0 -2.94(24) 0.055(17) 0.356 0.583
3.4 -1.44(10) 0.042(7) 0.182 0.909
3.8 -0.50(3) 0.013(2) 0.217 0.884

zero when constructing S0. Eq. (50) then reduces to

S ≡ Ä

A
= −Λ0

3
− νS (67)

and we can solve for S, replacing Λ0 with the intercept
IH2 from the Λ versus H2 fits. We find

S0 = −1

3
IH2

1

1 + ν
. (68)

Using extracted values for IH2 and ν′ we can then obtain
S0.

3. Fits to IH2 versus four-volume and constraints on ν̃

We now return to the finite-volume scaling of IH2 using
the minimal set of assumptions about ν̃. We use only the
Method 1 value of alat/ℓ as input, and the data driven
approach to interpolate S0 as a function of lattice volume.
Our fit function becomes

IH2 =
C̃√
V4

+
3Ã(a0 + b0

√
V4)

log(B′
√
V4)

, (69)

where B′ is determined from our ν′ fits, as detailed in the
previous subsection, and a0 and b0 are determined from
our fits to the volume dependence of S0.
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Table IX: Fit results for IH2 versus
√
V4 using the fit

function, Eq. (65), for each lattice spacing separately.
At κ2 = 2.45 there are only two data points in the
acceptable region, so there is not enough data to

estimate a χ2/d.o.f.

κ2 C̃ Ã χ2/d.o.f. p-value
2.45 0.2325(389) -0.041(38) NA NA
3.0 0.1107(72) -0.018(13) 2.502 0.155
3.4 0.0433(18) 0.003(4) 0.488 0.691
3.8 0.0171(26) 0.005(20) 0.203 0.894

We take two approaches to the finite-volume scaling.
In the first, we fit each lattice spacing separately to
Eq. (69). In this case, we do not include the horizon-
tal error, since this comes from converting the number
of four-simplices to a physical volume, a conversion fac-
tor that is common across data points at the same lattice
spacing. We include only the data points on ensembles at
volumes that were found to be consistent with the model
form of the logarithmic running in the ν′ analysis. The
fit results are shown in Table IX. We see that the fits
have acceptable confidence levels, although the coarsest
lattice spacing (κ2 = 2.45) has only two data points, so
a two parameter fit does not allow a determination of
the χ2/d.o.f. The values of Ã (which normalizes ν̃) for
the finest two lattice spacings are compatible with zero
well within the statistical errors, while the coarsest two
lattice spacings are compatible with zero at the 1-1.5σ
level. This indicates that ν̃ is consistent with zero on our
lattice geometries.

In the second approach to the finite-volume scaling, we
include the horizontal errors associated with converting
the lattice volumes to common physical units, and we
do a combined fit across all lattice spacings, similar to
our approach to fitting ν′. For an ensemble with N con-
figurations, we have three one dimensional arrays of N
entries for ν′, IH2 , and S0. The ith element of all three
arrays corresponds to the fit results from the same con-
figurations, so correlations among them are preserved. A
3-by-3 covariance matrix C that encodes the correlation
among the three variables can be calculated from these
3 arrays. Since we add a fitting systematic error to the
statistical error, the square of the fitting error is added to
the diagonal elements of this 3-by-3 covariance matrix C.
We do not add the alat/ℓ systematic error directly to the
covariance matrix C because the alat/ℓ systematic errors
are correlated across volumes at a given lattice spacing,
and must be accounted for more carefully.

Given the covariance matrix, we can generate corre-
lated arrays of the three variables ν′, IH2 , and S0 that
reproduce the correct correlations between them. To
do this, we first generate an independent Gaussian ran-
dom vector X = (x1, x2, x3)

T , where xi ∼ N (0, 1), and
i = 1, 2, 3. Then we multiply the lower triangular matrix
L coming from the Cholesky decomposition of the covari-
ance matrix C (C = LLT ) to X to get Y = LX. The ran-

Table X: Fit results for the combined fit of IH2 versus√
V4 to the fit function Eq. (65) for data across all four
lattice spacings, using the Method 1 approach for
obtaining alat

ℓ . The “Data Driven S0” approach, in
combination with the Method 1 approach for obtaining
alat

ℓ , avoids the assumption that ν̃ (and thus Ã) is zero.
The “Model Driven S0” approach does introduce the

assumption that ν̃ = 0. The zero result for Ã using this
set of assumptions should be viewed as a consistency
check, since it ensures that ν̃ remains consistent with

zero.

Parameter Data Driven S0 Model Driven S0

C̃2.45 0.240(55) 0.239(55)
C̃3.0 0.102(7) 0.102(7)
C̃3.4 0.043(6) 0.043(6)
C̃3.8 0.017(5) 0.017(5)
Ã -0.00036(393) -0.00068(266)
χ2/d.o.f. 0.785 0.780
p-value 0.644 0.649

dom vector Y has mean value zero for all three variables,
and its fluctuations reproduce the covariance matrix C.
Adding the central value of the three variables to the vec-
tor Y , we get the vector of variables Z = (ν′, IH2 , S0)

T

that reproduces the correct mean value and the original
covariance matrix C. We account for the correlated er-
rors of alat/ℓ in a similar way to what is done for the ν′

analysis in the previous subsection. We get the final array
V = Z − A(σν′,

alat
ℓ
, σIH2 ,

alat
ℓ
, 0)T , where A is the array

that gives the deviation of alat

ℓ from its central value for
the corresponding lattice spacing.

For the IH2 fit, the value of C̃ is different across lat-
tice spacings, but the value of Ã is fixed across lattice
spacings, analogously to what is done for the parameter
A′ in the ν′ fits of the previous subsection. The quality
of the combined fit is good, as can be seen in Tab. X
under the column, “Data Driven S0.” Again we find Ã to
be compatible with zero, this time with an error that is
only around 3% the size of our central value for the nor-
malization of ν′, thus constraining ν̃ to be much less than
ν. This combined fit is shown in Fig. 21. This fit avoids
an implicit or explicit setting of ν̃ to zero anywhere in
the analysis, and as such, it represents the most reliable
constraint on ν̃ coming from our data.

We also consider a few additional fits that make the
assumption ν̃ = 0 somewhere in the analysis chain. Even
so, the finite-volume study of IH2 shows that Ã (and thus
ν̃) remains compatible with zero in all of these fits. This
represents a useful consistency check on the ν̃ constraint.
Table X shows, under the column labeled, “Model Driven
S0,” a fit using S0 determined from Eq. (68). We sub-
stitute the values of IH2 and ν′ obtained in the previous
subsection into Eq. (68) to construct S0 as a function
of V4. This becomes possible once the assumption that
ν̃ = 0 is made. We see from the results of the fit that
Ã is once again consistent with zero, with a small error.
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Figure 21: Combined fit of IH2 versus
√
V4 across all

four lattice spacings to Eq. (65). This fit does not
assume ν̃ is zero at an intermediate step of the analysis.

Fit results are shown in the left column of Table X.

Table XI: Fit results for the combined fit of IH2 versus√
V4 to the fit function Eq. (65) for data across all four
lattice spacings, using the combination of Methods 1
and 2 to obtain alat

ℓ . The constraints on ν̃ are slightly
tighter here, but the assumption that ν̃ = 0 is made in
the Method 2 determination of alat

ℓ . However, these fits
still provide a useful consistency check, since the value
of Ã (which normalizes ν̃) determined from the fits to

Eq. (65) is compatible with zero.

Parameter Data Driven S0 Model Driven S0

C̃2.45 0.239(42) 0.238(42)
C̃3.0 0.102(5) 0.102(5)
C̃3.4 0.043(6) 0.043(6)
C̃3.8 0.017(4) 0.017(4)
Ã -0.00037(358) -0.00061(241)
χ2/d.o.f. 0.804 0.800
p-value 0.625 0.630

Table XI shows similar fits to that of Table X, but where
the value of alat/ℓ was taken from the combination of
Methods 1 and 2. As stated above, the Method 2 deter-
mination of alat/ℓ assumes that ν̃ = 0. As can be seen
by comparing the results for Ã in Tables X and XI, the
constraint on Ã from using the combined alat/ℓ is barely
different from that of using only the Method 1 determi-
nation of alat/ℓ. The fit results strongly suggest that Ã
is consistent with zero.

E. Alternative calculation of ν′

As discussed in subsection IV B, the FLRW equations
suggest an alternative determination of ν′ from the one
presented in subsection IV C. The second FLRW equa-
tion [Eq. (45)], when combined with the assumption of
covariant energy conservation, leads to Eq. (59), which
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Figure 22: A combined fit of our alternate
determination of ν′ versus

√
V4 to data at all four

lattice spacings for all ensembles that pass our cut.
These are the same ensembles included in the original
ν′ analysis (see Fig. 14). As in Fig. 14, the vertical

errors in ν′ are the statistical and fitting errors added in
quadrature (solid riser line), and the sum of the

statistical/fitting errors and the alat/ℓ systematic error
added in quadrature (dashed riser line). The fit to this

data assumes the same logarithmic running and the
result is shown with its 1σ statistical error band. The
fit to Eq. (62) yields A′ = 0.136(28), B′ = 0.132(10),

with χ2/d.o.f. = 0.937, and p-value= 0.514.

can be solved for ν′ to obtain

ν′ =
IH2 + 3S

−3S
. (70)

This equation is exact within the running vacuum model
defined by Eqs. (46) and (48) if ν̃ = 0. It then becomes
an excellent approximation to assume that S = S0, as
long as we can ignore the logarithmic running of ν′ with
H2 in the chosen fit window, which is seen to be the case
in our extraction of ν′ from the slope of Λ(H) versus H2.
Using S = S0 in Eq. (70), we construct this alternative
determination of ν′ and show the results in Fig. 22.

As a comparison of Figs. 14 and 22 shows, the agree-
ment between these two determinations of ν′ as a func-
tion of

√
V4 is excellent, with every point in agreement

within errors. Although the individual points are highly
correlated, having been determined on the same ensem-
bles, they do have different systematic errors. The solid
riser line in Fig. 22 shows the statistical plus fitting error
in the second method for computing ν′, while the dashed
riser line shows the statistical plus fitting error combined
in quadrature with the alat/ℓ error. The alat/ℓ error en-
ters in the determination of the intercept IH2 used to
construct ν′ from Eq. (70).

A combined fit to the data of Fig. 22 to the form of
Eq. (62) leads to a good fit, with a χ2/d.o.f. of 0.937
corresponding to a p-value of 0.514. The values of the
fit parameters, A′ = 0.136(28) and B′ = 0.132(10), are
in excellent agreement with those from the first method
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of determining ν′, as can be seen by comparing to the
results of Table VII. This agreement between the two
methods for determining ν′ is a strong test of the model
defined by Eqs. (46) and (48). Even if one were inclined
to dismiss a non-zero ν′ as a lattice artifact, the good
agreement between both methods, ensuring covariant en-
ergy conservation, is a powerful check that the emergent
behavior of the vacuum in EDT is consistent with one of
the key properties expected of a theory of gravity.

If we relax the assumption that ν̃ = 0, we might at-
tempt to use this second method for determining ν′ to
constrain ν̃ as well. As can be seen from Eq. (50) and
the definitions of IH2 , S, and T , we find

IH2 + 3
ä

a
= −3

(
ν − 3

2
ν̃

)
S − 3

2
ν̃T. (71)

Unfortunately, the third derivative
...
A is only poorly de-

termined by the data, given the large statistical errors as-
sociated with numerical derivatives of high order. There
is also expected to be significant cancellation between
the ν̃ term proportional to S with that proportional to
T , since S and T are equal up to corrections of O(H2),
so that a meaningful constraint on ν̃ is not possible with
this approach.

F. Implications for the running vacuum model

Our analysis shows that the EDT lattice formulation
of gravity singles out the running vacuum model repre-
sented by

Λ(H) = Λ0 + 3νH2, (72)

where we have neglected ν̃ in Eq. (42), given our strong
bounds on this parameter. Within this model, the di-
mensionless coupling ν runs logarithmically,

ν(H2
f ) =

ν(H2
i )

1 + b log(
H2

i

H2
f
)
. (73)

This dynamics leads to a vacuum energy density

ρΛ = ρΛ0
+

3νH2

8πG
. (74)

The vacuum pressure follows from the additional assump-
tion that energy is covariantly conserved. The vacuum
pressure

pΛ = −ρΛ0
− ν

8πG

(
H2 + 2

ä

a

)
, (75)

leads to an equation of state w that ensures this is the
case. The good agreement between our two methods of
obtaining ν (where ν = ν′ when ν̃ = 0), provides very
strong evidence that Eq. (75) is the correct form for the
vacuum pressure that emerges from the lattice. This has

important implications when applying this model to cos-
mology, as discussed in the next section.

If we take the lattice evidence in favor of this vacuum
model seriously, we can use our numerical results to ob-
tain a value for ν in the present universe. To do this, we
first express the renormalization scale in terms of the cos-
mological constant. This is the most convenient choice,
since we have determined our lattice ν as a function of√
V4, which is proportional to 1/Λ0, and our universe in

the current dark energy dominated epoch is nearly de
Sitter, so that we have the approximate proportionality
H2 ∝ Λ0,phys, with Λ0,phys the cosmological constant in
our universe today. Thus, we can write

ν(Λ0) =
ν(M2

pl)

1 + b ln
(

M2
pl

Λ0

) =
A′

ln
(

B′

M2
pl

√
V4

a2
lat

M2
pl

) . (76)

Using the relation

Λ0a
2
lat =

√
24π2

ηC4N4
, (77)

and using Eq. (61) for V4, as well as the observation that
in our fiducial lattice units, 1/M2

pl = G/a2fid, it follows
that

b =
1

ln
(√

24πB′ G
a2
fid

) , (78)

ν(M2
pl) = bA′. (79)

Since B′ is measured in lattice units where the fiducial
lattice spacing is the one at κ2 = 3.0, we take G/a2fid at
that lattice spacing as well. Substituting our computed
values of A′, B′, and G/a2fid into Eqs. (76), (78), and
(79), and taking Λ0,phys = 10−123M2

pl from observations,
we find that

ν(Λ0,phys) = (5.1± 1.3)× 10−4 . (80)

V. MAKING CONTACT WITH COSMOLOGY

We discuss some of the implications of our results for
observational cosmology. We draw on the work of Solà
and collaborators [26–28], which involved studying a fam-
ily of vacuum models with a number of free parameters,
including ν and ν̃, that are constrained by fits to cosmo-
logical data. Here we restrict ourselves to reviewing the
consequences of the model that is singled out by our lat-
tice calculation, namely that defined by Eqs. (73), (74),
and (75), with the numerical value of ν fixed by our cal-
culation and ν̃ set to zero. We assume that the forms of
the vacuum energy density and the vacuum pressure de-
termined in our calculation are valid throughout cosmic
history and are not altered by the presence of matter
in the universe, nor by the virtual quantum effects of
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matter back-reacting on quantum geometry. The latter
assumption could be tested by unquenching our calcu-
lation. We further assume that the Euclidean contin-
uation (and thus its inverse) maintains the same form
of the running of Λ(µ), where the renormalization scale
µ is associated with the absolute value of the Hubble
scale (see Eq. (40) and the surrounding discussion). In
this exercise, it is not necessary to include any additional
free parameters beyond those of the ΛCDM model, since
ν(Λ0,phys) ≈ 5 × 10−4 is determined from our ab initio
calculation and is thus a prediction of the dynamical tri-
angulations formulation.

To begin our analysis we consider the FLRW equation
in Lorentz signature,

ȧ2

a2
+

1

a2
=

8πGρ

3
, (81)

where we assume that the total energy density ρ in-
cludes the energy density of our running vacuum model
ρΛ, the energy density ρm of nonrelativistic matter, and
the energy density ρr of radiation. Solving Eq. (81) for
H = ȧ/a assuming that the spatial curvature is negligible
and substituting this into Eq. (74) for the vacuum energy
density, if we also take ν as a small expansion parameter,
we find

ρΛ = (1 + ν)ρΛ0
+ ν(ρm + ρr) +O(ν2). (82)

In the current epoch, where dark energy is ≈ 70% of
the energy density, the ρΛ0 term dominates the vacuum
energy density ρΛ. The ν in the prefactor of the ρΛ0

term is a small correction that is not well constrained
with the current precision on observations. As we run
the expansion of the universe backwards in time, first ρm
and then eventually ρr dominates the energy density of
the universe. In that case ρΛ ≈ ν(ρm+ρr), which ensures
that the vacuum energy density is a small fraction of the
energy density of the universe, since it is suppressed by
a factor of ν. However, it is still much larger than ρΛ0

at early times, showing that the vacuum energy density
is predicted to be much larger in the early universe in
this model. The current best constraints on Big Bang
Nucleosynthesis (BBN) fix the Hubble scale in that era
at the percent level [66]. Because the parameter ν is
O(10−3), the corrections from this model are compatible
with BBN constraints within the existing errors. Note
that the logarithmic running of ν leads to an increase in
ν of less than 20% at the time of BBN as compared to
today, so our order of magnitude estimate of ν in the late
universe still applies in this earlier era.

An important feature of this model is that the vac-
uum pressure given by Eq. (75) ensures that the vacuum
energy is covariantly conserved independently of the mat-
ter sector. If this were not the case and the decrease in
vacuum energy was accompanied by a transfer of energy
into matter or radiation, this would lead to strong vio-
lations of experimental constraints. For example, if the
vacuum decayed to radiation, this would lead to a large

deviation of the cosmic microwave background from the
ΛCDM expectation and would not be consistent with ob-
servations. If the vacuum decayed to cold dark matter
during the radiation era, then far too much dark mat-
ter would be produced to be compatible with the current
energy budget of the universe. That the vacuum energy
is separately covariantly conserved is a highly-nontrivial
result emerging from our lattice calculations, and it en-
sures that our result does not significantly modify the
successes of the standard ΛCDM picture. It is worth em-
phasizing that there is no need to put this result in by
hand.

Although this model does not lead to large deviations
from ΛCDM, it does predict O(10−3) deviations through-
out cosmology, such that if this running vacuum effect
were to be realized in nature, it should be testable to
a high degree of confidence when cosmological observa-
tions reach a sufficient precision in the hopefully not-too-
distant future. As an example of such a deviation, we
consider how the vacuum equation of state w ≡ pΛ/ρΛ
in the running vacuum model differs from the constant
ΛCDM value of −1. Substituting Eqs. (74) and (75) into
the definition of w and expanding in ν, we find

w ≈ −1 +
ν

4πGρΛ0

(
H2 − ä

a

)
= −1 + ν

ρm
ρΛ0

, (83)

where we have assumed that the radiation density can
be ignored in the present era. This expression can be
rewritten as [67]

w ≈ −1 + ν
Ωm,0

ΩΛ0

(1 + z)
3
, (84)

where Ωi is the fraction of the total energy density of the
universe, z is the redshift due to the cosmological expan-
sion, and we have employed a small-parameter expansion
such that this formula is valid for z ≲ 5. The subscript
0 denotes the fraction of the energy density of matter
today. With ν of O(10−3), it is not possible to discrim-
inate between this model and that of ΛCDM using the
current data. However, the positive sign that we have de-
termined for ν means that w does not fall below −1, and
therefore does not violate the null-energy condition. This
would lead to quantum instabilities that might be hard to
reconcile with our long-lived universe [30]. Other cosmo-
logical observables, like the matter power spectrum and
the present-day Hubble rate, also receive small correc-
tions in this model. For the full mathematical treatment
of the corrections to the matter power spectrum within
a family of models including the one singled out by the
present work, see Ref. [26].

VI. CONCLUSION AND OUTLOOK

This work presents a detailed analysis of a new set of
EDT ensembles at larger volumes and finer lattice spac-
ings than was previously possible to simulate. These en-
sembles have been generated using a new rejection free
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algorithm [19], which led to a speed-up of around a factor
of one-hundred on our finest ensembles when compared
with our older parallel rejection algorithm. We use this
algorithm to generate several volumes across four lattice
spacings. In order to meet the precision goals of this
work, we introduce a new set of methods for obtaining
the ratio of the direct to dual lattice spacing, alat/ℓ. Al-
though this is a derived lattice quantity without a direct
physical meaning, it is needed for constructing physical
observables. The two methods introduced here to con-
struct alat/ℓ each assume that the emergent geometries
are well-described by the classical de Sitter solution in
the large volume limit. A comparison of the results from
the two methods for computing alat/ℓ show that they
are in excellent agreement with each other at the percent
level, thus providing a solid test that this lattice specific
quantity is correctly determined.

We revisit our calculation of the absolute lattice spac-
ing using the method introduced in Ref. [21] and a large
new data set generated for this purpose. The renormal-
ized value of Newton’s constant can be inferred from the
finite-volume scaling of the tuned bare parameter κ4 of
the lattice action, as reviewed in Sec. III B 1. The scal-
ing of κ4 with volume is related to Newton’s constant
through a derivation assuming the Euclidean partition
function is dominated by the de Sitter instanton. Us-
ing this approach to determine Newton’s constant, we
are able to establish the Planck length in units of our
lattice spacing. By computing Newton’s constant inde-
pendently at each of our four lattice spacings, we are
also able to measure the relative lattice spacing of our
ensembles against a chosen fiducial spacing, defined to
be the one at κ2 = 3.0. The relative lattice spacings are
in agreement with the expected behavior, with the lat-
tices getting finer as κ2 is increased. This is true for both
the direct and dual lattice spacings. This result suggests
that there is no barrier in principle to taking the lattice
spacing arbitrarily small within the EDT formulation.

New ensembles and methods for determining the lat-
tice spacing enable us to test the de Sitter nature of our
geometries at a level of precision not previously possible,
and a careful study shows a deviation from this picture.
Non-trivial vacuum dynamics is seen, with a power law
running of the cosmological constant. Good agreement
across four lattice spacings suggests that the running is
not a lattice artifact. Consistency checks also provide
strong evidence that the running seen in the simulations
is not an artifact, foremost among these the consistency
of the lattice results with covariant energy conservation.
The running vacuum model that is singled out by our
lattice calculation is summarized by Eqs. (73), (74), and
(75). This is a one-parameter model, since Λ0 must be
taken from experiment, while ν and its running are fixed
from first principles by the analysis presented here. An
additional parameter, ν̃, appearing in a more general ver-
sion of the running vacuum model, is consistent with zero
and is constrained to be much smaller than ν by our anal-
ysis.

If we take this model seriously and make the bold as-
sumption that it holds throughout cosmic history, we see
that it leads to potentially observable effects. As Sec. V
discusses, the vacuum energy is nearly constant in the
present dark energy dominated era, but it is larger as
one follows the evolution of the universe backwards in
time. The smallness of ν ensures that the vacuum energy
density during matter or radiation domination is always
∼ 1000 times smaller than the dominant energy density
component of either era, so that the model remains con-
sistent with bounds from the early universe. Thus, the
deviations from ΛCDM are predicted to be small, at the
O(10−3) level. Even so, the model is highly falsifiable,
since the deviations would appear across many cosmic
observables if they could be measured to sufficient preci-
sion.

The lattice calculation presented here could be im-
proved in a number of ways. Going to larger, finer lat-
tices would give better control over discretization effects,
especially the trending of ν towards negative values if
the volume is taken too large at too coarse of a lattice
spacing, as seen in Figure 16. A better determination of
the relative lattice spacings would also help, and addi-
tional runs to help pin these down are in progress. Un-
quenching the calculation is also a high priority for future
work. Including the quantum fluctuations of light fields,
for example those of the Standard Model, would lead to
a back-reaction on the geometry, which could potentially
alter ν. We expect that this would change ν by an O(1)
constant, not by orders of magnitude, but it is important
to do the simulations in order to test this assumption.
According to a semiclassical calculation [28], heavy par-
ticles would contribute directly to ν in proportion to their
mass squared. Thus, the existence of a large number of
GUT-scale particles could potentially modify ν from our
result, which ought to be regarded as the pure gravity
prediction. Unquenching could also impact the predic-
tions of the pure-gravity result in a more dramatic way
if threshold effects are present, as discussed below.

It is worth commenting on the possibility that the
running vacuum effect calculated here might actually
be present in nature, especially in light of the conven-
tional wisdom from effective field theory that the vac-
uum energy does not run [68]. We appeal to an argu-
ment by Polyakov that nonperturbative fluctuations of
the scale factor might be important and that pertur-
bation theory about a fixed background could be mis-
leading in this instance [69]. The nonperturbative cal-
culation presented here does not require an expansion
around a classical background, and it gives a concrete
realization of Polyakov’s sketch of running vacuum en-
ergy [65], without suffering from the serious drawbacks
of his model, which neglected the traceless gravitational
degrees of freedom, and found a logarithmic running that
is not strong enough to be compatible with observations.
As such, our calculation suggests that there is non-trivial
infrared dynamics driving the screening, and not a con-
spiracy of cancellations in the ultra-violet physics.
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This picture also has implications for the value of Λ0.
Note that the value of Λ0 in our model is not explained in
this work, as it is identified as the consequence of a finite-
volume cut-off on the simulations, which can be freely
adjusted. However, if the screening is driven by infra-red
physics, Λ0 might naturally be explained as an offset due
to a threshold-crossing effect in the running of the vac-
uum energy, where its value would be determined by the
light particle spectrum, taking on different values in dif-
ferent eras. If so, the unquenched version of this theory
may lead to a model rich enough to explain not only our
present vacuum dominated era, but to earlier ones that
might help resolve some of the big emerging tensions in
observational cosmology, especially the well-known Hub-
ble tension [70]. The investigation of this possibility re-
quires including unquenched fermions in the simulations,
since neutrinos are the lightest non-zero mass particles
in the known spectrum. If this picture were to be real-
ized, the predictions of Sec. V might well be subdominant
to vacuum dynamics that includes unquenching effects.
Work in this direction is also in progress.
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Table XII: Method 1 determinations of alat/ℓ and η on
ensembles used in our analysis, see Eqs. (14)-(18). The
first error quoted is the statistical error, and the second

is a systematic error associated with varying the fit
window. For volumes with two tuned β values, the third

error is an estimate of the error due to mistuning β.

κ2 N4 alat/ℓ η

2.45

6000 10.44(8)(9) 0.639(5)(8)
8000 9.96(6)(4) 0.610(5)(8)
12000 9.69(14)(8) 0.609(15)(7)
16000 9.90(17)(18) 0.565(12)(12)
24000 9.32(18)(14) 0.580(15)(28)
32000 9.12(6)(8) 0.543(4)(11)

3.0

8000 13.49(5)(6) 0.770(3)(7)
12000 13.02(7)(5) 0.732(5)(6)
16000 12.61(2)(1) 0.717(1)(0)
24000 12.35(3)(4) 0.699(2)(4)
32000 12.37(3)(26) 0.681(1)(13)
48000 11.84(1)(15) 0.648(0)(9)

3.4

8000 19.16(9)(3) 0.834(5)(1)
12000 18.69(7)(3) 0.794(3)(4)
16000 18.10(7)(1) 0.772(3)(6)
24000 17.69(7)(5) 0.762(3)(4)
32000 17.50(7)(9) 0.732(3)(5)
48000 16.84(4)(6)(45) 0.708(2)(5)(4)
64000 16.80(6)(8)(17) 0.703(3)(5)(22)

3.8

16000 27.22(8)(2)(21) 0.830(2)(1)(17)
24000 26.46(8)(7) 0.802(2)(2)
32000 26.16(4)(6) 0.784(1)(4)
48000 25.32(5)(6) 0.773(1)(4)
64000 25.06(4)(8)(41) 0.763(1)(4)(20)
96000 24.02(2)(4)(93) 0.714(0)(4)(8)

TABULATED DATA

Table XIII: κ4 values for de Sitter finite-size analysis at
tuned β values for κ2 = 2.45. The first line for each

distinct value of β is the ensemble we consider tuned.
When marked with an ∗, the ensemble has not been
included in the central fit, but it has been used to
estimate a systematic uncertainty for the slope.

κ2 β N4 Nconfig κ4

2.45 -0.590

6000 9172 6.811743(64)*
8000 24819 6.812738(38)
12000 29801 6.813441(22)
16000 14174 6.813807(48)
24000 26331 6.814285(29)
32000 25656 6.814513(23)

2.45 -0.575

8000 4232 6.856277(69)
12000 38106 6.857112(16)
16000 32171 6.857477(28)
24000 33825 6.857937(31)
32000 23531 6.858235(39)
48000 28092 6.858364(46)

2.45 -0.555

12000 2285 6.91550(11)*
16000 32157 6.916028(25)
24000 39487 6.916411(23)
32000 28582 6.916691(32)
48000 24329 6.916925(26)
64000 18123 6.917029(54)

2.45 -0.544

16000 2834 6.948352(68)
24000 32690 6.948718(24)
32000 6396 6.948970(33)
48000 29416 6.949227(55)
64000 28516 6.949316(35)
96000 29005 6.949473(18)

2.45 -0.530

24000 3358 6.990061(71)
32000 29743 6.990197(21)
48000 33759 6.990530(33)
64000 28766 6.990599(54)
96000 27946 6.990728(41)

2.45 -0.520

32000 2485 7.01976(13)
48000 36183 7.020030(47)
64000 28996 7.020201(41)
96000 33879 7.020309(18)
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Table XIV: κ4 values for de Sitter finite-volume analysis
for tuned β values at κ2 = 3.0. The first line for each
distinct value of β is the ensemble we consider tuned.

The ensemble marked with an ∗ is considered an outlier
and is not included in the analysis.

κ2 β N4 Nconfig κ4

3.0 -0.859

4000 9168 7.651190(55)
6000 16869 7.652089(24)
8000 10397 7.652556(77)
12000 8536 7.653214(98)
16000 9310 7.653603(71)
24000 8552 7.65389(10)

3.0 -0.820

6000 1441 7.76272(16)
8000 18768 7.763078(37)
12000 19771 7.763601(21)
16000 14157 7.763998(82)
24000 17632 7.764330(39)
32000 12744 7.764476(39)

3.0 -0.800

8000 1974 7.82031(11)
12000 18375 7.820737(53)
16000 23811 7.821109(38)
24000 17967 7.821482(57)
32000 12580 7.821628(45)

3.0 -0.782

12000 8548 7.872552(33)
16000 23668 7.872799(36)
24000 23683 7.873145(33)
32000 18805 7.873359(24)
48000 15664 7.873485(49)

3.0 -0.771

16000 11215 7.904573(30)
24000 22577 7.90486(10)
32000 19734 7.905131(29)*
48000 24729 7.905222(19)
64000 13080 7.905327(32)

3.0 -0.756

24000 1108 7.94825(12)
32000 21101 7.948549(38)
48000 20625 7.948704(23)
64000 19182 7.948784(33)
96000 16204 7.948937(38)
128000 23718 7.949014(33)

Table XV: κ4 values for de Sitter finite-volume analysis
for tuned β values at κ2 = 3.4. The first line for each
distinct value of β is the ensemble we consider tuned.

κ2 β N4 Nconfig κ4

3.4 -0.910

8000 6255 8.695358(63)
12000 22333 8.695751(25)
16000 11941 8.695982(40)
24000 11296 8.696250(41)
32000 8596 8.696278(57)
48000 7983 8.696497(40)

3.4 -0.870

12000 3100 8.809014(60)
16000 14226 8.809267(44)
24000 14977 8.809454(41)
32000 10020 8.809586(51)
48000 16766 8.809738(49)

3.4 -0.853

16000 3069 8.857898(86)
24000 15734 8.858044(25)
32000 13430 8.858196(45)
48000 20829 8.858293(17)
64000 15318 8.858406(27)

3.4 -0.839

24000 1034 8.89835(12)
32000 16171 8.898427(36)
48000 18318 8.898515(52)
64000 21547 8.898674(16)
96000 22711 8.898771(16)
128000 13941 8.898744(57)

3.4 -0.830

32000 1149 8.92439(14)
48000 29601 8.924501(45)
64000 18946 8.924595(45)
96000 15979 8.924640(21)
128000 13412 8.924728(37)
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Table XVI: κ4 values for de Sitter finite-volume analysis
for tuned β values at κ2 = 3.8. The first line for each
distinct value of β is the ensemble we consider tuned.
When marked with an ∗, the ensemble has not been
included in the central fit, but it has been used to
estimate a systematic uncertainty for the slope.

κ2 β N4 Nconfig κ4

3.8 -0.931

12000 3458 9.830392(67)
16000 12365 9.830563(56)
20000 9554 9.830727(50)
24000 6757 9.830815(64)
28000 5474 9.830811(54)
32000 3844 9.830903(97)
40000 2621 9.830947(82)

3.8 -0.920

16000 3087 9.861485(72)*
20000 5584 9.861684(87)
24000 10725 9.861881(26)
28000 3794 9.861944(73)
32000 10429 9.861924(32)
40000 4765 9.861973(99)
48000 6715 9.861972(86)
56000 4296 9.862041(57)
64000 3696 9.862038(72)
80000 2387 9.862107(79)

3.8 -0.894

24000 1736 9.935649(92)
28000 10098 9.935648(39)
32000 6723 9.935721(73)
40000 5614 9.935818(53)
48000 5053 9.935795(50)
56000 4981 9.935812(60)
64000 5138 9.935879(50)
80000 2827 9.936012(71)

3.8 -0.870

32000 4506 9.975799(67)
40000 5736 9.975915(50)
48000 14283 9.975926(65)
56000 5914 9.975984(75)
64000 5395 9.975963(40)
80000 4146 9.976005(73)

3.8 -0.880

48000 3781 10.004601(78)
56000 7773 10.004685(42)
64000 7083 10.004707(58)
80000 4236 10.004723(67)

Table XVII: Slopes according to (38) and fit-details for
the κ2 = 2.45 ensembles. Ensembles marked with ∗

were not included in the fit for Ga following (39), but
were used to estimate a systematic uncertainty in the

infinite-volume extrapolation.

κ2 β N4 |sG| χ2/d.o.f p-value

2.45

-0.590 6000 0.3139(69)(69) 1.07 0.36 *
-0.575 8000 0.3128(53)(73) 0.31 0.73
-0.555 12000 0.2716(90)(54) 0.77 0.46
-0.544 16000 0.2329(72)(66) 0.79 0.53
-0.530 24000 0.233(26)(22) 2.38 0.067
-0.520 32000 0.204(22)(35) 0.57 0.56

Table XVIII: Slopes according to (38) and fit-details for
the κ2 = 3.0 ensembles.

κ2 β N4 |sG| χ2/d.o.f p-value

3.0

-0.859 4000 0.2967(61)(100) 0.49 0.75
-0.820 6000 0.2555(71)(105) 0.78 0.54
-0.800 8000 0.246(13)(13) 0.70 0.55
-0.782 12000 0.221(11)(18) 1.28 0.28
-0.771 16000 0.1926(24)(44) 0.063 0.94
-0.756 24000 0.1731(107)(94) 0.51 0.73

Table XIX: Slopes according to (38) and fit-details for
the κ2 = 3.4 ensembles.

κ2 β N4 |sG| χ2/d.o.f p-value

3.4

-0.910 8000 0.1674(83)(123) 1.02 0.39
-0.870 12000 0.1517(78)(53) 0.29 0.84
-0.853 16000 0.1343(92)(85) 0.57 0.64
-0.839 24000 0.141(15)(14) 1.05 0.38
-0.830 32000 0.1143(96)(114) 0.37 0.77

Table XX: Slopes according to (38) and fit-details for
the κ2 = 3.8 ensembles.

κ2 β N4 |sG| χ2/d.o.f p-value

3.8

-0.931 12000 0.136(11)(14) 0.29 0.91
-0.920 16000 0.0696(50)(33) 0.11 1.00
-0.894 24000 0.1139(161)(77) 0.52 0.79
-0.880 32000 0.084(18)(30) 0.22 0.99
-0.870 48000 0.066(17)(31) 0.025 0.88
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Table XXI: Fit results for linear fits to Λ versus H2

data sets. The first quoted error on the fit parameters is
the statistical error combined in quadrature with the

systematic error obtained from varying the fit window.
In the instances where we have a second tuned

ensemble, in order to estimate a β tuning systematic
error (see Table I), the first error also includes a

systematic error from comparing the results of the two
different tuned ensembles. The second quoted error is
the parametric error due to the uncertainty in alat

ℓ .

κ2 N4 IH2 × 103 ν′ χ2/d.o.f. p-value

2.45

6000 22.50(19)(124) 0.33(2)(7) 0.396 0.756
8000 19.22(16)(105) 0.21(2)(6) 1.899 0.127
12000 15.68(16)(86) 0.05(2)(5) 0.409 0.746
16000 13.90(2)(76) -0.03(0)(5) 0.087 0.784
24000 11.27(11)(62) -0.11(2)(4) 0.751 0.557
32000 10.14(3)(56) -0.16(0)(4) 0.106 0.899

3.0

8000 10.49(7)(38) 0.43(5)(5) 0.028 1.000
12000 8.58(1)(31) 0.30(1)(4) 0.594 0.667
16000 7.39(1)(27) 0.17(1)(4) 0.383 0.821
24000 6.04(2)(21) 0.07(2)(3) 0.591 0.738
32000 5.33(2)(19) 0.01(2)(3) 0.088 0.997
48000 4.35(3)(15) -0.14(1)(3) 0.102 0.992

3.4

8000 5.14(6)(15) 0.52(11)(4) 0.625 0.711
12000 4.23(4)(13) 0.40(6)(4) 0.313 0.949
16000 3.64(2)(11) 0.27(6)(3) 0.259 0.990
24000 2.96(3)(9) 0.21(7)(3) 0.087 1.000
32000 2.60(1)(8) 0.14(2)(3) 0.043 1.000
48000 2.07(7)(6) -0.01(9)(3) 0.043 1.000
64000 1.82(7)(5) -0.04(8)(2) 0.029 1.000

3.8

16000 1.71(3)(10) 0.44(5)(8) 0.128 0.999
24000 1.40(2)(8) 0.34(8)(8) 0.216 1.000
32000 1.22(0)(7) 0.27(3)(7) 0.016 1.000
48000 0.99(1)(5) 0.16(6)(6) 0.009 1.000
64000 0.87(4)(5) 0.13(9)(6) 0.036 1.000
96000 0.70(3)(4) -0.01(10)(5) 0.014 1.000

Table XXII: Results of fits to S versus H2 on all
ensembles. The error quoted for S0 is the statistical
error combined in quadrature with a systematic error

that comes from varying the choice of fit range. For the
ensembles that have a second tuned β value, in order to
estimate a β tuning systematic error (see Table I), the
quoted error on S0 also includes an error based on the
difference between the S0 results on the two tunings.
The χ2/d.o.f. and p-value are quoted for the fits that

produce the central values.

κ2 N4 S0 χ2/d.o.f. p-value

2.45

6000 -5.59(16) 3.736 0.054
8000 -5.35(18) 1.894 0.210
12000 -4.96(10) 2.645 0.145
16000 -4.73(2) 3.458 0.104
24000 -4.20(16) 4.574 0.032
32000 -3.97(5) 4.858 0.028

3.0

8000 -2.42(14) 0.247 0.646
12000 -2.20(2) 0.477 0.527
16000 -2.10(3) 0.037 0.859
24000 -1.87(6) 6.389 0.011
32000 -1.76(2) 0.554 0.497
48000 -1.69(4) 3.070 0.121

3.4

8000 -1.11(5) 0.828 0.404
12000 -1.01(9) 0.740 0.431
16000 -0.94(6) 0.246 0.647
24000 -0.81(4) 0.809 0.410
32000 -0.75(2) 1.185 0.317
48000 -0.69(4) 0.515 0.512
64000 -0.62(4) 0.302 0.613

3.8

16000 -0.39(2) 1.485 0.264
24000 -0.34(2) 3.377 0.107
32000 -0.32(1) 1.175 0.319
48000 -0.28(2) 0.481 0.525
64000 -0.26(1) 2.640 0.145
96000 -0.24(2) 3.019 0.123
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