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We compare critical quantum sensing to passive quantum strategies to perform frequency estima-
tion, in the case of single-mode quadratic Hamiltonians. We show that, while in the unitary case
both strategies achieve precision scaling quadratic with the number of photons, in the presence of
dissipation this is true only for critical strategies. We also establish that working at the exceptional
point or beyond threshold provides sub-optimal performance. This critical enhancement is due to
the emergence of a transient regime in the open critical dynamics, and is invariant to temperature
changes. When considering both time and system size as resources, for both strategies the precision
scales linearly with the product of the total time and the number of photons, in accordance with
fundamental bounds. However, we show that critical protocols outperform optimal passive strate-
gies if preparation and measurement times are not negligible. Our results are applicable to a broad
variety of critical sensors whose phenomenology can be reduced to that of a single-mode quadratic
Hamiltonian, including systems described by finite-component and fully-connected models.

Introduction.— The susceptibility developed in prox-
imity of critical phase transitions (PTs) is a valuable
resource in metrological tasks. This concept is widely
exploited in advanced sensors such as transition-edge de-
tectors and bubble chambers. However, these devices
make use of a classical sensing strategy, and they are
not optimal from a quantum-metrology perspective [1, 2].
The recently introduced research field of critical quan-
tum sensing (CQS) consists of leveraging quantum PTs
to design quantum-enhanced sensors [3–14]. In the last
few years, it has been theoretically shown that it is pos-
sible to achieve quantum advantage in sensing exploiting
both static [3–11] and dynamical [12–14] critical proper-
ties of many-body quantum systems. First experimental
demonstrations of quantum-enhanced sensing have been
achieved with Rydberg atoms [15] and nuclear magnetic
resonance techniques [16].

Quantum advantage in sensing is defined in terms of
the scaling of the achievable precision with respect to
fundamental resources, such as system size and proto-
col duration time. Despite the critical slowing down, it
has been shown [17] that CQS protocols implemented
on many-body spin systems can achieve Heisenberg scal-
ing [18] in both time and system size. This result
has been recently extended [19] to the class of finite-
component PTs, which can take place in quantum res-
onators with atomic [20–24] or Kerr [25–28] nonlineari-
ties. In contrast to many-body spin systems, where criti-
cality emerges in the limit of an infinite number of atoms,
in finite-component models this thermodynamic limit is
replaced with a rescaling of the physical parameters.
While many-body spin systems become critical in the
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FIG. 1. Sketch of CQS and PQS strategies. Top: In
CQS, the system, initially at the equilibrium with the environ-
ment, evolves according to (1). The final state is a squeezed
thermal state with covariance matrix depending non-trivially
on the system parameters. An optimal measurement is ho-
modyne with an optimized angle, regardless of the system pa-
rameters. Bottom: The initial state of PQS, an optimized dis-
placed squeezed thermal state, acquires a phase shift φ = ωt
in the free time evolution. Here, to saturate the QFI, a non-
linear measurement is needed in some parameter regimes. In
both strategies, we consider interaction with a thermal envi-
ronment as in (2).

thermodynamic limit (infinite number of atoms), finite-
component PTs are formally defined by a parameter-
rescaling limit [21, 26] applied to a nonlinear bosonic
system (infinite number of photons).

On the one hand, finite-component PTs make it possi-
ble to implement CQS protocols with small-scale devices,
such as parametric resonators [29–32], single trapped-
ions [33], optomechanical [34, 35] or magnomechani-
cal [36] devices, spin impurities [37] and Rabi-like sys-
tems [38–40]. On the other hand, finite-component PTs,
as well as fully-connected systems [41–43], can be ef-
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fectively described with minimal models, and so they
provide a compelling theoretical framework to analyze
CQS protocols with analytical or semi-analytical meth-
ods [19, 30, 41, 44–49]. Recent theoretical efforts have
been dedicated to the identification and design of opti-
mal CQS protocols. It has been shown that the dynami-
cal approach has a constant-factor advantage over static
protocols [41, 45]. An apparent super-Heisenberg scal-
ing can be achieved when focusing on a specific resource
such as system size [46, 47] or time [48]. CQS protocols
achieve quantum advantage also for global sensing us-
ing adaptive strategies [50, 51] in the driven-dissipative
case with continuous measurements [52, 53] and in the
multi-parameter case [8, 37, 54]. Beyond the analysis of
specific applicable protocols, in recent years, fundamen-
tal bounds on the quantum Fisher information (QFI) [1]
have been derived [55–59]. Not only do they allow quick
identification of which systems can benefit from quantum
metrology, but they also clarify what should be consid-
ered a resource in metrology.

In this Letter, we fill several knowledge gaps in the un-
derstanding of criticality-enhanced protocols, by putting
them in a general quantum metrology framework. We
compare the performances of CQS and the standard
quantum metrology approach, i.e., passive quantum sens-
ing (PQS), in the frequency estimation task. We first
consider only the system size as a resource. In the noise-
less case, we find that, despite both strategies achieving
Heisenberg scaling, optimal PQS outperforms CQS pro-
tocols by a constant factor. However, in the more realis-
tic case of parameter estimation in dissipative dynamics,
only CQS shows a quadratic scaling of the single-shot
QFI in the number of photons. This critical enhance-
ment appears with the emergence of a transient regime
from the unitary to the steady state dynamics, where the
QFI grows. Such a regime can be arbitrarily long, and
is not present in the absence of dissipation. Then, we
consider both time and system size as resources, and we
frame our results within the context of ultimate precision
bounds. Here, there is a critical enhancement if prepa-
ration and/or measurement times are non-negligible. Fi-
nally, we show that our results stand also in the presence
of thermal noise.

Along the paper, we heavily use Gaussian quantum in-
formation methods for the solution of dynamics and for
the computation of quantum and classical Fisher infor-
mations [60–62]. To provide meaningful discussion, we
may use approximations in the relevant regimes. How-
ever, all calculations are analytical, and their details are
in the Supplemental Material (SM). See SM I for a sum-
mary of tools used.

Critical quantum sensing.— We consider an idealized
setting where the phenomenology of interest for CQS is
described by the squeezing Hamiltonian,

H = ωa†a+
ϵ

2
(a2 + a†2) , (1)

where ϵ is the squeezing parameter and ω = ω0+δω is the
sum of a known frequency ω0 and an unknown, small, fre-

quency shift δω to be estimated. This minimal model can
effectively describe [41] the low-energy physics of a broad
variety of criticalities emerging in: (i) finite-component
systems such as the quantum Rabi model [21, 63], driven
Kerr resonators [25, 64, 65], ultrastrongly-coupled res-
onators [26]; and (ii) fully-connected models, such as the
Dicke [42] and the Lipkin-Meshkov-Glick [43]. This sys-
tem can be thought of as a Kerr resonator in the Gaus-
sian approximation, i.e., in the limit of small Kerr non-
linearity. In this limit, the system undergoes a second-
order phase transition at the critical value ϵ = ϵc =√
ω2 + Γ2 [30]. The effect of higher-order nonlinearities

can be neglected until the photon number is sufficiently
small, see SM II. The limits of validity of the approxima-
tion will be specific to each platform, and are not within
the scope of this work. We assume that the parameters
ω0 and ϵ can be independently tuned, while δω depends
on some external field to be probed. To provide a practi-
cal example, the most direct implementation consists of a
superconducting quantum resonator [64–67], where ϵ cor-
responds to the intensity of an external parametric drive,
ω0 is the detuning of the bare resonance frequency with
respect to half the pump frequency, while δω is directly
proportional to an external magnetic flux. We consider a
coupling to a thermal bath, described by the Lindbladian

L[·] =Γ(1 + nB)
(
2a · a† − {a†a, ·}

)
+ ΓnB

(
2a† · a− {aa†, ·}

)
, (2)

where Γ ≥ 0 is the environment-system coupling strength
and nB is the effective temperature of the bath.

We analyze a CQS protocol consisting of estimating
the parameter δω by choosing properly optimized val-
ues of ω0 and ϵ, see Fig. 1. Without loss of generality,
we consider a constraint on the maximum average num-
ber of photons in the resonator, call it Nmax, that can
theoretically be set arbitrarily large. This constraint is
physically motivated as the model (1) is the result of dif-
ferent approximations working for finite Nmax, such as
the dispersive approximation when the resonator is cou-
pled to an off-resonance qubit, or the Gaussian approxi-
mation [30, 41].
Passive quantum sensing.— PQS for the frequency

estimation problem consists of initializing a linear res-
onator to a quantum state ρ, and letting it evolve accord-
ing to the free Hamiltonian H0 = ωa†a under the influ-
ence of noise in (2), see Fig. 1. As in CQS, we assume that
ω = ω0 + δω, where δω is to be estimated. PQS assumes
no active control over the resonator during the evolution,
aside from choosing the interaction time. We consider
the initial state generated with a generic unitary Gaus-
sian operation applied to the state at the equilibrium
with the environment, i.e., ρ = D(α)S(r)ρBS

†(r)D†(α),
where ρB is a thermal state with nB photons, D(α) and
S(r) are displacement and squeezing operations respec-
tively, and the total number of photons is constrained to
Nmax = |α|2 + (1 + 2nB) sinh2(r) + nB .

The noiseless case (Γ = 0, nB = 0).— Here, the QFI
for estimating δω with CQS is Icr ∼ [2N(t)+8N2(t)/9]t2
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FIG. 2. Single-shot QFI. Comparison of the single-shot QFI
between PQS (blue) and CQS (red), at zero temperature, for
ω0 = Γ and Nmax = 100. The vertical axis has been rescaled
as log(1 + QFI) for better visibility. For PQS, the optimal
measurement time is t ≃ 0.8/Γ. For CQS, the optimal ϵ

is ϵopt =
√

2Nmax
1+2Nmax

ϵc. The critical enhancement is due to

the emergence of the transient regime in the dissipative case,
where the QFI grows with quadratic scaling with N until
reaching the steady state, see inset.

for ϵ → ϵc, where N(t) ∼ ω2
0t

2. Details of the derivation
can be found in SM III, where it is also shown that ho-
modyne measurements saturates the QFI. Notice that,
with constraints on both Nmax and the total time T , the
optimal choice is to set ω0 =

√
Nmax/T , so we can use

all resources coherently. For PQS, by optimizing over
Gaussian input states with Nmax number of photons, we
get Ipas = 8Nmax(1 + Nmax)t2. The optimal value is
given by a squeezed-vacuum state, see SM IV. Assuming
N(t) ≤ Nmax, Ipas is always larger than Icr by a con-
stant factor. This comes with no surprise, as PQS proto-
col is initialized with Nmax photons while CQS with the
vacuum. Here, the main message is that both protocols
show quantum advantage, achieving the Heisenberg scal-
ing ∝ (NmaxT )2. Notice that this analysis holds also for
Γ > 0, as long as t≪ (NmaxΓ)−1.

What part of this quantum advantage will survive for
longer times, where the effects of noise become signif-
icant? In the following, we first discuss the scaling of
the single-shot QFI with Nmax, therefore momentarily
neglecting time as a resource. This will turn out to be
useful for understanding the scaling of QFI with both T
and Nmax, which will be then related to ultimate preci-
sion bounds.

Zero-temperature dissipative case (Γ > 0, nB = 0).—
In the dissipative scenario, we recognize two different
time scales for the critical dynamics, defined by the real
parts of the Liouvillian eigenvalues λ± = Γ ±

√
ϵ2 − ω2.

Here, Re(λ+)−1 is the time scale when the dynamic stops
being effectively unitary, while Re(λ−)−1 is the time scale
to reach the steady state. For ϵ ≤ ω these times are

equal, while for ϵ > ω both λ± are real and different.
This results in the emergence of a transient regime, see
Fig. 2. Approaching the critical point ϵ → ϵc makes the
steady-state time diverge since λ−1

− ∼ Γ/ϵc(ϵc−ϵ), so the
transient regime can be arbitrarily long.

Let us switch to the problem of estimating δω. We
consider ϵ > ω0, and we work at ω0 = Γ, which maxi-
mizes the QFI, see SM III. Also in the dissipative case,
the optimal measurement is homodyne. From Fig. 2,
we see that the interesting part is the transient regime,
where the QFI is Icr ≳ N2(t)/2Γ2. The maximal QFI
to N2 rate is achieved at the steady state, where Icr ≃
2N2(∞)/Γ2, see inset of Fig. 2. The mean number of
photons N(t) increases monotonically in time and satu-
rates at N(∞) = ϵ2/2(ϵ2c − ϵ2). Looking for an optimal
strategy with constraints on Nmax, since the optimal rate
is at the steady state, the optimal choice of ϵ will be the

one for which N(∞) = Nmax, i.e., ϵopt =
√

2Nmax

1+2Nmax
ϵc.

This analysis also shows that working close to the ex-
ceptional point ϵ ≃ ω0 is a suboptimal choice, as at this
point the number of photons is severely bounded.

For PQS, the QFI for estimating δω is [68]

Ipas =

[
4α2

e−2r + e2Γt − 1

+
e−2r(e4r − 1)2

2e2r+4Γt + (e2r − 1)2(e2Γt − 1)

]
t2 . (3)

Let us consider t ≳ (NmaxΓ)−1. Under the condition
e2r ≫ e4Γt/(e2Γt − 1), we get the simple expression

Ipas ≃
4Nmaxt

2

e2Γt − 1
. (4)

The condition on r can be easily satisfied also at finite
Nmax if Γt is not too large. One can see that, to optimize
the QFI, the exact amount of squeezing is not crucial as
long as it guarantees the condition on r. The QFI (4) is
optimal for t ≃ 0.8/Γ, for which Ipas = O(Nmax/Γ

2), see
Fig. 2. We should notice that the first term in (3) corre-
sponds to the Fisher information for homodyne measure-
ment of the p quadrature, which saturates the QFI for
t ≳ (NmaxΓ)−1 already when Nmax ≳ 103, see SM IV.

We see a difference in scaling in the number of pho-
tons between CQS and PQS as Icr = O(N2

max/Γ
2), while

Ipas = O(Nmax/Γ
2). This is the signature of the criti-

cal enhancement. It is also clear that this enhancement
emerges from the splitting of the real part of the Liouvil-
lian eigenvalues for ϵ > ω0, which allows λ−1

− to be arbi-

trarily large for ϵ approaching ϵc, as λ−1
− = O(Nmax/Γ).

As we will see in the next section, when considering both
time and system size as a resource, the optimal scaling for
the QFI is O(Nmaxt/Γ), see Eq. (5). CQS allows for the
coherent use of time t ∼ λ−1

− , from which the quadratic
scaling for the QFI follows. In the absence of the tran-
sient regime, i.e., for ϵ < ω0, there is a single time scale
for the dynamics given by t ∼ Γ−1, so the QFI scales lin-
early. This bound holds for any initial state, and, there-
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FIG. 3. QFI rate. Comparison of the ratios Ipas,cr/Nmax(t+
tp,m) for the PQS (blue) and CQS (red), at zero tempera-
ture, for tp,m = 0 (solid lines) and tp,m = 2/Γ (dashed lines).
In black, we draw the same type of plot for the Fisher In-
formation of homodyne measurement in PQS. Here, we set
Nmax = 100, ϵ = ϵopt, ω0 = Γ. By neglecting preparation
and measurement time, the passive strategy is fundamentally
optimal for large enough Nmax, as it saturates the ultimate
precision bounds. Even for finite Nmax, it performs signifi-
cantly better than the critical strategy. However, by consid-
ering tp,m > 0, while the QFI rate is significantly reduced
for PQS, it remains essentially unchanged for CQS. In this
framework, there is a critical enhancement.

fore, explains also why PQS shows a linear scaling for the
QFI (see Fig. 2).

Relation to ultimate precision bounds.— So far the
analysis has been carried out considering Nmax alone as
a resource. In the occurrence of losses, it is not possible
to use the entire time resource coherently. However, as
QFI arises linearly with the number of repetitions and a
shorter time of single realization allows for a bigger num-
ber of repetitions, for fair comparison, we should still
treat both Nmax and total time T as a resource. Then,
to use them optimally, one should divide the total time T
into smaller parts topt = argmaxtI(t)/t, and in total time
T perform M = T/topt repetitions. For passive strate-
gies, this leads to MIpas ∼ 2NmaxT/Γ for Nmax ≫ 1,
where topt decreases with increasing Nmax, see SM V for
details.

To analyze the critical protocol in this framework, note
that, as in the transient regime the number of photons
increases linearly with time, for ω0 = Γ and close to the
criticality the time of a single repetition scales roughly
as λ−1

− ≃ 2Nmax/Γ. Therefore, the number of repetitions
decreases with Nmax as M ≃ TΓ/2Nmax, so the scaling
Icr = O(N2

max/Γ
2) translates to MIcr = O(NmaxT/Γ), as

in passive strategy. It is also worth emphasizing that, to
obtain the scaling ∝ NmaxT/Γ of the QFI, no quantum
resources are needed, i.e., a protocol based on a coher-
ent state with single repetition time 1/Γ and homodyne
detection achieves this scaling as well.

Can this scaling be improved in any way? By apply-
ing results from [56, 59], we show that the QFI for the
estimation of the frequency of the cavity coupled to the
thermal bath is fundamentally bounded by (see SM VI):

Itotalcr,pas ≤
∫ T

0

2N(t)

Γ(1 + 2nB − nB

N(t)+1 )
dt ≲

2NmaxT

Γ(1 + 2nB)
, (5)

where the second inequality holds for Nmax/nB ≫ 1.
Here with the superscript ”total” we stress the fact that
the bound already includes the possibility of dividing
the total time T into smaller parts and perform mea-
surements between them (QFI scales linearly with the
number of repetitions). While in this paper we discuss
in detail the protocol based on phase transition in the
occurrence of squeezing Hamiltonian, the above bound
remains valid for any other metrological strategy, includ-
ing all kinds of criticality, adaptiveness, partial measure-
ments etc. Note that, while optimal PQS saturates the
bound in the limit of large Nmax, the CQS cannot per-
form as well, since the number of photons arises from 0.
Therefore, after averaging, it needs to be strictly smaller
than Nmax. Where, then, does the advantage of CQS
manifest itself?

The ultimate bound (5) is derived by neglecting prepa-
ration and measurement time tp,m. In many experi-
ments, this is an unrealistic assumption. For instance,
to initialize a linear resonator to a squeezed state with
Nmax photons, one way involves pumping the resonator
with a squeezed signal. Assuming the favorable situa-
tion that Γ represents the coupling with the prepara-
tion line, it then takes O(log(Nmax)/Γ) time to prepare
the cavity, see SM VII. Discharging the resonator, essen-
tial to perform measurements on the output modes, re-
quires the same time. Generally speaking, a more mean-
ingful way to approach the problem is to divide T in
topt = argmaxtI(t)/(t + tp,m) parts. In Fig. 3, we show
that, already for tp,m ≃ 2/Γ, i.e., a time 1/Γ each for
measuring and preparing the state, PQS performance is
largely reduced while CQS performance remains virtually
untouched. This is because in CQS the single-shot QFI
achieves its maximum at a time much larger than Γ−1, so
tp,m is negligible. This leaves space for independent ex-
ploration by considering specific implementations of the
protocols. For instance, preparation and measurement
of the field outside the resonator can be further analyzed
using time-dependent input-output theory.

Finite-temperature dissipative case (Γ > 0, nB > 0).—
A similar analysis can be performed for arbitrary temper-
ature. For the dynamics, we consider the critical system
starting from a thermal state ρB with nB photons and
consider ϵ > ω0. For the same values of ϵ, ω0, the Li-
ouvillian eigenvalues are unchanged, so the unitary and
steady-state time scales are the same. Moreover, also ϵc
and Icr(t) are left unchanged. However, the mean num-
ber of photons at any time is (1 + 2nB) times bigger
than in the zero-temperature case. It means that the
same value of QFI would be obtained if the constraint
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for the number of photons would be also rescaled to
N ′

max = (1+2nB)Nmax. The same holds also for the pas-
sive strategy, see SM VIII. Both protocols are therefore
robust to thermal noise in the same way, in accordance
to the bound (5).

Beyond the critical point.— Lastly, we shall discuss
whether it is possible to get an enhancement by exploit-
ing the dynamics of a fast quench of the system, i.e.,
working at ϵ > ϵc, as proposed in Ref. [46]. For ϵ > ϵc,
the number of photons grows exponentially in time, as

N(t) ∼ e2
√
ϵ2−ϵ2ct/4. Since the QFI is polynomial in the

number of photons, also the QFI increases exponentially
in time. One may then conclude that this strategy of-
fers a great advantage. However, an analysis based on
imposing a constraint on the number of photons in the
resonator reveals that this strategy is suboptimal.

Consider for instance the noiseless case, see SM III.
Here, Iϵ>ϵccr (t) ∼ 4N2(t)/(ϵ2 − ϵ2c) for t

√
ϵ2 − ϵ2c ≫ 1.

The optimal choice of ϵ, allowing for coherent use of all
resources, under the photon number constraint N(T ) =
Nmax, is ϵ2 ≃ ϵ2c + log2(4Nmax)/4T 2, which leads to
Iϵ>ϵccr = O(N2

maxT
2/ log2Nmax). So, contrary to the case

below the critical point, Heisenberg scaling with all re-
sources is not possible at all.

Conclusions.— We have compared passive quantum
sensing strategies with protocols exploiting the dynamics
of driven-dissipative critical systems. We have identified
relevant frameworks in which critical quantum sensing
outperforms passive quantum sensing for parameter esti-
mation task, in open quantum systems at arbitrary tem-
perature. The considered minimal model describes the

critical behavior of a broad class of systems, including
finite-component phase transitions [21, 26, 63–65] and
fully-connected models [41–43]. PTs of this kind have
been already observed with controllable atomic [63, 69]
and solid-state [64–67] quantum technologies. For crit-
ical models that do not belong to the considered class,
such as many-body spin models, our paper still provides a
method to make a comparison with the ultimate precision
performance. As the critical enhancement appears for
dissipative systems and is robust against thermal noise
and measurement/preparation time, our analysis paves
the way for the development of practical critical quantum
sensors in these experimental settings. Indeed, in some
experimental contexts CQS sensing protocols can be even
simpler to implement than standard sensing strategies, as
the initialization does not depend on the prior and the
optimal measurement is a simple homodyne detection in
all regimes.
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Supplemental Material to:
“Optimality and Noise-Resilience of Critical

Quantum Sensing”

This Supplemental Material shows details about the claims in the paper. We have used Mathematica to perform all
calculations. Most of the formulas are too large to be written in the text. In such a case, we provide insight in the
form of asymptotic expansion in relevant regimes.

I. GAUSSIAN FORMALISM

Gaussian states are fully characterized by the first-moment vector v and the covariance matrix Σ. For a Gaussian
mode a, with [a, a†] = 1, these objects are defined as

v =

(
⟨x⟩
⟨p⟩

)
, (I.1)

Σ =

(
2⟨x2⟩ − 2⟨x⟩2 ⟨{x, p}⟩ − 2⟨x⟩⟨p⟩

⟨{x, p}⟩ − 2⟨x⟩⟨p⟩ 2⟨p2⟩ − 2⟨p⟩2
)
, (I.2)

where x =
(
a+ a†

)
/
√

2 and p = −i
(
a− a†

)
/
√

2.

Given a manifold of Gaussian states ρθ dependent on a parameter θ, the Quantum Fisher Information (QFI)
computed in θ0 quantifies the maximal precision achievable to estimate θ when its value is close to θ0. This can
be seen via the quantum Cramer-Rao bound, which states that ∆θ2|θ≃θ0 ≥ 1/MI(θ0). Here, M is the number of

repetitions and I(θ0) = limdθ→0
8
dθ2 [1 −D(ρθ0 , ρθ0−dθ)], with D[ρ, σ] =

[
Tr
(√

ρ
√
σρ
)]2

the fidelity, is the QFI [1].

For single-mode Gaussian states, this can be computed as

I(θ0) =
1

2

Tr
[(
Σ−1∂θΣ

)2]
1 + µ2

+
2 (∂θµ)

2

1 − µ4
+ 2 (∂θv)

T
Σ−1∂θv , (I.3)

where µ = 1/
√

Det[Σ] is the purity of the system state and the derivatives are computed in θ0 [61].

When fixing the POVM {Π(x)}, the maximal achievable precision is quantified by the classical Cramer-Rao bound,

i.e., ∆θ2|θ=θ0 ≥ 1/MF (θ0). Here, F (θ0) =
∫∞
−∞ (∂θ log(pθ(x))|θ=θ0)

2
pθ0(x)dx, with pθ(x) = Tr (ρθΠ(x)), is the Fisher

Information (FI). If we measure a quadrature x(ψ) = (e−iψa + eiψa†)/
√

2 of a state belonging to the manifold of
Gaussian states ρθ , with ψ ∈ [0, 2π), the FI can be readily written as

F (θ0) =
4S(ψ) [∂θ⟨x(ψ)⟩]2 + [∂θS(ψ)]

2

2S2(ψ)
, (I.4)

where S(ψ) = cos2 (ψ)Σ11 + sin2 (ψ)Σ22 − sin (2ψ)Σ12, Σij are the elements of the covariance matrix Σ, and the
derivatives are computed in θ0.

Alternatively, a parameter may be estimated from the mean number of photons N . Assuming v = 0, we have
N = 1

4 (Σ11 + Σ22)− 1
2 and ∆2N = 1

16 (Σ2
11 + Σ2

22 + 2Σ2
12)− 1

4 [62, Sec. IV, A] [note the difference by a factor 2 in the

definition of the covariance matrix], which leads to signal-to-noise ratio S(θ) = |∂θ⟨N⟩θ|2
∆2Nθ

.

II. THE CRITICAL SYSTEM

In this section, we discuss details on the critical model, including the calculation of the time-dependent solution of
the mode, explicit evaluation of the first-moment vector and the covariance matrix, computation of the number of
photons and recognition of different time scales of the dynamics.
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A. The Model

We consider a Kerr resonator Hamiltonian in the Schrödinger’s picture defined as

HS = (ωr + δω)a†a+
ϵ

2

(
e−iωpta2 + eiωpta†2

)
+ χa†2a2 , (II.1)

where ωr + δω is the resonator frequency, ωp is the pump frequency and χ > 0 is the Kerr non-linearity. The model
is valid for |ωr − ωp/2| ≪ ωr (assuming δω ≪ ωr). We work in the frame rotating with ωp/2. The Hamiltonian in
this picture is

H = ωa†a+
ϵ

2

(
a2 + a†2

)
+ χa†2a2 , (II.2)

where ω = ω0 + δω and ω0 = ωr − ωp/2. In the context of quantum parameter estimation, we will assume ϵ, ωr and
ωp (therefore also ω0) to be known and δω to be estimated. Notice that the parameter ω0 can be tuned by changing
the pump frequency ωp, as long as |ωr − ωp/2| ≪ ωr is respected. In the main text, we work with ω0 = Γ, which
means that Γ ≪ ωr is assumed. We consider the Lindbladian modeling a thermal environment

L[·] = Γ(1 + nB)
(
2a · a† − {a†a, ·}

)
+ ΓnB

(
2a† · a− {aa†, ·}

)
, (II.3)

where Γ ≥ 0 is coupling with the bath and nB ≥ 0 is the effective temperature.
We observe that, for χ = 0, the Hamiltonian is bounded from below up to a certain value of ϵ, i.e., ϵc =

√
ω2 + Γ2.

Mathematically, the Kerr non-linearity term χa†2a2 regularizes the model in a way that makes it physical for all
system parameter values. For χ→ 0, the system undergoes a second-order phase transition [30] for a critical value of
ϵ. In this paper, we work in the Gaussian approximation and set χ = 0. This approximation holds until the number
of photons is bounded by roughly N ≲ O(ϵ/χ). Notice that a very weak Kerr non-linearity is achievable in, e.g.,
Kinetic Inductance Parametric Amplifiers, where the ratio ϵ/χ can be as large as 108 [67].

B. Time-dependent solution

1. Solution of the Langevin equation

We study the dynamics of the cavity mode a(t) by solving the associated Langevin equation [60]

ȧ(t) = Aa(t) −
√

2Γb(t) , (II.4)

where we have introduced

a(t) =

(
a(t)
a†(t)

)
, b(t) =

(
b(t)
b†(t)

)
, A =

(
−iω − Γ −iϵ

iϵ iω − Γ

)
, (II.5)

and b(t) is a thermal mode satisfying ⟨b(t′)b†(t)⟩ = (1 + nB)δ(t′ − t). Eq. (II.4) can be solved with direct integration,
obtaining

a(t) = c1(t)a(0) + c2(t)a†(0) −
√

2Γ

∫ t

0

c1(t− τ)b(τ)dτ −
√

2Γ

∫ t

0

c2(t− τ)b†(τ)dτ , (II.6)

where the coefficients c1, c2 are defined as

c1(x) =

(
1

2
− iω

2
√
ϵ2 − ω2

)
e−λ−x +

(
1

2
+

iω

2
√
ϵ2 − ω2

)
e−λ+x , (II.7)

c2(x) =
−iϵ

2
√
ϵ2 − ω2

(
e−λ−x − e−λ+x

)
, (II.8)

and λ± are the eigenvalues of the matrix (−A), i.e., λ± = Γ ±
√
ϵ2 − ω2. We will see that the real parts of λ− and

λ+ define two different time scales. Indeed, Re(λ+)−1 is the characteristic time for the purity decay, and Re(λ−)−1

is the characteristic time to reach the steady state, see Fig. 4.
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N
(t

)

N
(t

)

(a) (b) (c)

FIG. 4. Purity and mean photon number. (a) We plot the purity of the CQS system state, for ϵ > ω (orange) and
ϵ < ω (brown). Here, it is clear that Re(λ+)−1 is the time scale for the purity to drop. Notice that, for ϵ < ω, Re(λ+)−1 =
Re(λ−)−1 = Γ−1. (b,c) Mean photon number for ϵ < ω and ϵ > ω. For ϵ < ω the time scale to reach the steady state coincides
with the time scale for the purity to drop. For ϵ > ω, there are two distinct timescales, and the time scale to reach the steady
state is λ−1

− . To obtain the plot, we set ω = Γ, nB = 0, ϵ = 0.99Γ (when ϵ < ω), and ϵ = 0.9975ϵc (when ϵ > ω).

2. First-moment vector and covariance matrix

We assume the cavity at t = 0 to be at equilibrium with the environment, so a(0) is a thermal state with nB
photons. Therefore, the mode a(t) is Gaussian at all times and is fully characterized by its first-moment vector v and
covariance matrix Σ. The quantities v and Σ, defined in Eqs. (I.1)-(I.2), may be written as:

v(t) =

(
(⟨a(t)⟩ + ⟨a†(t)⟩)/

√
2

−i(⟨a(t)⟩ − ⟨a†(t)⟩)/
√

2

)
, (II.9)

Σ(t) =

(
2⟨a†(t)a(t)⟩ + ⟨a(t)a(t)⟩ + ⟨a†(t)a†(t)⟩ + 1 i(⟨a†(t)a†(t)⟩ − ⟨a(t)a(t)⟩)

i(⟨a†(t)a†(t)⟩ − ⟨a(t)a(t)⟩) 2⟨a†(t)a(t)⟩ − ⟨a(t)a(t)⟩ − ⟨a†(t)a†(t)⟩ + 1

)
, (II.10)

and then can be directly computed from (II.6) using the relations

⟨a(t)⟩ = 0 , (II.11)

⟨a2(t)⟩ = (2nB + 1)c1(t)c2(t) + (4nB + 2)Γ

∫ t

0

c1(t− τ)c2(t− τ)dτ , (II.12)

⟨a†(t)a(t)⟩ = |c2(t)|2 + 2Γ

∫ t

0

|c2(t− τ)|2dτ + nB

{
|c1(t)|2 + |c2(t)||2 + 2Γ

∫ t

0

[
|c1(t− τ)|2 + |c2(t− τ)|2

]
dτ

}
,

(II.13)

with c1(t), c2(t) defined in (II.7)-(II.8). Notice that the first-moment vector is zero at all times, therefore the state is
characterized solely by the covariance matrix. As all integrals above are solvable, that gives an analytical formula for
a covariance matrix, which is, however, too long to put it here.

3. The steady state

At the steady state, one gets the covariance matrix

Σss =
1 + 2nB
ϵ2c − ϵ2

(
ϵ2c − ωϵ −Γϵ
−Γϵ ϵ2c + ωϵ

)
, (II.14)

where ϵc =
√
ω2 + Γ2. In addition, the number of photons at the steady state is

N(∞) =
ϵ2 + 2nBϵ

2
c

2(ϵ2c − ϵ2)
=

(1 + 2nB)ϵ2

2(ϵ2c − ϵ2)
+ nB , (II.15)

which diverges for ϵ→ ϵc. Here, we emphasize that for ϵ > ϵc, there is no steady state.
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C. Mean number of photons

1. Zero-temperature case (nB = 0)

In this case, we can derive short formulas for the average number of photons. We have that

|c2(t)|2 =
ϵ2

4|ϵ2 − ω2|

[
e−2Re(λ−)t + e−2Re(λ+)t − 2e−2Γt cos

(
2Im

(√
ϵ2 − ω2

)
· t
)]

, (II.16)∫ t

0

|c2(t− τ)|2dτ =
ϵ2

4|ϵ2 − ω2|

{
1 − e−2Re(λ−)t

2Re(λ−)
+

1 − e−2Re(λ+)t

2Re(λ+)
+

−
Γ − e−2ΓtΓ cos

(
2Im

(√
ϵ2 − ω2

)
· t
)

+ e−2ΓtIm
(√
ϵ2 − ω2

)
sin
(
2Im

(√
ϵ2 − ω2

)
· t
)

[Im
(√
ϵ2 − ω2

)
]2 + Γ2

}
. (II.17)

Let us consider the two cases ϵ < ω and ϵ > ω separately.
For ϵ < ω, we have that Re(λ−) = Re(λ+) ≡ Γ and Im(

√
ϵ2 − ω2) =

√
ω2 − ϵ2. Therefore,

Nϵ<ω(t) =
ϵ2

2(ϵ2c − ϵ2)

{
1 − e−2Γt

[
cos
(

2
√
ω2 − ϵ2 · t

)
+

Γ√
ω2 − ϵ2

sin
(

2
√
ω2 − ϵ2 · t

)]}
. (II.18)

For ϵ > ω, we have that λ± are real and Im(
√
ϵ2 − ω2) = 0. Therefore,

Nϵ>ω(t) =
ϵ2

2(ϵ2c − ϵ2)

[
1 −

(
Γ√

ϵ2 − ω2
+ 1

)
e−2λ−t +

(
Γ√

ϵ2 − ω2
− 1

)
e−2λ+t

]
. (II.19)

It is clear that, for ϵ < ω, there is only a single time-scale given by Γ−1, while, for ϵ > ω, we have two different
time scales, i.e., λ−1

− and λ−1
+ . Looking at the purity in Fig. 4, we can say that λ−1

+ is the unitary time, i.e., the

characteristic time for the purity to decay. Instead, λ−1
− is the characteristic time to reach the steady state.

2. Finite-temperature case

For arbitrary values of nB , the expression for the number of photons is quite large. However, one can gain some
insight by doing an asymptotic analysis. At the steady state, we have that NnB

(∞) = (1 + 2nB)NnB=0(∞) + nB , as
shown in (II.15). At finite time, we first expand NnB=0(t) at the first order around ϵ = ϵc. This expansion holds for
t≪ λ−1

− . Then, by taking the series for large nB , we get

NnB
(t) ≃ (1 + 2nB)NnB=0(t) + nB . (II.20)

Numerical evaluation shows that (II.20) is indeed an accurate approximation for any value of nB .

D. Noiseless case (Γ = 0, nB = 0)

Simple and compact formulas can be obtained for the noiseless case Γ = 0. Note that then ϵc = ω. In such a case,
the time-dependent covariance matrix is given by the formula:

Σ(t)
Γ=0
=

ω+ϵ cosh (2
√
ϵ2−ω2·t)

ϵ+ω

−ϵ sinh (2
√
ϵ2−ω2·t)√

ϵ2−ω2

−ϵ sinh (2
√
ϵ2−ω2·t)√

ϵ2−ω2

−ω+ϵ cosh (2
√
ϵ2−ω2·t)

ϵ−ω

 , (II.21)

while the mean number of photons is given by:

N(t) =
1

4
(Σ11 + Σ22) − 1

2
=
ϵ2 sinh2

(√
ϵ2 − ω2 · t

)
ϵ2 − ω2

. (II.22)

Above formulas are valid for any ϵ, while for ϵ < ω it is worth to use equality sinh2
(√
ϵ2 − ω2

)
/(ϵ2 − ω2) =

sin2
(√

ω2 − ϵ2)
)
/(ω2 − ϵ2).
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For ϵ > ω, the solution (II.21) corresponds to the actual evolution of the physical system only for short times, as
later, with indefinitely increasing number of photons, the quadratic term χ in (II.2) becames non-negligible. Here, we
focus on this short time. The number of photons in this case increases exponentially in time, and it is given by

Nϵ>ϵc(t) =
ϵ2 sinh2

(√
ϵ2 − ω2 · t

)
ϵ2 − ω2

∼ e2
√
ϵ2−ω2·t

4
, (II.23)

where the asymptotic expansion holds for t≫ (
√
ϵ2 − ω2)−1 and ϵ≫ ω.

For ϵ < ω,
√
ϵ2 − ω2 becomes imaginary and we get:

N(t) =
1

4
(Σ11 + Σ22) − 1

2
=
ϵ2 sin2

(√
ω2 − ϵ2 · t

)
ω2 − ϵ2

, (II.24)

so the number of photons oscillates periodically. However, while approaching the critical point, for ϵ→ ω, the period
extends for any length of time, so, for t≪ (

√
ω2 − ϵ2)−1, we obtain:

N(t) ≈ ω2t2 . (II.25)

III. QUANTUM FISHER INFORMATION FOR CQS AT ZERO TEMPERATURE AND THE OPTIMAL
MEASUREMENT

We write the expression of the QFI only in the noiseless scenario. Indeed, for the dissipative scenario, its expression
is very large, and we provide only an asymptotic analysis. Let us then consider separately the noiseless and the noisy
scenarios.

A. The noiseless case (Γ = 0, nB = 0)

In the noiseless case, the covariance matrix of the mode a(t) is given by (II.21). Inserting Σ in (I.3) leads to

Icr =
ϵ2
[
ϵ2(3 + 8ω2

0t
2) − 4ω2

0(1 + 2ω2
0t

2) − 4(ϵ2 − ω2
0) cosh

(
2
√
ϵ2 − ω2

0 · t
)

+ ϵ2 cosh
(

4
√
ϵ2 − ω2

0 · t
)]

4(ϵ2 − ω2
0)3

+

−
ϵ2
[
8ω0t

√
ϵ2 − ω2

0 sinh
(

2
√
ϵ2 − ω2

0 · t
)]

4(ϵ2 − ω2
0)3

. (III.1)

If we consider ϵ < ϵc (notice that in the noiseless case ϵc = ω0), the asymptotic analysis reveals that

Iϵ<ϵccr ∼
[
2N(t) +

8N2(t)

9

]
t2 , ϵ→ ϵ−c , (III.2)

where N(t) ≃ ω2
0t

2. With a bound Nmax on the number of photons, the optimal choice is to set ω0 =
√
Nmax/T for

total time T , which gives Iϵ<ϵccr = O(N2
maxT

2).
The situation changes for ϵ > ϵc. An asymptotic analysis reveals that

Iϵ>ϵccr ∼ 4N2(t)

ϵ2 − ϵ2c
, t≫ (

√
ϵ2 − ϵ2c)

−1 . (III.3)

Given the bound Nmax on the number of photons (II.23), we get ϵ ≃ ϵc+log2(4Nmax)/4T 2 for total time T . Therefore,
the QFI is O(N2

maxT
2/ log2(Nmax)), and the regime ϵ > ϵc offers a worse performance than the case ϵ < ϵc.

B. The dissipative case (Γ > 0 , nB = 0)

The QFI for the critical strategy can be computed using (I.3). The expression is too long to be shown. However,
we have performed asymptotic analysis for ω0 ≤ ϵ ≤ ϵc and nB = 0. Here, the QFI smoothly passes from Icr ≃

2ω2
0

(2ϵ2c−ϵ2)ϵ2
N2(t) for t ≃ λ−1

+ , to Icr ≃ 8ω2
0

(2ϵ2c−ϵ2)ϵ2
N2(t) for t ≃ λ−1

− , until saturating to Icr,0 ≃ 8ω2
0

(2ϵ2c−ϵ2)ϵ2
N2(∞) at the

steady state. N(t) is a monotonic function of time, saturating at N(∞) = ϵ2

2(ϵ2c−ϵ2)
, see Section II C. The QFI rate is

maximal when ω2
0/(2ϵ

2
c − ϵ2)ϵ2 is maximized. By setting ϵ2 = z(ω2

0 + Γ2), for some 0 < z < 1, one can easily see that
ω0 = Γ maximizes the QFI.
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Fcr  / Icr
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FIG. 5. Comparison between homodyne FI and QFI for CQS. a) We have plotted the ratio for different values of the
quadrature angle ψ, at zero temperature and with ω0 = Γ, ϵ = ϵopt, Nmax = 100, nB = 0. b) We compare the QFI with the
homodyne FI optimized over the quadrature angle ψ in the noiseless case (left, ϵ = 0.99ω0) and in the dissipative case (right,
ϵ = ϵopt, Nmax = 100, nB = 0). The plots show that homodyne detection with an optimized angle is the optimal measurement.

C. Homodyne as optimal measurement

1. Noiseless case

For Γ = 0 and nB = 0, the classical FI is given by (using Eq. (I.4)),

F hom
cr

ϵ→ϵc∼
2ω2t4

[
(3 − 2ω2

0t
2) cos(2ψ) + 2ω0t(ω0t+ 2 sin(2ψ))

]2
9
[
4ω2

0t
2 sin2(ψ) + 2ω0t sin(2ψ)

]2 . (III.4)

The FI optimized with respect to ψ at each time virtually saturates the QFI, see Fig. 5.

2. Steady state

Before going to the analysis of the time evolution, let us briefly remind the results obtained for the steady-state
(II.14) in [30]. The steady state QFI is

Icr =
ϵ2

2ϵ2c − ϵ2

[
1

ϵ2c − ϵ2
+

2ω2
0

(ϵ2c − ϵ2)2

]
ϵ→ϵc∼ 8ω2

0

ϵ2c
N2(∞) , (III.5)

and it is asymptotically saturated (while approaching the critical point) by the homodyne detection for arbitrary
direction. In this case, the classical FI is given by (using (I.4))

F hom
cr =

ϵ2[(Γ2 − ω2 − ϵ2) cos(2ψ) + 2ωϵ+ 2ωΓ sin(2ψ)]2

2(ϵ2c − ϵ2)2[ϵ2c − ϵ(ω cos(2ψ) − Γ sin(2ψ))]2
ϵ→ϵc∼ 8ω2

0

ϵ2c
N2(∞) . (III.6)

Looking at the covariance matrix (II.14), one should notice that changes of ω = ω0 + δω result in the rotation of the
covariance matrix, as well as in an increasing of the variances values. However, these effects are irrelevant compared
to the very rapid change of the average number of photons for ϵ→ ϵc, being N ∝ 1

ϵ2c−ϵ2
.
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It is therefore reasonable to ask whether almost all the information about the value of δω can be obtained from
the average number of photons. To answer this question, we analyze the signal-to-noise ratio for the mean number
of photons (the quantity corresponding to the classical FI, but without the optimization over the estimator), which
shows:

|∂ωN |2

∆2N
=

4ϵ2ω2
0

(3ϵ2c − ϵ2)(ϵ2c − ϵ2)2
=

16ω2
0

ϵ2(3ϵ2c − ϵ2)
N2(∞)

ϵ→ϵc∼ 8ω2
0

ϵ4c
N2(∞) . (III.7)

This means that, close to the critical point, photon-counting is another example of optimal measurement. How-
ever, from a practical point of view, it is often easier to perform homodyne detection under realistic circumstances.
Therefore, in further discussions, we focus only on homodyne detection.

3. Time evolution

In Fig. 5, we compare the FI for homodyne detection (calculated using (I.4)) and the QFI at zero temperature,
for different values of ψ. In addition, we show that homodyne detection, optimized with respect to ψ at each time,
essentially saturates the QFI.

IV. THE PASSIVE SYSTEM

A. The model and the evolution

In the passive case, we consider the Hamiltonian in (II.1) with ϵ = 0, χ = 0 and dissipations as in (II.3). We
initialize the system to a state with Nmax number of photons, i.e., ρ = D(α)S(r)ρBS

†(r)D†(α). Here, D(α) =

eαa
†−α∗a with α = |α|eiϕ, is a displacement operator, and S(r) = e

1
2 (ra

†2−r∗a2) is a squeezing operator. The state

ρB =
∑∞
k=0

nk
B

(1+nB)1+k |k⟩⟨k| is a thermal state with nB average number of photons. Without loss of generality, we

choose r to be real and positive. The number of photons is given by Nmax = |α|2 + sinh2(r)(2nB + 1) + nB , which
will act as a constraint in the computation of the QFI.

The evolution of such a passive system can be easily written in the frame rotating with ωr as

a(t) = e−Γt−iδωta(0) +
√

1 − e−2Γtb , (IV.1)

where b is a thermal mode with nB photons. The first-moment vector and the covariance matrix are given by
Eqs. (II.9)-(II.10), by substituting

⟨a(t)⟩ = e−Γt−iδωtα , (IV.2)

⟨a2(t)⟩ = e−2Γte−2iδωt

[
1

2
sinh (2r)(2nB + 1) + α2

]
, (IV.3)

⟨a†(t)a(t)⟩ = |α|2 + sinh2(r)(2nB + 1) + nB . (IV.4)

B. QFI for PQS

Since the mode a(t) is Gaussian, we can analytically compute the QFI using (I.3). By setting the derivative with
respect to ϕ to zero, we realize that ϕ = 0, i.e., a real α, is the optimal choice. The formula for generic nB is large to
be shown. Let us first consider nB = 0. We have that

Ipas =

[
4α2

e−2r + e2Γt − 1
+

e−2r(e4r − 1)2

2e2r+4Γt + (e2r − 1)2(e2Γt − 1)

]
t2 . (IV.5)

Let us optimize the QFI in the noiseless and noisy cases separately.
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Nmax=100 , nB=0 Nmax=1000 , nB=0 Nmax=300 , nB=1

Fpas

Ipas 

(a) (b) (c)

Fpas

Ipas 

Fpas

Ipas 

FIG. 6. Homodyne FI vs QFI. (a) Comparison between Ipas with (α = 0, r ≃ 3) and Fpas optimized over both α, r for
Nmax = 100 and nB = 0. Here, Fpas surpasses Ipas at longer time, as the condition e2r ≫ e4Γt/(e2Γt − 1) is clearly not satisfied
already for t ≳ 2Γ−1. However, for t ≲ Γ−1, the condition on r is satisfied, and Ipas is optimal. (b) Comparison between Ipas
with (α = 0, r ≃ 4.15) and the optimized Fpas, for Nmax = 1000 and nB = 0. Homodyne saturates the optimal QFI already for
Nmax = 103. (c) Comparison between Ipas with (α = 0, r ≃ 3) and the optimized Fpas, for Nmax = 300 and nB = 1. The plot
is very similar to the zero-temperature case with 100 photons (corresponding to Nmax/(1 + 2nB)), see (a).

1. The noiseless scenario (Γ = 0, nB = 0)

In this case, we get

Ipas =
[
4α2e2r + 2 sinh2(2r)

]
t2 . (IV.6)

This can be maximized with the constraint Nmax = α2 + sinh2(r), obtaining that the squeezed-vacuum state (α = 0)
is optimal. We obtain then

Ipas = 8Nmax(1 +Nmax)t2 . (IV.7)

This holds also for the noisy case, as long as NmaxΓt≪ 1. In Section IV C, we will see that in order to saturate this
QFI, non-linear detection is needed.

2. The dissipative scenario (Γ > 0, nB = 0)

In the noisy case, we first approximate the QFI (IV.5) with e2r ≫ 1:

Ipas ≃
[

4α2

e−2r + e2Γt − 1
+

e4r

2e4Γt + e2r(e2Γt − 1)

]
t2 . (IV.8)

In the e2r ≫ e4Γt/(e2Γt − 1) regime, we have that

Ipas ≃
(
4α2 + e2r

)
t2

e2Γt − 1
≃ 4Nmaxt

2

e2Γt − 1
. (IV.9)

This means that the QFI is maximized by any state satisfying the condition e2r ≫ e4Γt/(e2Γt − 1). In practice, the
QFI maximum is reached at t ≃ 0.8/Γ, meaning that the conditions correspond to a relevant regime.

C. Homodyne FI for PQS

In this case, we consider a protocol where α and r are real, i.e., we displace along the x quadrature and squeeze
along the p quadrature, and we measure p, i.e., we choose the quadrature angle ψ = π/2. We obtain

Fpas =
4α2t2

(1 + 2nB)(e−2r + e2Γt − 1)
, (IV.10)

which can be maximized with the constraint Nmax = α2 + sinh2(r)(1 + nB) + nB .
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In the noiseless scenario, i.e., for Γ = 0 and nB = 0, we get Fpas = 4Nmax(1 + Nmax)t2, which is a constant worse
then the optimal QFI in (IV.7). In this case, homodyne detection does not saturate the QFI.

For the noisy scenario, one can optimize with respect to r under the constraint on Nmax. For instance, for nB = 0,
we have the optimal squeezing

r = log

(√
1

2
(coth (Γt) − 1)

(√
e4Γt + 4Nmax(e2Γt − 1) − 1

))
. (IV.11)

The optimal FI in this regime is

Fpas ≃
8Nmax(1 +Nmax)t2

e2Γt(1 + 2Nmax) − 2Nmax +
√
e4Γt + 4Nmax(e2Γt − 1)

(IV.12)

∼ 4Nmaxt
2

e2Γt − 1
, (IV.13)

where the asymptotic expansion is for large Nmax. Notice that this strategy is asymptotically optimal, as it matches
the optimal QFI in (IV.9).

For generic nB , it is still possible to find a close, but lengthy expression for the optimal squeezing. However, we
shall notice that by choosing e2r ≫ (e2Γt − 1)−1, we get Fpas ≃ 4α2t2/(1 + 2nB)(e2Γt − 1). If we choose α2 ≃ Nmax,
we get that

Fpas ≃
4Nmaxt

2

(1 + 2nB)(e2Γt − 1)
, (IV.14)

which matches the optimal QFI in (VIII.1).
Fig. 6 compares the optimal homodyne strategy with the squeezed-vacuum strategy, which is optimal both for

very short times and when the condition e2r ≫ e4Γt/(e2Γt − 1) is satisfied. Homodyne reaches essentially the same
precision with a small time lag. Nevertheless, this lag is also responsible for the advantage of the squeezed-vacuum
state in Fig. 3 of the main text (blue line). For large Nmax, we have seen in Eqs. (IV.9)-(IV.13) that the two strategies
are equivalent. This is visible already for Nmax = 103, as shown in Fig. 6. The result is unchanged when considering
finite temperatures, aside from a dividing factor (1 + 2nB) for both optimal and homodyne based strategies.

V. OPTIMAL MEASUREMENT TIME

A. Single-shot case

Here, we allow the system to evolve for an arbitrary time, and a single measurement is performed at the end. This
corresponds to saying that time is not seen as a resource and the only resource is the total average number of photons
in the system Nmax. Nevertheless, there is an optimal measurement time.

In the noiseless case, we have seen in the main text that the protocol can be carried out coherently, as the QFI
grows as ∝ T 2.

In the dissipative case at zero temperature, Fig. 2 of the main text shows very well the maximal points. As for
PQS, we have that Ipas ∼ 4Nmaxt

2/(e2Γt − 1), see (IV.9). This is maximal for t ≃ 0.8 · Γ−1, which gives us the
optimal QFI Imax

pas ≃ 0.65Nmax/Γ
2 for large Nmax. For the CQS, we have shown that the QFI rate is maximized at

the steady state, therefore theoretically the optimal time is t→ ∞, but in practice, QFI does not change significantly
after t ≃ λ−1

− . The optimal QFI is achieved for ω0 = Γ, and its value is 2N2
max/Γ

2. At arbitrary temperatures, time
scales are unchanged, and we have that the QFI changes roughly by substituting Nmax/(1 + 2nB) to Nmax.

B. Multiple repetition case

We consider now both the total protocol time T and the number of photons Nmax as resources. In this case, we
perform M measurements at times t = T/M . Thus, the total QFI is M · I(t) = I(t)T/t, where I(t) is the single shot
QFI. The optimal precision will be achieved for the time maximizing I(t)/t. The same holds for the total FI M ·F (t),
where the optimal precision will be achieved for the time maximizing F (t)/t.

In the noiseless scenario, this optimization is trivially solved as t = T , as the QFI grows as ∝ T 2.
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In the dissipative case at zero temperature, PQS asymptotically saturates the fundamental bound in Eq.5 of
the main text, namely Itotalpas ≤ 2NmaxT/Γ. This may be obtained in both cases with pure squeezing, as well as
squeezing+displacement followed by homodyne detection.

Indeed, for pure squeezing, from (IV.5), we have

Ipas
t

=
e−2r(e4r − 1)2t

2e2re4Γt + (e2r − 1)2(e2Γt − 1)

e2r≫1
≈ e2rte−4Γt

2e−2r + (1 − e−2Γt)

Γt≪1
≈ 1

Γ

e2rΓt

2e−2r + 2Γt

Γt≫e−2r

≈ 1

Γ

e2r

2
≈ 2Nmax

Γ
,

(V.1)
so the bound is saturated for Nmax ≫ 1, for single-repetition time satifying 1/(NmaxΓ) ≪ t≪ 1/Γ.

For homodyne with Nmax = α2 + sinh2 r, from (IV.10), we have

Fpas

t
=

4α2t

(e−2r + e2Γt − 1)

Γt≪1
≈ 1

Γ

4α2Γt

e−2r + 2Γt

Γt≫e−2r

≈ 2α2

Γ

α2≫sinh2(r)
≈ 2Nmax

Γ
, (V.2)

so the bound is saturated for Nmax ≫ 1, for single-repetition time satisfying e−2r/Γ ≪ t ≪ 1/Γ, where the number
of photons due to squeezing is small compared to the number of photons due to displacement, i.e., sinh2(r) ≪ α2.

The CQS optimal time for the single-shot and multiple repetition case is very similar, see Fig. 2 and Fig. 3 in the
main text.

For higher temperatures, time scales are the same, so nothing fundamentally changes.

VI. FUNDAMENTAL BOUND FOR QFI FOR THE ESTIMATION OF THE FREQUENCY OF THE
CAVITY COUPLED TO THE THERMAL BATH

Here, we derive the fundamental bound to the precision obtainable for the estimation of the frequency of the cavity
coupled to the thermal bath using total time T , with restriction of the average number of photons. We will use the
theorem from [56]. See also [58, App. E] for an extension to the case where the parameter is encoded in Lindblad
operators and [59] for an alternative derivation.

Let us first recall the result of [56] we want to use. For a general time evolution of a quantum state ρ, described by
the Lindblad equation:

dρ

dt
= −iω[H, ρ] +

J∑
j=1

LjρL
†
j −

1

2
ρL†

jL− 1

2
L†
jLρ , (VI.1)

we define the following operators:

β(1) = Ḣ + h
(1)
00 11 + L†h( 1

2 ) + h( 1
2 )†L + L†h(0)L , (VI.2)

α(1) =
[
h( 1

2 )11 + h(0)L
]† [

h( 1
2 )11 + h(0)L

]
, (VI.3)

where L is the vector of Lindblad operators, h
(1)
00 is a scalar, h( 1

2 ) is a vector of length J and h(0) is a J × J matrix
mixing Lindblad operators with each others.

Then, for any adaptive strategy involving entanglement with arbitrary large ancillas and acting with arbitrary
unitaries during evolution, the QFI for the estimation of the parameter ω, after an evolution of time T , is bounded
by (Eq. (18) of [56]):

I ≤ 4

∫ T

0

min
{h(1)

00 ,h
( 1
2
),h(0)}

⟨α(1)⟩tdt , subject to β(1) = 0 . (VI.4)

Note that such a general scheme includes dividing the total time T into smaller parts, performing measurements in each

part, and eventually updating the protocol based on these results. Note also that a minimization over {h(1)00 ,h
( 1
2 ), h(0)}

gives the tightest bound, but (VI.4) is valid for any choice of {h(1)00 ,h
( 1
2 ), h(0)}.

Let us now go to the system discussed in this paper. To apply the above theorem, it is important to distinguish
what is an unchangeable part of the evolution of our system and what is an additional, tunable part, connected with
a peculiar strategy. In our case, the first one is:

dρ

dt
= −iω[a†a, ρ] + Γ(1 + nB)

(
2aρa† − {a†a, ρ}

)
+ ΓnB

(
2a†ρa− {aa†, ρ}

)
, (VI.5)
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while the second one is the unitary squeezing ϵ
2 (a2 + a†2). More precisely, referring to Fig. 1 from [56], the gate Eωt

corresponds to integrating (VI.5) over t, while the unitary control U corresponds to integrating over t the expression
dρ
dt = −i[ ϵ2 (a2 + a†2), ρ]. Note that even if these two operations do not commute for finite t, for t→ 0 applying them

alternately T/t times becomes equivalent to evolving dρ
dt = −i[ωa†a+ ϵ

2 (a2 + a†2), ρ] + L[ρ].

Therefore, we have two Lindblad operators, namely L1 =
√

2Γ(1 + nB)a, L2 =
√

2ΓnBa
† and Ḣ = a†a. Putting

h( 1
2 ) = 0, h

(0)
12 = h

(0)
21 = 0, we get:

β(1) = a†a+ h
(1)
00 11 + 2Γ(nB + 1)a†ah

(0)
11 + 2ΓnBaa

†h
(0)
22 , (VI.6)

which is zero under the conditions:

1 + 2Γ(nB + 1)h
(0)
11 + 2ΓnBh

(0)
22 = 0 ,

h
(1)
00 + 2ΓnBh

(0)
22 = 0 .

(VI.7)

We have also:

α(1) = 2Γ(nB + 1)a†a
(
h
(0)
11

)2
+ 2ΓnBaa

†
(
h
(0)
22

)2
. (VI.8)

Setting ⟨a†a⟩t = N(t), after a direct minimization with the constraints in (VI.7), we obtain:

⟨α(1)⟩t =
N(t)

2Γ(1 + 2nB − nB

N(t)+1 )
, (VI.9)

and therefore:

I ≤
∫ T

0

2N(t)

Γ(1 + 2nB − nB

N(t)+1 )
dt ≤ 2NmaxT

Γ(1 + 2nB − nB

Nmax+1 )
, (VI.10)

where in the last step we used the fact, that the function under the integral is strictly increasing with N(t). As
discussed in Section V, this bound is saturable by the passive strategy in the limit of a large number of photons.

VII. TIME TO CHARGE AND DISCHARGE A LINEAR RESONATOR

Assume we have a linear resonator in a vacuum state, and we want to charge the cavity with a state prepared
outside the cavity. This situation is modeled by the Langevin equation, that, in the frame rotating with the resonator
frequency, is given by

ȧ(t) = Γa(t) −
√

2Γain(t) , (VII.1)

where a(0) is in the vacuum state and ain(τ) is the input signal of the resonator. Here, we have considered the
favorable case where all the cavity losses are due to the interaction with the preparation line. This equation is solved
as

a(t) = e−Γta(0) +
√

2Γ

∫ t

0

dτ e−Γ(t−τ)ain(τ) = e−Γt a(0) +
√

(1 − e−2Γt) aP , (VII.2)

where aP =
√

2Γ
1−e−2Γt

∫ t
0
dτe−Γ(t−τ)ain(τ) is the integrated input mode. Assuming that ⟨a†PaP ⟩ = Nmax, and we

want to prepare the state up to an error ϵ in the number of photons, i.e., we want to achieve ⟨a†(t)a(t)⟩ = Nmax − ξ,
this takes a time given by the solution of

Nmax − ξ = (1 − e−2Γt)Nmax, (VII.3)

i.e., t = log(Nmax/ξ)/2Γ. The same time is needed to discharge the resonator in a state with Nmax photons.
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FIG. 7. QFI at arbitrary temperature. (a) Ratio between the QFIs Ipas,nB and Ipas,0, considering squeezed-vacuum as
initial state. Here, and in the following, we denote with the subscript nB the QFI at finite temperature and with the subscript
0 the QFI at zero temperature. The parameters α and r are the same for both QFIs. Notice that Ipas,0 corresponds to a
strategy with a mean number of photons smaller by a factor (1 + 2nB) with respect to the strategy for Ipas,nB . (b) Ratio
between the homodyne FIs Fpas,nB and Fpas,0. (c) Ratio between Icr,nB and Icr,0 at the optimal point ϵ = ϵopt ≃ 0.9975.
The optimal point is the same for both the finite- and zero-temperature cases. To obtain the various plots, we have set:
Nmax = 300, nB = 1, ω0 = Γ, ϵ = 0.9975ϵc. In (a) we have set α = 0 and r ≃ 3, while in (b) we have set the parameters
optimizing the homodyne FI, see (IV.11).

VIII. QUANTUM FISHER INFORMATION AT FINITE TEMPERATURE

A. CQS

We consider the case where all the parameters of the system, namely ω0, Γ and ϵ are the same, and we distinguish
two situations: one with a zero-temperature bath nB = 0 (we denote the corresponding QFI as Icr,0) and one with
a finite temperature bath nB (Icr,nB

). In both cases, the protocol starts with the proper thermal state (which is the
vacuum in the first case). Notice that the finite temperature does not modify the critical point, whose expression

depends only on Γ and ω0, and is ϵc =
√
ω2
0 + Γ2 even for nB > 0.

At arbitrary temperature, the QFI Icr,nB
≃ 2Icr,0 for t ≃ λ−1

+ , and Icr,nB
rapidly approaches Icr,0 for t ≳ λ−1

+ , see
Fig. 7. The mean number of photons is NnB

(t) ≃ (1 + 2nB)NnB=0(t) + nB ≃ (1 + 2nB)NnB=0(t) for large enough
NnB=0(t), see Section II C 2. This means that Icr,nB

is roughly equal to Icr,0, but it is obtained for (1 + 2nB) times
bigger number of photons, i.e., N ′

max = (1 + 2nB)Nmax.

B. PQS

In the PQS case, we can do the same type of analysis as in Section IV B 2. We consider e2r ≫ e4Γt/(e2Γt − 1),
obtaining

Ipas ≃
4Nmaxt

2

(1 + 2nB)(e2Γt − 1)
, (VIII.1)

where Nmax = |α|2 +(1+2nB) sinh2(r)+nB . As discussed in Section IV B 2, this asymptotic scaling may be obtained
for a broad choice of the system parameters, including both situations where sinh2(r) ≫ |α|2 or |α|2 ≫ {sinh2(r), nB}.
Detailed analysis shows that, for finite Nmax, the FI is slightly better if we consider pure squeezing. To compare it
with the above discussion about CQS, we need to point out some points.

In CQS, for the same system parameters, but at finite temperature, the number of photons was roughly rescaled
by a factor (1 + 2nB). In PQS, if we fix the parameters α and r, an analogous situation holds only if sinh2(r) ≫ |α|2.
Then, the QFI is the same as in the noiseless case, but with the number of photons (1 + 2nB) times bigger. Indeed,
in this case, PQS behaves in the same way as CQS. However, if |α|2 ≫ {sinh2(r), nB}, a finite temperature does not
affect significantly the number of photons (see (IV.4)). Therefore, obtaining the same value of the QFI would require
changing the values of the parameters α and r.
In both cases, to obtain the same precision, one needs to properly increase the number of maximal allowed average
number of photons N ′

max = (1 + 2nB)Nmax, as in CQS.


