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The Bacon-Shor code is a quantum error correcting subsystem code composed of weight 2 check
operators that admits a single logical qubit, and has distance d on a d × d square lattice. We
show that when viewed as a Floquet code, by choosing an appropriate measurement schedule of the
check operators, it can additionally host several dynamical logical qubits. Specifically, we identify
a period 4 measurement schedule of the check operators that preserves logical information between
the instantaneous stabilizer groups. Such a schedule measures not only the usual stabilizers of the
Bacon-Shor code, but also additional stabilizers that protect the dynamical logical qubits against
errors. We show that the code distance of these Floquet-Bacon-Shor codes scales as Θ(d/

√
k) on a

d × d lattice with k dynamical logical qubits, along with the logical qubit of the parent subsystem
code. Moreover, several errors are shown to be self-corrected purely by the measurement schedule
itself.

I. INTRODUCTION

Quantum computers offer a promising avenue for solv-
ing computational problems that may be intractable for
classical computers. However, in order to be practically
useful, one must correct for errors that accrue over the
course of the computation. Quantum error correction
(QEC) provides a broad framework in which the logical
information is encoded on part of the full physical Hilbert
space, and can be protected against errors through mea-
surements of appropriate syndrome observables followed
by post-measurement correction operations. A leading
candidate for QEC has been the surface code [1–3], for
its relatively high threshold as well as a simple square
lattice architecture.

Recently, a remarkable class of QEC codes was intro-
duced by Hastings and Haah [4] in which the logical de-
grees of freedom do not form a fixed subspace of the phys-
ical Hilbert space, but rather evolve dynamically. The
first such example involved the Kitaev honeycomb model
[5], which when viewed as a subsystem code, encodes no
logical qubits. However, by choosing an appropriate mea-
surement schedule of the weight-2 check operators, it was
shown that this model leads to dynamical logical degrees
of freedom. Due to the periodicity of the measurement
schedule and the induced instantaneous stabilizer groups
(ISGs), such codes are typically referred to as Floquet
codes.

The original honeycomb Floquet code [4] was de-
fined on a hexagonal torus, while generalizations to 3-
colorable and 3-valent planar graphs were explored in
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[6]. Due to a non-trivial automorphism between elec-
tric and magnetic operators across measurement cy-
cles, adding boundaries to the model is non-trivial, but
were introduced in [7]. Benchmarking studies [8–10]
showed a competitive threshold for the model, with at
least one small scale experiment[11] demonstrating sta-
bilizer measurements. Since then, several examples of
Floquet codes have been constructed, including those
without parent subsystem codes[12], those involving the
color code[13, 14], constructions based on hyperbolic
geometries[15, 16], in 3D Euclidean space based on frac-
ton order[17], rewinding the measurement schedule[18],
as well as introducing twists in the geometry[19]. Gen-
eralizations of Floquet code constructions have also
been explored using the ZX calculus[20, 21], adiabatic
paths[22], anyon condensation[13], as well as aperiodic
measurement schedules in the form of dynamic automor-
phism codes[23].

While the dynamics of previously constructed Floquet
codes typically requires a description of the embedded
toric codes in its ISGs, and may perhaps be intuitively
understood through adiabatic paths [22] or anyon con-
densation [13], the construction of the Floquet code we
describe here follows directly from the subsystem struc-
ture of the parent Bacon-Shor code, without the need to
move to a condensed matter perspective. In this sense,
it hopefully offers a comparatively simpler example of
a Floquet code. It also comes naturally equipped with
a boundary, without the complication of non-trivial au-
tomorphisms between electric and magnetic operators
[4, 6, 7]. Furthermore, this Floquet code is naturally de-
fined on a square lattice, whose simple lattice structure
may be appealing from an experimental perspective. To
our knowledge, the model introduced here provides a first
example of a Floquet code on a square lattice, though it
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has been noted that a square lattice construction may
also be possible using an alternative approach[24]. It is
an example of a CSS Floquet code[12, 13], since all the
stabilizers are of either X or Z type. Moreover, unlike
the original honeycomb code[4], it also serves as an exam-
ple of a Floquet code whose parent subsystem code hosts
a non-zero number of logical qubits, as well as one which
may host several dynamical logical qubits. Perhaps most
importantly, it demonstrates the construction of a Flo-
quet code using essentially only the subsystem structure
of the parent code through the addition of gauge defects.
We strongly suspect that this approach may be much
more widely applicable in constructing more examples of
Floquet codes.

This paper is organized as follows. In Section II, we
recall and describe the usual Bacon-Shor code[25] using
the virtual qubit framework that sets up the notation and
makes the discussion in the following sections simpler. In
Section III, we show how to introduce logical dynamical
degrees of freedom through gauge defects, in addition
to the usual Bacon-Shor logical qubit. In Section IV,
we discuss error correction for such Floquet-Bacon-Shor
codes. We conclude in Section V, with some thoughts on
open problems and future work.

II. BACON-SHOR CODE

Here, we briefly review the Bacon-Shor code[25]. We
start by first recalling some basic facts about subspace,
or stabilizer, codes as well as subsystem codes, using the
formalism of ‘virtual’ qubits [26, 27]. First, note that
the Pauli group of n qubits Pn = ⟨iI, X1, Z1, . . . , Xn, Zn⟩
can be transformed under an automorphism Xi, Zj →
Xi, Zj as ⟨iI, X1, Z1, . . . , Xn, Zn⟩ as long as the trans-
formed qubit operators satisfy the canonical commu-
tation relations [Xi, Zj ] = 2δijXiZj and {Xi, Zj} =

2(1− δij)XiZj . These ‘virtual qubit’ operators need not
be operators on individual physical qubits, but rather
describe collective degrees of freedom.

A. Stabilizer and subsystem codes

In stabilizer, or subspace, codes, one promotes the
first s virtual Z operators as stabilizers, and identifies
the group they generate S = ⟨Z1, . . . , Zs⟩ as the sta-
bilizer group. Since these generators all mutually com-
mute, they admit a simultaneous eigenbasis. Conven-
tionally, an eigenbasis in which all the {Zj}sj=1 take
a value +1 is chosen to be the code space. Notably,
−I ̸∈ S. Now, the centralizer of some arbitrary group
G in the Pauli group is defined as Z(G) = {p | p ∈
Pn, pgp

† = g ∀g ∈ G}, the set of all Pauli oper-
ators that commute with every element of the group
G. The centralizer of this stabilizer group is given by
Z(S) = ⟨iI, Z1, . . . , Zs, Xs+1, Zs+1, . . . , Xn, Zn⟩.

The centralizer contains the logical operators of this
code, as well as undetectable logical errors, in the sub-
space L(S) = Z(S) \ S, where the notation A \ B de-
notes the set of all the elements in A that are not in
B. The set of operators {Xs+1, Zs+1, . . . , Xn, Zn} pro-
vides the logical operators for k = n − s logical qubits.
The smallest weight of any operator in Z(S) \ S gives
the code distance d, where by weight we mean the num-
ber of physical qubits an operator non-trivially acts on.
Detectable errors live in the space Pn \ Z(S), and all
such operators with weight ⌊(d− 1)/2⌋ are correctable.
A code described in this manner is succintly referred to
as an [[n, k, d]] stabilizer code.

Note that due to the abelian nature of stabilizer
groups, and the fact that any pair of Pauli operators ei-
ther commutes or anti-commutes, the normalizer of any
stabilizer group S, defined as N (S) = {p | p ∈ Pn, psp

† ∈
S}, the set of all Pauli operators that leave the stabilizer
group fixed upon conjugation, exactly coincides with the
centralizer. However, as noted below, the normalizer and
centralizer of non-abelian gauge groups are generally dif-
ferent, so we use the latter throughout this paper for
consistency.

In subsystem codes, we identify a non-abelien sub-
group of the Pauli group G ⊂ Pn as the gauge group.
Due to its non-abelian nature, we now have −I ∈ G,
unlike the case for stabilizer groups. This also means
that the normalizer of the gauge group is the entire
Pauli group N (G) = Pn, so that we now define rel-
evant quantities in terms of the centralizer Z(G) in-
stead. The generators of this gauge group are typ-
ically chosen to be low-weight operators that can be
measured with relative ease. We first rewrite this non-
abelian gauge group in terms of virtual qubit generators
G = ⟨iI, Z1, . . . , Zs, Xs+1, Zs+1, . . . , Xs+g, Zs+g⟩.
The center of this gauge group, defined as the set of

all elements of the gauge group that commute with ev-
ery other element of the gauge group, is identified as the
stabilizer subgroup C(G) = Z(G)∩G = S, and is given in
terms of the virtual qubit operators as S = ⟨Z1, . . . , Zs⟩.
Meanwhile, the remaning non-trivial generators of the
gauge group

{
Xs+1, Zs+1, . . . , Xs+g, Zs+g

}
are the logi-

cal operators for gauge degrees of freedom, that we refer
to as simply gauge qubits. The logical operators associ-
ated with these gauge qubits represent transformations
that do not affect the codespace. Altogether, this gives
us s = |S| many stabilizer qubits, and g = (|G| − |S|)/2
many gauge qubits, where |A| denotes the cardinality, or
the number of independent generators, of some group A.

In the case of the nonabelien gauge groups for sub-
system codes, the set of all operators Z(G) \ S contains
the bare logical operators for this subsystem code, which
leave both the stabilizer as well as the gauge qubits in-
tact, and only affect the logical qubits of the subsys-
tem code. However, owing to the gauge freedom in a
subsystem code, we are also free to multiply these bare
logical operators by any gauge operator, so that they
can non-trivially operate on both the gauge and logi-
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cal qubits, without impacting the state of the stabilizer
qubits. The set of all such dressed logical operators oper-
ators is given by the subset of the centralizer of the sta-
bilizer subgroup that excludes all elements in the gauge
group, L(G) = Z(S) \ G. The weight of the smallest op-
erator in the space L(G) gives the code distance d. As
with stabilizer codes, detectable errors live in the space
Pn \ Z(S), and all operators in this space with weight
⌊(d− 1)/2⌋ are correctable. A code with gauge degrees
of freedom described in this manner is referred to as an
[[n, k, g, d]] subsystem code, where k = n − s − g is the
number of logical qubits.

B. Virtual qubit operators for the Bacon-Shor code

The Bacon-Shor code is a prototypical subsys-
tem code defined on an L × M square lattice.
The gauge group associated with this subsystem
code is generated by all nearest-neighbor horizon-
tal XX checks and vertical ZZ checks, i.e. G =
⟨Xi,jXi,j+1, Zi,jZi+1,j | i ∈ [L], j ∈ [M ]⟩, where we use
the notation [K] = {0, . . . ,K − 1}. The stabilizer sub-
group of this gauge group is generated by operators that
are either the product of all horizontal XX checks along
two neighboring columns, or the product of all vertical
ZZ checks along two neighboring rows.

The rank of this gauge group is simply the number of
edges on the square lattice, |G| = L(M − 1)+M(L− 1).
Meanwhile, the rank of the stabilizer subgroup described
above is given by |S| = (L − 1) + (M − 1). This leaves
us with g = (|G| − |S|)/2 = (M − 1)(L− 1) many gauge
qubits, which is exactly the number of square plaquettes
in the L×M lattice. Thus, we can associate each gauge
qubit with a square plaquette of the lattice. Since the
number of physical qubits is given by n = ML, we are
left with k = n−g−s = 1 logical qubit in this subsystem
code.

The pair of bare logical operators for this subsystem
code can be taken to be the product of X operators along

the left-most column, and similarly the product of Z op-
erators along the bottom-most row, which we choose to
identify as the logical X and Z operators respectively.
Upto stabilizer transformations, the logical X (Z) op-
erator is equivalent to the product of X (Z) operators
along any column (row). Of course, these bare logical
operators can also be multiplied by any gauge operator
to yield (gauge) equivalent dressed logical operators.
We also identify the operators for the gauge qubits

in this subsystem code, which we noted above can be
associated with the square plaquettes of the lattice. We
can take the X operator for a given gauge qubit to be
the product of XX checks on all the edges above the
square plaquette, including the top edge of the square
plaquette, associated with this gauge qubit. Similarly,
the Z operator for this gauge qubit may be taken to be
the product of ZZ checks on all the edges to the right
of its square plaquette, including the right edge of the
square plaquette.
The identification of gauge qubits with square pla-

quettes also motivates the identification of the stabilizer
qubits and the logical qubit with some part of the physi-
cal lattice. With the definitions of the stabilizer and logi-
cal qubit operators given above, it is intuitive to identify
the horizontal Z-type stabilizer qubits with imaginary
square plaquettes sharing right-side edges with the left-
most column, and the vertical X-type stabilizer qubits
with similar imaginary square plaquettes sharing top-side
edges with the bottom-most row.
Similarly, the logical qubit can be associated with an

imaginary square plaquette with its top-right corner at
the origin of the lattice residing in its bottom-left most
corner. With such an identification of all virtual qubits
with square plaquettes on the lattice, we denote e.g. Xi,j

to be the logical X operator of the virtual qubit associ-
ated with the square plaquette with its top-right corner
at the (i, j) coordinate of the L×M square lattice, where
i ∈ [M ] and j ∈ [L]. This situation is depicted in Fig. 1.
The explicit expressions for the logical operators of the
various virtual qubits, in terms of the operators of the
physical qubits, which reside on the nodes of the square
lattice, is given in Eq. (1).

Horizontal Z-type stabilizers: Z0,i =

M−1∏
j=0

Zj,iZj,i−1 X0,i =

L−1∏
j=1

X0,j (1 ≤ i ≤ L− 1)

Vertical X-type stabilizers: Zi,0 =

L−1∏
j=0

Xi,jXi−1,j Xi,0 =

M−1∏
j=i

Zj,0 (1 ≤ i ≤M − 1)

Gauge qubits: Zi,j =

M−1∏
k=i

Zk,jZk,j−1 Xi,j =

L−1∏
k=j

Xi,kXi−1,k (1 ≤ i, j ≤M − 1, L− 1)

Logical qubit: Z0,0 =

M−1∏
i=0

Zi,0 X0,0 =

L−1∏
i=0

X0,i

(1)
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One way to fix a gauge of the Bacon-Shor code is to fix
the values of some of the gauge qubit logical operators.
Threshold behavior in such gauge fixings of the Bacon-
Shor code have been previously explored in the context
of 2D compass codes[28].

III. FLOQUET-BACON-SHOR CODE

In order to measure the stabilizers of the Bacon-Shor
subsystem code, it suffices to use a period 2 measurement
schedule, such that we measure all the horizontal XX
checks in the first round, followed by all the vertical ZZ
checks. From a Floquet perspective, this corresponds to
periodically moving between two different gauge fixings
of the Bacon-Shor code, one where the X operators of
all the gauge qubits has been fixed, followed by fixing all
the Z gauge qubit operators. We can view either gauge
fixing as a stabilizer code that contains the Bacon-Shor
stabilizers as a subset, but also includes theX or Z gauge
qubit operators. It does not matter whether these gauge
qubit operators are fixed to ±1, and in general they will
take random values upon each measurement, with the
only constraint being the values of the stabilizers.

In order to free up space for an additional logical qubit,
we must unfix one of the gauge degrees of freedom. In
general, such an unfixing, or gauge defect, is difficult to
maintain while ensuring all the Bacon-Shor stabilizers
also get measured. However, as we show here, it is possi-
ble to maintain such a gauge defect in a dynamical sense,
such that the encoded space for the corresponding logical
qubit changes across measurement rounds, similar to the
examples of previously constructed Floquet codes.

A. Measurement schedule and ISGs

In particular, we can adopt the period 4 measurement
schedule shown in the top part of Fig. 2. The core idea
here is that we distribute the measurement of the Bacon-
Shor stabilizers into four, instead of two, rounds, allow-
ing us to prevent one of the gauge degrees of freedom
from being fixed, thereby introducing a gauge defect that
evolves across the measurement rounds and serves as the
dynamical logical degree of freedom.

In order to describe the measurement process, it is
helpful to label four of the square plaquettes that serve
a special role in identifying the dynamical logical qubit.
For simplicity, we will assume a d× d square lattice. As
in Section II, we denote the location of square plaquettes
by the location of their top-right corner. Since square
plaquettes are in one-to-one correspondence with gauge
qubits, we will use the two terms interchangeably. For
odd d, the gauge qubit A is identified as the plaquette
at location

(
d−1
2 , d+1

2

)
, B at

(
d+1
2 , d+1

2

)
, C at

(
d+1
2 , d−1

2

)
,

and D at
(
d−1
2 , d−1

2

)
. Similarly, for even d, A is identified

as the plaquette at
(
d
2 − 1, d2 + 1

)
, B at

(
d
2 ,

d
2 + 1

)
, C at

(
d
2 ,

d
2

)
, and D at

(
d
2 − 1, d2

)
. In either case, these four

plaquettes all share a single corner that lies roughly at
the center of the square lattice. We also denote columns
AD and BC, and rows AB and CD as the unique columns
and rows containing the obvious choice of plaquettes, as
well as edges AB, BC, CD and AD as the edges between
the respective plaquettes.

A complete period of the measurement cycle consists of
4 measurement rounds, which are subsequently repeated.
In each measurement round, we measure either all XX
or ZZ checks except along a particular column or row of
plaquettes, that we refer to as the defect column or row.
The defect column is column AD at round 0, and column
BC at round 2, while the defect row is row AB at round 1,
and row CD at round 3. In the defect column or row, we
measure a singleXX or ZZ check on the edge that shares
the same label as the column. For instance, at round 0,
we measure all the XX checks except those in column
AD, in which which we only measure the XX check on
edge AD. With this measurement schedule, the Bacon-
Shor stabilizers associated with the defect columns and
rows get measured only once in every period, while all
other stabilizers get measured twice. The gauge defect
is identified with the pair of gauge qubits that straddle
the unique edge in the defect column or row that we
measure a check operator on. It evolves from the pair
AD at round 0, to AB at round 1, to BC at round 2,
to CD at round 3, and then again to AD, repeating the
cycle. In essence, it is this gauge defect that serves as the
dynamical logical qubit. Note that an XX (ZZ) check
on any edge equals the product of X (Z) operators for
the two square plaquettes sharing that edge, fixing which
removes precisely one gauge degree of freedom.

After one complete period, the instantaneous stabilizer
groups (ISGs) induced by the measurement schedule set-
tles into a steady state, and is shown in the bottom part
of Fig. 2. Each of the four ISGs contains all the check op-
erators measured in the current round, or equivalently all
the virtual gauge qubit X (Z) operators in the plaquette
columns (rows) along which we measure all the horizontal
(vertical) XX (ZZ) checks. Along the defect plaquette
column (row), the ISG consists of Z (X) operators for
all the gauge qubits except those that straddle the edge
whose XX (ZZ) check we measure in the current round.
For this pair of gauge qubits, the gauge defect, we fix
only the product of their X (Z) operators. In addition,
all the ISGs also contain the Bacon-Shor stabilizers. The
fixed gauge qubit opertors randomly take either value
±1 each time they are measured afresh. Only a subset of
these operators survive across rounds, and can therefore
serve as error syndromes. In particular, the X operators
along rows CD and AB serve as syndromes at rounds 0
and 2 respectively, while the Z operators along columns
AD and BC serve as syndromes at rounds 1 and 3 re-
spectively. In addition, the Bacon-Shor stabilizers also
serve as error syndromes just as they do in the parent
subsystem code.

Let S(r) denote the ISG at round r. As an example of
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FIG. 1. Virtual qubit operators for the Bacon-Shor subsystem code. From left-right, we have respectively an example of a
(i) gauge qubit, (ii) horizontal stabilizer qubit, (iii) vertical stabilizer qubit, and (iv) logical qubit. Note that while the gauge
qubits are in one-to-one correspondence with the square plaquettes of the lattice, one can associate imaginary square plaquettes
running along the left and bottom boundaries of the lattice for the latter three types of virtual qubits.

FIG. 2. Measurement schedule (top) with period 4 that maintains a gauge defect across the entire measurement cycle, thereby
realizing a dynamical logical qubit in addition to the usual Bacon-Shor logical qubit. Horizontal XX checks are colored red,
while vertical ZZ checks are colored blue. After one complete period of this measurement schedule, the induced instantaneous
stabilizer groups (ISGs) (bottom) achieve steady state. In addition to the usual Bacon-Shor stabilizers, each of the ISGs contains
the measured check operators, as well as any elements from the previous ISG that commute with the currently measured checks.
Any cell, or equivalently a gauge qubit, colored either red or blue corresponds to gauge fixing its X or Z operator respectively.

the description above, S(4k) (k ≥ 1) contains the X op-
erators of all the gauge qubits except those that belong
in the missed plaquette column containing gauge qubits
A and D. This ISG contains the Z operators of all the
gauge qubits in this column except the gauge qubits A
and D. These Z operators were measured and have per-
sisted from the previous round, and commute with all
other elements of the current ISG. In addition, the prod-
uct XAXD, which is simply the XX check measured on

the edge shared between qubits A and D, also exists as
an element of the ISG S(4k).

In any ISG, only gauge fixed Z operators appear any-
where in the column(s), and similarly only gauge fixed
X operators appear anywhere in the row(s), in which
the gauge defect belongs. This ensures that the code dis-
tance of any of the ISGs is maintained at ∼ d on a d× d
square lattice. Of course, this also relies on the vertex
shared by the plaquettes A, B, C and D lying roughly
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d/2 away from any boundary of the lattice, and the code
distance would shrink if the gauge defect was instead
brought closer to any lattice boundary.

The logical operators for the Bacon-Shor qubit do not
change across these ISGs, and are still given by the op-
erators X0,0 and Z0,0 from Eq. (1). In the honeycomb
Floquet code [4], there are similar static logical operators
arising from non-trivial homological loops. These were
referred to as inner logical operators since they belong to
the center of the parent gauge group, though the mea-
surement schedule prevents them from ever being mea-
sured. Here, the logical operators for the Bacon-Shor
qubit are not inner logical operators in the sense that
they do not belong to the center of the gauge group. So
instead, we simply refer to them as static logical opera-
tors, even though of course, the equivalence class of such
operators upto instantaneous stabilizer transformations
does evolve from round to round.

The logical operators for the dynamical qubit intro-
duced as a result of the measurement schedule introduced
above do change across rounds. Roughly speaking, they
correspond to the virtual qubit operators associated with
the gauge defect that arises from fixing the product of
operators of neighboring gauge qubits, and that evolves
from round to round. Whenever we fix the product of
neighboring gauge qubits of a particular type, X or Z,
the logical operator of the same type for the dynami-
cal qubit is given by the virtual qubit operator for ei-
ther gauge qubit, while that of the opposite type is given
by the product of the virtual qubit operators of the two
gauge qubits. In particular, using the definitions of the
gauge qubits A, B, C and D described above, and de-
picted in Fig. 2, the pair (X,Z) of logical operators for
the dynamical qubit evolves as (XA, ZAZD) at round 0,
(XAXB , ZB) at round 1, (XB , ZBZC) at round 2, and
(XCXD, ZC) at round 3.

In order to preserve logical information across these
four ISGs, it is also necessary that some representa-
tive, upto instantaneous stabilizer operations, of a log-
ical operator at round r persists as a logical opera-
tor in the next round r + 1. This is formalized in
Eq. (2). Roughly speaking, this condition ensures that if
|ψ(r)⟩ = α |0(r)⟩ + β |1(r)⟩ is the state of the dynamical
logical qubit at round r, then the measurement schedule
projects it to |ψ(r)⟩ → α |0(r+1)⟩ + β |1(r+1)⟩ = |ψ(r+1)⟩
at round r + 1, where the codewords |0(r)⟩ etc change
across the ISGs, but the pair of coefficients α and β,
and therefore the logical information, does not. Specif-
ically, this condition says that if SA and SB are two
stabilizer groups associated with stabilizer codes A and
B respectively, with associated logical operators OA and
OB , where Oj ⊂ N (Sj) \ Sj , then if there exist sA ∈ SA

and sB ∈ SB such that

sAOA = sBOB (2)

then logical information is preserved. This is also dis-
cussed more in the appendix.

Following Eq. (2), we must identify pairs of stabilizer

elements s(r), s(r+1) ∈ S(r),S(r+1) that connect a logical
operator for the ISG S(r) to one for the ISG in the next
round S(r+1) in order to preserve the logical information
contained in the dynamical qubit across these rounds.
These pairs are given in Table I.

Round 0 1 2 3

X
(r)

XA XAXB XB XCXD

Z
(r)

ZAZD ZB ZBZC ZC

s
(r)
x XAXD ·XC I XA I

s
(r−1)
x I XB I XBXC ·XD

s
(r)
z I ZD · ZAZB I ZB

s
(r−1)
z ZCZD · ZA I ZC I

TABLE I. Evolution of the dynamical logical operators X
(r)

and Z
(r)

across the four measurement rounds, where the lo-
cations of the gauge qubits/plaquettes A, B, C and D are

described in the main text. The stabilizer element pairs s
(r)
j

and s
(r−1)
j for type j connect the logical operators across sub-

sequent rounds, s
(r)
x X

(r)
= s

(r−1)
x X

(r−1)
, and similarly for

the Z
(r)

operators.

B. Multiple Dynamical Qubits

Introducing additional dynamical logical degrees of
freedom amounts to adding more gauge defects to the
measurement schedule, and is straightforward to gener-
alize from the construction above for a single dynam-
ical logical qubit. Consider relabeling the set of pla-
quettes (A,B,C,D) described above as (A0, B0, C0, D0),
and identifying another such similar set of plaquettes
(A1, B1, C1, D1) where we repeat the measurement sched-
ule identified above. Thus, for instance, we would now
have two defect columns, A0D0 and A1D1, at round
0. The code distance would now be proportional to the
shorter of the two distances from any edge of the square
lattice to either of the two resultant gauge defects. To
make one of these distances the same for both gauge de-
fects, we can put them in the same plaquette column or
row. Suppose, without loss of generality, that we put
them in the same row. The optimal choice would be to
place both gauge defects roughly d/3 distance away from
each other, as well as either vertical edge of a d×d square
lattice, but roughly d/2 away from the horizontal edges.
Since this already reduces the code distance to ∼ d/3,
one might as well add two more gauge defects such that
all of these lie roughly d/3 units away from any edge of
a d× d square lattice.
Generalizing this construction, we see that while one

could in principle keep adding more dynamical logical
qubits by simply adding more gauge defects, the overall
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code distance decreases by the same amount as one goes
from m2 to any number between m2 + 1 and (m + 1)2

dynamical logical qubits, where m is an integer. The
optimal placement form2 many gauge defects is such that
we place m of these gauge defects in the same row and
column, such that the boundaries of the resultant defect
lattice are roughly d/(m + 1) away from the edges of
the square lattice. Therefore, adding k dynamical logical
qubits to the Bacon-Shor code reduces the code distance
to roughly d/(

√
k + 1), or Θ(d/

√
k). This situation is

depicted in Fig. 3 for the illustrative case of 9 dynamical
logical qubits.

In the presence of biased noise, one may instead want
to adjust the X and Z distances, dX and dZ , separately.
For instance, in the hypothetical case of infinite Z bi-
ased noise, one could keep adding more dynamical gauge
defects along a particular column, which progressively
shortens dX but maintains the same value of dZ , as all
these dynamical qubits lie the same distance away from
the vertical boundaries of the square lattice. Alterna-
tively, as with the Bacon-Shor parent subsystem code,
we may elongate the horizontal dimension of the square
lattice itself while keeping the vertical dimension fixed.

IV. ERROR DETECTION AND CORRECTION

Here, we assume an error model of independent X and
Z errors on all the qubits between measurement rounds,
and independent measurement errors of the XX and ZZ
check operators. A similar error model was assumed in
[4], but there the model also assumed perfect measure-
ments of the check operators, with measurement errors
of e.g. XX checks being equivalent to a single Z error on
one of the qubits supported by this check before and af-
ter the measurement of this check operator. In our case,
such an error pattern would flip two checks supported by
that qubit, and would make it inequivalent to a measure-
ment error on a single check. Since X operators can be
commuted past the measurements of rounds 0 and 2, we
assume that X errors only occur between either rounds
0 and 1, or between rounds 2 and 3. Similarly, Z errors
can be commuted past the measurements of round 1 and
3, and we assume that these occur either between rounds
1 and 2, or between rounds 3 and 0 (mod 4).

The decoding graph is typically defined as the graph
whose vertices are given by the stabilizer measurements,
and edges are given by independent errors, or faults. In
the Floquet-Bacon-Shor construction, described in previ-
ous sections of the paper, we can have independent errors
that flip up to 4 stabilizers. Thus, we are naturally led
to the slight generalization of a decoding hyper-graph. A
hyper-graph is a generalization of a graph where instead
of an edge connecting two vertices, we have a hyper-edge
that connects n vertices. In the decoding hyper-graph,
a hyper-edge connecting 4 vertices would correspond to
precisely such an independent error. This makes decod-
ing more complicated in principle, as standard decoding

algorithms involving Minimum Weight Perfect Matching
(MWPM) or Union Finding (UF) typically work with
edges, not hyper-edges. However, some recent work [29]
has shown that one could nevertheless adapt such tech-
niques to work with decoding hyper-graphs as well.

In the usual Bacon-Shor subsystem code, an odd num-
ber of X errors in any row are gauge equivalent to a
single X error anywhere in that row. Similarly, an odd
number of Z errors in any column are, upto multipli-
cation by gauge group elements, equivalent to a single
Z error anywhere in that column. A chain of such er-
rors will anti-commute with, and therefore get detected
by, the stabilizers that reside at the boundaries of such
chains. For instance, a single X error on any qubit on
the lattice will anti-commute with the horizontal Z-type
stabilizers that straddle the row in which this X error
occurred. Error correction then proceeds by applying a
single correcting X or Z operator anywhere in the rele-
vant row or column. Conventionally we can choose the
left-most column to apply correcting X operators along,
and the bottom-most row to apply correcting Z opera-
tors on. All such errors of weights < d/2 can be corrected
in this manner on a d× d square lattice.

In the Floquet-Bacon-Shor code described above, we
have additional stabilizers that protect the encoded dy-
namical logical qubits. These are given by the gauge fixed
operators that lie along the defect columns and rows of
the various ISGs. We will refer to these as transient sta-
bilizers, to distinguish them from the usual Bacon-Shor
stabilizers that run along the length of the entire lattice,
which we shall refer to as permanent stabilizers. The
collection of such gauge operators, or transient stabiliz-
ers, in any defect column or row form a domain wall
across which single qubit errors cannot propagate, since
we skip the measurements along that column or row. For
instance, assuming temporarily a single dynamical logi-
cal qubit for simplicity, at round 4k (k ≥ 1), we do not
measure any of the XX checks in the defect column AD
except on the edge AD, so that single qubit X errors are
equivalent, up to instantaneous stabilizer operations, to
any single X error on either side of the domain wall in
the column AD, depending on which side of this wall the
error occurred, except along the row that contains the
edge AD. This means that unlike the Bacon-Shor code,
an even number of X errors, for instance, can bring us
out of the dynamical codespace if we have an odd number
of X errors on both sides of the domain wall.

Measurement errors of the permanent stabilizers are
given in the decoding hyper-graph as edges connecting
the same stabilizer across consecutive time slices. A de-
fect is referred to as a flip in the recorded value of a sta-
bilizer. A measurement error of a permanent stabilizer
will cause two defects in the decoding hyper-graph, once
due to the erroneous flip in recorded value, and the sec-
ond when its value flips back to the correct one, and can
therefore be decoded by standard matching algorithms.
In the case of measurement errors of transient stabilizers,
one has to be a bit more careful. Suppose we have just
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FIG. 3. Measurement schedule (top) for hosting 9 dynamical logical qubits in addition to the usual Bacon-Shor subsystem
logical qubit. The sequence of instantaneous stabilizer groups (ISGs) this measurement schedule induces (below) maintains the
introduced gauge defects throughout the measurement cycle.

carried out the measurements of round 1 mod 4, and one
of the Z-type check operators along some plaquette row
sufferred a measurement error. If it occurred to the left
of column AD, then it flips only the value of the per-
manent Z-type stabilizer along this row. If it occurs on
the check between cells A and B, then it flips the value of
permanent Z-type stabilizer along this row, as well as the
transient stabilizer given by the gauge fixed Z operator
of the gauge qubit lying at the intersection of this row
and column AD. If it instead occurs on any check fur-
ther right along this row, then it flips the previous two
stabilizers, as well as the gauge fixed Z operator of the
gauge qubit at the intersection of this row and column
BC. Thus, measurement errors of transient stabilizer in
general will lead to hyper-edges connecting several ver-
tices in the decoding hyper-graph.

A. Decoding and Code Distance

For simplicity, we will assume the case of a single dy-
namical logical qubit, as the extension to multiple logical
qubits is straightforward, and briefly discussed towards
the end of this section. In addition, note that each of
the ISGs is equivalent to a clockwise π/2 rotation of the
previous ISG, together with interchanging X ↔ Z, so
that it suffices to discuss errors occuring between any
two consecutive rounds.

Next, suppose concretely that we are in the ISG S(4k)

(k ≥ 1), and suppose that a single qubit X error occurs

on some row in the bulk, far from the top and bottom
boundaries of the square lattice, and far from the bound-
aries of the cells A, B, C and D. This loneX error will flip
the two permanent Z-type stabilizers that straddle this
row, and that are measured in the next row. If this X
error occurred on the right of the blue domain wall along
plaquette column AD, then it will also additionally flip
the two transient stabilizers that exist along this defect
column, and that also straddle this row and are measured
in the next round. Thus, such errors give rise to hyper-
edges connecting 4 vertices in the decoding hyper-graph.

At the top and bottom boundary rows, we may add
additional imaginary stabilizers that get flipped in addi-
tion to the lone stabilizers, permanent and transient, in
order to apply matching algorithms. This leaves us with
three rows left to consider: the top row of cells AB, the
row between cells AB and CD, and the bottom row of
cells CD. Note that an X error on the row between cells
AB and CD is ISG equivalent to a single X error any-
where on that row, so that we may treat it as occuring
e.g. on the left-most column.

Between rounds 4k and 4k + 1, an X error on the
bottom row of cells CD can be identified in a somewhat
similar fashion, as it flips the pairs of permanent Z-type
stabilizers that straddle this row and that all get mea-
sured in the round 4k + 1. In addition, it also flips the
transient Z-type stabilizer associated with the cell below
cell D, which also gets measured in the next round 4k+1.
Although the Z operator of cell D gets measured in round
4k+1, it cannot be used as a syndrome bit as it has not
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persisted through the previous round, nor does it persist
in the subsequent round. In general, none of the Z op-
erators of cells/gauge qubits A, B, C or D may be used
as syndrome bits, even if they exist in some of the ISGs.
We therefore add imaginary boundary transient Z-type
stabilizers at cells A, B, C and D to allow for matching
with neighboring transient Z-type stabilizers.

To handle the remaining two cases, we may adopt
two different decoding strategies, one that detects and
fixes errors as they accumulate, i.e. in the same time
slice, and the second where non-trivial syndrome mea-
surements, even with perfect measurements, are edge-
connected across time slices separated by two measure-
ment rounds. Using the first strategy, a single X error
on either one of the above two rows, i.e. the row above
cells AB, or the row between cells AB and CD, will flip a
single permanent Z-type stabilizer that borders the pla-
quette row AB in the next round 4k+1. In addition, an
X error on the row above cells AB will additionally flip
a single transient Z-type stabilizer above cell A. In the
first decoding strategy, we associate an imaginary perma-
nent Z-type stabilizer to the plaquette row AB, as well
as an imaginary transient Z-type stabilizer to the cell A,
to enable pairing with the nearby stabilizers in a match-
ing algorithm. This effectively reduces the distance by a
factor of roughly 1/2, as an error chain of weight ≲ d/2
consisting of X errors on all the rows above the top row
of cells AB will produce the same syndrome information
as a single X error on the row above cells AB.

Such a chain would however be distinguished from the
single X error if one also includes the Z-type stabilizer
along plaquette row AB, but this does not get measured
until measurement round 4k+3. In the second decoding
strategy, the decoding graph consists of edges that con-
nect the two permanent Z-type stabilizers that border
plaquette row AB, measured at round 4k+1, to the per-
manent Z-type stabilizer that runs along plaquette row
AB. Together with the flipped transient Z-type stabilizer
above cell B, as well as the flipped imaginary transient
stabilizer at cell B, this enables distinguishing the lone X
error from the error chain described above, and therefore
restores the code distance to ∼ d. In either case, the code
distance remains Θ(d).

We note that there currently exists no general well-
formed notion of the code distance of a Floquet code. In
particular, it is not simply the minimum code distance
of any of the ISGs considered as stabilizer codes in iso-
lation, as the time dynamics may allow for small weight
errors to evolve into logical errors, even if the ISGs have
large code distances by themselves. For one thing, we
can multiply instantaenous logical operators by not only
instantaneous stabilizer elements, but also elements of
the ISGs before and after the current round. This is so
because an error of the form L(r)s(r−1) between measure-
ment rounds r− 1 and r, where L(r) is a logical operator
at round r, and s(r−1) ∈ S(r−1), has the same effect as
an error of the form L(r) at round r. Similarly, an er-
ror of the form s(r+1)L(r) between measurement rounds

r and r+1 will also have the same effect. In the present
case, such transformations do not affect the code distance
scaling reported here.
Even more generally speaking, we may say that two

Pauli operators σα and σβ are space-time connected in a
Floquet code if their difference is a a chain of instanta-
neous stabilizer elements, i.e. σα = sr+t . . . srσβ . It may
be the case that a low weight Pauli error σβ traverses, in
its spacetime path, an undetectable logical error, before
evoling into a partially detectable error, whose correction
does not fix the previous logical error, or even getting
absorbed into the ISG. Such a logical error occurs in [6],
for instance. It may therefore be desirable to keep the
number of time slices between which stabilizers are mea-
sured and used as syndromes to be as minimal as possible
when desigining Floquet codes, which motivates the dis-
tance ∼ d/2 decoding strategy we described above. In
the absence of a formal definition of the code distance of
a Floquet code, we simply identify the code distance as
the smallest weight of any error operator that does not
produce any non-trivial syndromes, given the decoding
hyper-graph, which in turn depends on the choice of the
specific error model we consider.
We also note that like the parent Bacon-Shor subsys-

tem code, the Floquet-Bacon-Shor family of codes in-
troduced here do not possess a threshold. This is at-
tributable to the fact that the weight of the stabilizers
used in both examples of codes grows as the distance
increases, so that erroneous stabilizer measurements get
likelier with increasing distance for any fixed value of in-
dependent error probability.

B. Self-correcting errors

Suppose that a 2-qubit XX error occurs on an edge
somewhere above cell A between rounds 0 and 1 mod 4.
This will flip the two transient, but not the two perma-
nent, Z-type stabilizers that straddle this edge, lie along
column AD, and are measured in round 1 mod 4. In the
very next round 2 mod 4, we carry out a measurement of
an XX check operator on precisely the same edge, and
the error becomes part of the ISG. In other words, the ap-
propriate correction operator automatically applies itself
because of the measurement schedule itself. This occurs
even if this 2-qubit error anti-commutes with a logical
operator at round 0 mod 4, such as if it occurred on the
top edge of cell A. We show this more explicitly in the
appendix.
Furthermore, note that a single qubit X error occur-

ring between rounds 0 and 1 mod 4 on any one row on say
the right side of the blue domain wall AD is ISG equiv-
alent to a single X error on the right boundary of the
domain wall. It cannot be transported further left due
to the existence of the domain wall, which in turn exists
because we do not carry out any check measurements
along the plaquette column of this wall. However, two
measurement rounds later, we do carry out the measure-
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ment of this check and the error can propagate further
left. In turn, this implies that whether a single qubit X
error occurs on the left or the right of the blue domain
wall, the correction operator two measurement rounds
later is to apply a single X operator somewhere on the
left of the instantaneous blue domain wall, which has now
shifted one column to the right and exists along plaquette
column BC.

C. Multiple Dynamical Qubits

The discussion above generalizes fairly straightfor-
wardly to the case of adding multiple dynamical logi-
cal qubits. In this case, the main difference is that the
hyper-edges in the decoding hyper-graph now connect
more vertices. For instance, if we have 4 dynamical log-
ical qubits arranged in a manner such that the pairs of
cells (A0, B0) and (A1, B1) exist in the same plaquette
row, and the pairs (D0, C0) and (D1, C1) exist in the
plaquette row below it, then a single qubit X error on
some row in the bulk towards the right of defect column
A1D1 between rounds 0 and 1 mod 4 will flip the values
of the two permanent Z-type stabilizers, the two tran-
sient Z-type stabilizers along column A1D1, as well as
the two transient Z-type stabilizers along column A0D0,
that straddle this row. Thus, such an error gives rise to a
hyper-edge connecting 6 vertices in the decoding hyper-
graph.

The only other major difference is that an even number
of X errors between gauge defects in the same plaquette
row are now part of the ISG at round 0, and no longer
count as errors. Only single qubit X errors between any
consecutive pair of gauge defects, or a gauge defect and
a lattice boundary count as errors, and similarly for Z
errors.

V. CONCLUSIONS

In this paper, we have described the introduction of dy-
namical logical qubits to the Bacon-Shor subsystem code
by modifying the measurement schedule of the weight
2 check operators that generate the gauge group of the
parent sub-system code. Such a measurement schedule

introduces and maintains gauge defects throughout the
measurement cycle. This broad prescription of identi-
fying the virtual qubit degrees of freedom in a subsys-
tem code, and picking a measurement schedule that can
maintain gauge defects across measurement cycles as a
way to introduce dynamical logical qubits may be more
broadly applicable in constructing more examples of Flo-
quet codes. We showed that independent errors of a
fairly simple noise model naturally lead us to consider
a decoding hyper-graph, which is generally more compli-
cated to work with than decoding graphs that arise in
surface codes, for instance. This additional complication
in the decoding task is also shared to some degree with
LDPC codes, in which independent errors, or faults, also
typically flip more than two stabilizer syndromes, and
progress in constructing good decoders for LDPC codes
may also benefit decoding Floquet codes, such as the one
describe here. We leave a detailed consideration of fault
tolerance, together with fault tolerant implementation of
logical gates, in this code to future work. Lastly, we also
note that skipping measurements of some check opera-
tors in some rounds was also used in [30] to introduce a
threshold to the Bacon-Shor code. In our paper, we used
such skipped measurements to introduce dynamical logi-
cal qubits to the Bacon-Shor code. We leave it as an open
problem to investigate whether one could combine both
sets of ideas to introduce a threshold to the Bacon-Shor
code in the presence of dynamical logical qubits.
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Appendix A: Preservation of logical information

Here, we expand on the discussion on logical preser-
vation between any two stabilizer codes. In particular,
this discussion applies to the ISGs of the Floqut-Bacon-
Shor family of codes described above. Let us suppose
that |bA⟩ is a codeword such that it is an eigenvector
of the logical operator ZA of code A with eigenvalue α.
The following short calculation shows that the projected
codeword |b′A⟩ =

∏
s∈SB

( I+s
2

)
|bA⟩ is an eigenvector of

the logical operator ZB of code B with the same eigen-
value α whenever sAZA = sBZB for some sA ∈ SA and
sB ∈ SB .

ZB |b′A⟩ = ZB
∏

s∈SB

(
I+ s

2

)
|bA⟩

=
∏

s∈SB

(
I+ s

2

)
sBZB |bA⟩

=
∏
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(
I+ s

2

)
sAZA |bA⟩

=
∏

s∈SB

(
I+ s

2

)
α |bA⟩

= α |b′A⟩ (A1)

In other words, the projected codeword |b′A⟩ behaves
exactly like a codeword of code B, i.e. |b′A⟩ = |bB⟩.
In turn, this implies that when we project the state
|ψA⟩ = α |0A⟩ + β |1A⟩ to |ψB⟩ = α |0′A⟩ + β |1′A⟩, we
will ensure that ZB |0′A⟩ = |0′A⟩ and ZB |1′A⟩ = − |1′A⟩,
so that while the logical codewords |0B⟩ = |0′A⟩ and
|1B⟩ = |1′A⟩ have deformed, the information has re-
mained intact.
As a simple illustration of this, consider the two famil-

iar 3-qubit repetition codes

S(0) = ⟨Z1Z2, Z2Z3⟩
S(1) = ⟨X1X2, X2X3⟩ (A2)

with the same logical operators for both codes

X = X1X2X3

Z = Z1Z2Z3 (A3)

and codewords

|0⟩(0) = |000⟩ , |0⟩(1) = 1√
2
(|+++⟩+ |− − −⟩)

|1⟩(0) = |111⟩ , |1⟩(1) = 1√
2
(|+++⟩ − |− − −⟩)(A4)
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It is clear that the logical operators defined above satisfy
the requirements of preserving logical information from
one round to the next, by simply picking s(0) = s(1) = I.
Note that this is why we require the unconventional
definition of the logical operators for S(1) which are
usually defined the other way round, i.e. X ⇔ Z.
Similarly, the codewords for S(1) are different from the
conventional |0⟩ = |+++⟩ and |1⟩ = |− − −⟩.

If we view the two repetition codes as ISGs of a 3-qubit
Floquet code, then even though logical information is
conserved from one round to the next, the code distance
is 1 since no stabilizers remain preserved between rounds
and this cannot even detect single-qubit Z (X) errors, so
that such errors become logical errors that persist once
they occur.

We also note that Eq. (2) guarantees that the com-
mutation structure of the logical operators remains in-
tact. Using identities [A,BC] = B[A,C] + [A,B]C and
[AB,C] = A[B,C] + [A,C]B, we can quickly prove that
[OA

1 , O
A
2 ] = 0 ⇒ [sA1 O

A
1 , s

A
2 O

A
2 ] = 0, for any sA1 , s

A
2 ∈ SA.

Under the assumption of Eq. (2), this implies that

[sB1 O
B
1 , s

B
2 O

B
2 ] = 0 (A5)

Again, using commutator identities, and the facts that
OB

1,2 are logical operators at round B, i.e. [OB
1,2, s

B ] = 0

for all sB ∈ SB , we find that this implies [OB
1 , O

B
2 ] =

0. The case for the anti-commutator is proved similarly,

using anti-commutator identities {A,BC} = [A,B]C +
B{A,C} and {AB,C} = A{B,C}−[A,C]B = A[B,C]+
{A,C}B.

Appendix B: Self-correction

Suppose that X errors occur on two qubits that lie
on the row above cell A on either side of the plaquette
column AD between rounds 0 and 1 mod 4. Such a 2-
qubit error is equivalent, upto stabilizer transformations
of the ISG at round 0 mod 4 to a 2-qubit XX error that
occurs on the top edge of cell A. This anti-commutes with
the logical Z error of the dynamical qubit at round 0 mod
4, and thus contains a factor of the logical X operator.
Specifically, it is given byXAXA′ , where cell A′ is defined
as the cell on top of cell A. In the next round 1 mod 4,
we would measure a subset of all the ZZ checks which, in
addition to other transient stabilizers, would measure the
gauge qubit operator ZA′ , as well as the check operator
ZAZB . Suppose, without loss of generality, that in the
absence of any errors, the measurements of both would
have yielded result +1. Due to the error, their values
will flip. In the next round 2 mod 4, we measure the 2-
qubit check XAXA′ , and use the property that (I±σ) =
±(I± σ)σ for any Pauli operator σ. In the measurement
round 2 mod 4, this check takes on some random value
±1. The entire sequence of steps can be followed as

|ψ(0)⟩ error−−−→ XAXA′ |ψ(0)⟩
detection−−−−−−→

[
. . . (I− ZAZB)(I− ZA′)

]
XAXA′ |ψ(0)⟩

measurement−−−−−−−−→
[
. . . (I±XAXA′)

] [
. . . (I− ZAZB)(I− ZA′)

]
XAXA′ |ψ(0)⟩

= ±
[
. . . (I±XAXA′)

]
XAXA′

[
. . . (I− ZAZB)(I− ZA′)

]
XAXA′ |ψ(0)⟩

= ±
[
. . . (I±XAXA′)

] [
. . . (I+ ZAZB)(I+ ZA′)

]
|ψ(0)⟩

= ±
[
. . . (I±XAXA′)

]
|ψ(1)⟩

= ± |ψ(2)⟩ (B1)

so that the entire situation is indistinguishable from
reaching the correct logical state |ψ(2)⟩ at round 2 mod
4 without any errors.

The above discussion also implies that the correcting
operator for a single X error on any single row is the
same whether it lies on the left or the right of the blue do-
main wall, even though they produce distinct syndromes.
Suppose that such a single qubit X error occurred on the
right side of the blue domain wall along column AD on
the row above cell A between rounds 0 and 1 mod 4.
Let B’ be the cell above B, and sAB and sA′B′ denote
the permanent Z-type stabilizers along plaquette rows
AB and A′B′ respectively. Then, this error is equiva-
lent to XsAB

XsA′B′XAXA′ , up to stabilizer transforma-

tions of the ISG at round 0 mod 4, where the product
XsAB

XsA′B′ gives a single qubit X operator that lies on
the left-most column on this row. At round 1 mod 4, this
error will flip the value of the permanent Z-type stabi-
lizer ZsA′B′ as well as the transient stabilizer ZA′ . Note

that the permanent Z-type stabilizer ZsAB
does not get

measured in this round. Suppose, without loss of gener-
ality, that in the absence of such an error, both ZsA′B′

and ZA′ would have measured out to be +1, so that this
error flips the recorded values to be -1 instead.

A correction operation of XsAB
XsA′B′ suffices after

round 1 mod 4, as the subsequent measurements of round
2 mod 4 then restore the correct logical state, as can be
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seen through the following sequence of transformations

|ψ(0)⟩ error−−−→ XsAB
XsA′B′XAXA′ |ψ(0)⟩

detection−−−−−−→
[
. . . (I− ZsA′B′ )(I− ZA′)

]
XsAB

XsA′B′XAXA′ |ψ(0)⟩
correction−−−−−−→ XsAB

XsA′B′

[
. . . (I− ZsA′B′ )(I− ZA′)

]
XsAB

XsA′B′XAXA′ |ψ(0)⟩
measurements−−−−−−−−−→

[
. . . (I±XAXA′)

]
XsAB

XsA′B′

[
. . . (I− ZsA′B′ )(I− ZA′)

]
XsAB

XsA′B′XAXA′ |ψ(0)⟩
= ±

[
. . . (I±XAXA′)

]
XAXA′XsAB

XsA′B′

[
. . . (I− ZsA′B′ )(I− ZA′)

]
XsAB

XsA′B′XAXA′ |ψ(0)⟩
= ±

[
. . . (I±XAXA′)

] [
. . . (I+ ZsA′B′ )(I+ ZA′)

]
|ψ(0)⟩

= ±
[
. . . (I±XAXA′)

]
|ψ(1)⟩

= ± |ψ(2)⟩
(B2)

Note that the same correction operation would also work
if the factor of XAXA′ was absent from the error, and it
had instead occurred on the left side of the blue domain

wall on that row, which would have been equivalent to
XsAB

XsA′B′ upto transformations of the ISG at round 0
mod 4.




