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Abstract

Quantum computing is one of the most enticing computational paradigms with the potential to revolutionize diverse areas of
future-generation computational systems. While quantum computing hardware has advanced rapidly, from tiny laboratory ex-
periments to quantum chips that can outperform even the largest supercomputers on specialized computational tasks, these noisy-
intermediate scale quantum (NISQ) processors are still too small and non-robust to be directly useful for any real-world applications.
In this paper, we describe NASA’s work in assessing and advancing the potential of quantum computing. We discuss advances in
algorithms, both near- and longer-term, and the results of our explorations on current hardware as well as with simulations, includ-
ing illustrating the benefits of algorithm-hardware co-design in the NISQ era. This work also includes physics-inspired classical
algorithms that can be used at application scale today. We discuss innovative tools supporting the assessment and advancement of
quantum computing and describe improved methods for simulating quantum systems of various types on high-performance com-
puting systems that incorporate realistic error models. We provide an overview of recent methods for benchmarking, evaluating, and
characterizing quantum hardware for error mitigation, as well as insights into fundamental quantum physics that can be harnessed
for computational purposes.
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1. Introduction

We describe work by NASA’s Quantum Artificial Intelli-
gence Laboratory (QuAIL) and collaborators on assessing al-
gorithms and architectures across application areas targeted by
NASA. This broad range of research activities includes devel-
oping fundamental theory, compilation and error mitigation,
quantum machine learning, optimization, and simulation algo-
rithms, as well as benchmarking and analysis of algorithms and
hardware. Much of this work is motivated and enabled via
close collaborations with industry, government, and academic
groups building quantum hardware, and illustrates the bene-
fits of algorithm-hardware co-design in the near-term Noisy-
Intermediate Scale Quantum (NISQ) era [1]. This work builds
on prior QuAIL team work [[2, 3]] and focuses on computa-
tional challenges in optimization, machine learning, simula-
tions, tools supporting evaluation and algorithmic development,
and theory and numerical work that deepens understanding of
physical mechanisms that can be harnessed for quantum com-
putation. For clarity, citations in double brackets, [[]], highlight
works involving QuAIL team members, while citations in sin-
gle brackets, [], refer to third-party works.

Throughout our work, hardware-algorithm co-design
is always present, with algorithmic needs feeding into the
hardware design, hardware capabilities, and limitations feeding
into algorithm design, and hardware noise characterization
feeding into error mitigation techniques and the development

of noise-aware algorithms. Key to our research has been open
quantum system modeling, analysis, and simulation, leading
to an improved understanding of physical implementation and
co-design across multiple architectures, including gate-model,
measurement-based, and quantum annealing (QA) architec-
tures. Much of this work has been focused on available and
proposed NISQ architectures, enabling empirical investigations
for testing and developing theories and guiding new algorithm
and hardware co-design approaches based on effective and
efficient application-driven requirements to guide between
where hardware stands and purely theoretically motivated
architectures and algorithms. This work enabled a deeper
understanding of the mechanisms underpinning quantum
annealing, such as tunneling, thermalization, and many-body
delocalization, and their interaction with embedding param-
eters and annealing schedules. Early work on annealing
architectures has been extended to and built upon to analyze
multiple gate-based architectures and algorithms.

As part of the NASA community, the QuAIL team has had
access to domain experts with a variety of challenging compu-
tational problems. These interactions, and those with partners,
have led to work developing benchmark instance sets capturing
aspects of computational challenges arising in space, aeronau-
tics, and earth science missions, as well as in the exploration
of quantum, quantum-classical hybrid, and physics-inspired ap-
proaches to tackling these problems. Some example applica-
tion areas include planning and scheduling, anomaly detection,
fault diagnosis, autonomous air traffic management, machine
learning, and simulation of materials, chemistry, and high en-
ergy physics. The QuAIL team has led and supported multi-
ple benchmarking and analysis activities focused on evaluat-
ing quantum architectures and approaches, comparing quantum
and quantum-classical hybrid algorithms against state-of-the-
art classical approaches, and providing resource estimation for
running such algorithms at application scale on future quantum
architectures.

There are recurring themes and lessons learned from our
recent work, which include:

• benefits of hardware-algorithm co-design in both the
near-term NISQ era and the long-term fault tolerant era;

• usefulness of experimentation on NISQ devices, from
error characterization to insights into quantum and
quantum-classical hybrid algorithms in the fault-tolerant
and application-scale regimes;

• physics-inspired classical algorithms can be used at ap-
plication scale today;

• synergistic advances of classical and quantum machine
learning (QML) research, including quantum-ready clas-
sical algorithms that can be used today but are ready for
replacement of some classical subroutines with quantum
subroutines once quantum hardware matures sufficiently;

• the use of classical high-performance computing (HPC)
for validation and benchmarking of quantum devices,
quantum simulations, and algorithm exploration;
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• importance of and methods for generating hard problem
instances for benchmarking quantum, quantum-inspired,
and classical devices.

This paper is organized as follows. Sec. 2 surveys recent
work on quantum algorithms for optimization and sampling.
Quantum-compatible machine learning work is covered in
Sec. 3. We discuss applications of quantum computing to
simulating quantum systems, including quantum chemistry,
materials, condensed matter, high energy, and fundamental
physics in Sec. 4. Tools for supporting quantum computing
investigations are described in Sec. 5. Lastly, Sec. 6 focuses on
work associated with mechanisms for quantum computation.

2. Quantum Optimization Algorithms and Sampling

Quantum algorithm research can be broken into two broad
categories: algorithms focused on near-term devices and ap-
plications and algorithms focused on long-term fault-tolerant
computers. Near-term algorithm research enables demonstra-
tions of quantum computing capabilities on current devices and
the testing of error characterization, mitigation, and correction
protocols within certain algorithms. Of particular interest is al-
gorithmic work on near-term devices that can give insight into
quantum algorithms that will be relevant in the fault-tolerant
era. Hardware-algorithm co-design is of particular importance
in the pre-fault-tolerant era and in the early fault-tolerant era
when resources will be heavily constrained. To date, a number
of quantum algorithms have been proposed for combinatorial
optimization problems (e.g., [4, 5, 6, 7, 8, 9] ). Not only does
the size of current quantum hardware pose a challenge, but they
are highly susceptible to various sources of error. Designing al-
gorithms that can be run on the limited hardware of today and
give insight into the design of quantum algorithms that will be
effective in the fault-tolerant era is a challenge. Not only do
the limitations and constraints of current quantum hardware in-
fluence algorithmic work, but algorithmic considerations also
impact hardware designs and priorities. This cycle of co-design
will first be illustrated in the setting of quantum optimization.

Quantum algorithms come in many different forms, from
gate-based models to quantum annealing, and are diverse
enough in scope to also include sampling methods and binary
decision problems. Quantum computers are always hybrid in
nature; they rely on classical controllers. Many of the most
effective algorithms, even in the future, are expected to be
hybrid, integrating communication between the quantum and
classical processors during algorithm execution. Optimization
will provide our first and most extensive look at hybrid and
well as fully quantum algorithms. A broad recent overview of
quantum optimization [[10]] examines potential opportunities
and challenges across many approaches and application areas.

A new paper, [[11]], surveys HPC and quantum computing
methods and perspectives for optimization.

2.1. QAOA Analysis and Development
The Quantum Approximate Optimization Algorithm

(QAOA), a prominent near-term quantum optimization algo-
rithm [5], was extended to the Quantum Alternating Operator

Ansatz by the QuAIL group [[12, 2]]. This algorithm uses
a bang-bang quantum circuit that alternates between pulses
related to the problem Hamiltonian and a mixer Hamiltonian.
The pulse lengths, variational parameters optimized by an outer
classical loop, aim to produce a state minimizing the problem
Hamiltonian’s energy. Analytical parameter determination re-
mains an open question, with ongoing advancements including
hardware-algorithm co-design strategies that can extract the
full potential of currently available quantum devices.

In the cited work [[13]], advancements in parameter set-
ting strategies for QAOA were introduced, focusing on con-
straint satisfaction problems with polynomial growth in distinct
cost values. The model, rooted in empirical QAOA observa-
tions, demonstrated effectiveness in the numerical evaluation
of the heuristic for MaxCut on unweighted Erdös-Rényi ran-
dom graphs, finding that for three levels of QAOA, the heuristic
matches approximation ratios previously achieved with glob-
ally optimized methods. Additionally, for levels up to 20, the
heuristic showed parameters with monotonically increasing ap-
proximation ratios, indicating its scalability and potential effi-
cacy in deeper QAOA applications.

Despite much effort, obtaining rigorous performance
bounds for quantum algorithms such as QAOA beyond rela-
tively basic cases remains challenging. In [[14]], analytical
results were obtained for MaxCut problems on graphs utilizing
the lowest depth realization of QAOA. It was shown that the
expected value of each term in the cost function, corresponding
to the graph edges, depends only on the local neighborhood of
each edge. This property extends to deeper QAOA circuits but
over larger neighborhoods. Similar notions of local algorithms
exist classically.

In the recent work of [[15]], the power of both quantum
and classical local algorithms for approximately solving Max
kXOR, a natural generalization of MaxCut from graphs to hy-
pergraphs was considered. In Max kXOR, each constraint is
the XOR of exactly k variables and a parity bit. On instances
with either random signs (parities) or no overlapping clauses
and D+1 clauses per variable. This is analogous to triangle-
free and regular graph instances of MaxCut, respectively. The
expected satisfying fraction of the depth-1 QAOA is exactly
calculated and compared with a generalization of the classical
local threshold algorithm from [16]. Notably, the quantum al-
gorithm outperforms the threshold algorithm for k > 4. On the
other hand, potential difficulties for QAOA to achieve computa-
tional quantum advantage on this problem are highlighted. We
first compute a tight upper bound on the maximum satisfying
fraction of nearly all large random regular Max kXOR instances
by numerically calculating the ground state energy density P(k)
of a mean-field k-spin glass [17]. The upper bound grows with
k much faster than the performance of both local algorithms.
A new obstruction result for low-depth quantum circuits (in-
cluding QAOA), when k = 3, generalizing a result of [18] for
the k = 2 case, is also identified, and it is conjectured that a
similar obstruction exists for all k. Such obstruction results are
important steps towards a better understanding of the power of
quantum circuits for optimization problems.

Several different QAOA approaches to solving the combi-
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natorial circuit fault diagnostic (CCFD) problem are introduced
and analyzed in [[19]]. Comparing these approaches on a fam-
ily of dense and highly connected circuits supports the intuition
that approaches that are more closely tailored to exploiting the
structure of the underlying optimization problems can have bet-
ter performance than more general approaches.

In [[20]], a framework for analyzing layered quantum
algorithms such as quantum alternating operator ansätze is
developed. The framework relates quantum cost gradient
operators, derived from the cost and mixing Hamiltonians, to
classical cost difference functions that reflect the cost function
neighborhood structure of the problem at hand. Exact general
expressions for expectation values are derived as series expan-
sions in the algorithm parameters, cost gradient operators, and
cost difference functions. This enables novel interpretability
and insight into QAOA behavior in various parameter regimes,
including but not limited to small-parameter regimes. For
single-level QAOA1, it is shown that the leading-order changes
in the output probabilities and cost expectation value explicitly
for arbitrary cost functions, demonstrating that, for sufficiently
small positive parameters, probability flows from lower to
higher cost states on average. This result is leveraged as it
is shown that QAOA always beats random guessing. Several
example applications of the framework, including Quadratic
Unconstrained Binary Optimization (QUBO) problems and
variants of MaxSat, are also considered, as well as the exten-
sion to mixing unitaries beyond the transverse-field mixer for
constrained optimization problems [[12]].

To better understand the behavior of QAOA, an approach to
analyzing deep circuits with gradually varying unitaries is intro-
duced in [[21]] and note several surprising phenomena. First,
the ground state of the mixer Hamiltonian directly connecting
to a highly excited state of the cost Hamiltonian will result in
poor QAOA performance even in the adiabatic limit. Secondly,
shallower circuits are shown to outperform deeper ones when
the parameters are larger due to inherently non-adiabatic ef-
fects. Lastly, these phenomena, along with small parameter
approximations [[20]] are shown to explain a general qualita-
tive feature in performance [[22]] for deep QAOA circuits with
slowly varying parameters.

The real-world limitations of NISQ processors, (e.g., the
number of qubits, native gate sets, limited connectivity, effects
of noise) have led the quantum computing community to design
hardware-efficient ansätze, an example of hardware-algorithm
co-design. In Ref. [[23]], a new ansatz that combines the
mixing and phase-separation operators into a more general
two-parameter family of operators is introduced, which is
referred to as “Quantum Alternate Mixer-Phaser Ansatz”
(QAMPA). The primary motivation for this new ansatz is
to reduce the depth of circuits, which should improve the
performance on NISQ processors. For fully connected bi-
nary quadratic optimization problems, the circuits compile
to roughly half the depth of standard QAOA on quantum
processing units (QPUs) with nearest-neighbor connectivity.
Also, our numerical noiseless simulations demonstrate that
QAMPA performs almost on par with standard QAOA in
parameter regimes that are achievable in current hardware.

In Ref. [[24]], a Time-Block ansatz is proposed that requires
only linear connectivity between qubits. Over-parametrization
allows for more refined control over the circuits’ sublayers.
As an additional contribution, the ordering of gates is used as
a variational parameter, which is shown to greatly improve
the performance in practice. Reported experimental imple-
mentation by the QuAIL team in collaboration with Rigetti
Computings on Rigetti’s QPU pushes the state-of-the-art to a
new scale, demonstrating variational quantum-classical opti-
mization on 50-qubit systems using up to ∼ 5, 000 two-qubit
gates to approximately solve the fully-connected Sherrington-
Kirpatrick model. Despite such complexities, the algorithmic
performance gains are maintained over a random guessing
solver given the same number of function calls. Furthermore,
an increase in performance with circuit depth is observed.

In Ref. [[25]], the QuAIL team developed a novel meta-
algorithm, Noise-Directed Adaptive Remapping (NDAR) for
improved quantum optimization in the presence of certain types
of hardware noise. The NDAR involves a feedback loop, where
each step is a stochastic optimization, such as QAOA imple-
mented on QPU. The algorithm assumes a known ”attractor“
state to which the noisy dynamics of a quantum device con-
verges with time and noise accumulation. This is fulfilled ex-
perimentally in the case of, for example, amplitude damping, a
type of noise prevalent in superconducting architectures. The
aim of NDAR is to iteratively improve alignment between the
low-energy states of the problem Hamiltonian and the attrac-
tor state of the noise. This is achieved by using the best solu-
tion from the previous step to re-map the problem Hamiltonian
solved in the next step using so-called bitflip (or spin-reversal)
gauge transformation. The obtained problem is equivalent to
the original one, but the attractor state of the noise now becomes
a better approximation to the ground state of the cost Hamilto-
nian. In cited Ref. [[25]], the team benchmarked NDAR ex-
perimentally on the newest generation of Rigetti’s supercon-
ducting chips, Ankaa-2. The reported approximation ratios are
within the range 0.9-0.96 for random, fully connected graphs on
n = 82 qubits, using only depth p = 1 QAOA applied in con-
junction with NDAR. This compares to 0.34-0.51 for vanilla
p = 1 QAOA with the same number of function calls. As
such, the obtained results are among the most complex and
best-performant quantum optimization experiments performed
to date (see, for example, [[10]] for an overview of recent ex-
perimental progress).

Applying QAOA algorithms to problems with constraints
presents an implementation challenge for near-term quantum
resources. Ref. [[12]] presented a general framework for de-
signing constraint-specific mixers. In Ref. [[26]], strategies for
enforcing hard constraints by using XY-Hamiltonians as mix-
ing operators (mixers) are explored. Under the constraint that
an integer variable admitting κ discrete values, encoded into
qubits through the one-hot-encoding, XY Hamiltonian that pre-
serves the total Z is a natural and efficient mixer choice. Despite
the complexity of simulating the XY model, it is demonstrated
that certain classes of the mixer Hamiltonian can be imple-
mented without Trotter error in depth O(κ). General strategies
for implementing QAOA circuits on all-to-all connected hard-
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ware graphs and linearly connected hardware graphs inspired
by fermionic simulation techniques are also specified. The al-
gorithmic performance is validated on graph coloring problems
that are known to be challenging for a given classical algo-
rithm. The general strategy of using XY-mixers is borne out
numerically, demonstrating a significant improvement over the
general X-mixer. The generalized W-state, an eigenstate of the
XY mixer, which also corresponds to the symmetric (to particle
permutation) state in the feasible subspace, yields better per-
formance than easier-to-generate classical initial states when
XY mixers are used. The XY mixer is further examined for
graph coloring problem in the presence of noise in Ref. [[27]].
The evolution, which in the noiseless case would preserve the
subspace defined by the symmetry, could break the symmetry
and introduce non-valid states. The probability of staying in
such symmetry-preserved subspaces under noise was analyzed,
providing an exact formula for local depolarizing noise. These
findings are applied to benchmark, under depolarizing noise,
the symmetry robustness of XY-QAOA, which has local parti-
cle number conserving symmetries. The influence of the choice
of the problem encoding on the symmetry robustness was also
analyzed to provided guidance on realistic considerations in im-
plementing symmetry-specific mixers for QAOA applications.

2.2. Entanglement verification in QAOA

A key ingredient of quantum algorithms is entanglement,
although much about entanglement in quantum algorithms re-
mains unknown. Verifying entanglement can be exponentially
expensive. When information about the states to be verified is
known, it may be possible to identify entanglement witnesses,
operators that have bounds on their expectation values for all
non-entangled states, and have expectation values that violate
those bounds in the state whose entanglement is to be verified.
A famous example is the observables involved in Bell inequal-
ities. In the case of states arising in QAOA applied to MaxCut,
Ref. [[28]] constructed entanglement witnesses that have only
twice, or at most thrice, the number of terms as the underly-
ing problem Hamiltonian. Moreover, in order to verify entan-
glement, one needs only measure QAOA-MaxCut states in 3
bases, measuring all qubits in the X, Y , or Z basis. The work in-
cluded experiments on Rigetti quantum processors that demon-
strate this approach for verifying entanglement. The same work
also developed signatures of coherence, another key property of
quantum behavior, and demonstrated that the states obtained by
running QAOA for MaxCut on Rigetti QPUs maintain coher-
ence for sizable problems of interest.

2.3. Iterative Quantum Algorithms

Iterative quantum algorithms were originally proposed by
Bravyi et al. [18] in the form of recursive QAOA (RQAOA),
an extension based on QAOA. This algorithm solves MaxCut
problems by using a quantum algorithm to identify the most
probable edge to fix before reducing the problem size by fixing
that edge. Our work extended this into a full framework of
iterative quantum algorithms where the algorithm can be broken
down into three parts [[29, 30]]:

1. Preparation Rule: prepare some information about the
system. This can be preparing a quantum state using an
optimization algorithm, sampling using a classical Monte
Carlo, calculating graph properties, or anything else to
gather information.

2. Selection Rule: using the information from the previous
step, rank features of the problem, selecting a feature that
you are most confident about altering or fixing.

3. Reduction Rule: Take the given feature and eliminate it
from the problem. Usually, this involves fixing some in-
formation, such as collapsing two graph nodes into one.
This reduction should be tracked and can be back-tracked
through at the end of the procedure.

After each round of this procedure, the problem will be smaller
and smaller until the optimal solution for this smaller problem is
tractable to find. Then, this solution can be taken to back-track
through the reduction rules to recover a candidate solution for
the full problem.

In Ref. [[29]], these techniques are applied to a Maximum
Independent Set problem, developing several variants of the It-
erative Quantum Algorithm for this problem. Most notably,
path-sum analysis techniques are applied to prove that an It-
erative Quantum Algorithm using depth p = 1 QAOA as its
preparation rule only considers the same graph properties (i.e.
degrees of all the nodes) as a classical greedy algorithm. Nu-
merical simulations further verify that this quantum algorithm
always makes the same selection choices that a classical greedy
algorithm would, giving it the same performance and provable
bounds as the classical algorithm. This is significant because
it puts lower bounds and classical guarantees on the behavior
of the quantum algorithm. At higher depths, p > 1, the clas-
sical side no longer offers such guarantees, but our numerical
results show that the quantum algorithms outperform the clas-
sical greedy algorithm.

In [[30]], the QuAIL team worked with our hardware col-
laborator Rigetti Computing to introduce an iterative quantum
heuristic optimization algorithm to solve combinatorial opti-
mization problems. The quantum algorithm is implemented
on Rigetti’s programmable superconducting quantum system
using up to 72 qubits for solving paradigmatic Sherrington-
Kirkpatrick Ising spin glass problems and observing an abso-
lute performance better than a random sampling baseline.

Together with the Rigetti Computing team, we collaborated
in [[31]] to propose a hybrid quantum-classical algorithm to
solve the MaxCut problem on 3-regular graphs up to several
thousand variables. Inspired by semidefinite programming and
considering the structure of the problem, the proposed method
solves problems beyond the number of qubits in Rigetti’s quan-
tum computer. This approach was compared to state-of-the-art
classical methods and achieved an average performance of 99%
on a large set of instances, making it competitive with respect
to high-performance classical methods.

2.4. Quantum Annealing Advances

Quantum annealing has been a major research focus area
of the QuAIL team since its earliest days [[2, 3]]. Quantum
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annealing [32, 33] is a general and universal [34] setting for
quantum computation that relies on continuous time evolution
of a quantum system under mixing and problem Hamiltonians.
Quantum annealing is similar to QAOA discussed before but
relies on slow evolutions and quantum adiabaticity. This evolu-
tion can often be realized on physical devices that require em-
bedding of the problem into the native structure of the device,
and often fine tuning of the annealing schedule is needed to real-
ize improvements. Quantum annealing has so far demonstrated
quantum speedups over classical optimization algorithms only
in very limited circumstances. One reason is the need for minor
embedding which maps optimization problems of interest (e.g.
SAT, vertex-cover) to the type of problem natively optimized
by a quantum annealer, an Ising Hamiltonian with connectivity
determined by the architecture, which usually is an Ising spin
Hamiltonian of the form

H = −
∑
⟨i, j⟩∈E

Ji jσ
z
iσ

z
j −
∑
i∈V

hiσ
z
i . (1)

The qubit operators σz
i label the vertices of a graph G = (V, E)

and the two-qubit interaction terms Ji jσ
z
iσ

z
j are associated to

the edges ⟨i, j⟩ ∈ E of G. While the coupling constants, Ji j,
and the local fields, hi, can be tuned to a degree, the graph G
itself is fixed once and for all by the architecture of the machine
and is limited by engineering considerations. If the target cost
function of the problem of interest is not of the form in Eq. (1),
one needs to devise a way of mapping it to a cost function that
the machine can accept. This usually requires using auxiliary
qubits and representing the logical values of the original prob-
lem as long chains of physical qubits coupled together. This
mapping to a more complicated system was observed to signifi-
cantly reduce the performance of quantum annealers compared
to their performance on their native problem due to the freez-
ing of such chain in the “wrong” configurations, in a way that
the quantum annealer is no longer able to change their states
dynamically.

Many practical optimization problems have high connectiv-
ity. Minor embedding addresses this mismatch by effectively
increasing the connectivity by grouping qubits together to act
as one logical qubit, and adding terms to the cost function that
penalizes configurations in which the qubits making up a logi-
cal qubit do not align. Parameters are chosen so that the ground
state is preserved by the embedding.

In [[35]], certain practical aspects of embedding for opti-
mization problems through experimental demonstrations on a
commercial quantum annealer were investigated. The effects
of embedding and its interplay with other annealing parameters
(particularly those related to the annealing schedule) on the per-
formance of the device for solving optimization problems were
studied, aiming to provide both deeper insights into the physics
of quantum annealing devices as well as pragmatic recommen-
dations for their use. Two performance-enhancing methods pre-
viously applied to native optimization problems were adapted
and shown to be advantageous also for embedded ones. A novel
approach to enable gauge transformations for problems with
the qubit coupling strength J in an asymmetric range is intro-
duced, making it amenable to embedded problems. An anneal-

ing schedule with an appropriately located pause was also con-
firmed to still improves performance in the embedded case and
explored how the optimal location shifts with the magnitude of
the ferromagnetic coupling |JF |, thus extending the theoretical
picture for pausing and thermalization in quantum annealing to
the embedded case.

Our follow-up work [[36]] delved deeper into this theory
and practical recommendations through demonstrations of an
updated annealing architecture and several problem classes re-
quiring embedding. Various aspects of the physics-based pic-
ture previously explored were confirmed, and taken further by
identifying certain characteristics of an optimization problem
that are predictive of its hardness for currently available quan-
tum annealing devices. Based on these results, a set of qual-
itative guidelines for parameter setting in quantum annealers
was presented that is expected to be particularly useful for users
coming into quantum annealing from other areas of optimiza-
tion, and that should help maximize the performance of these
devices without requiring a prohibitively large amount of re-
sources.

Also focusing on practical aspects and existing annealing
devices is [[37]], in which the performance of quantum an-
nealers has improved since their inception was explored, with
a comparative study carried out throughout the years using
each new available processor. This work highlights how the
improvements in connectivity, leading to smaller embeddings,
boost the optimization capabilities of these machines.

While the embedding process for optimization is sound by
construction, the same is not true for sampling. Ref. [[38]]
showed that even with an annealer that returns a perfectly clas-
sical Boltzmann (thermal) distribution of the final Hamiltonian
e−H/T , the process of embedding drastically alters the statistics.
Not only is the distribution ‘hotter’ (larger T ), it is also strictly
not Boltzmann anymore. A follow-up work [[39]] applied a
similar analysis of the quantum version of the problem (sam-
pling a quantum Boltzmann distribution, where the Hamilto-
nian has non-zero off-diagonals), which showed similar effects;
quantum observables were distorted by the embedding, includ-
ing shifting the location of a phase transition. The message in
these works is clear: annealers with naive embedding can not
be used for classical or quantum thermal sampling.

While these sampling capabilities are still limited, they can
be useful for certain scenarios. For native problems (i.e. not
needing embedding), it was demonstrated in [[40]] that using a
pause and quench schedule, can be used to probe the thermal
properties of the strictly quantum Hamiltonian that describes
the system at the time of the pause, allowing us to distinguish
between graphs whose classical Ising spectra are the same,
which could not be done with a standard annealing schedule.
The theoretical work [[41]] demonstrates that embedding
chains typically crop up as harmful Griffiths phases but can
also be used as a resource to balance out singularities in the
logical problem, changing its universality class.

Ref [[42]] used constrained programming to find provably
optimal embeddings for quantum annealers. A mixed-integer
programming formulation was also developed, and a compari-
son of these approaches was performed to find embeddings of
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various problems in D-Wave’s quantum annealers. Although
these approaches are generally not capable of finding embed-
dings as efficiently as the heuristics, these methods were well
suited for those cases that were pathologically difficult for the
heuristic methods,

In quantum annealing, finding a good schedule is often es-
sential to obtaining quantum advantage. Like finding good pa-
rameters in QAOA, optimizing the schedule can be itself a dif-
ficult task. Therefore, it is essential to create ansätze that can be
effectively optimized with as few variational parameters as pos-
sible. QAOA serves as an effective ansatz in a gate-based com-
puter, but a quantum annealer has additional degrees of freedom
in its schedule. Ref. [[43]] introduced a new parameterization
of the quantum annealing schedule based on clipped polynomi-
als.

In addition to introducing this schedule parameterization,
a benchmarking against against QAOA was performed, intro-
ducing notions of emulation time. Additionally, the ability of
this polynomial schedule to numerically emulate QAOA was
shown, producing an equivalent or better final state using the
same number of variational parameters. Further, the polyno-
mial schedule can produce states that are strictly better than
those produced by QAOA. This shows increased power for an-
nealing schedules, but it requires much more experimental and
physical control.

Ref. [[44]] derived a version of quantum speed limits spe-
cific to quantum annealing. The work explored this bound in
several toy problems and showed that this bound is saturable
for some quantum annealing procedures, including the Ham-
ming spike, the p-spin model, and the adiabatic unstructured
search. These problems all represent extreme toy problems, so
further refinements are needed to make this bound saturable for
more realistic and less symmetric problems.

Further advances related to quantum annealing are
discussed in Secs. 6.4 and 6.5.

2.5. Quantum Optimization Applications

The QuAIL group has a long history of working on
planning-related problems [[2, 3]]. Extending our previous
work for planning problems, [[45]] presents novel efficient
QAOA constructions for optimization problems over proper
colorings of chordal graphs. The effectiveness of these con-
structions was demonstrated using the flight-gate assignment
problem, in which flights are assigned to airport gates to
minimize the total transit time of all passengers. Feasible
assignments correspond to proper graph coloring of a conflict
graph derived instance-wise from the input data. Further, [[46]]
investigated the feasibility of applying quantum annealing to
solve a simplified air traffic management problem (strategic
conflict resolution) for wind-optimal trajectories. Our mapping
is performed through an original presentation of the conflict-
resolution problem in terms of a conflict graph, where the
nodes of the graph represent flights and the edges represent a
potential conflict between flights.

In a pair of papers, [[47, 48]], we were able to speed up
certain highly utilized subroutines for solving constraint satis-

faction problems, given access to a fault-tolerant quantum com-
puter. One key result leveraged quantum search to accelerate
filtering for the ‘alldifferent’ constraint (all variables take on
unique values). This work showed how to incorporate quantum
filtering algorithms into a hybrid classical-quantum backtrack-
ing search protocol. Resource estimates suggest constraint pro-
gramming is a promising candidate application for early fault-
tolerant quantum computers.

In [[49]], the relationship between QAOA and the underly-
ing symmetries of the objective function is explored, particu-
larly in hard problem classes where a nontrivial symmetry sub-
group can be obtained efficiently. The work shows how symme-
tries of the objective function imply invariant measurement out-
come probabilities across states connected by such symmetries,
independent of the choice of algorithm parameters or number
of layers. Using this result, machine learning techniques can
predict QAOA performance based on symmetry considerations.
Numerical evidence suggests that a small set of graph symme-
try properties suffices to predict the minimum QAOA depth re-
quired to achieve a target approximation ratio on the MaxCut
problem in a practically relevant setting where QAOA parame-
ter schedules are constrained to be linear.

2.6. Distributed Quantum Computing
We have also looked at distributed graph problems, in

which a network of computers, each with some information
about the graph, collaboratively work to compute a global
graph property. Ref. [[50]] presents two algorithms in the
Quantum CONGEST-CLIQUE model of distributed computa-
tion that succeed with high probability: one for producing an
approximately optimal Steiner tree and one for producing an
exact spanning arborescence of minimum weight, the analog
of a minimum spacing tree in a directed graph.

The CONGEST distributed computational model allows
messages of limited size to be transmitted within a network
described by a communication graph of size n in a series of
rounds to address a computational problem. The size limitation
for such messages is O(log(n)) bits at each edge of the com-
munication graph per round. The communication graph in the
CONGEST-CLIQUE model is fully connected. In the quantum
CONGEST-CLIQUE model, at most O(log n), classical and
quantum bits (qubits) can be communicated across each edge
of the communication graph per round.

Each of these algorithms uses O(n1/4 logk n) = Õ(n1/4)
rounds of communication and Õ(n9/4) messages, achieving
a lower round and message complexity than any known
algorithm in the classical CONGEST-CLIQUE model. At a
high level, these results are achieved by combining classical
algorithms with fast quantum subroutines. These asymptotic
speedups further contribute to understanding what problems
can be solved more efficiently when quantum communication
is allowed in this CONGEST-CLIQUE model of distributed
computation.

As a final result, the pre-factors accompanying the poly-
logarithmic terms derived in the complexity analysis were esti-
mated. By performing such an analysis, it was discovered that,
although providing an asymptotic speedup, these distributed
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quantum methods would only surpass the performance of trivial
classical algorithms when the graphs to be processed (i.e., the
network of quantum computers) would have over 1021 nodes.
Such results only motivated us to work on improving these dis-
tributed algorithms, for which our current work addresses gen-
eralizations of these methods.

2.7. Quantum Algorithm Design and Problem Encoding

QAOA and other quantum approaches to optimization can
also be applied to problems on d-level variables. Building
off of previous work that considered the qubit case in detail
[[12, 51]], Ref [[52]] presents a toolkit for design and analysis
of discrete (i.e., integer-based) optimization problems, wherein
the problem and corresponding algorithmic primitives are
expressed using a quantum intermediate representation that
is encoding-independent. This compact representation often
facilitates efficient problem compilation and comparison
between different encoding choices, for example between
variants of binary and unary encodings for fixed d. Numerical
studies comparing several qubit encodings exhibit a number
of preliminary trends toward guiding the choice of encoding
for a particular set of hardware, problem, and algorithm. For
moderate sized up to 16-level quantum variables, low-depth
mixing operators are constructed, demonstrating that binary
encodings remain amenable for QAOA.

Diagrammatic representations of quantum circuits offer
novel approaches to their design and analysis. Extensions
of the ZX-calculus [53] especially suitable for parameter-
ized quantum circuits are proposed in [[54]], in particular
for computing observable expectation values as functions
of the quantum circuit parameters, which are important
algorithmic quantities in a variety of applications ranging
from combinatorial optimization to quantum chemistry. In
particular, formal rules for dealing with linear combinations
of ZX-diagrams are given, where the relative complex-valued
scale factors of each diagram must be kept track of, in contrast
to most previously applications. The diagrammatic approach
is shown to offer useful insights into algorithm structure and
performance through direct application to several example
applications drawn from the literature including realizations
of hardware-efficient ansatze and QAOA, where calculations
can become more intuitive and potentially easier to approach
systematically than by alternative means. Recent related
work has further considered applying similar diagrammatic
approaches to the study of barren plateaus [55] and to quantum
machine learning [56].

2.8. Physics Inspired Heuristics

One of the first and most significant boons of quantum
computing has been its inspiration and advancement of clas-
sical computing methods. Physics-inspired heuristics provide
completely classical methods of solving hard problems in
new ways. As part of our work in this area, a set of tools
and methods that not only implement some of these physics-
and quantum-inspired heuristics, but also integrate them with
other solution techniques to address challenging computational

tasks, using quantum computing only as a source of inspiration
have been developed.

As mentioned above, there is a significant effort from the
QuAIL team to understand quantum algorithms for optimiza-
tion, namely quantum annealing and QAOA. These methods
are designed to find ground states of transverse field Ising prob-
lems, which, from an optimization standpoint, correspond to
QUBO problems. A classical algorithm to address these prob-
lems is parallel tempering, a modification of simulated anneal-
ing that has proved to be one of the strongest contenders when
comparing the performance of quantum methods for optimiza-
tion. An efficient Python implementation of the parallel tem-
pering algorithm has been provided as part of the open-source
project PySA [[57]].

Another contribution is in the tools required to address con-
strained optimization problems using physics- and quantum-
inspired heuristic methods. Although there are known map-
pings of constrained optimization problems to the QUBO for-
malism, which is amenable for these heuristics and other quan-
tum algorithms, their efficient implementation is challenging.
The group has also developed tools for the community trying
to use and understand these methods when facing applications,
usually represented through constrained optimization. These
tools are provided as software written in the Julia programming
language, under the umbrella of the package QUBO.jl [[58]].
Within it, there are tools for reformulating mixed-integer non-
linear programming problems into QUBO, connecting these in-
stances with classical and quantum solvers, and analyzing both
the instances and results provided by the solvers.

Although mapping constraints as penalizations might be
sufficient for their enforcement, this method requires finding
these penalization factors, which might lead to challenging
numerical issues for both classical and quantum methods. A
way of leveraging these Ising solvers, potentially quantum,
while enforcing the constraints exactly for mixed-binary
quadratic programs was proposed. This method relies on a
copositive reformulation of the problem and the application of
a cutting-plane algorithm, which generates increasingly accu-
rate linearizations of the problem, for which center solutions
are computed classically, derived from the possibly suboptimal
solutions of QUBO problems found by the Ising solvers.
This method, described in [[59]], also provides convergence
guarantees to provable optimal solutions despite the heuristic
nature of the Ising solvers, and for a test case of finding the
Max-clique of random graphs, it is able to match and even
surpass state-of-the-art solvers for these constrained problems.

On the other hand, the group has also worked on the sim-
ulation of coherent Ising machines (CIM), a non-conventional
architecture for solving Ising problems heuristically. The CIM
dynamics are described by a set of ordinary differential equa-
tions, which can also address continuous non-convex quadratic
optimization. The dynamics of such continuous variable CIMs
(CV-CIM) use optical pulses to perform the optimization.
Updates to those pulses are computed via stochastic gradient
descent. Classical optimization techniques have been used to
improve the dynamic simulations of CV-CIM [[60]], namely
momentum and Adam updates, to address the weaknesses of
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stochastic gradient descent found in classical optimization.
Through this modification, the CV-CIM’s convergence, sample
diversity, and stability can be significantly improved.

Continuing with the CIM work, the physics and the perfor-
mance of this class of machines, which are faithfully described
by a set of coupled ordinary differential equations ODEs,
was investigated as part of the NTT Phi Lab collaboration
and the NTT NSF Expeditions program on Coherent Ising
Machines led by Stanford University. The fast clock speed
and relatively mature engineering in the field of photonics
allows for the practical possibility of these systems, either
simulated in CPUs, GPUs, FPGAs or realized via integrated
photonic circuits to be deployed as components to solve
contrived problems that have crucial time-threshold, such as
the MIMO wireless Maximum-Likelihood decoding problem
already subject of Ref. [[61]] (more on this below). Indeed,
elaborated fully-electronic or opto-electronic implementation
of the CIM machines are at the moment among the most
performant Ising solvers known for a variety of challenging
benchmarks, according to a recent review [[62]]. In [[63]], the
team investigate the basic numerical implementation of the
CIM equations for the purpose of wireless decoding, setting up
problems using the Rayleigh fading channel model and calcu-
lating resource requirement for a high-speed Ising machine to
increase the overall throughput of current state-of-art network
implementations. It is noteworthy that the work spurred
multiple derivative improvements from other groups, and led
to current related lines of research active, such as a full-FPGA
optimized implementation and a neural-network representation
of the CIM using Deep Operator Networks [[64]].

The sign problem is one of the biggest impediments to sim-
ulating quantum systems using Monte Carlo techniques. When
Monte Carlo techniques are used to simulate a Hamiltonian or
system with a sign problem, the pseudo-probabilities for the
Monte Carlo method oscillate rapidly between positive and neg-
ative values (or arbitrary complex phases when simulating real-
time evolution), making evaluation of averages and integrals
exponentially difficult. Most Monte Carlo techniques for simu-
lating quantum systems are, therefore, limited to sign-problem-
free Hamiltonians, a vanishingly small fraction of all possible
systems.

There are methods for mitigating but not solving the sign
problem, such as one already used in high energy physics, in-
volving integration along Lefschetz Thimbles [65, 66]. These
thimbles are a generalizations of the complex plane of station-
ary phase. In broad terms, these methods seek to evaluate a
highly oscillatory integral with a sign problem by deforming the
surface of integration into the complex hyper-plane and deform-
ing the surface iteratively to try to get it to flow to a Lefschetz
Thimble. The idea then is that on this thimble, the integral is
easy to evaluate since its phase is no longer oscillatory. These
methods are themselves highly computationally taxing, and at
best they can mitigate the slow-down of the sign problem to a
lesser exponential factor. Our work with collaborators [[67]],
sought to extend these ideas from continuous variable high en-
ergy physics to the discrete variables of quantum spin systems.
This process is non-trivial since the complexification requires

continuous variables, requiring us to look at over-parameterized
continuous bases for quantum spin systems, such as the spin co-
herent states, which themselves require approximations that are
sometimes ill-justified for low spin number. Our work success-
fully implemented these Lefschetz Monte Carlo methods and
demonstrated their effectiveness for a small three-spin system
with a sign problem.

An example of physics-inspired heuristic applied to real-
world application is the use of the parallel tempering algorithm
for soft MIMO decoding in 5G (ParaMax) [[61]]. Here, we
demonstrate that ParaMax can achieve near optimal maximum-
likelihood throughput performance in the Large MIMO regime,
Massive MIMO systems where the base station has additional
RF chains, to approach the number of base station antennas, in
order to support even more parallel spatial streams. These re-
sults are achieved by using the ParaMax Ising Solver (PMIS). It
is based on simulated annealing, featuring a parallel tempering
algorithm highly-tailored to optimize the Ising model of MIMO
detection. While the front-end of our PMIS implementation
is in Python, the core is completely written in C++. To fur-
ther maximize the performance of PMIS to satisfy limited pro-
cessing time in wireless standards, the following innovations
have been implemented: the use of static memory to improve
compile-time optimization; the use of parameter pack expan-
sion to unroll vector-vector and matrix-vector multiplications;
and the use of SIMD instructions to further improve operations
like vector-vector and matrix-vector multiplications.

One of the main reasons classical heuristics fail to iden-
tify solutions of optimization problems is being stuck in local
minima [[68]]. Thermal cycling is an optimization algorithm
based on simulated annealing that uses cycles of heating and
quenching, while following a decreasing temperature schedule,
to escape local minima and improve the performance of local
heuristics [[69]].

In [[70]], a comprehensive parameter tuning of the algo-
rithm was performed and it was demonstrated that it competes
closely with other state-of-the-art algorithms such as parallel
tempering with isoenergetic cluster moves [[71, 72, 73]], while
overwhelmingly outperforming more simplistic heuristics
such as simulated annealing. In details, the thermal cycling
algorithm works by preparing an ensemble Ω of Np lower
energy states among N0 quenched random configurations.
Starting from the initial inverse temperature βi = 0, the above
pool of states is annealed toward a final inverse temperature
of β f in NT steps. At any given temperature step, a given
number of states in Ω are update using Metropolis (heating)
followed by an immediate quench via a local search method
(cooling). If any of the new states have an energy smaller than
its original state, such states are updated in Ω. In practice, the
above process steers the ensemble toward the low-lying states
while ensuring that meta-stable configurations do not hinder
the dynamics. The temperature is then reduced, and the cycles
start over.

The main advantage of algorithms like the thermal cycling
is the possibility of using a variety of variable-update classes
in the quenching phase. By using carefully designed updates,
the exploration of the exponentially many meta-stable can be
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avoided in favor of lower-energy states. However, considering
the extra computational cost associated with tailored updates,
it is important to considering the trade-off between a better ex-
ploration of the configuration landscape and the induced over-
head. By accurately choosing the optimal update strategy, it
was demonstrated that the thermal cycling algorithm is a com-
petitive heuristic when complex structures are present, avoid-
ing being trapped in local minima. While the thermal cycling
algorithm performs the worst when narrow barriers are present,
where algorithms like simulated quantum annealing and isoen-
ergetic cluster updates perform the best, it was observed that the
thermal cycling algorithm works the best on dense graphs with
wide barriers.

3. Quantum-compatible Machine Learning Algorithms

Over the past few years, significant strides in the field of
machine learning (ML) have been made, particularly in inte-
grating quantum computing with ML algorithms (QML). This
fusion has been explored in both discriminative models like
classification and generative models, focusing on understanding
and leveraging quantum probability distributions. The central
challenge has been effectively integrating samples from quan-
tum processors into state-of-the-art ML models, such as Vari-
ational AutoEncoders (VAE) and Generative Adversarial Net-
works (GAN). The QuAIL team has worked with collaborators,
from domain experts to hardware groups, to advance these algo-
rithms. These efforts on specific applications in aeronautics and
Earth science including image segmentation and modeling for
wildfire detection, time-series analysis for flight anomaly detec-
tion, and parameter learning for material science modeling. In
all cases, there is a tight connection between the algorithm and
the hardware, illustrating the potential for specialized quantum
hardware that have less stringent requirements than universal
quantum processors and so could be built more easily and put
to use earlier than universal processors, and also the potential of
algorithms that can be tailored to emerging quantum hardware.
This connection enables a virtuous cycle of hardware-algorithm
co-design.

This section delves into these hybrid ML models, examin-
ing how quantum samples, particularly from Boltzmann Ma-
chines, are integrated within the latent spaces of these mod-
els. In several instances, these quantum-compatible methods,
based on discrete latent space models, have provided significant
value over standard approaches, demonstrating continued op-
portunity in QML research. However, the utilization of samples
from noisy, sparse latent distributions, characteristic of mod-
ern quantum hardware, remains a challenge. Overcoming these
hurdles is vital, especially considering the demands of high-
performance computing environments.

There are four distinct paradigms for how to combine ma-
chine learning with quantum computing:

1. Classical-Classical (CC): This approach leverages
quantum-inspired methods within discrete latent space
models, showcasing how quantum influence can enhance
traditional algorithms.

2. Classical-Quantum (CQ): Exemplified by models
such as the Quantum-assisted Variational Autoencoder
(QVAE), this paradigm involves the use of quantum
computing elements to process and interpret classical
data.

3. Quantum-Classical (QC): Models optimizing quantum
heuristics with classical machine learning techniques and
reflects the application of classical ML techniques to op-
timize or interpret results obtained from quantum sim-
ulations or quantum processors. This paradigm reflects
the integration of quantum computational power in solv-
ing complex quantum problems, which are then analyzed
and optimized using classical ML techniques.

4. Quantum-Quantum (QQ): Although not explored in
this section, this approach signifies the complete integra-
tion of quantum data with quantum computational meth-
ods.

With the exception of subsection 3.5, this section mostly con-
centrates on advancements in CQ paradigm.

3.1. Quantum-Assisted Variational Autoencoder

Both quantum and classical Boltzmann Machine (BM) are
able to model powerful and flexible probability distributions.
However, training these models classically is challenging and
time-consuming. Quantum annealers, regarded as analog
quantum devices, can effectively simulate Quantum BMs
(QBMs). Ref. [[74]] introduced a quantum-assisted VAE
(QVAE), which incorporates samples from a quantum annealer
into the prior of a discrete VAE. The QBM component of
the model features a tunable transverse field, enhancing the
prior’s expressiveness and allowing for a more focused latent
distribution without compromising the network’s learning
ability. This model excels at handling high-dimensional data
spaces, a significant challenge for classical machine learning
algorithms [[74]].

The QVAE’s encoder comprised two fully-connected layers
leading into a hierarchical posterior, facilitating complex poste-
rior distributions and a tighter Evidence lower Bound (ELBO).
To prevent overfitting, the decoder has a simpler structure with
two fully-connected layers [[74]].

An integral part of the study was comparing the perfor-
mance of a Restricted BM (RBM), a classically simulated
QBM, and a QBM trained with samples drawn from the
D-Wave 2000Q quantum annealer. This device, featuring
2048 qubits each of degree 6, required embedding any RBM
larger than 6 nodes per side with a coupling strength of -1.
The logical value of a variable at the end of an anneal was
determined by a majority vote, adding a layer of robustness to
the modeling process [[74]].

After training, the QVAE’s encoder indexed the dataset
efficiently without extra discretization due to its binary latent
space. The encoding algorithm clustered similar objects under
identical bit strings and an inverted index was constructed to
map each bit string to its corresponding data points. Since each
item is processed once and independently, the original data can
be removed from the main memory, reducing memory usage.
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For queries, the QVAE encodes the item and sorts occupied
bit strings by their Hamming distance to the query embedding,
balancing memory efficiency and search resolution. The results
were significant [[74]]:

• Embedded Proximity and Hamming Distance:
Experiments validated that Hamming distance in the
compressed space effectively approximates Euclidean
distance in the original space, as shown through k-
Approximate Nearest Neighbor Search (ANNS) on
the Moderate Resolution Imaging Spectroradiometer
(MODIS) dataset. This underscores the efficiency of
quantum-assisted techniques in high-dimensional data
retrieval.

• Impact of the Transverse Field: Adjusting the trans-
verse field parameter influenced the distribution’s char-
acteristics and search speed, with optimal speedup ob-
served at certain ranges. This highlights the precise con-
trol quantum models offer in data representation and op-
timization.

• Memory Consumption: The quantum model showed
superior memory efficiency over methods like Hierarchi-
cal Navigable Small World (HNSW) and Localality Sen-
sitive Hashing (LSH), particularly for large datasets like
the complete MODIS dataset, underscoring the models
practicality and scalability.

The effective utilization of quantum annealing in handling la-
tent spaces by the QVAE indicates potential quantum enhance-
ments for other ML models, like the supervised U-Net-VAE
hybrid used in Ref. [[75]] for wildfire detection. This model,
integrating a U-Net architecture with a VAE, comprises four
submodels: (1) a prior network, (2) a posterior network, (3)
a U-Net network for feature extraction, and (4) a combination
network. It is effective in generating stochastic wildfire seg-
mentations and simulating unknown wildfire scenarios. Incor-
porating quantum-sourced samples could further enhance its
predictive accuracy and robustness, particularly in analyzing
high-dimensional satellite imagery, offering a promising direc-
tion for future research in remote sensing and wildfire analysis
[[75]].

3.2. Optimizing Adversarial Networks Through Quantum An-
nealing

In exploring the integration of quantum annealing with deep
learning architectures, Ref. [[76]] introduced the Quantum-
assisted Associative Adversarial Network (QAAAN). This
model incorporates quantum annealing to train a BM that op-
timizes the feature distribution extracted by the discriminator
network in the adversarial model. The unique capabilities
of quantum computing are leveraged to find more effective
representations in the latent space, thereby enhancing the gen-
eration of realistic data. This approach, particularly significant
for its exploration of reparametrization of discrete variables,
demonstrates a crucial step in integrating quantum models with
traditional neural networks [[76]].

In the QAAAN study, the researchers investigated various
topologies for the probabilistic graphical models in the latent
space, including complete, symmetric bipartite, and Chimera
topologies. It is noteworthy that the choice of topology affects
both the model’s learning rate and quality, similar to how
transverse fields influenced the QVAE’s performance in Ref.
[[77]]. This insight is crucial for future developments in
quantum-enhanced deep learning, as it highlights the need for
careful consideration of model architecture to harness the full
potential of quantum computing.

The QAAAN’s exploration of topological variations
extends to practical performance metrics. The researchers
utilized the Inception Score and the Frechet Inception Distance
to assess the model’s ability to generate realistic data. This
evaluation was pivotal in establishing the QAAAN’s efficacy
in real-world applications. The research also demonstrated
the model’s scalability by successfully applying it to complex
datasets, such as the LSUN bedrooms dataset. This scalability
indicates the potential for quantum-assisted models in handling
large-scale, high-dimensional data challenges [[76]].

3.3. Advancements in Quantum-Inspired Generative Models:
RBMs in VAEs and Invertible Flows

Researchers in [[78]] introduced models that mark a
significant advancement in combining Energy Based Models
(EBMs) with Invertible Flows (IFs), specifically RBM-Flow
and D-Flow. These non-autoregressive IFs enable enable exact
likelihood training and efficient sampling without requiring
a discriminator network, which is a notable difference from
VAEs, autoregressive models, and GANs, respectively [[78]].

RBM-Flow, a subclass of EBM-Flow, leverages RBM as its
trainable, base distribution, thus enhancing the model’s capac-
ity to capture complex data distributions. D-Flow, an evolution
of RBM-Flow, zeroes all couplings in the latent RBM, allowing
the encoding of global features as discrete labels in the latent
space, offering a structured approach for meaningfully handling
high-dimensional date. The usage of RBMs in RBM-Flow pri-
marily enhances their energy-based properties and discrete na-
ture to boost the generative capabilities of the IF framework
[[78]].

3.4. Quantum-Compatible Discrete Deep Generative Models
In [[79]], deep generative learning models are developed

and applied to the task of anomaly detection in a commercial
flight-operations dataset consisting of multivariate time series.
Specifically, the performance of three unsupervised deep gener-
ative models are explored which consist of variational autoen-
coders with Gaussian, Bernoulli, and Boltzmann priors. Two
of the VAEs contained discrete latent variables (DVAEs), one
with a factorized Bernoulli prior and one with a RBM prior.
The work demonstrated the competitiveness of a discrete deep
generative model with its Gaussian counterpart for anomaly de-
tection tasks.Also of note, the DVAE model with RBM prior
can be readily integrated with quantum sampling by replacing
its generative process with measurements of quantum states ob-
tained from quantum hardware devices, such as a quantum an-
nealer or gate-model device.
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3.5. Quantum-Enhanced Optimization of Quantum Heuristics

VQAs, categorized under quantum heuristics, show great
potential for practical quantum computing applications. The
optimization of these algorithms for effective hardware perfor-
mance is a critical area of focus. Ref. [[77]] assessed the ef-
ficacy of a Long Short Term Memory (LSTM) recurrent neu-
ral network model (the meta-learner) in optimizing two quan-
tum heuristics, comparing its performance traditional optimiz-
ers (Bayesian optimization, evolutionary strategies, L-BFGS-B
and Nelder-Mead).

The meta-learner outperformed traditional optimizers, such
as Bayesian optimization, evolutionary strategies, L-BFGS-B,
and Nelder-Mead, demonstrating superior performance in noisy
environments. For example, starting from the around the same
point in Fermi-Hubbard model problems, the L-BFGS-B per-
formance reduced by 0.35 whereas the meta-learner only re-
duced by 0.2 [[77]], indicating that meta-learning will be es-
pecially useful in noisy near-term quantum heuristics imple-
mented on hardware. In addition to robustness, the meta-learner
showed a higher frequency of reaching near-optimal solutions
than the next best optimizer (evolutionary strategies) in noisy
simulations [[77]].

Looking ahead, the continued improvement of meta-
learning methods is anticipated. Despite the current lack
of investigation into their performance scaling to larger
problem sizes, largely due to the challenges in simulating
large quantum systems, the potential for these methods on
hardware implementations is significant. The meta-learner
introduced by [[77]] applies a single model across various
parameters (a ’coordinatewise’ approach). Envisioning a
’qubitwise’ approach, where distinct models are trained for
each qubit’s parameters in a given hardware graph, could
open up new optimization avenues. Such a method might
account for the unique physical characteristics of each qubit,
potentially leading to more finely-tuned optimizations tailored
to specific hardware environments. This direction underscores
the importance of developing meta-learning methods that not
only adapt to the complexities of quantum problems but also
leverage the peculiarities of quantum hardware.

Ref. [[77]] also notes the different implementations of
QAOA used for Graph Bisection and MAX-2-SAT. Under-
standing the impact of mixer and initial state variations on
performance, as well as characterizing the relative power of
different QAOA mixers, remains an open area of research.

4. Quantum Computing for Simulation

Our recent work related to quantum simulations for con-
densed matter physics, quantum computing for material discov-
ery, quantum simulation for chemistry, and open quantum sys-
tem simulation are highlighted in this section. Among the many
advancements showcased in this section are recent works that
use variational techniques for both weakly and strongly corre-
lated systems that are able to reach chemical accuracy with a
minimal number of time steps; extension of existing neural net-
work techniques for solving electronic structure problems; and

a further reminder of the importance of classical HPC comput-
ing methods for benchmarking and quantum chemistry.

4.1. Quantum Simulation for Condensed Matter Physics

4.1.1. Kitaev Spin Models
Quantum spin systems, notably the Kitaev honeycomb

model, are promising candidates for demonstrating the po-
tential capabilities of quantum computers over classical ones
in applications beyond simulation. Kitaev’s influential work
[80] introduced this well-studied model, which is especially
attractive for quantum algorithm research due to its simple
lattice structure and the simplicity with which its Hamiltonian
can be expressed in terms of Pauli operators.

In the study [[81]], the team successfully prepared the
ground state of the Kitaev honeycomb model using the Hamil-
tonian variational ansatz (HVA) [82]. The model’s square
octagon lattice version was found to be particularly well-suited
for implementation on Rigetti’s Aspen-9 quantum processor.
In practical experiments, their small-scale demonstrations
of developed techniques, enhanced with error mitigation
strategies, yielded results that closely aligned with theoretical
predictions.

Further exploration into the Kitaev honeycomb spin
model revealed an alternative approach [[83]] , wherein the
Hamiltonian is expressed purely in terms of fermionic degrees
of freedom. This alternative fermionic description of the
spin-system not only confirmed the model’s exact solvability
in the absence of interactions, but also led to the development
of tailored variational quantum eigensolver (VQE) ansatze
for different types of interactions. This approach allowed for
accurate ground state preparations that aligned with theoretical
results and demonstrated that for certain interactions, the
number of required qubits could be cut in half [[83]].

4.1.2. Fermi-Hubbard Model
The Fermi-Hubbard Model (FHM) is crucial in quantum

physics for exploring phenomena like superconductivity and in-
sulating phases in materials. It describes the complex interac-
tions of electrons moving within a lattice, offering critical in-
sights into these states.

A significant study [84] simulated the dynamics of a one-
dimensional FHM using a 16-qubit digital superconducting
quantum processor. The simulation revealed distinct spreading
velocities for charge and spin densities in highly excited
regimes, surpassing the limits of the conventional quasiparticle
model. To mitigate systematic errors and decoherence, the
researchers developed an accurate gate calibration procedure
and employed a series of error-mitigation techniques. These
procedures allowed for the faithful simulation of the model’s
time evolution, even with over 600 two-qubit gates in the
circuits. This work represents a crucial step towards practical
quantum simulation of strongly correlated phenomena using
current quantum devices, such as the classically hard 2D FHM
[84].

Subsequently, [[85]] explored a quantum annealing pro-
tocol for the FHM using a novel fermion-to-qubit encoding,
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which simplifies the FHM representation and enhances sim-
ulation. The proposed driver solutions targets high fidelity in
various FHM interaction regimes, especially in intermediate
and large U/t regimes. The protocol is designed for coherent
evolution fermionic logical subspace, particularly suited for
accurate simulation [[85]].

The study discussed potential scalability and hardware
noise challenges, noting the lack of currently suitable hardware.
However, the research suggested that advancements in quantum
annealing hardware could enable practical implementation,
positioning this method as a promising contender to gate-based
algorithms for quantum advantage in non-fault tolerant regimes
[[85]].

4.2. Quantum Computing for Material Discovery
4.2.1. Advancements in State Preparation Techniques

Quantum computations offer significant advancements
in simulating quantum many-body systems, with various
approaches focusing on the efficient preparation of ground or
excited states.

In the study [[86]], researchers explored a novel method
for simulating the time dynamics of Adiabatic State Prepara-
tion (ASP). ASP, which is an alternative approach to preparing
ground states to study their wave-function and energy, starts
with a known, easily prepared ground state Hamiltonian and
evolves it slowly to the target Hamiltonian, maintaining the sys-
tem in its ground state, as per the quantum adiabatic theorem
(ensuring the system remains in the ground state throughout
the evolution). The approach employs an adaptive sampling
configuration interaction scheme, enhancing the efficiency of
preparing ground and excited states, and is particularly effective
in avoiding the complexities of optimization in noisy environ-
ments.

In [[87]], a systematic investigation into VQEs for
determining ground-state energies and properties of two-
dimensional model fermionic systems was presented. The
research focuses on the efficiency of different entangler blocks
in the VQE and how they impact the convergence to the
system’s ground state with minimal gate operations, crucial
for NISQ devices. The study also monitors the entanglement
during optimization using the concurrence measure and inves-
tigates the scaling of the VQE circuit depth as a function of
the desired energy accuracy [[87]]. In related work, [[88]] pre-
sented and benchmarked an approach for finding good starting
parameters for parameterized quantum circuits by classically
simulating VQE by approximating the parameterized quantum
circuit as a matrix-product-state (MPS) with a limited bond
dimension.

Lastly, in [[89]] a detailed analysis of variational quantum
phase estimation (VQPE), a method rooted in real-time evolu-
tion for estimating ground and excited states on near-term quan-
tum hardware. The study establishes the theoretical foundation
of VQPE and highlights its efficiency in creating compact vari-
ational expansions for solving strongly correlated Hamiltoni-
ans. Central to VQPE is a set of equations with a geometri-
cal interpretation, crucial for time evolution grid setup to de-
couple eigenstates from time-evolved expansion states. This

connects VQPE to classical filter diagonalization algorithms.
The paper also introduces a unitary formulation of VQPE, re-
ducing the required quantum measurements, and analyzes the
impact of noise, significantly improving upon previous consid-
erations. Through both numerical simulations and a hardware
implementation for the transverse field Ising model, the paper
demonstrates VQPE’s efficiency for both weakly and strongly
correlated systems, reaching chemical accuracy with a minimal
number of time steps [[89]].

4.2.2. Many-body Scar Preparation
Many body scars are an interesting phenomenon that seem-

ingly violate the eigenstate thermalization hypothesis, similar
to the phenomenon of many-body localization. Such scarred
states give rise to long-lived coherent dynamics in an otherwise
thermalizing system and may provide a path towards physical
realizations of quantum memory.

In Ref. [[90]], state preparation protocols for scarred eigen-
states and their superpositions that enable their dynamical sim-
ulation on quantum computers were proposed. In addition to
deterministic methods that made use of the structure of such
states and their superpositions as well as their tensor network
representations that scale linearly with the system size, it was
also found that there were stochastic circuits which can prepare
certain target states in constant depth, though with exponen-
tially vanishing post-selection probability. A mix of variational
and MPS inspired circuits that were found numerically to con-
struct the target states with great accuracy were employed. The
team also provided proof-of-principle state-preparation demon-
strations on superconducting quantum hardware.

Quantum many-body scar states are highly excited eigen-
states of many-body systems that exhibit atypical entanglement
and correlation properties relative to typical eigenstates at the
same energy density. Scar states also give rise to infinitely
long-lived coherent dynamics when the system is prepared in
a special initial state having finite overlap with them. When
perturbed, the dynamics of such systems are generally hard to
simulate classically, but efficient with quantum computers.

4.2.3. Advancements in Hamiltonian Simulation Techniques
The work presented in the paper [[91]] is a significant stride

in the realm of Hamiltonian simulations for chemistry applica-
tions, addressing the critical issue of gate complexity. Unlike
traditional methods that primarily rely on the Hamiltonian it-
self, leading to approximations that may not fully capture the
essential aspects of a problem, SQuISH innovatively uses both
the Hamiltonian and an approximate eigenstate. This dual ap-
proach enables the creation of a truncated Hamiltonian with
reduced complexity, enhancing the efficiency and accuracy of
simulations. Integrating this with the ongoing efforts to mini-
mize gate complexity, the Self-consistent Quantum Iteratively
Sparsified Hamiltonian (SQuISH) algorithm stands out for its
ability to balance computational efficiency with the depth of
simulation, making it a pivotal development in quantum com-
puting for chemistry and material science applications [[91]].
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4.3. Quantum Simulation for Chemistry

In recent years, neural networks have provided an alter-
nate framework for solving electronic structure problems,
including applications in directly solving the time-independent
Schrödinger equation to find approximate ground states of
atoms and molecules (see for example, [92]). A notable
example of such a neural network is Fermi Net [93]. In [[94]],
Fermi Net was improved with Diffusion Monte Carlo (DMC).
Additionally, this work introduced several modifications to the
network and optimization approaches that reduce the number
of required resources while maintaining or improving the
modeling performance.

In related work, [[95]] developed a periodic neural network
Ansatz for variationally finding the ground-state wavefunction
of the homogeneous electron gas (HEG), which is a funda-
mental model of condensed matter theory. This work extended
previous applications of neural networks to molecular systems
with methods for handling periodic boundary conditions and in-
cludes two notable changes to improve performance: splitting
the pairwise streams by alignment and generating backflow co-
ordinates for the orbitals from the network.

A broader perspective on quantum computing for chemical
engineering [[96, 97, 11]] introduces concepts for an audience
of chemical engineers and discusses three potential first appli-
cations for this field: computational chemistry, optimization,
and machine learning.

4.3.1. Advances in classical solvers for chemistry Hamiltoni-
ans

The electronic structure problem—i.e., the determination
of the many-body wavefunction of all electrons in the field
of fixed nuclear charges—is the central problem of quantum
chemistry and it is most rigorously solved by finding the exact
low-lying eigenstates of the electronic many-body Hamilto-
nian. Of course, because the number of basis states grows
exponentially as the number of ways of arranging the electrons
in the chosen one-particle orbital basis set, exact solutions are
intractable on classical computing hardware for all but the
simplest chemical systems. This, and the central importance of
this problem, make it an ideal simulation target for quantum
computers. Nevertheless, despite the promise/hope of quantum
hardware-based solution methods, classical HPC computing
methods remain crucial: (i) for benchmarking eventual fault-
tolerant quantum hardware on realistic problem instances, and
(ii) for preparing initial/starting states on quantum hardware
which cannot be too far off from the true solution for the usual
quantum algorithm to run efficiently (or at all).

Thus, an ongoing focus of work in the group is to improve
state-of-the-art classical approaches to the electronic structure
problem, in particular, to develop new HPC-friendly algorithms
which leverage the notion that, even for chemistry applications,
one does not need to solve the exponentially-scaling eigenprob-
lem to machine precision and, moreover, for initial state prepa-
ration, relaxed accuracy requirements may be more acceptable
still. In this spirit, a truncated version of the traditional David-
son method for diagonalizing chemistry Hamiltonians has been

developed [[98]] which generates “chemically-accurate” solu-
tions (answers within a chemically-relevant 1.6 milli-Hartrees
of the exact solution) for the ground and first few low-lying ex-
cited electronic eigenstates at vastly reduced classical computa-
tional cost versus a full diagonalization, and that is competitive
with other state-of-the-art approximate eigensolvers. Work-in-
progress in the group involves developing efficiently parallel
distributed-memory versions of the methodology which may
be quite effective due to the structure of the newly-developed
classical algorithms and their implementation.

4.4. Open Quantum System Simulation

Realistic quantum systems inevitably interact with external
degrees of freedom (the environment), which leads to a
non-unitary open system evolution. This presents a challenge
for the simulation of many relevant physical phenomena on
conventional quantum computers that natively implement uni-
tary gates. For this reason, there has been much less research
into the emulation of open systems on unitary based quantum
computers. In a recent work [[99]], presents an analysis of
the resources required for prominent techniques to implement
non-unitary operators, some of which incurred a prohibitive
classical overhead. Improvements to these algorithms were
made, by proposing a fully quantum method without such limi-
tations. Additionally, a quantum algorithm that can decompose
any d dimensional operator into two separate unitaries, which
can then be implemented deterministically, was proposed.

4.5. Quantum simulation of High Energy Physics

High energy physics provides an interesting avenue for
quantum simulation and possible demonstration of quantum
advantage. In this arena, several fundamental aspects of nature
are described by quantum field theories, and in particular
gauge theories. As a starting point however, it is worthwhile
to consider simple quantum field theories, and in [[100]],
members of the team investigated how to simulate a simple
scalar field on qudit hardware.

While many proposed methods exist for simulating gauge
theories describing high energy physics, a computationally
promising direction is to approximate continuous gauge groups
with discrete subgroups, thereby translating the problem to
simulating discrete gauge theories, which are more readily
mapped onto digital quantum hardware. Discrete groups are
represented by mapping elements of the group to bit strings
stored on registers of qubits. It was shown in [101] that 4
primitive group operations are necessary for Trotterized time
evolution of pure gauge theories: group inversion, multipli-
cation, phasing, and Fourier transformation. Members of the
team derived quantum circuits of the unitary operators for the
dihedral groups (DN) [[102]], Z2 lattice gauge theory[[103]],
as well as a subgroup of SU(2), the binary octahedral group
[[104]].

In [[102]], members of the team laid out the framework for
constructing quantum gates for discrete groups by enumerating
the gates for DN , a simple non-Abelian group. While DN theo-
ries map to the group U(1)×Z2 in the large N limit, which may
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by itself be of limited interest, the tools and methods developed
extend to future work. In addition to the quantum circuits de-
rived in [[104]], the team found that many of the operators can
be decomposed similarly to the classical fast Fourier transform;
the operations can be broken down into operations on a series
of subgroups. The study also investigated the resource costs for
time evolution and compared it to the best reported standard;
the team found this representation of an SU(2) gauge theory
reduced the required T-gates for simulation by 8 orders of mag-
nitude.

5. Tools for Quantum Computing Investigations

Validation and benchmarking of quantum devices are criti-
cal for the development of such emerging technologies. Mod-
eling quantum effects in software allows one to verify not only
that the behavior is as expected but also to aid in the design
of new devices. A prime example of this is a joint work be-
tween Google and NASA from 2019 and 2020, respectively,
[[105, 106]], which established for the first time a quantum over
classical advantage, which used a combination of classical sim-
ulation (led by NASA) to verify experimental results. The team
continues to develop technologies for quantum simulation in
various settings and architectures and also to design methods
for benchmarking and characterization.

5.1. Classical Methods for Simulating Quantum Circuits
Simulating deep quantum circuits with many qubits is a

daunting task. Indeed, while quantum resources only scale
polynomially with the number of qubits and the depth of the
quantum circuits, classical resources scale exponentially. To
overcome this limitation and further raise the bar for a quantum
advantage, many classical methods have been developed to
tackle different class of quantum circuits. For instance, it is
well known that quantum circuits composed of Clifford gates
only [107, 108] can be simulated in polynomial time. Indeed,
since Clifford gates are nothing else than the stabilizers of the
Pauli group, only a polynomial amount of classical resources
are required to store the full quantum state. However, since
Clifford gates are neither classical universal (that is, not all
classical circuits can be described using Clifford gates) nor
quantum universal (that is, not all quantum circuits can be
described using Clifford gates), their application is limited
to error-correction algorithms. Nevertheless, if the quantum
circuit is almost composed of Clifford gates, the classical com-
putational cost is exponential in the number of non-Clifford
gates only [108, 109].

In [[110]], a technique called Clifford “expansion” was used
to classically simulate large out-of-time-order correlators with a
few non-Clifford gates, and compare the numerical results with
the experimental ones. While the Clifford expansion technique
allow the simulation of deep circuits with many qubits with a
few non-Clifford gates, the method becomes quickly imprac-
tical. While alternative methods that use approximate magic
states [109] or noisy gates [111] may help to mitigate the com-
putational cost, Clifford expansion is limited to those quantum
circuits with a limited number of non-Cliffords.

On the other hand, methods based on tensor network con-
traction [112] have been proven to be of practical use to bench-
mark NISQ devices [113, 84, 114, 115, 116, 117]. The basic
idea behind the tensor network contraction is to represent an
arbitrary quantum circuits as a network where each gate is a
different tensor. Therefore, the calculation of amplitudes re-
duces to the contraction of the tensor network [112]. While
the Clifford expansion method is limited by the number of non-
Cliffords, the tensor network contraction is limited by a quan-
tity called “tree-width”, which is closely related to how close
the network is to a tree. That is, if the tensor network repre-
senting the quantum circuit is tree-like, its tree-width will be
close to zero. On the contrary, if the quantum circuit has many
entangling gates and its tensor network representation is close
to a fully-connected graph, its tree-width will be of the order
of the number of qubits. As demonstrated in [112], it is pos-
sible to deterministically simulate a quantum circuit in a time
that grows exponentially with the tree-width. However, finding
the tree-decomposition of a graph that minimize the tree-width
is an NP-Complete problem [118]. Moreover, the tree-width
does not take into account the fact that, during the contrac-
tion, some tensors may exceed the available memory. To miti-
gate this problem, techniques like slicing have been introduced
[116, 113, 115, 117], which add an exponential overhead to the
contraction but keep the tensor contraction within the maximum
amount of memory available.

Another widely used method to simulate quantum circuits
is based on the MPS approximation [119, 120]. An MPS is a
quantum state of the form

|ψ⟩ =
∑
{s}

Tr
[
A(s1)

1 A(s2)
2 · · · A

(sN )
N

]
|s1s2 . . . sN⟩, (2)

where A(si)
i are square matrices of order χ (called local dimen-

sion), and the indices si go over states in the computational ba-
sis. The order χ represents how much the qubits are entangled:
more precisely, a system of non-entangled qubits can be repre-
sented by an MPS with χ = 1. On the other hand, a system
of highly-entangled qubits will require χ being exponentially
large with the number of entangled qubits. Since the simulation
cost is proportional to χ, approximate MPS simulations can be
performed by capping the largest allowed χ [[113]].

Large-scale quantum computation requires encoding ‘logi-
cal qubits’ using an error correction code. Due to a favorable
topology, the surface code is a promising candidate for super-
conducting qubits. One challenge for superconducting qubits,
however, is properly isolating the lowest two energy levels of an
anharmonic oscillator, with leakage referring to the presence of
a population outside of this subspace (which occurs via several
physical mechanisms). The simulation of small error correction
codes is also critical to aid in processor design, however, each
additional level one wishes to simulate incurs an exponential
overhead (e.g., for a single leaked state, a fully quantum simu-
lation of n qubits scales as O(3n) instead of O(2n)). In [[121]]
it was shown that in error correction codes under realistic situa-
tions, an approximation can be employed to faithfully simulate
a system with leakage (of any number of leaked states), but still
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retaining the O(2n) scaling. Given access to HPC resources, this
framework enabled a quantum simulation of a distance 5 sur-
face code with leakage. Moreover, this approximation allows
one to justify a stronger approximation (Pauli twirling), which
can then allow leakage to be simulated efficiently (polynomially
in n) via the stabilizer formalism.

5.2. Photonics
A heralded source of highly pure and indistinguishable pho-

tons is a prerequisite for many quantum information process-
ing tasks in a photonic (e.g., linear optical) setting. Indeed, the
degree of distinguishability is related to the classical hardness
of Boson sampling [122], and the ability to generate entangled
photonic states. One promising approach to this end is to use
photon distillation, first observed in [123] (by Sparrow and Bir-
chall), and improved upon by [[124]], where linear optics and
post-selection is used to filter out erroneous photons in a her-
alded manner (in contrast to using spectral filters), in principle,
to arbitrarily high purity/indistinguishability. This was recently
improved in Refs. [[125]], [126], in which more general fami-
lies of distillation protocols were given, leading to greater effi-
ciency (i.e., linearly scaling resource requirements).

Another key task for the development of quantum comput-
ing primitives is simulation, which is notoriously challenging
due to the largeness of the Hilbert space; for n photons in m
modes, it scales as dn,m :=

(
n+m−1

n

)
. Indeed, the ‘naive’ approach

to simulation a la the second quantization scales linearly in the
dimension. However in many situations much more efficient
representations can be found (e.g., in certain cases a polyno-
mially scaling simulation can be performed, similar in spirit to
the stabilizer representation [127]). Ref. [[128]] showed that
by realizing Fock states as an approximate superposition of co-
herent states, a scaling equivalent to qubit systems, O(2n), can
be achieved in the linear optical setting, for computing transi-
tion amplitudes. Moreover, such an approach is in many cases
trivially parallelizable, since each coherent state in the repre-
sentation can be updated independently of the others.

Unitary designs provide a systematic way to approximate
Haar-random unitaries [129] and have a multitude of applica-
tions in quantum computing such as randomized benchmarking
[130], classical shadow tomography [131], etc. In a recent work
by the NASA team, the structure of unitary designs in photonic
architectures was investigated [[132]]. Linear optical unitaries
can only form a 1-design and are limited in their capabilities for
various applications that requite t ≥ 2-designs. It was proven
that adding a single ‘SNAP’ gate to the group of linear optical
unitaries transforms them into a universal gate set for quantum
computing and hence allows for the realization of arbitrary t-
designs in these systems. However, the structure of linear optics
is such that the SNAP gate is a nonlinear interaction, which is
necessarily probabilistic. Understanding the cost of these non-
linear operations is an interesting research direction for the fu-
ture.

5.3. Quantum Computing Benchmarking
As part of the effort to measure the performance of quantum

computing algorithms, it was necessary to provide a set of

benchmarking instances representative of various features of
application problems and analysis tools able to synthesize
the results in a way that makes them interpretable for users
and developers of these computational tools. As highlighted
throughout the manuscript, the Hamiltonian formalism pro-
vides a well-suited way of incorporating practical applications
for quantum computers. Addressing this challenge is also an
active area of research that is currently being pursued, and an
initial contribution has been the release of the library of Hamil-
tonians, HamLib [[133]]. HamLib provides several hundreds
of Hamiltonians representing instances of computational prob-
lems such as binary variable optimization, including MaxCut,
Max-k-Cut, and QMaxCut; discrete variable optimization in-
cluding the Max-k-SAT and the traveling salesperson problem;
condensed matter physics models, including the transverse
field Ising model, the Heisenberg model, Fermi-Hubbard
model, Bose-Hubbard model; and problems in chemistry such
as molecular electronic structure and molecular vibrational
structure problems. This work aims to provide researchers
with prepared and mapped problem instances, which allow
for reproducibility and standardization in research studies and
further tests and developments of quantum algorithms.

Among these tests, Ref. [[134]] showcases a collaborative
effort focused on using optimization applications as quantum
performance benchmarks. In this work, the canonical instances
of MaxCut were considered and addressed via QAOA, imple-
mented in different hardware realizations of qubits, including
superconducting and ion qubits and classical simulations, and
QA implemented in D-Wave quantum annealers. This work
highlights the differences in performance between these algo-
rithms and hardware implementations and provides an example
of performance benchmarking of quantum computers by ad-
dressing an application.

To facilitate the benchmarking analysis, our team has also
been working on implementing analysis tools, drawing inspira-
tion from classical optimization and optimization research. By
considering parametrized stochastic optimization solvers as a
mathematical framework able to describe QA and QAOA solu-
tion methods, among other classical and quantum approaches
to optimization, a set of analytical techniques was developed
to visually inform about the solver performances and aid in the
parameter tuning procedure. The benchmarking method is de-
scribed in Ref. [[135]] and its implementation is available in
Ref. [[136]].

5.4. Noise Modeling and Characterization
The modeling and characterization of noise in near-term

quantum computational devices are critical to aid in the de-
sign of such devices, with the aim of achieving fault tolerance.
One key aspect to this is using the right metric; whilst full-scale
state or process tomography would provide, in principle, all in-
formation about a system, it is intractable at modest sizes. It
is, therefore, necessary to design metrics that distill the relevant
information from the state/process but are still efficiently acces-
sible experimentally. A common metric is the average fidelity;
the overlap of the evolved state with the ideal target state, uni-
formly averaged over all initial states. However, this fidelity is
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only a single element in the 4n×4n process matrix describing the
noisy evolution. In [[137]], it was shown that averaging initial
states non-uniformly allows for a fidelity metric that is deter-
mined by many elements of the transfer matrix. Thus, it can
capture additional properties that the standard average fidelity
is blind to.

Related to this discussion, in [[138]], it was shown that ap-
proximations of global noise channels to local ones allow for an
efficient protocol to extract the noise parameters of the process
matrix. This work was targeted at repetitive circuits, such as
QAOA, where the noise after each round can be estimated, with
an experimental demonstration using Rigetti’s quantum proces-
sor.

Additionally, noise specifically in QAOA was studied in
[[139]], which gave analytical predictions of performance in
the presence of local gate noise. This work additionally studied
the trade-off between deeper circuits, which ideally do better at
optimizing the cost function, but at the expense of more noise
acting in the system, which tends to do the opposite.

Another aspect restricting quantum control are frequency
fluctuations. In particular, low frequency (such as 1/ f or
other temporally correlated) noise has been analyzed [[140]]
in terms of noise statistics in a repetitive sequence of Ramsey
pulses. Moreover, the same Ramsey protocol can be exploited
in the nonergodic limit of the noise (shorter than the correlation
length) [[141]] to provide supplemental properties of noise, that
are otherwise washed out at in the ergodic regime. Work led by
the Google Quantum AI team [[142]] showed experimentally
that non-Gaussianity in low-frequency noise can be observed in
superconducting qubits, by performing dynamical decoupling
(DD) sequences. Additionally, in [[143]] the QuAIL team
worked with Rigetti to use DD to characterize undesired
two-qubit couplings as well as the underlying single-qubit
decoherence and in suppressing them. A syncopated DD
technique is developed that protects against decoherence and
selectively targets unwanted two-qubit interactions.

5.5. Quantum Error Correction and Mitigation
Quantum error correction (QEC) threshold theorems show

that increasing the size (distance) of a QEC code can enable ar-
bitrarily small logical error rates. However, a low enough (code
dependent) physical error rate is required in order to guarantee
one is in this regime; otherwise the additional qubits can ac-
tually cause the logical error rate to increase. It was therefore
a remarkable result by Google Quantum AI (with assistance in
noisy simulations from NASA) in 2023 that showed experimen-
tal evidence of a logical error rate reduction by going from a
distance 3 to distance 5 surface code [144], a necessary step in
the path towards fault tolerance.

One of the remarkable advances in error correction in re-
cent years was the discovery of Floquet codes with dynamical
logical qubits. In these codes, the protected subspace changes
dynamically, with the logical information updating so as to re-
main in the protected subspace. The first examples of such
codes were honeycomb codes, with the techniques generaliz-
ing to trivalent lattices. Recently, members of the QuAIL team
developed a Floquet code on a rectangular lattice [[145]].

In [[146]], logical shadow tomography (LST), a error-
mitigation technique that is inspired by the QEC theory
and more suitable for implementation on near-term quantum
computers was developed. LST is a technique to estimate error-
mitigated expectation values on noisy quantum computers. The
framework is a marriage and generalization of two powerful
error mitigating methods: the subspace expansion and virtual
distillation. Our technique performs shadow tomography
on a logical state to produce a memory-efficient classical
reconstruction of the noisy density matrix. Using efficient
classical post-processing, one can mitigate errors by projecting
a general nonlinear function of the noisy density matrix into
the code space. The method was shown to be favorable in
the quantum and classical resources overhead. Our technique
requires reasonable number of samples, O(4k), to estimate a
logical Pauli observable with [[N, k]] error correction code.
Relative to virtual distillation, this technique can compute
powers of the density matrix without additional copies of
quantum states or quantum memory.

In [[147]] we introduced a new classical shadow tomog-
raphy protocol based on dual-unitary brick-wall circuits that
we termed “dual-unitary shadow tomography” (DUST). We
first showed that even at the 2-qubit level, dual-unitaries
outperform random Clifford unitaries in that they have a
smaller shadow norm (and hence require fewer samples to
estimate observables). This is intimately related to the fact
that dual-unitary circuits have maximal operator entanglement
while random Clifford circuits do not. We generalize this
observation to the multiqubit case and by using a transfer
matrix method, show that the fast-thermalizing properties
of dual-unitary circuits make them better at predicting large
operators compared to shallow brick-wall Clifford circuits.
In fact, DUST outperforms standard Clifford shadows at any
depth t for predicting extensive observables, and this effect is
even more pronounced for small system sizes.

In recent work [[148]], an error mitigation method for
certain realistic noise models that can be applied given partial
knowledge of noise to achieve lower biases than typically
possible with other methods was presented. Subspaces that
decay uniformly were obtained and used to perform error
mitigated quantum computation. The expectation values of
dynamics encoded in such subspaces are unbiased estimators
of noise-free expectation values. This theory was applied to a
system of qubits and qudits undergoing relaxation with varying
decay rates and show that such subspaces can be used to obtain
unbiased estimation of the true expectation value up to second
order variations in the decay rates. Given varying decay rates,
this method was implemented in analog and circuit-model
settings, improving on dual-rail qubits, and given partial
knowledge of noise, show that it can outperform probabilistic
error cancellation.

5.6. Pulse Control
Together with colleagues at the University of Michigan and

Argonne National Lab, the application of various classical opti-
mization techniques to pulsed or bang-bang controls for quan-
tum problems was studied. This work originally focused on
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various classical methods applied to the quantum control set-
ting [[149]] but has been expanded to considering new heuris-
tics for reducing the number of control switches [[150]] and to
considering unitary control errors [[151]]. This work all relies
on a continuous relaxation of the control problem, followed by
various techniques for rounding and fixing the controllers to be
binary pulses, akin to what would appear in QAOA. Constraints
on the length of the pulses and the switching time are also con-
sidered and incorporated into this framework. Combinations of
various classical techniques are used in attempts to improve on
performance while satisfying physical and noise constraints on
the system. These techniques are applied to toy problems, such
as minimizing the energy of a transverse field Ising model, com-
piling quantum circuits, and constructing quantum gates from
physical controllers.

In [[152]], the problem of co-designing algorithms on
novel Circuit Quantum Electrodynamics (cQED) architectures
enabled by 3D superconducting radio-frequency cavities such
as those developed at SQMS [[153]] is tackled numerically.
This is accomplished by setting up a pulse-engineering ap-
proach to compiling the primitive gates of QAOA in qudit
systems. The customized use of the juqbox quantum optimal
control package allowed the synthesis of a single round of
the Max-k-Cut QAOA algorithm for arbitrary parameters at
high-fidelity, on a realistic noiseless model describing the
Hamiltonian of one or two cavity modes. In subsequent work,
other SQMS researchers generalized the model including the
effect of additional modes [154].

5.7. Generating Hard Problem Instances
With the development of more competitive classical [71],

quantum [105, 113, 155], or “quantum-inspired” [156, 157]
heuristics, it is becoming of utmost importance to identify
classes of instances which are well suited to transversally
benchmark such devices. While it is well known that random
instances have a hardness threshold [158, 159, 160, 161],
it is a major challenges to designing planted problems with
known solutions which are hard to optimize: indeed, planting
a desired solution may affect the energy landscape of the
instance, making it more convex and therefore easier to
explore. In the past few years, multiple planting methods
have been developed, including “quiet” planting techniques
[162, 163, 164, 165, 166, 167], “patch” planting [168, 169],
and the use of cryptographic protocols [[170]]. Hard instances
can also be generated from more practical applications such
planning problems [171].

Ref. [[170]] proposed a novel way of randomly generating
hard instances of disordered Ising Hamiltonians with unique
planted ground states by casting the public key of the McEliece
cryptographic protocol [172] as an interacting system of
Ising spins, so that finding the ground state of the resulting
Hamiltonian is equivalent to breaking the associated McEliece
cryptosystem by only knowing its public key, while the private
key allows a party who knows it to recover the planted ground
state. Thanks to this equivalence, the security of the McEliece
cryptosystem in the typical case is leveraged in order to produce
Ising Hamiltonians whose ground state is computationally hard

to find. Secondly, by using mathematical methods originating
in the statistical physics of disordered systems (see [173]
for an accessible introduction) the authors have studied in
simplified settings the effect of random energy scrambling on
easy-to-optimize energy landscapes, following the notion that
in the McEliece cryptosystem the public and the private keys
are connected through random permutations. It was shown that
the energy-scrambling can introduce a phenomenon known
as “clustering” into the energy landscape of the Hamiltonian:
close enough to the ground-state, the states with a given energy
density organize themselves in well-separated groups (i.e.
“clusters”), indicating a complicated geometry for the energy
landscape of the kind that common local-search heuristics find
it difficult to explore.

In an effort to provide a unified cross-platform framework
for generating random instances with planted solutions,
Ref. [[174]] devised chook, an open-source and user-friendly
library to generate random instances with known solutions
and tunable hardness. chook is designed to be extensible and
updated to include new developed planting methods. At the
time of writing, chook includes generators such as the Wishart
planting [175], equation planting [176], deceptive cluster loop
planting [[73]], as well as planted solutions for higher-order
(beyond quadratic) binary optimization problems.

5.8. Randomized Benchmarking

Randomized benchmarking (RB) is a powerful method
for determining the error rate of experimental quantum gates
[130]. As a resource-efficient alternative method to quantum
process tomography, RB also provides an estimate for the
average fidelity that is independent of state preparation and
measurement (SPAM) errors. RB characterizes gates that form
a group G that form a unitary 2-design in a resource-scalable
fashion. Character RB can benchmark more general gates
using techniques from representation theory but has only been
explored for “multiplicity-free” groups. In the work of [[177]],
the character RB theory to explicitly treat non-multiplicity-free
groups was developed. Our rigorous derivations enabled us to
provide conditions under which instantiations of the framework
yield practical RB protocols. This generalized approach with
applications to three distinct situations of practical interest:
benchmarking of gates with subspace-preserving properties,
characterization of leakage, and benchmarking of the match-
gate group was demonstrated. In all three cases, compared to
existing theories, our method requires similar resources but
either provides a more accurate estimate of gate fidelity or
applies to a more general group of gates.

While the structure of unitary 2-designs for multiqubit sys-
tems is well understood by now, little is known about exact 2-
designs for multiqudit systems, especially for non-prime-power
dimensions [178, 179, 180]. In an upcoming work, a class
of weighted state 2-designs for qudits in arbitrary dimensions
[[181]] that allow us to devise several new protocols for RB,
shadow tomography, etc., in various qudit architectures.
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5.9. Master Equation Emulation

Prior work by Marshall et al. in [[182]] led to an experi-
mental implementation from the Levenson-Falk group at USC,
showing a high degree of control of a non-Markovian mas-
ter equation using superconducting qubits [[183]]. It was fur-
ther demonstrated, as predicted in [[182]], that introducing non-
Markovian noise to a Markovian bath can actually, somewhat
counter intuitively, increase the coherence time of a qubit.

6. Mechanisms for Quantum Computation

This section describes a broad set of topics of a more ad-
vanced nature, often of a more fundamental nature all generally
related to quantum information and its ties to quantum compu-
tation. Most of this work is more theoretical in nature, such as
work on the spread of information through a quantum system
or on how basis dependent properties interact during quantum
evolution. There are also more practical focuses such as how to
design logic gates and to translate quantum effects into equiv-
alent classical enhancements and architectures for large scale
quantum computing. We begin with a discussion of work re-
lated to fundamentals of quantum theory and the use of a quan-
tum computer in testing the boundaries of quantum theory.

6.1. Wigner Friend Scenario

Bell’s theorem enable tests of quantum theories that later
underpinned quantum information processing. As mentioned in
Sec. 2.2, it gives rise to entanglement witnesses which are one
way of investigating quantum entanglement in quantum states,
including those arising at each stage of an algorithm or proto-
col. Recently, researchers realized that the Wigner friend sce-
nario, an equally intriguing but less known thought experiment
than Schrödinger’s cat, can be extended to give rise to new in-
equalities, local friendlienss inequalities, that have weaker as-
sumptions than those in Bell’s theorem. These inequalities pro-
vide new experimental horizons, extending from an already re-
alized proof-of-principle experiment in which a single photon
plays the role of Wigner’s friend to a full experiment involving a
quantum computer running a human-level artificial intelligence
with a requirement of space-like separation between the par-
ties of the distance between the moon and earth or more. In
[[184]], Rieffel together with two Australian colleagues esti-
mated the resources for this full experiment and helped refine
the statement of a new “local friendliness” theorem. While both
a sufficiently large and robust quantum computer and a human-
level AI have not been realized today, they appear technically
feasible within the next decades. The full experiment provides
a challenging target, with related nearer-term feasible experi-
ment targets that test the boundaries of quantum theory being
explored.

6.2. Information Scrambling

Information scrambling is a fundamental mechanism by
which closed, interacting quantum many-body systems spread
information throughout their nonlocal degrees of freedom

[185, 186]. Scrambling phenomena often underlies meth-
ods to demonstrate and benchmark quantum computational
capabilities. While typically characterized via the decay
of “out-of-time-ordered correlators” (OTOCs) [187], this
delocalization manifests itself via two distinct processes: (i)
“operator spreading,” which corresponds to the increasing
support of local operators under Heisenberg evolution [188]
and (ii) “operator entanglement generation” which represents
the increasing complexity of Heisenberg-evolved operators,
quantified via the inability to express them as a simple tensor
products of local operators [189].

The dynamics of operator spreading and operator entan-
glement growth have turned out to be crucial in understand-
ing minimal models of quantum chaos such as “dual-unitary
circuits” [115] and “Sachdev-Ye-Kitaev” (SYK) type models
[187], as well as simple models for the black hole information
paradox such as the Hayden-Preskill protocol [190]. Beyond
these somewhat exotic applications, these two mechanisms are
also intimately related to classical simulability of quantum dy-
namics [191]. For example, in local Hamiltonian systems on
a lattice, operator spreading is controlled via Lieb-Robinson
(LR) bounds [192], which provides an estimate for the max-
imal locality one needs to consider in order to approximate
Heisenberg-evolved operators well. In Ref. [[110]], LR bounds
were used to introduce a “lightcone filter” which allowed them
to improve experimental accuracy in measuring OTOCs. In
contrast, operator entanglement is a nonlocal observable that
does not directly follow such a (exponential) bound. However,
in the same spirit as above, the growth of operator entangle-
ment is directly related to the simulability of Heisenberg opera-
tors via a matrix product operator (MPO) representation [191].
This simulation cost shows up in tensor network contraction ap-
proaches to classically simulating quantum dynamics [[193]].

In a work led by the Google Quantum AI team, both opera-
tor spreading and operator entanglement growth were observed
in a 53-qubit superconducting quantum processor [[110]]. This
demonstrated a high degree of control, verified by classical sim-
ulations from the NASA QuAIL team. They considered two
different classes of random unitaries (by either using SWAP
gates or

√
SWAP gates) to experimentally realize different rates

of operator spreading and operator entanglement growth. Fur-
thermore, they introduced models to simulate the growth of
OTOCs in large-scale systems. A key observation here was that
the classical resources required to simulate operator growth are
much tamer compared to those required for simulating operator
entanglement, consistent with previous numerical and analyti-
cal studies.

These experiments have motivated further study on the
connection between OTOCs and operator entanglement,
which was rigorously established in Ref. [[194]]. A series of
works generalized this connection to open quantum systems
[[195]] and systems at finite temperature [[196]], and placed
it in an operator algebraic framework [[197]]. Building on
these theoretical and experimental advances, the QuAIL
team along with researchers at USC, further generalized
these results to include non-Hermitian Hamiltonians, which
typically violate LR bounds, and represent effective models for
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measurement-induced phase transitions [[198]].

6.3. Stoquasticity

Stoquasticity and the sign problem are related to the diffi-
culty of classically simulating quantum phenomena. A problem
or Hamiltonian with no sign problem is simulatable using clas-
sical Monte Carlo techniques, but when a sign problem occurs,
the pseudo-probabilities in the quantum Monte Carlo technique
start oscillating rapidly between positive and negative, leading
to an exponential slow down in the integration/averaging. The
sign problem occurs in most quantum Hamiltonians, but sto-
quastic Hamiltonians are a notable class where no sign prob-
lem occurs. Stoquasticity is a basis-dependent property of the
Hamiltonian and is characterized by the Hamiltonian being rep-
resented by a matrix whose off-diagonal entries are all non-
positive.

When a single Hamiltonian is being simulated, a stoquas-
tic basis always exists (e.g., the eigenbasis of the Hamiltonian),
but finding a stoquastic (or more generally a sign problem free)
basis, also known as “curing” the sign problem is an NP-hard
task [199]. However, some quantum algorithms, such as quan-
tum annealing and QAOA are characterized by the interplay
and evolution under two distinct and non-commuting Hamilto-
nians. In Ref. [[200]], the question of whether a single basis
exists under which multiple Hamiltonians are stoquastic was
explored. If such a basis, coined the “simultaneous stoquastic”
basis exists, then it would be possible to simulate a quantum
annealing or QAOA task using Monte Carlo techniques with
no sign problem. Our results, based off the theory of unitary
similarity, show that for any given set of Hamiltonians of size
d ≥ 2 and dimension N > 2, the probability that a simultane-
ously stoquastic basis exists is vanishingly small. Furthermore,
a simple no go result for testing this based off the commutator
of the Hamiltonians was provided. This could potentially have
further applications in the computational complexity of simu-
lating such Hamiltonian processes where no such basis exists.

6.4. Relaxation Mechanisms in Quantum and Classical
Transverse-Field Annealing

Prior work in Ref. [[201]] showed that strategically intro-
ducing a pause in a quantum annealing schedule can increase
the performance by several orders of magnitude. In that work,
it was posited that thermal relaxations were occurring during
the pause after excitations from driving through the minimum
gap. A follow-up study in [[202]] showed that the same be-
havior could be found in a purely classical analog of quantum
annealing (SVMC), thus providing more insights into the origin
of this effect (i.e., it is not a uniquely quantum phenomenon).
This work also gave a general condition on pausing for it to
yield an improvement agnostic to the particular system.

6.5. Acceleration of Quantum Tunneling in Spin Systems

Expanding on the original work on Random-Frequency
Quantum Annealing (RFQA) [203], the QuAIL team and their
collaborators have explored ways of mitigating the decay of
performance in currently-available quantum annealers caused

by minor embedding. The freezing of the physical qubit
chains that represent logical qubits is suppressed by adding
independently oscillating local fields with a distribution of
frequencies to the usual transverse-field annealing setup. This
off-equilibrium process allows a chain to escape its frozen state
via a quantum tunneling event induced by the proliferation
of weak resonances introduced by the oscillatory fields, thus
reducing the effect of frozen chains. This was studied in
[[204]] using the 1D transverse-field Ising chain as a model for
a chain of spins used in the embedding of logical problems. A
follow-up work [[205]] designed to shed light on the physics
behind this process showed how the same results can be
engineered in a driven Floquet system, where additional fields
oscillate with the same frequency. Moreover, it uncovered
the existence of some novel off-equilibrium phenomenology
of these physical systems. Using the Transverse-Field Ising
models (TFIM) in 1D and 2D as testing grounds, the authors
showed three off-equilibrium regimes as a function of the drive
strength: for weak drives, the system exhibits exponentially
decaying tunneling rates but robust magnetic order, typical
of the (undriven) dynamics in the ordered phase of models
exhibiting spontaneous symmetry breaking such as the TFIM.
In the crossover regime at intermediate drive strength, one
observes polynomial decay of tunneling alongside vanishing
magnetic order, and at very strong drive strengths both the Rabi
frequency and time-averaged magnetic order are approximately
constant with increasing system size.

6.6. Engineering Topology

Exotic topological states of matter such as the non-Abelian
anyons exhibit braiding statistics foundational to topological
fault-tolerant quantum computation and can emerge in systems
displaying the fractional quantum Hall effect (FQHE). Topolog-
ically non-trivial bands when made flat (degenerate) can lead to
FQHE states. In recent work by Suri et al. [[206]], a method to
create bands with higher order topology which is not possible
to obtain otherwise for example by a simple magnetic field was
proposed. Such higher order topological bands when made flat
can lead to potentially more exotic non-Abelian anyons useful
for quantum computation.

6.7. Compilation approaches

Compiling quantum circuits to realistic hardware archi-
tectures generally involves two steps, circuit routing and gate
synthesis. In [[207]], earlier work, [[208]], was extended,
which recognized that routing could be viewed as temporal
planning task, and thus state-of-the-art temporal planners
applied, to route circuits that implement QAOA for Graph
Coloring problems. On the gate synthesis side, Ref. [[209]],
studied the case of single qubit quantum compilation and
state preparation by modeling the task as a Markov Decision
Process, and solving it using dynamical programming methods.
This work demonstrates that classical reinforcement learning
techniques can produce shorter gate sequences than have been
identified before, and can also generate gate sequences that
work well in the presence of noise. These results represent an
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important advance in methods for quantum compilation that
work in the presence of the physical constraints of NISQ-era
hardware.

6.8. Quantum Computing Architectures

Quantum algorithms are usually framed in terms of qubits
in the gate based circuit model. Physical realizations of qubits
take the form of several different implementations, such as su-
perconducting hardware, trapped ions, neutral atoms etc. Re-
cently, advances on the experimental side have opened the av-
enue to control the quantum state of superconducting cavity
modes coupled to a qubit-like transmon. In the Fock basis, this
in turn enables the control and manipulation of qudits, larger
dimensional analogues of qubits. In [[153]], it was describe
how such a platform may be realized through 3D supercon-
ducting radio frequency (SRF) cavities, which typically have
large Q factors. Several algorithms of interest in high energy
physics (HEP) involve bosonic degrees of freedom, which are
often more easily mapped onto qudits rather than qubits.

A potentially promising approach for assembling future
large scale-quantum computers is discussed in [[210]]. Here a
modular solid state architecture with deterministic inter-module
coupling between four physically separate integrated chips is
described, and the quality of the inter-module entanglement
is confirmed by a demonstration of Bell-inequality violation
for disjoint pairs of entangled qubits across the four separate
silicon dies.

7. Future Outlook

Many industry, government, and academic groups have
ambitious programs to increase the size and improve the
robustness of quantum processors. For the next several years,
however, a gap will remain between the capabilities of the
hardware and the capabilities needed to run quantum and
quantum-classical algorithms at application-scale. While
performing spectacular one-off experiments are tempting, the
field will advance by prioritizing experiments and theory that
inform efforts to reach application scale in a robust, repeatable
way. The challenges that remain are significant enough to
require broad collaborations and open sharing of information.

As the hardware matures, we will have increasing opportu-
nities for exploration of algorithms, significantly beyond what
has been possible up to now. For many of the most compu-
tationally intensive state-of-the-art practical algorithms, perfor-
mance must be evaluated empirically – theoretical analysis is
just too hard. For this reason, there are machine learning, SAT,
and planning and scheduling competitions with sets of chal-
lenge problems on which algorithms can compete empirically,
and within industry and government, heuristic algorithms, with-
out proofs of their performance, are frequently used to attack
practical problems. Currently, evaluation of the performance
of quantum algorithms is restricted to small cases, given the
size and non-robustness of current quantum processors and that
generically there is exponential overhead in simulating quan-
tum algorithms on classical computers, quickly exceeding the

capabilities of even the world’s largest supercomputers. While
the size and robustness of quantum processors are expected to
improve steadily in the coming years, they will remain resource
limited in the next decades. Algorithm-hardware co-design will
be critical to reap the most benefit from hardware advances.

Co-design is also needed between hardware and error mit-
igation, error correction, native gate choices, and compilation
of quantum algorithms to native gates. Next generation quan-
tum systems will provide information that will enable richer
error models. These models will inform error correction which
can in turn inform hardware design priorities and architecture
choices. As quantum computers scale up, they will necessar-
ily involve multiple QPUs, first resembling clusters and then
supercomputers, but with quantum as well as classical proces-
sors, where the classical processors will not only be used for
control of quantum processors, but also for decoding as part of
error correction, and often as co-processors in hybrid quantum-
classical algorithms. We expect research into future HPC sys-
tems and quantum systems to mutually inform each other. Fur-
ther research directions include understanding the space of ar-
chitectural designs and co-designing distributed algorithms, er-
ror correction layers, and classical and quantum communication
and synchronization with architectural choices. It is an open
question how heterogeneous these quantum computers will be.
It is possible that they will include multiple types of quantum
processors, superconducting, ion-trap, photonic, neutral atom,
etc., and will likely include a variety of specialized quantum
components such as quantum memory or magic state facto-
ries or special-purpose quantum processors for, say, quantum
Fourier transforms. Specialized quantum processors that have
less stringent requirements than universal quantum computers
could potentially be built more easily and put to use earlier than
universal processors. Resource estimation for specific problems
of application interest, including resource estimates for newly
considered problems to improved estimates for already identi-
fied problems, will help guide hardware, error correction, and
architectural priorities.

Quantum computing is one of the most enticing compu-
tational paradigms, with the potential to revolutionize diverse
areas of future-generation computational systems. The NASA
QuAIL team looks forward to continuing to advance the under-
standing of the potential of these systems in collaborations with
others in this diverse field. We hope this glimpse of the variety
of the current research and the many open areas will further
entice both young people at the beginning of their careers and
professionals in adjacent fields to join this fascinating effort.
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9. About the NASA QuAIL Team

The mandate of the NASA’s Quantum Artificial Intelligence
Laboratory (QuAIL), located at NASA Ames in the heart of
Silicon Valley, is to assess and advance the potential impact
of quantum computers on computational problems that will be
faced by NASA missions in decades to come. QuAIL team
members, physicists, computer scientists, mathematicians, and
engineers, come from a wide variety of backgrounds with com-
plementary expertise that supports the interdisciplinary nature
of quantum computing research. The team has strong collabo-
rations with application domain experts in and outside NASA.
QuAIL is a theory and numerical group that has forged close
collaborations with groups implementing quantum hardware.
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[154] D. Xu, A. B. Özgüler, G. Di Guglielmo, N. Tran, G. N. Perdue, L. Car-
loni, F. Fahim, Neural network accelerator for quantum control, in:
2022 IEEE/ACM Third International Workshop on Quantum Comput-

ing Software (QCS), IEEE, 2022, pp. 43–49. doi:10.1109/QCS56647.
2022.00010.

[155] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S. Rosenblatt,
H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, et al., Evidence for the utility
of quantum computing before fault tolerance, Nature 618 (2023) 500–
505. doi:https://doi.org/10.1038/s41586-023-06096-3.
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[167] G. Sicuro, L. Zdeborová, The planted k-factor problem, Journal of
Physics A: Mathematical and Theoretical 54 (2021) 175002. doi:10.
1088/1751-8121/abee9d.

[168] I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer, D. A. Lidar, Prob-
ing for quantum speedup in spin-glass problems with planted solutions,
Phys. Rev. A 92 (2015) 042325. URL: https://link.aps.org/

doi/10.1103/PhysRevA.92.042325. doi:10.1103/PhysRevA.92.
042325.

[169] J. Marshall, V. Martin-Mayor, I. Hen, Practical engineer-
ing of hard spin-glass instances, Phys. Rev. A 94 (2016)
012320. URL: https://link.aps.org/doi/10.1103/PhysRevA.
94.012320. doi:10.1103/PhysRevA.94.012320.
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