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We provide practical simulation methods for scalar field theories on a quantum computer that
yield improved asymptotics as well as concrete gate estimates for the simulation and physical qubit
estimates using the surface code. We achieve these improvements through two optimizations. First,
we consider a different approach for estimating the elements of the S-matrix. This approach is
appropriate in general for 1+1D and for certain low-energy elastic collisions in higher dimensions.
Second, we implement our approach using a series of different fault-tolerant simulation algorithms
for Hamiltonians formulated both in the field occupation basis and field amplitude basis. Our
algorithms are based on either second-order Trotterization or qubitization. The cost of Trotterization

in occupation basis scales as Õ(λN7|Ω|3/(M5/2ϵ3/2) where λ is the coupling strength, N is the
occupation cutoff |Ω| is the volume of the spatial lattice, M is the mass of the particles and ϵ is the
uncertainty in the energy calculation used for the S-matrix determination. Qubitization in the field

basis scales as Õ(|Ω|2(k2Λ + kM2)/ϵ) where k is the cutoff in the field and Λ is a scaled coupling
constant. We find in both cases that the bounds suggest physically meaningful simulations can be
performed using on the order of 4 × 106 physical qubits and 1012 T -gates which corresponds to
roughly one day on a superconducting quantum computer with surface code and a cycle time of 100
ns, placing simulation of scalar field theory within striking distance of the gate counts for the best
available chemistry simulation results.

I. INTRODUCTION

Quantum simulation has been one of the great success stories of quantum computing [1–5]. It has led to the real-
ization that non-relativistic quantum mechanics can, under most physically reasonable assumptions, be simulated in
polynomial time on a quantum computer. Further, recent work in chemistry has shown that physically meaningful
problems can be simulated using fewer than a million physical qubits and a few hours worth of compute time [6]. In
contrast, there have been numerous classical methods developed to simulate quantum field theories (QFT), with the
state of the art approaches summarized in [7]. However, even sign-problem free approaches relying on Hamiltonian
representations [8, 9], require an exponential number amount of resources [10]. This opens up the possibility that
quantum computing may provide the only means possible for us to numerically simulate some of the most challenging
problems in quantum field theory [11–15]. Despite these advances, we do not yet know whether all physically mean-
ingful quantum field theories can be efficiently simulated, nor are there at present detailed estimates of the memory
and number of quantum operations required to perform quantum simulations of field theories.

The seminal work of Jordan, Lee and Preskill (JLP) [16, 17] provided a major step towards addressing the question
of whether quantum computers can efficiently simulate quantum field theory algorithms that are capable of simulating
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scattering events for scalar ϕ4 theory. In addition to describing aspects of the dynamics and couplings of the Higgs
boson in the standard model, ϕ4 theory is an excellent model field field theory that captures non-trivial features of
the dynamics of the other fundamental quantum fields in the standard model. Even in 1+1D, classical ϕ4 theory has
non-trivial bound states described by kinks and anti-kinks. The theory also contains stationary topological solitons
that are periodic in time, known as “breather”-modes [18], providing insight into the nonlinear dynamics of domains
walls in fields ranging from condensed matter to cosmology [18]. Further, at the very high energies now accessible at
colliders, as exemplified in the parton model of Feynman and Bjorken [19, 20], scattering processes involving fermions
or bosons become alike. Thus, the study of the ϕ4 scalar field theory, at high energies, provides some insight into the
dynamics of more phenomenologically rich theories, which are harder to directly simulate.

The JLP [16, 17] proposal focused on computing the elements of the Scattering Matrix, or S-matrix, that describes
the entire information content of a scattering process in quantum mechanics and, more generally, in quantum field
theory. Specifically, the S-matrix describes how free fields of a theory at asymptotic time T = −∞ evolve through the
scattering process into either the same or other asymptotic free states of the theory at time T = ∞. The S matrix
thus allows one to predict scattering cross-sections, which represent the probability of a scattering event at a given
impact parameter, which is then be integrated over a range of impact parameters. The computation of in-vacuum
to the out-vacuum transitions embedded in the S matrix is, for 1 + 1 dimensions, promise-BQP complete. This
means that if an arbitrary quantum computation can be thought of as such a scattering experiment, and if a classical
computer could efficiently compute these matrix elements, then quantum computers would be no more powerful than
probabilistic classical computers. In the language of complexity theory, BQP= BPP.

The computation of the entire S-matrix of a QFT is exponentially difficult, although specific matrix elements
can be computed within additive error in polynomial time on a quantum computer. In [16] the authors provide
a quantum algorithm for computing such matrix elements by directly performing a simulation and computing the
overlaps between the outgoing distribution and the incoming one. They approximate the solution by preparing well
separated wave packets, allowing them to evolve in time and scatter, and then measuring the resulting products of
the scattering.

Since the original work of Jordan, Lee and Preskill, quantum simulation algorithms have undergone a mini revo-
lution. The central problem in quantum simulation algorithms is to translate the unitary time dynamics of a closed
quantum system into a sequence of quantum gates that, up to small approximation error, implements the unitary.
At the time of the original JLP result, the dominant form of quantum simulation were product formulas [2, 3, 16]
which approximate a complicated time-evolution operator as a product of simple time-evolution operators (which are
often so simple that they can be synthesized from scratch into elementary gates. Since then a host of new meth-
ods have been developed for performing simulation; amongst these, qubitization [5, 21] has emerged as a leading
non-Trotter based simulation approach. Neither of the two methods is believed to fully advantageous relative to the
other. Qubitization provides provably optimal scaling in worst case scenarios but is inflexible and is not suited to
take advantage of commutation relations between terms. Product (Trotter) formulas are the opposite in this regard:
they take advantage of small commutators but fail to achieve optimal scaling in the worst case scenario.

Subsequent work has provided a number of optimized methods for simulating various aspects of ϕ4 theory [11, 22].
There have also been considerable progress for various other field theories [23–25].However, at present we still do not
know whether there exist practical simulation algorithms for these methods in the sense that we do not yet know
whether it is possible to perform such simulations using a reasonable number of gate operations and physical qubits
on surface-code based quantum computers.

A. Our Contributions

We provide a cost-analysis of fault tolerant calculation of scattering matrix elements using fixed volume methods
for scalar ϕ4 theory in this paper that is appropriate in general for 1+ 1D and for certain low-energy elastic collisions
in higher dimensions. We achieve this through two main contributions. First, we propose an alternative approach
to JLP [16] by which we are able to readily extract values of the S-matrix through the measurement of multi-
particle energies in finite volume. These techniques can also be applied in certain cases to elastic collisions in higher
dimensions. Specifically, we discuss below (specifically in Claim 1) that direct calculation of the elements of the
S-matrix is not often needed and the low-lying eigenvalues of the field Hamiltonian can be used to estimate, under
specific circumstances, values of the S-matrix that would otherwise be impractical to compute directly as per [16, 17].
We implement our approach using a series of different fault tolerant simulation algorithms, which form the second

major contribution of this paper. We consider primarily Hamiltonians formulated both in the field occupation basis
and field amplitude basis. The occupation basis Hamiltonian is simulated with a Trotterization algorithm, while
for the amplitude basis one we describe four simulation procedures - one with Trotterization, and the three others
with modern qubitization methods. These qubitization approaches are optimized through our introduction of new
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Algorithm Qubit # T gate # Reference

Occ. Trotter O
(
N |Ω|+ log

(
λN
MϵE

))
O

(
λN7|Ω|3

M5/2ϵ
3/2
E

log
(
λN|Ω|

MϵE

))
Theorem 12

Amp. Trotter O

(
|Ω| log(k) + log2

(
|Ω|Λk(Λk+M2)

ϵE

))
Õ

(
|Ω|3/2

√
Λ2k5+ΛM2k4 log4(k)

ϵ
3/2
E

)
Theorem 21, Lemma 37

Amp. Qubitized I O

(
|Ω| log k + log2 k + log

(
|Ω|[k2Λ+kM2]

ϵE

))
O
(

|Ω|2
ϵE

[
k2Λ + kM2

]
log2 k

)
Theorem 34

Amp. Qubitized IIIa O

(
|Ω| log k + log

[
|Ω|(k2Λ+kM2)

ϵE

])
O
(

|Ω|2
ϵE

[
k2Λ + kM2

] [
log4 k

])
Theorem 34

Amp. Qubitized IIIb O

(
|Ω| log k + log

[
|Ω|(k2Λ+kM2)

ϵE

])
O
(

|Ω|2
ϵE

[
k2Λ + kM2

] [
log2 k

])∗
Proposition 35

TABLE I: Qubit counts and T gate cost scalings for computing ϕ4 scattering matrix elements as a function of the
lattice size |Ω|, the (rescaled) coupling constant Λ and mass M , which hide dependence on the lattice size, the

amplitude cutoff k in the field amplitude basis in units of the bin size, the momentum cutoff N in the occupation
basis, and the target precision in the energy estimate ϵE , which dictates the precision of the S-matrix through

Eq. (33). The Õ notation hides further multiplicative factors at most logarithmic in all variables. (*) For Algorithm
IIIb the estimate on the T-count has been obtained assuming Conjecture 28.

unitary block encodings (implemented through LCU or linear combinations of unitaries approaches [3]) of ϕ, ϕ2 and
ϕ4 operators and in order to reduce the resource cost. Further, the implemented circuits have been optimized with
recent optimization techniques [26, 27]. The Trotterization algorithm in the occupation basis performs optimally
in the non-interacting limit, but is outperformed by qubitization methods (in the amplitude basis) with increasing
interaction strength. However, the main appeal of the occupation basis algorithm is that the basis provides a natural
extension for state preparation and measurement of direct scattering calculations in higher dimensions. In Table I
we have compared the cost of implementing the various algorithms in terms of number of qubits and T-gates used.
Here, we mention that we have implemented our algorithms with the Clifford+T gate set, which is the most popular,
fault-tolerant, universal gate set considered for quantum simulation algorithms [15, 28–30] and affords a wide variety
of exact and approximate unitary synthesis methods [31–36]. At times, it can exactly synthesize useful gates that
could at best be approximately synthesized in other gate libraries [37–39]. The resource overhead in fault-tolerant
implementation of the non-Clifford T gate is the highest in most error-correction schemes, including the surface code.
A bound on the T-count can be can be used as a marker to reflect the complexity of fault-tolerant implementation of
a quantum algorithm[40].

We then consider implementing the Trotter and qubitization based simulation algorithms on top of the surface code
and consider the overheads of magic state distillation in the simulation algorithm. The space-time volume needed to
implement a T gate is expected to dwarf the costs of all other gates by factors of 100 or greater. Our calculations
for surface code costs are based on canonical approaches [40]. This facilitates the translation for others towards any
preferred modern methods, (including those that may exist in future) in the ever-expanding forefront of quantum
error correction [41, 42].

The organization of paper is as follows. In Section II we provide a brief review of the scalar ϕ4 QFT. We specifically
provide derivations of the Hamiltonian for ϕ4 theory in both amplitude and occupation bases. We then discuss how
phase estimation can be used to estimate the scattering amplitude in Section III. We use these techniques in Section IV
to provide quantum algorithms for estimating the elements of the S-matrix (under the assumption of elastic collisions)
in both the amplitude and the occupation basis. This section gives not only the asymptotic scalings required but also
the constant factor analysis needed to estimate the energy within fixed error. Section V contains our analysis of the
implementation of the quantum algorithms using the surface code along with the space-time needs for the simulation.
We finally conclude in Section VI and discuss future applications.

II. REVIEW OF ϕ4 SCALAR FIELD THEORY

In this section we introduce notation for the ϕ4 scalar field theory. In order to simulate scattering processes in the
theory, we need a discrete Hamiltonian representation of the continuum Lagrangian. We provide a concise definition
and derivation of the Hamiltonian in both a field and occupation basis for the field theory. The regimes and limits
where each basis may be ideal are discussed in more detail below.

We begin by considering the free-theory for a scalar bosonic field, denoted by ϕ(x). The first term in our Lagrangian
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density is the free Klein-Gordon Lagrangian given by

L0 =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 =

1

2
ϕ̇2 − 1

2
(∇ϕ)2 − 1

2
m2ϕ2 (1)

where m is the bare mass of the scalar boson field. The corresponding conjugate field is given by the Euler-Lagrange
equations to state

π(x) ≡ ∂L0

∂ϕ̇(x)
(2)

The simplest interaction to consider for this Lagrangian would be a quartic interaction term given by

Lint = λϕ4 (3)

The corresponding Hamiltonian for the theory is given as

H =

∫
ddxH =

∫
ddx

[
1

2
π(x)2 +

1

2
(∇ϕ(x))2 + 1

2
m2ϕ(x)2 + λϕ(x)4

]
(4)

Both formalisms considered here would also extend to interaction terms of arbitrary order ϕα. These higher-order
terms appear in general phenomenological Landau theories of phase transitions in non-relativistic condensed matter
and have rich applications in nonlinear dynamics [18]. In this work however we focus on the ϕ4 term more in the
context of the high-energy community. This interaction is the simplest renormalizable term that is also bounded from
below.

We consider a theory of scalar ϕ4 inside a d-dimensional space confined to the d-cube of side length L, considering
the momentum cut-off = Λ(ϵ), with d

√
|Ω| = P modes in each dimension. For simplicity, we will refer to this volume

region as Ω and we assume that this region is discretized into |Ω| = (L/a)d points with a spacing between each of the
points of a.

A. Field Amplitude Basis

We begin by considering our Hilbert space for the theory to be of the form

H =
⊗
x∈Ω

Hϕ, (5)

where Hϕ is the Hilbert space that describes a field at each of the lattice sites. The discretized lattice form of the
Hamiltonian is

H =
∑
x∈Ω

ad
[
1

2
π(x)2 +

1

2
(∇aϕ)

2
(x) +

1

2
m2ϕ(x)2 +

λ

4!
ϕ(x)4

]
(6)

where Ω is the set of all (spatial) lattice sites, x = an, where a is the lattice spacing and n ∈ Z×d, and d is the number
of spatial dimensions.

We then consider the conjugate momentum operator

π(x) = F†ϕ(x)F , (7)

where F is the discrete quantum Fourier transform acting on our truncated space. Starting with Eq. (6), we identify

(∇ϕ(x))i → ∆iϕ(x) ≡ ϕ(x+ ax̂i)− ϕ(x)

a

⇒
d∑
i=1

(∆iϕ(x))
2

=

d∑
i=1

ϕ2(x+ ax̂i) + ϕ2(x)− 2ϕ(x)ϕ(x+ ax̂i)

a2
(8)

If we assume periodic boundary conditions, then at each lattice site x, there is one contribution of ϕ(x)2 from each
of the d lattice sites at x(i) = x − ax̂i (without periodic boundary conditions, we would need to be careful about
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handling the sites at the edges), and a single additional contribution coming from the ϕ(x)2 term. Therefore, the
Hamiltonian becomes

H =
∑
x∈Ω

[
1

2
adπ2(x) +

1

2
(d+ 1 + a2m2)ad−2ϕ2(x) +

λ

4!
adϕ4(x)− ad−2

d∑
i=1

ϕ(x)ϕ(x+ ax̂i)

]
(9)

Let us now define

Φ := a
d
2−1ϕ, Π := a

d
2 π,

M := am, Λ := a4−dλ (10)

Then, in terms of the scaled variables, our Hamiltonian simplifies to

Hamp =
∑
x∈Ω

[
1

2
Π2(x) +

1

2
(M2 + d+ 1)Φ2(x) +

Λ

4!
Φ4(x)−

d∑
i=1

Φ(x)Φ(x+ ax̂i)

]
(11)

Thus, we see that the derivative term is effectively replaced by a nearest neighbor interaction. We shall make use of
this expression, which we denote by Hamp in both the Qubitization-based and Trotterization based implementation
in the field amplitude basis (Section IVE).

The field amplitude basis is defined to be that in which the field operator is diagonal

Φ |ϕ⟩ = ϕ |ϕ⟩ (12)

and, in the continuum, is related to the Fock basis via |ϕ⟩ =∑∞
n=0 |n⟩ ⟨n|ϕ⟩, where

⟨ϕ|n⟩ =
(
M

π

)1/4
1√
2nn!

e−
Mϕ2

2 Hn

(√
Mϕ

)
(13)

where Hn(x) is the (physicists’) Hermite polynomial of order n. This basis has the advantage that all terms in the
ϕ4 Hamiltonian, except for the momentum term, are diagonal. As such, the basis should operate better in large λ
coupling limits. The momentum operator, in turn, is related to the field operator through a Fourier transform. We
discuss Trotter and qubitization approaches to simulating the ϕ4 Hamiltonian in this basis in Section IVE.

B. Field Occupation Basis

We note that the decomposition of the Hilbert in Eq. (5) is not the only way to latticize the theory. In fact, despite
its clear appeal when studying low energy properties, such a discretization might not be ideal at high energies. As we
mentioned previously, an emergent particle description appears (“partons”) in high energy experiments, and therefore
in this context it may be more appropriate to discretize the theory in this parton basis. Such a description starts
then by dividing the Hilbert space into single particle sectors

H =

∞⊗
l

Hl, (14)

where Hl describes the Hilbert of a single particle, which is span by the local vacuum and all the possible momentum
(or position) modes that can be occupied. One then evolves the theory by freely propagating the particles with the
quadratic part of the Hamiltonian in each particle sector, while the interactions connect different l’s. Such a procedure
has been applied to several problems in high energy physics, see for example [22, 43–45].

In the same spirit, the typical approach to solving the ϕ4 theory begins with diagonalizing the non-interacting
Klein-Gordon Hamiltonian. This is done by introducing bosonic ladder operators a†p, ap which correspond to the
creation and annihilation of quanta inside the scalar field. They obey the canonical bosonic commutation relation

[ap, a
†
q] = (2π)Dδ(p− q) (15)

where D is the spatial dimensionality. However these operators on their own are not Hermitian. As such, we construct
Hermitian operators (and their unitary exponentiation) through considering them in conjunction with their Hermitian
conjugates. As such, we begin with their implementation.
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To carry out our analysis in this basis, we require the mode expansion of the scalar field and its conjugate momentum

ϕ(x) =

∫
dDp

(2π)D
eip·x√
2ωp

(
ap + a†−p

)
π(x) =

∫
dDp

(2π)D
(−i)eip·x

√
ωp

2

(
ap − a†−p

)
(16)

where ωp =
√
|p|2 +M2, and D denotes the spatial dimensionality. The non-interacting part of the scalar field

Hamiltonian, or the Klein-Gordon Hamiltonian H0, is then given by

H0 =

∫
dDx

1

2

[
(π(x) · π(x)) + (∇ϕ(x) · ∇ϕ(x)) +M2 (ϕ(x) · ϕ(x))

]
=

∫
dDx

∫
dDpdDp′

(2π)D
ei(p+p′)·x

(2π)D

{
−
√
ωpωp′

4

(
ap − a†−p

)(
ap′ − a†−p′

)
+
m2 − p · p′

4
√
ωpωp′

(
ap + a†−p

)(
ap′ + a†−p′

)}
=

∫
dDp

(2π)D
ωp

(
a†pap +

1

2
[ap, a

†
p]

)
(17)

The second term in the parentheses above is proportional to δ(0), and represents the zero point energy of all the
harmonic oscillator modes in the free scalar field. This formally leads to an infinite contribution to the Hamiltonian,
which must be removed to compute physical quantities. The resulting free Hamiltonian we consider is

H0 =

∫
dDπ

(2π)D
ωp a

†
pap (18)

This Hamiltonian is now a normal ordered product of ladder operators, where all creation operators appear on the left
of all annihilation operators. This reordering is necessary to avoid spurious divergences and is denoted H0 =: H0 :.

This form has two primary appeals. One is that in the limit of small λ, our approach approaches a trivial diagonal
matrix. This limit up to arbitrary precision remains a challenging computational task. The primary appeal of this
approach is that for explicit scattering process that require single-particle packet preparation, this protocol also has
much simpler state preparation procedure. Next, the interaction part of the Hamiltonian is given by

Hλ =

∫
dDx

λ

4!
ϕ4

=
λ

4!
dDx

∫
dDp1d

Dp2d
Dp3d

Dp4

(2π)4D4
√
ωp1ωp2ωp3ωp4

(
ap1

e+ip1·x + a†p1
e−ip1·x

) (
ap2

e+ip2·x + a†p2
e−ip2·x

)
×
(
ap3

e+ip3·x + a†p3
e−ip3·x

) (
ap4

e+ip4·x + a†p4
e−ip4·x

)
=

∫
λ

4!
dDx

∫
dDp1d

Dp2d
Dp3d

Dp4

(2π)4D
ei(p1+p2+p3+p4)·x

4
√
ωp1

ωp2
ωp3

ωp4(
ap1

+ a†−p1

)(
ap2

+ a†−p2

)(
a+a

†
−p3

)(
ap4

+ a†−p4

)
=
λ

4!

∫
dDp1d

Dp2d
Dp3

(2π)3D
1

4
√
ωp1

ωp2
ωp3

ω−(p1+p2+p3)

{(
ap1

+ a†−p1

)(
ap2

+ a†−p2

)
×
(
ap3

+ a†−p3

)(
a−(p1+p2+p3) + a†(p1+p2+p3)

)}
For the algorithm, we consider the normal ordered form : Hϕ :, discussed in B2

We consider the scalar field on a finite sized, discrete lattice, borrowing the notation from above which requires us
to replace the continuous integrals with discrete Riemann sums as∫ 2π/a

0

dDp

2π
→

|Ω|∑
α=1

(2π)

(2π)|Ω|(a)D =
1

(a)D

|Ω|∑
α=1

1

|Ω| (19)

Now the Hamiltonians reads as follows
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: H0 :=
1

|Ω|
∑
p

ωpa
†
pap (20)

We note that (a)D|Ω| = L, but we retain this notation for if |Ω| increases with fixed L, i.e, taking the α→ 0 continuum
limit this notation makes the scaling explicit. Furthermore, we take proper discretization of our operators ap → √

aap
so that these are dimensionless. [46]. An advantage of the momentum space-representation is that it allows for the
retention of the continuum dispersion as prepared to in position space [22].

The λ term is equivalently given by

Hλ =
λ

4!|Ω|3
∑
{pi}

1

4
√
ωp1ωp2ωp3ω−(p1+p2+p3)

{(
ap1

+ a†−p1

)(
ap2

+ a†−p2

) (
a−p3

+ a†p3

) (
a(p1+p2+p3) + a†−(p1+p2+p3)

)}
(21)

We leave the normal ordering until we consider the cases of momentum pi overlaps.
As a final note, due to the relativistic dispersion relationship the frequency ωp depends on the momentum as well

as the mass via ωp =
√
M2 + |p|2. For this reason the frequencies ωp subtley contain the mass. If we are interested

in the low momentum regime then we can take the maximum and minumum relevant frequencies to be ωmin = M
and ωmax =

√
M2 + P 2

max ∼M which gives us the required mass dependence of the Hamiltonian.

III. SCATTERING MATRIX ESTIMATION

The cost of any end-to-end quantum simulation depends on the observables that we wish to measure in addition to
the processing required to prepare the initial state and simulate the dynamics of the quantum system. Unlike previous
work, which directly examines scattering in field theories [16, 17], energy estimation is computationally simple and
opens up the possibility of practical simulations of quantum dynamics.

We will now go into detail about our alternative approach to that of [16, 17], for the computation of values of the
scattering matrix or S-matrix. The scattering matrix describes the relationship between the incoming and outgoing
momenta for a quantum system. In quantum field theory in particular, it is useful to define the S-matrix in terms of
its dynamics in an interaction frame. In particular, if we define the Hamiltonian for a field to be

H = Hfree +Hint (22)

where Hfree and Hint are the free and interaction terms where Hint vanishes at infinity. In order to unambiguously
define the dynamical phase of the non-interacting system as T → ∞ one can go into an interaction frame of Hfree to
obtain the interaction picture Hamiltonian

HI(t) = eiHfreetHinte
iHfreet. (23)

With this definition in mind we can express the S-matrix through its matrix elements as

Sp⃗,⃗k = out ⟨p1p2 · · · | kAkB⟩in = lim
T→∞

⟨p1p2 · · ·︸ ︷︷ ︸
T

| kAkB︸ ︷︷ ︸
−T

⟩

= lim
T→∞

〈
p1p2 · · ·

∣∣∣T e−i ∫ ∞
−∞ dtHI(t)

∣∣∣ kAkB〉 . (24)

More specifically, by isolating the interaction terms S = 1 + iT , you can identify

⟨p1 · · · pn|iT |pApB⟩

= lim
T →∞(1−iϵ)

(
0

〈
p1 · · · pn

∣∣∣∣∣T
(
exp

[
−i
∫ T

−T
dtHI(t)

])∣∣∣∣∣ pApB
〉

0

)
(25)

The most important element of T can be given through the matrix element (M), which can be though of as the
scattering amplitude and includes the important dynamics.

⟨p1p2 · · · |iT |kAkB⟩ = (2π)4δ(4)
(
kA + kB −

∑
pf

)
· iM (kA, kB → pf ) (26)
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This M will give all the necessary calculations for the cross-section if necessary. For reference: To one-loop order, we
can compute M in φ4 as

0

〈
p1p2

∣∣∣∣T (−i λ4!
∫
d4xφ4

I(x)

)∣∣∣∣ pApB〉
0

= −iλ(2π)4δ(4) (pA + pB − p1 − p2) (27)

which identifies M = −λ.
Computing the entire S-matrix is exponentially difficult since the number of output momenta and input momenta

scales exponentially with the number of particles permitted. But we can readily extract at least the elastic parts
of the S-matrix through the measurement of multi-particle energies in finite volume. We will also comment on the
ability to obtain inelastic information. Here we will argue that the measurement of energies in finite volume leads
directly to information on the S-matrix elements. The simplest case where this occurs is for a non-interacting 1+ 1D
theory and where both particles have mass m. In this case, we can go into a center of mass frame where without
loss of generality both particles have momenta p and −p such that p1 = −p2 and by conservation of momentum the
output momenta also must be in {−p, p} In finite volume, the momenta, pi, i = 1, 2 of the particles are

pi =
2πni
L

, ni ∈ Z, (28)

where ni are integers indexing the two particles and L is the length of the system. The energy, E, of the two particle
state is

E =
∑
i=1,2

(
m2 +

4π2n2i
L2

)1/2

, (29)

where we have taken c = ℏ = 1. Now what happens when interactions are turned on? Provided the energy of the
two-particle state is below threshold for particle production, the quantization condition for the two momenta is altered
to

eip1LS(p1, p2) = 1 = e2πn1/L;

eip2LS(p2, p1) = 1 = e2πn2/L, (30)

where S(p1, p2) = eiδ(p1,p2) is the two-body scattering phase, which is a a phase because the scattering is elastic in
1 + 1 dimensions.

By taking logarithms, the quantization conditions can be written in the form

2πn1
L

= p1 − i
L logS(p1, p2);

2πn2
L

= p2 − i
L logS(p2, p1). (31)

If one solves the quantization condition for p1 and p2 one immediately knows the energy of the two-particle state via

E =
∑
i=1,2

(m2 + p2i )
1/2, (32)

where pi necessarily deviate from their free values. Now if instead we start with knowledge of E via measurement,
we can reverse the process and infer S(p1, p2). And by measuring E for different L, we can determine S(p1, p2) over
a range of p1 and p2 because while pi are not free, they still will behave as 1/L over a wide range of volumes.
In any determination of the energy, E, of a two particle state en route to the determination of an S-matrix element,

there will be some uncertainty associated with its determination, δE. If we work in the center-of-mass frame and
the particles have equal and opposite momentum, i.e., p1 = −p2, the associated uncertainty in the scattering phase
δ(p,−p) is given by

δδ(p,−p) = −LE
8p

δE (33)

We can see that uncertainty in the determination of the energy affects most dramatically the determination of the
scattering phase at small momentum.
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FIG. 1: The low lying spectrum of the φ4 in its broken phase (m2 = −0.25, λ = 0.15). The ground state energy has
been subtracted. From Fig. 10 of [47].
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FIG. 2: The scattering phase inferred from the energies of the two kink states presented in Fig. 1. From Fig. 11 of
[47].

As an illustration of this in the φ4 theory, we will consider an example from the ordered phase of the model (i.e.,
m2 < 0). The spectrum of the theory in this regime consists of kinks and bound states of kinks (meson-like states).
As λ is increased from 0, the bound states disappear at a λ0 from the spectrum and only kink-like states exist. At a
large enough λ = λc, the model becomes disordered. In our example, we will consider the regime λ0 < λ < λc.

In Fig. 1, we plot the low-lying energy levels with zero total momenta as a function of system size, L, as computed
in Ref.[47] using Hamiltonian truncation methods. The ground state energy has been subtracted. The lowest lying
level is the state whose energy is nearly degenerate to the ground state (we expect such a near-degeneracy in finite
volume in the broken phase). Beyond this state are energies corresponding to two-kink and four-kink states. We can
use the two-kink energies to back out the scattering phase as described above. This phase is plotted in Fig. 2 as a
function of energy, E. Here the energy of the two-particle state is parameterized by θ via :

E = 2Mkink cosh(θ)

In this parameterization the momenta of the two kinks are ±Mkink sinh(θ).

What we have discussed so far concerns the elastic part of the 2− 2 scattering matrix. We can also access inelastic
information from the measurement of energies. We can parameterize the S-matrix S(p1, p2) solely in terms of θ (θ is
related to the Mandelstam variable, s, via s = 4m2 cosh2(θ/2)). The unitarity condition on the S-matrix then reads

S(θ + iϵ)S(−θ + iϵ) = f(θ), (34)

where f(θ) is real positive on the real line. If θ0 marks the threshold beyond which inelastic processes are possible,
f(|θ| < θ0) = 1, while 0 < f(|θ| > θ0) < 1. Using the analytic structure of the S-matrix in the complex-θ plane, we
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can write S(θ) in the following form:

S(θ) = ±
∏
j

sinh(θ) + i sin(βj)

sinh(θ)− i sin(βj)
exp

[
−
∫ ∞

−∞

dθ′

2πi

log f(θ′)

sinh(θ − θ′ + iϵ)

]
. (35)

The first part of the parameterization involving the angles βj are so-called Castillejo-Dalitz-Dyson (CDD) factors.
The second part of the parameterization contains information about the inelastic part of the 2-2 scattering inasmuch
as it depends on the region in θ where f(θ) differs from 1. Notice that because of analyticity, the inelastic part of
the S-matrix influences the elastic region |θ| < θ0. With sufficiently accurate measurements of the energies, one can
use this parameterization to determine the number and values of the CDD angles, βj , as well as the function f(θ). In
practice, extracting the function f(θ) is difficult as it involves the inversion of an ill-posed integral equation. However
the integrated quantity, ∫ ∞

−∞

dθ′

2πi

log f(θ′)

sinh(θ − θ′ + iϵ)
, (36)

has been successfully extracted from numerical data, for example, in the case of the non-integrable Ising field theory
[48].

While we have focused our discussion here on scattering in 1 + 1d, our approach can be extended to scattering
in higher dimensions, i.e., the elastic scattering phases of 2-2 particle scattering, δl, in different angular momentum
channels can be connected to measurements of the two-particle energy in finite volume [49]. While originally formulated
in [49] for two spinless identical particles, extensions have been made to identical particles with spin, asymmetric
volumes, and amplitudes containing external current - see [50] for a review. In certain cases, inelastic information
involving 3 particle scattering is available in higher dimensions [51–54].

Note that the last approach differs from that taken by Jordan Lee and Preskill [16, 17]. Their approach involved
preparing a Gaussian wave packet in the interacting eigenbasis rather than an eigenvector of the interacting Hamilto-
nian via phase estimation. Their approach has the advantage that it can be applied in circumstances where the gap
is large and no prior knowledge of the eigenvectors is given. Directly preparing the eigenstates as we discuss above
can be more computationally efficient than the approach given by JLP, but requires efficient approximations to the
eigenstates which may not be available in all settings.

To summarize, we see from this discussion that the excited state energy is a meaningful quantity for scattering
theory that can be used to estimate, under specific circumstances, values of the S-matrix that would otherwise be
impractical to compute. The circumstances under which the energy can be used to provide information about the
scattering is given in the following claim with increasing levels of generalization:

Claim 1. Let S̃ be a finite dimensional version of the S-matrix for a Hamiltonian operator H(t). The value of the

excited state energies can be used to infer certain elements of S̃ if one of the following occurs

1. We are interested in 2 7→ 2 elastic scattering of particles in one spatial and one temporal dimension (1 + 1D)
where the two-particle final state is below the threshold for particle production.

2. We are interested in inelastic processes in 1 + 1D in integrated form (as encoded in Eq.(35).

3. We are interested in computing the scattering phases of elastic 2 7→ 2 scattering in higher dimensions [49].

4. We are interested in certain relatively simple scattering processes that include particle decay in dimensions higher
than 1 + 1D. This is focused primarily on scattering involving 3-particles, an active topic of current research
[51–54].

Barring the cases mentioned in the above claim, there are other reasons why the energies of both the ground
state and low lying excited states is independently interesting for the theory. It can allow us to understand phase
transitions in the strongly interacting theory [55, 56]. For all the above reasons, we focus our attention on the
computation of the energy of the low lying excited states which is also a well studied quantity to estimate using
quantum computers [28, 30].

IV. SIMULATION ALGORITHMS

Modern simulation algorithms have converged in recent years to the point that there is no optimal single quantum
simulation algorithm. Rather, different algorithms tend to have advantages and disadvantages in different regimes [15,
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57, 58]. In this spirit, we provide five simulation algorithms for scalar field theory in the occupation as well as field
amplitude basis. These algorithms employ Trotter decompositions or qubitization and use optimized circuits to
construct the operator exponentials or oracle calls that both methods require. We further observe that the methods,
as expected, have advantages and disadvantages with respect to each other. Most obviously, the Trotter algorithm
for simulations in the occupation basis is by far the most efficient for weak coupling (λ ≪ 1) but the qubitized field
amplitude basis is likely to scale better in the strong coupling regime.

The material in this section is laid out as follows. In Section IVA we describe an algorithm for the Hamiltonian
formulated in the field occupation basis, while in Section IVE we describe several algorithms for the Hamiltonian in
the field amplitude basis. The techniques and concepts in these two sections can be followed independently of the
other.

A. Field Occupation Basis

The interaction Hamiltonian can be decomposed into four cases based on matching momentum indices. We consider
the normal ordered Hamiltonian so that the unitary phases corresponding to eigenvalues that are used to construct the
S−matrix are computed with reference to the vacuum energy. First we state some essential results that are required
to map the Hamiltonian from the bosonic to qubit space. Then we synthesize quantum circuits implementing the
exponentiated Hamiltonian.

We discretize the Hilbert space of occupation into N distinct momentum states. We have a register of (N + 1)V
qubits to store information about the occupation states and we use the following one-hot unary encoding to map an
occupation state to a qubit state. We index the qubits by a pair of integers, such as (p, n), where p corresponds to
a momentum mode and n to a momentum state. For each such pair (p, n), we have a quantum state on (N + 1)V
qubits, in which each qubit is |0⟩, except the (p, n)th one, which is |1⟩. We denote this state by |p, n⟩, which is

|p, n⟩ = |01,0, . . . , 0p−1,N ; 0p,0, . . . , 0p,n−1, 1p,n, 0p,n+1, . . . , 0p,N ; 0p+1,0, . . . 0V,N ⟩
=
(
⊗p−1
j=1 |0j,0 . . . , 0j,N ⟩

)⊗
|0p,0, . . . 1p,n . . . , 0p,N ⟩

⊗(
⊗|Ω|
j=p+1 |0j,0 . . . , 0j,N ⟩

)
. (37)

We emphasis that each Hilbert subspace Hp is spanned only by vectors of Hamming weight 1 in order to ensure the
unary encoding. We now consider a construction of the Hamiltonian that preserves this Hamming weight without
restricting to total number conservation or conservation for each p−mode.
For convenience, we denote an operator Apn acting on pnth qubit by Ap,n or (An)p. The qubit mapping for the

creation and annihilation operators is as follows.

a†p =
∑
n

√
n+ 1

(
σ−
n σ

+
n+1

)
p

ap =
∑
n

√
n+ 1

(
σ+
n σ

−
n+1

)
p
, (38)

where

σ+ =
1

2
(X − iY ), σ− =

1

2
(X + iY ). (39)

and therefore

a†p |p, n⟩ =
√
n+ 1 |p, n+ 1⟩ and ap |p, n⟩ = √

n |p, n− 1⟩ (40)

Now, considering Hermitian pairing of operators, we have

ap + a†p =
1

2

∑
n

√
n+ 1 (XnXn+1 + YnYn+1)p . (41)

In theory the number of momentum states range till infinity, but for our simulation, we truncate the Hilbert space
and have N momentum states, thus n varies from 0 to N in the above summations. This truncation in the bosonic
occupation is proportional to the maximum energy expected to be simulated in semi-elastic collisions N ∝ E

ωp
. It is

expected that the error in this truncation is exponentially small with respect to the cutoff [7, 59–61]. However, careful
numerical analysis of these (and other finite-system size effects) will be required in implementation [62, 63].

The details of the proofs for the following lemmas have been provided in Appendix A
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A similar approach was laid out in [22]. We note several distinctions between the current implementation and
previous work. The previous work has two conceptual appeals. One is the use of a binary representation for the
occupation basis of ap+a

†
p. Further work may examine efficient fault-tolerant arithmetic primitives required for such

an encoding, which we avoid here. The second is a diagonalization of the position space field amplitude

ϕ(i)n ≡ a
(i)
n + a

(i)†
n√

2
(42)

where

an ≡ 1√
V
∑
q

Aqe
i2πn·q/Ns (43)

and

Aq ≡ 1

2

[
ω
− 1

2
q + ω

1
2
q

]
aq +

1

2

[
ω
− 1

2
q − ω

1
2
q

]
a†−q (44)

This is implemented with a squeezing operator framework. In a fault-tolerate framework, the phase factors of the
squeezing operators introduce an additional error without a clear mapping to the final error. These squeezing factors
also require a large number of controlled RZ gates Extending such an elegant implementation into the fault-tolerant
regime would be a intriguing further work.

Lemma 2. If n̂p is the number operator on momentum mode p then for any integer r ≥ 1 we have,

(n̂p)
r
=
∑
n

nr

2
(In − Zn)p.

Lemma 3. If m ≥ 1 and r ≥ 0 are integers then we have,

(a†p)
m(np)

r + (np)
r(ap)

m =
1

2

∑
n

√
(n+m)!

n!
nr(XnXn+m + YnYn+m)p. (45)

We first consider the non-interacting term in Eq.17 and derive the circuit required to simulate the unitary expo-
nential, with the following result.

Lemma 4 (Complexity of non-interacting Hamiltonian Simulation). We require at most N |Ω| number of Rz gates

to simulate e−iH
′
0t, where H ′

0 =: H0 :.

Proof. The normal ordered H0 i.e. : H0 : is,

: H0 :=
∑
p

ωpa
†
pap =

∑
p

ωpn̂p =
∑
n,p

nωp
2

(In − Zn)p, (46)

using Lemma 2. The above expression, up to some global phase is equal to a sum of Z operators. And the exponential
of each of them can be implemented with a Rz gate, whose angle depends on the coefficient. Thus the lemma
follows.

a. Circuits for simulating the interacting Hamiltonian : We now consider the interacting part of the Hamiltonian
i.e. Hφ, which we are re-writing as follows, for convenience. Let S4p = {p = (p1, p2, p3, p4) : pi ∈ Γ; i = 1, 2, 3, 4}, be
a set consisting of ordered 4-tuples of the momentum mode, that respects the conservation of momentum constraint
(p1 + p2 = ±(p3 + p4)). We parameterize this constraint by working in the basis such that such that ±p3 = p1 + k
and ±p4 = p2 − k.

Now, we can divide the terms in the above sum into 4 groups, based on equality of the momentum modes in p,
i.e. Hφ := H1φ + H2φ + H3φ + H4φ. For each such group, we map the resulting bosonic expression into the qubit
space using Equation 41, Lemma 2, Lemma 3, and obtain the Pauli expression. From this, we derive the quantum
circuit for the exponentiated sum in each group. We follow the methods described in [26]. In short, we first derive
an eigenbasis for a set of mutually commuting Pauli terms and calculate the number of distinct non-zero eigenvalues
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(ignoring sign) for the required (weighted) sum of these Paulis. This number is equal to the number of (controlled)-
rotations we require. After that, we design the explicit quantum circuit, with appropriate optimizations. Each circuit
is implemented with Clifford+T+(controlled)-Rz gates.

We have delegated the detailed description of the circuit design to Appendix A and in this section we only mention
the relevant results required for estimating the gate counts. As indicated, we have separated the T-gates arising
from the approximately implementable (controlled)-rotation gates and the exactly implementable Toffoli or multi-
controlled-X gates. So we report the number of (controlled)-Rz required and the number of T gates in Lemma 5-8
do not include the T-gates from these rotations. The total T-count estimate is obtained by multiplying the number
of (controlled)-Rz gates with the T-count of individual rotation gates and adding the product to the T-count arising
from the exactly implementable parts.

In the following discussions let S4n⃗ = {n⃗ = (n1, n2, n3, n4) : ni = 0, 1, . . . , N ; i = 1, 2, 3, 4} be an ordered 4-tuple of
momentum states.We reserved p for vectors of unbolded p, k, q which themselves may be D-dimensional vectors.

B. Group I: All distinct momentum modes : p1 ̸= p2,k ̸= 0.

We take Eq.21 with Hermitian terms grouped as

Hλ =
λ

4!|Ω|3
∑
{pi}

1

4
√
ωp1

ωp2
ωp3

ω−(p1+p2+p3)

{(
ap1 + a†p1

) (
ap2 + a†p2

) (
ap3 + a†p3

) (
a−(p1+p2+p3) + a†−(p1+p2+p3)

)}
(47)

This state divides into a tensor product of terms of the following form.

: Hθ :=
λ

24|Ω|
∑

p∈S4p

∏
pi∈p

1√
2wpi

(
api + a†pi

)
(48)

We denote the sum of the terms having distinct momentum modes by H1φ. We note that this Hamiltonian is
trivially normally order because distinct momentum operators commute. After the qubit mapping using Eq. 41, we
get the following.

H1φ =
λ

24|Ω|3
∑

p∈S4p

∏
pi∈p

1√
2wpi

(∑
n

1

2

√
n+ 1 (Xpi,nXpi,n+1 + Ypi,nYpi,n+1)

)

=
λ

96 · 16|Ω|3
∑

p∈S4p

∑
n⃗∈S4n⃗

∏
(pj ,nj)∈(p,n⃗)

√
nj + 1

wpj

(
Xpj ,nj

Xpj ,nj+1 + Ypj ,nj
Ypj ,nj+1

)
(49)

Lemma 5. It is possible to implement e−iH1φt using at most N
4|Ω|2(|Ω|−1)

48 cRz,
N4|Ω|2(|Ω|−1)

4 T, 11N4|Ω|2(|Ω|−1)
16 CNOT

and N4|Ω|2(|Ω|−1)
24 H gates per time step t.

The proof of the above lemma, including the detail of the circuit design has been given in Appendix A.

Group II : Two distinct momentum modes : p1 = p2,k ̸= 0.

Let H2φ is the sum of the terms with momentum modes satisfying the given constraint. Then,

: H2φ : =
λ

24|Ω|2
∑
p,k

1

4ωp
√
ωp+kωp−k

(
(ap + a†p)

2(ap+k + a†p+k)(ap−k + a†p−k)
)

=
λ

96

∑
p,k

1

ωp
√
ωp+kωp−k

(
(a†p)

2 + (ap)
2 + 2np

) (
ap+k + a†p+k

)(
ap−k + a†p−k

)
,

and after using after using Eq. 41, Lemma 2, Lemma 3 we get the following.
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: H2φ : =
λ

96|Ω|2
∑
p,k

1

ωp
√
ωp+kωp−k

((∑
n

√
(n+ 2)(n+ 1)

2
(XnXn+2 + YnYn+2)p

)
+

(∑
n

n(In − Zn)p

))
(∑

n

√
n+ 1

2
(XnXn+1 + YnYn+1)p+k

)(∑
n

√
n+ 1

2
(XnXn+1 + YnYn+1)p−k

)

=
λ

96|Ω|2
∑
p,k

1

ωp
√
ωp+kωp−k

×
( ∑
n1,n2,n3

c(1)n (Xn1Xn1+2 + Yn1Yn1+2)p(Xn2Xn2+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1)p−k

+
∑

n1,n2,n3

c(2)n (In1
− Zn1

)p(Xn2
Xn2+1 + Yn2

Yn2+1)p+k(Xn3
Xn3+1 + Yn3

Yn3+1)p−k

)
(50)

where c
(1)
n =

√
(n1+2)(n1+1)(n2+1)(n3+1)

8 , c
(2)
n =

n1

√
(n2+1)(n3+1)

4 .

Lemma 6. It is possible to implement e−iH2φt using at most N3|Ω|2
3 cRz,

8N3|Ω|2
3 T, 20N3|Ω|2

3 CNOT and 2N3|Ω|2
3 H

gates per time step t.

The proof of the above lemma, including the detail of the circuit design has been given in Appendix A.

Group III : Two distinct momentum modes : p1 ̸= p2,k = 0.

We use H3φ to denote the sum of the terms with momentum mode satisfying the given constraint. Then,

: H3φ : =
λ

24|Ω|2
∑
p1,p2

1

4ωp1ωp2

(
ap1 + a†p1

)2 (
ap2 + a†p2

)2
=

λ

96

∑
p1,p2

1

ωp1ωp2

(
(a†p1)

2 + (ap1)
2 + 2n̂p1

) (
(a†p2)

2 + (ap2)
2 + 2n̂p2

)
. (51)

After applying Eq. 41, Lemma 2, Lemma 3 we obtain the following.

: H3φ :

=
λ

96|Ω|2
∑
p1,p2

1

ωp1ωp2

(∑
n

√
(n+ 1)(n+ 2)

2
(XnXn+2 + YnYn+2)p1 +

∑
n

n(In − Zn)p1

)
(∑

n

√
(n+ 1)(n+ 2)

2
(XnXn+2 + YnYn+2)p2 +

∑
n

n(In − Zn)p2

)

=
λ

96|Ω|2
∑
p1,p2

1

ωp1ωp2

(∑
n1,n2

c(3)n (Xn1
Xn1+2 + Yn1

Yn1+2)p1(Xn2
Xn2+2 + Yn2

Yn2+2)p2

+
∑
n1,n2

c(4)n (Xn1
Xn1+2 + Yn1

Yn1+2)p1(In2
− Zn2

)p2 +
∑
n1,n2

c(5)n (Xn2
Xn2+2 + Yn2

Yn2+2)p2(In1
− Zn1

)p1

+
∑
n1,n2

n1n2(In − Zp1,n1 − Zp2,n2 + Zp1,n1Zp2,n2)

)
(52)

where c
(3)
n =

√
(n1+2)(n1+1)(n2+2)(n2+1)

4 , c
(4)
n =

n2

√
(n1+2)(n1+1)

2 , c
(5)
n =

n1

√
(n2+2)(n2+1)

2 .

Lemma 7. It is possible to implement e−iH3φt using at most 2N2|Ω|(|Ω|−1) cRz, 8N
2|Ω|(|Ω|−1) T, 16N2|Ω|(|Ω|−1)

CNOT and 3N2|Ω|(|Ω| − 1) H gates per time step t.

The proof of the above lemma, including the detail of the circuit design has been given in Appendix A.
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#(c)Rz # T # CNOT # H

e−iH0t N |Ω| - - - Lemma 4

e−iH1φt N4|Ω|2(|Ω|−1)
48

N4|Ω|2(|Ω|−1)
4

11N4|Ω|2(|Ω|−1)
16

N4|Ω|2(|Ω|−1)
24

Lemma 5

e−iH2φt N3|Ω|2
3

8N3|Ω|2
3

20N3|Ω|2
3

2N3|Ω|2
3

Lemma 6

e−iH3φt 2N2|Ω|(|Ω| − 1) 8N2|Ω|(|Ω| − 1) 16N2|Ω|(|Ω| − 1) 3N2|Ω|(|Ω| − 1) Lemma 7

e−iH4φt 3N |Ω| - 4N |Ω| 4N |Ω| Lemma 8

TABLE II: Summary of the number of gates required to implement the exponentials of the different Hamiltonian
partitions in the occupation basis.

Group IV: All equal momentum modes : p1 = p2,k = 0.

The sum of the terms with all four equal momentum mode is denoted by H4φ. These terms must be normal ordered
to be

: H4φ : =
λ

24|Ω|
∑
p

1

4(ωp)2

{(
a†p + ap

)4}
=

λ

24|Ω|
∑
p

1

4(ωp)2
{(

(a†p)
4 + (ap)

4
)
+ 4

(
(a†p)

3ap + a†p(ap)
3
)
+ 6

(
(a†p)

2(ap)
2
)}

=
λ

96|Ω|
∑
p

1

(ωp)2
(
((a†p)

4 + (ap)
4) + 4

(
(a†p)

2n̂p + n̂p(ap)
2
)
+ 6

(
(n̂p)

2 − n̂p
))

;

and after applying Eq. 41, Lemma 2, Lemma 3 we get the following.

: H4φ :

=
λ

96|Ω|
∑
p,n

1

(ωp)2

(√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2
(XnXn+4 + YnYn+4)p

+2n
√

(n+ 2)(n+ 1)(XnXn+2 + YnYn+2)p + 3(n2 − n)(In − Zn)p

)
(53)

Lemma 8. It is possible to implement e−iH4φt using at most 3N |Ω| (c)-Rz, 4N |Ω| CNOT and 4N |Ω| H gates per
time step t.

The proof of the above lemma, including the details of the circuit design, has been given in Appendix A. An estimate
of the total number of gates required to implement e−iHt can be obtained by summing the gate costs in Lemma 4-8.
This is summarized in the following theorem, as well as in Table II.

Theorem 9. It is possible to implement e−iHt with the following number of gates per time step.

1. N4|Ω|2(|Ω|−1)
48 + N3|Ω|2

3 + 2N2|Ω|(|Ω| − 1) + 4N |Ω| (controlled)-Rz gates.

2. N4|Ω|2(|Ω|−1)
4 + 8N3|Ω|2

3 + 8N2|Ω|(|Ω| − 1) additional T gates.

3. 11N4|Ω|2(|Ω|−1)
16 + 20N3|Ω|2

3 + 16N2|Ω|(|Ω| − 1) + 4N |Ω| CNOT gates.

4. N4|Ω|2(|Ω|−1)
24 + 2N3|Ω|2

3 + 3N2|Ω|(|Ω| − 1) + 4N |Ω| H gates.

Proof. The proof follows from Lemmas 5, 5,6,7, and 8, which are summarized in II.
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C. Trotter Error Analysis

In this section we discuss and bound the various errors that occur during simulation of the occupation basis
Hamiltonian. For convenience, we restate the occupation basis Hamiltonian in the following equation.

Hocc = H0 +Hλ (54)

: H0 : =
∑
p

ωpa
†
pap (55)

: Hλ : = H1φ +H2φ +H3φ +H4φ (56)

a. I. Trotter Error : One primary source of error is the one inherent in the Trotterization procedure, where we
express the exponential of sum of operators as product of the exponentiated operators. This is true if and only if the
operators are commuting. If there are non-commuting parts then the resultant error in the approximation is referred
to as the Trotter error. Quite a few bounds on the Trotter error have been derived before [64–66], but we use the one
in [67], which shows the dependence on nested commutators.

If a HamiltonianH =
∑Γ
γ=1Hγ is a sum of Γ fragment Hamiltonians, then e−iτH can be approximated by product of

exponentials, using the pth order Trotter-Suzuki formula [68], Sp(τ) = e−iτH+A (τ), where ∥A (τ)∥ ∈ O
(
α̃commτ

p+1
)

if each Hγ are Hermitian [67]. Here α̃comm =
∑Γ
γ1,γ2,...,γp+1=1 ∥[Hγp+1

, . . . [Hγ2 , Hγ1 ]]∥. In most applications, it is quite

cumbersome, if not impossible, to derive a rigorous analytic expression of the nested commutators, in order to tightly
bound higher order Trotter error. We use the following bound from [27] in this work.

α̃comm ≤ 2p−(p′+1)
∑

γi1 ,γi2 ,...,γip′+1

∥[Hγp′+1
, [. . . [Hγ3 , [Hγ2 , Hγ1 ]] . . .]]∥

(
Γ∑
γ=1

∥Hγ∥
)p−p′

[1 ≤ p′ ≤ p] (57)

The above formula is specifically useful in scenarios where we can compute tight bounds till level p′ < p of nesting.
Then we combine the tighter bound till level p′ and a looser sum of norm bound for the remaining levels. In this
paper we consider the 2nd order Trotter error in our implementations. In Appendix B we derive rigorous expressions
and bounds on the first level commutators and norms. Then we use the above equation in order to bound the higher
order errors.

We primarily focus on these low level Trotter errors for two reasons. The symmetric low-level Trotter errors provide
tighter bounds [67]. They also appear to provide more accurate results when compared to explicit calculations [69].

Lemma 10. Let H be the occupation basis Hamiltonian derived in Eqs. 46-53. Let S2(τ) be a 2nd order Trotter-Suzuki
approximation for e−iτH . Then, ∥∥e−iHτ − Sp(τ)

∥∥ ∈ O
(
α̃commτ

3
)
, (58)

where

α̃comm ∈ O
(
λ2N6

M5

)
. (59)

The details of this proof are provided in Appendix B.

D. Total T-gate cost estimate

Here we review the various contributions to the error in phase estimation. Based on previous simulation work, the
most efficent distribution of error seems a highly precise phase estimation calculation to offset a single Trotter step [6].
In particular, we focus on the scheme of [70], which allows us to obtain optimal constant factors using Fourier-based
phase estimation. We use an approximate quantum Fourier transform (AQFT) [71] in the preparation. The number
of T-gates required to approximate an n-qubit QFT circuit up to error ϵQFT is

8n log2

(
n

ϵQFT

)
+ log2

(
n

ϵQFT

)
log2

 log2

(
n

ϵQFT

)
ϵQFT

 . (60)
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Lemma 11. There exists ϵ′E such that for all sufficiently small ϵE ≤ ϵ′E the total number of implementations of S2(τ)
required to estimate an eigenstate within error ϵE is bounded above by

2m ≤ π2
√
α̃comm

ϵ
3/2
E

. (61)

Proof. The variance on the phase measured from QPE is given as

ϵV = ⟨cos
(
(θ̂ − θ̃)

)
⟩2 − 1, (62)

known as the the Holevo variance, where θ̃ is the true phase and θ̂ is the measured outcome. This allows simple analytic
results for a compact phase that may otherwise have artificially high variance when peaked near the boundary. This
can be computed using the phase estimation algorithm implemented in [70]. The estimated phase can be written as

θest = θtrue + θ + ϵprep, (63)

where θ is a random variable with zero mean and Holevo variance ϵV describing the output of phase estimation and
ϵprep represents the systematic errors in the phase that arise because of approximate gate synthesis, approximate QFT
and approximation due to Trotterization. In the limit of small variance, with high probability we have the following.

ϵθ =

√
E
[
(θest − θtrue)

2
]
≈
√
ϵV (θ) + (πϵQFT + ϵTrotter + ϵsynth)

2

≈
√( π

2m+1

)2
+ (πϵQFT + ϵsynth + ϵTrotter)

2
,

(64)

We select the following in order to get the above expression.

ϵTrotter ≤
√
2ϵθ
4

, ϵQFT ≤
√
2ϵθ
8π

, ϵsynth ≤
√
2ϵθ
8

, 2m ≥ π√
2ϵθ

(65)

We require that the error in the Trotter-Suzuki expansion to be at most ϵTrotter = α̃commτ
3. Further, let

ϵθ = ϵEτ, (66)

where ϵE is the estimate in the energy that comes from rescaling the estimate of the phase by a factor of τ . Thus it
suffices to choose

τ =

√
ϵE

23/2α̃comm
(67)

and therefore, the error in the phase is related to the error in the energy estimate as

ϵθ =

√
ϵ3E

23/2α̃comm
(68)

and therefore for π
√
α̃comm/ϵ

3/2
E ≥ 1

1−2−1/8 at most

2m =

⌈
π
√
α̃comm

21/8ϵ
3/2
E

⌉
≤ π

√
α̃comm

ϵ
3/2
E

. (69)

Finally, as the analysis in [70] is tight in the limit as ϵE → 0 let us assume that ϵE is small enough so that∣∣∣∣∣
√
E
[
(θest − θtrue)

2
]
−
√( π

2m+1

)2
+ (πϵQFT + ϵTrotter + ϵsynth)

2

∣∣∣∣∣ ≤ ϵθ. (70)

We then can ensure a sufficient value of m by taking ϵE → ϵE/2 and using the remaining error budget to acommodate
the error due to m being finite. Using the observation that since 23/2 < π it suffices to take

π
√
α̃comm

(ϵE/2)3/2
≤ π2

√
α̃comm

ϵ
3/2
E

= 2m (71)

And thus this sufficient value is an upper bound on the necessary value.
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Theorem 12. Given an eigenstate |ψ⟩ of H such that H |ψ⟩ = E |ψ⟩, the occupation basis Hamiltonian stated in

(56), then it there exists a quantum algorithm that outputs with probability greater than 2/3 a value Ê such that

|Ê − E| ≤ ϵE, using a number of T gates that scales as

O
(
λN7|Ω|3

M5/2ϵ
3/2
E

log

(
N |Ω|
MϵE

))

T gates and O (N |Ω|) qubits, plus an additional O
(
log
(
λN
MϵE

))
ancillary qubits required for phase estimation. Here

M is the particle mass for the field, the log argumenent comes from 1/ϵr ϵr =
√
2ϵE

8Nr

√
ϵE

23/2α̃comm
, Nr ∈ O

(
N4|Ω|3

)
and α̃comm ∈ O

(
λ2N6

M5

)
.

Proof. Suppose we allocate ϵr as an upper bound on the permitted synthesis error per Rz gate. From Theorem 9 and
Table II we find that the total number of (controlled)-Rz required for each Trotter step is at most

Nr :=
N4|Ω|2(|Ω| − 1)

48
+
N3|Ω|2

3
+ 2N2|Ω|(|Ω| − 1) + 4N |Ω| (72)

and so using the T-count estimate in [32] and assuming the T-count of controlled-Rz is at most the T-count of Rz
[36], the expected number of T-gates from rotations is at most

NT/Rz
≤ Nr (3.067 log2(2/ϵr)− 4.327) .

Also, from Theorem 9 we require the following additional number of T-gates.

N+ :=
N4|Ω|2(|Ω| − 1)

4
+

8N3|Ω|2
3

+ 8N2|Ω|(|Ω| − 1). (73)

So, the total number of T-gates per Trotter step is

GT ≤ N4|Ω|2(|Ω| − 1)[0.064 log2(2/ϵr) + 0.16] +N3|Ω|2[1.022 log2(2/ϵr) + 1.224] (74)

+N2|Ω|(|Ω| − 1)[6.134 log2(2/ϵr)− 0.654] + 4N |Ω|[3.067 log2(2/ϵr)− 4.327]

∈ O
(
N4|Ω|3 log2(2/ϵr)

)
. (75)

Using Lemmas 10 and 11, the total number of T-gates required to achieve an eigenstate within total error ϵE is at
most

GT · 2m ≤ π2√αcomm

ϵ
3/2
E

(
N4|Ω|2(|Ω| − 1)[0.064 log2(2/ϵr) + 0.16] +N3|Ω|2[1.022 log2(2/ϵr) + 1.224]

+N2|Ω|(|Ω| − 1)[6.134 log2(2/ϵr)− 0.654] + 4N |Ω|[3.067 log2(2/ϵr)− 4.327]
)

∈ O

(
λN7|Ω|3

m5/2ϵ
3/2
E

log(1/ϵr)

)
. (76)

The total synthesis error due to approximation of the rotation gates is ϵsynth = ϵr · Nr, where the value of ϵsynth is
given in Eq. 65. Plugging in the values of the timestep τ and ϵθ from Eq. (67) and (66), respectively we obtain the
following bound on ϵr in order to ensure that the final error in the estimate of the energy is at most ϵE .

ϵr ≤
√
2ϵEτ

8Nr
=

√
2ϵE
8Nr

√
ϵE

23/2α̃comm
(77)

To obtain the total number of ancillary qubits used, we get

m ∈ O

(
log

(
α
1/2
comm

ϵ
3/2
E

))

∈ O

(
log

(
λN

MϵE

))
(78)

where we have repeatedly used log (Am/Bn) ∈ O (log (A/B)) for constant m,n > 0. Thus the theorem is proved.
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E. Field Amplitude Basis

In this section we describe algorithms to simulate the scalar ϕ4 Hamiltonian Hamp expressed in the amplitude basis,
as given in Eq. 11. We use two types of algorithms - qubitization [21, 72, 73] and Trotterization [68]. For the former
we describe three approaches, which mainly differ in the LCU (linear combination of unitaries) decomposition of the
operators. Similar approaches have been considered in [25]. In Section IVE1 we discuss a decomposition of Φ using
an equal weight LCU decomposition of the field operator (Algorithm I). Next, in Section IVE2 we describe another
LCU decomposition of Φ as sum of mainly Z-operators, which not only helps us in developing a qubitization based
algorithm (Algorithm IIIa) in IVE3, but it also makes the expression amenable to Trotterization (Algorithm II), as
discussed in Section IVE2. In Section IVE4 we describe another more compact LCU decomposition of all operators
using binary represenation of integers. With this we describe another qubitization algorithm (Algorithm IIIb). Before
describing our algorithms we mention the following results which have been used in the LCU based approaches in
order to reduce the gate complexity.

a. Recursive block encoding : We use the following theorem to recursively block encode Hamp using a divide
and conquer approach, as described in [27], where it has been shown that with such an approach it is possible to block
encode with a smaller number of gates. Suppose without loss of generality, we have a Hamiltonian Hi expressed as

a linear combination of unitaries (LCU) i.e. Hi =
∑Mi

j=1 hijUij , such that λi =
∑
j |hij |. In this case, we can have a

(λi, logMi, 0)-block encoding of Hi using an ancilla preparation subroutine and a unitary selection subroutine, which
we denote by PREPi and SELECTi respectively.

PREPi |0⟩logMi =

Mi∑
j=1

√
hij
λi

|j⟩ (79)

SELECTi =

Mi∑
j=1

|j⟩ ⟨j| ⊗ Uij (80)

It can be shown that [74]

⟨0|PREP†
i · SELECTi · PREPi |0⟩ =

Hi

λi
. (81)

Suppose we have M Hamiltonians denoted by H1, . . . ,HM , each of which has an LCU decomposition and for each
one of them we define the subroutines as in Eq. 79 and 80. Now we use these subroutines to define the following,

PREP |0⟩logM+
∑

i logMi =

(
M∑
i=1

√
wiλi
A |i⟩

)
⊗

M⊗
i=1

PREPi (82)

SELECT =

M∑
i=1

(
|i⟩ ⟨i| ⊗

i−1⊗
k=1

I⊗ SELECTi ⊗
M⊗

k=i+1

I

)
, (83)

where wi > 0 and A =
∑M
i=1 wiλi. We can use the above two subroutines to block encode a linear combination of

Hamiltonians as follows.

Theorem 13 ([27]). Let H =
∑M
i=1 wiHi be the sum of M Hamiltonians and each of them is expressed as sum

of unitaries as : Hi =
∑Mi

j=1 hijUij such that λi =
∑
j |hij |, wi > 0. Each of the summand Hamiltonian is block-

encoded using the subroutines defined in Eq. 79 and 80. Then, we can have an (A, ⌈log2(M)⌉, 0)-block encoding of H,

where A =
∑M
i=1 wiλi, using the ancilla preparation subroutine (PREP) defined in Eq. 82 and the unitary selection

subroutine (SELECT) defined in Eq. 83.

1. The PREP subroutine has an implementation cost of CPREP =
∑M
i=1 CPREPi

+ Cw, where CPREPi
is the number

of gates to implement PREPi and Cw is the cost of preparing the state
∑M
i=1

√
wiλi

A |i⟩.

2. The SELECT subroutine can be implemented with a set of multi-controlled-X gates -

{Mi pairs of C log2Mi+1X gates : i = 1, . . . ,M}, M pairs of C logMX gates and
∑M
i=1Mi single-controlled

unitaries - {cUij : j = 1, . . . ,Mi; i = 1, . . . ,M}.
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Additionally, suppose in the above theorem, all the Hi are the same but they act on disjoint subspaces. In this case,
each PREPi is the same and so it is sufficient to keep only one copy of PREPi in the PREP subroutine of Eq. 82. We
can absorb wi in the weights of the unitaries obtained in the LCU decomposition of Hi. Thus, in this case we have

PREP |0⟩logM+logMi =

(√
1

M

M∑
i=1

|i⟩
)

⊗ PREPi. (84)

We require only ⌈logM⌉ H gates to prepare the superposition in the first register by padding out the number of such
subspaces to be a power of 2. We also need to make slight modifications in the SELECT procedure. This time, we
keep an extra ancilla qubit, initialized to 0, in each subspace. Given a particular state of the first register, we select
a subspace by flipping the qubit in the corresponding subspace. The unitaries in each subspace are now additionally
controlled on this qubit (of its own subspace).

b. Group of multi-controlled-X gate synthesis : We can further optimize the number of gates by implementing the
group of multi-controlled-unitaries in the SELECT subroutines, using the following theorem [27]. Here we partition
the control qubits into different groups, store intermediate information in some ancillae and then implement the
required logic using these intermediate results.

Theorem 14 ([27]). Consider the unitary U =
∑M−1
j=0 |j⟩⟨j| ⊗ Uj for unitary operators Uj that can be implemented

controllably. We assumeM is a power of 2 for simplicity. Suppose we have log2M qubits andM (compute-uncompute)
pairs of C log2MX gates for selecting the M basis states. Let r1, . . . , rn ≥ 1 be positive fractions such that

∑n
i=1

1
ri

= 1

and log2M
ri

are integers. Then, U can be implemented with a circuit with

n∑
i=1

M
1
ri C

log2 M
ri X +MCnX

(compute-uncompute) pairs of gates, M applications of controlled Uj and at most
∑n
i=1M

1
ri ancillae.

Following the construction in [75, 76], the number of T-gates required to implement such multiply controlled gates
is

Tn =

n∑
i=1

M
1
ri

(
4 log2M

ri
− 4

)
+M(4n− 4). (85)

With the help of logical AND gadgets we do not require to use any T-gate for the uncomputation part.
c. Equal weight LCU: Note that the Hamiltonian Eq. (11) consists of 4 different families of terms, the Π2, ΦΦ,

Φ2, and Φ4 terms, each of which share the same coefficients. In principle, if we can further ensure that the LCU
decompositions of each of those terms provides the same weight to every unitary in the LCU, then we can exploit
this structure to drastically simplify the PREP and SELECT circuits. To achieve such an equal weight LCU, we will
make use of the following lemmma

Lemma 15. Consider any arbitrary diagonal matrix

A =

L−1∑
j=0

nj |j⟩⟨j| (86)

where nj ∈ Z+. Then,

A =
1

2

2nmax−1∑
i=0

U (i), where

U
(i)
j,k = δjk [2Θ(nmax + nj − i− 1)− 1] (87)

where the step-function is defined as

Θ(x) =

{
1, if x ≥ 0

0, if x < 0
(88)
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Proof. We simply note that nj =
1
2 [(nmax + nj)− (nmax − nj)], we can describe such a matrix as a sum consisting of

unitaries with entries only in ±1 such that the (j, j)-th entry in the first (nmax + nj) unitaries equals +1, and equals
−1 in the remaining (nmax − nj) unitaries.

Note that while the dimensionality of the U ij,k is given by L, the number of terms in the LCU Eq. (87) is independent
of L.
d. LCU decomposition of integer diagonal matrices : If a diagonal matrix consists of integers only then we can

have an LCU decomposition consisting of O(logmmax) signature matrices, where mmax is the maximum absolute
value of any of its entries. This can be obtained by a binary decomposition of each integer, as stated below.

Lemma 16 ([27]). Let MI is a N ×N diagonal integer matrix, which has N ′ positive integers whose maximum value

is m′
max and N ′′ negative integers such that m′′

max = maxi{|MI [i, i]| :MI [i, i] < 0}. Then, M = c0I+
∑N ′+N ′′

i=1 ciDi,
where Di are signature matrices and N ′ ≤ ⌈log2(m′

max + 1)⌉ = ζ ′ and N ′′ ≤ ⌈log2(m′′
max + 1)⌉ = ζ ′′. Also,∑N ′+N ′′

i=0 |ci| ≤ 2ζ
′ − 1.

Specifically, we can use the following lemma to have an LCU decomposition of ϕ
∆ϕ = diag (−k, . . . ,−1, 0, 1; . . . , k − 1).

Lemma 17 (Lemma 11 in [27]). Let U = I(ζ)⊗ . . .⊗I(ℓ+1)⊗Z(ℓ)⊗I(ℓ−1)⊗ . . .⊗I(1) is a tensor product of ζ single-qubit
unitaries where Z is applied on qubit ℓ and I on the rest. Then U is a diagonal matrix of the following form.

Uj,j = 1 if j = 2ℓk, 2ℓk + 1, . . . 2ℓk + 2ℓ−1 − 1

= −1 if j = 2ℓk + 2ℓ−1, 2ℓk + 2ℓ−1 + 1, . . . 2ℓk + 2ℓ − 1

where k = 0, 1, . . . , 2ζ−ℓ − 1

It follows that

ϕ

∆ϕ
= −1

2

log2 k∑
j=0

2jZj −
1

2
I. (89)

e. Error in the scalar field : We also bound the error in the scalar field in terms of the target energy scale as
below.

Theorem 18. Let |ϕmax| be the maximum allowed value of the scalar field. Then, it suffices to take

|ϕmax| =
(

ϵEmax
C(M,Λ, d)|Ω|

)1/4

(90)

where Emax > 0 is the maximum energy scale we wish to allow in our simulation of the Hamiltonian Hamp given in
Eq. (11), ϵ = Pr(Hamp ≥ Emax) is the probability that a measurement of the Hamiltonian exceeds Emax, |Ω| is the

lattice size, and C(M,Λ, d) =M2 + 3d+ Λ
4! +

3
2 .

Proof. Let |ϕmax| be the maximum allowed value of the scalar field in our simulation. Then, in the field amplitude

basis defined by Φ̂ |ϕ⟩ = ϕ |ϕ⟩, it readily follows that ⟨ϕ| Φ̂n |ϕ⟩ ≤ |ϕmax|n at a single site. Similarly, since the

momentum operator is related to the field operator via a Fourier transform, Π̂ = F†Φ̂F , then letting
∣∣∣ϕ̃〉 = F |ϕ⟩, it

also readily follows for a single lattice site that

⟨ϕ| Π̂n |ϕ⟩ =
〈
ϕ̃
∣∣∣ Φ̂n ∣∣∣ϕ̃〉

≤ |ϕmax|n (91)

Now, the Hamiltonian is given by

Hamp =
∑
x⃗∈Ω

[
1

2
Π2(x) + (M2 + d+ 1)Φ2(x⃗) +

Λ

4!
Φ4(x⃗)− 2

d∑
i=1

Φ(x⃗)Φ(x⃗+ ax̂i)

]
(92)
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It therefore follows that

⟨ϕ|Hamp |ϕ⟩ =
∑
x⃗∈Ω

⟨ϕ|
[
1

2
Π2(x) + (M2 + d+ 1)Φ2(x⃗) +

Λ

4!
Φ4(x⃗)− 2

d∑
i=1

Φ(x⃗)Φ(x⃗+ ax̂i)

]
|ϕ⟩

≤
∑
x⃗∈Ω

[(
1

2
+ (M2 + d+ 1) + 2d

)
|ϕmax|2 +

Λ

4!
|ϕmax|2

]
≤
∑
x⃗∈Ω

[(
1

2
+M2 + 3d+ 1 +

Λ

4!

)
|ϕmax|2

]
= C(M,Λ, d)|Ω||ϕmax|4 (93)

where C(M,Λ, d) =M2 +3d+1+ Λ
4! +

1
2 . Let Emax > 0 be the maximum allowed energy scale in our simulation. By

Markov’s inequality then,

Pr(Hamp ≥ Emax) ≤ ⟨ϕ|Hamp |ϕ⟩
Emax

≤ C(M,Λ, d)|Ω||ϕmax|4
Emax

(94)

from which the statement of the theorem readily follows.

1. Algorithm I : Equal weight LCU

Here, we describe how to construct the PREP and SELECT oracles for the Φ4 Hamiltonian Hamp appearing in
Eq. (11), using an equal weight LCU for the operators appearing in the Hamiltonian. By ensuring that we provide
the same coefficient to each of the unitaries appearing in the LCU decompositions of Φ, Φ2, Φ4 and Π2, we essentially
ensure that we have a total of only 4 families of terms each sharing the same coefficient within that family of terms.
This drastically simplifies the PREP circuit, the only non-trivial part of which is to prepare a 2-qubit state, while
the rest of it is composed of transversal Hadamards. We also describe how to efficiently carry out a SELECT circuit
that does not require selecting each of the unitaries within a family in succession, but can rather apply all of them
simultaneously using a comparator.

First, we describe the decompositions of the operators appearing in the Hamiltonian of Eq. (11). We apply Lemma
15 to obtain these decompositions. The ΦΦ, Φ2 and Φ4 terms are all built from the same basic diagonal operator
Φ̂
∆Φ = Diag(−k + 1, . . . , 0, . . . , k).

a. Decompositions First, for the Φ̂ operator, we use L = 2k, nmax = k, and nj = j − k + 1 in Eq. (87) to get

Φ̂

∆Φ
=

1

2

2k−1∑
i=0

U (i), where

U (i) = −
i−1∑
j=0

|j⟩⟨j|+
2k−1∑
j=i

|i⟩⟨i| =
2k−1∑
j=0

[2Θ(j − i)− 1] |j⟩⟨j| (95)

On any two sites a and b, the operator −Φ̂aΦ̂b is then simply given by

− Φ̂aΦ̂b

(∆Φ)
2 =

1

4

2k−1∑
ia,ja=0

2k−1∑
ib,jb=0

[2Θ(ja − ia)− 1] [1− 2Θ(jb − ib)] |ja⟩ ⟨ja| ⊗ |jb⟩ ⟨jb| (96)

For the Φ̂2 term, we use L = 2k2, nmax = k2 and nj = (k − j − 1)2 in Eq. (87) to get(
Φ̂

∆Φ

)2

=
1

2

2k2−1∑
i=0

U (i), where

U (i) =

2k−1∑
j=0

[
2Θ(k2 + (k − j − 1)2 − i− 1)− 1

]
|j⟩⟨j| (97)
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Similarly, for the Φ̂4 term, we use L = 2k, nmax = k4 and nj = (k − j − 1)4 in Eq. (87) to get(
Φ̂

∆Φ

)4

=
1

2

2k4−1∑
i=0

U (i), where

U (i) =

2k−1∑
j=0

[
2Θ(k4 + (k − j − 1)4 − i− 1)− 1

]
|j⟩ ⟨j| (98)

b. PREP circuit As the above decompositions illustrate, we have LCU decompositions for each of the terms
in Hamp such that all the unitaries share the same coefficients within each of 4 different families. In the language
of Theorem 13, this means that we have M = 4 different families. These equal weight LCU decompositions lead
to a much simpler PREP circuit. In particular, we only need to prepare a non-trivial log2M = 2 qubit register
whose amplitudes encode the shared coefficients of the 4 groups of terms in the Hamiltonian (11). The PREPi
(sub-PREPARE) circuits for each of these groups, which would control which of the U (i)’s in the LCUs above would
be selectively applied, then simply become a layer of transversal Hadamard gates.

In other words, the PREP circuit then simplifies to

PREP = PREPF ⊗H⊗ log2 |Ω| ⊗H⊗ log2 2k4 (99)

where

PREPF |0⟩⊗2
= απ2 |00⟩+ αϕ2 |01⟩+ αϕ4 |10⟩+ αϕϕ |11⟩ (100)

where the amplitudes αj encode the coefficients of the 4 families of terms in the Hamiltonian (11)

|απ2 |2/N =
1

2
, |αϕ2 |2 =

(
M2 + d+ 1

)
/N

|αϕ4 |2 =
Λ

4!
/N , |αϕϕ|2 = 2/N (101)

where N =
∑
j∈{π2,ϕ2,ϕ4,ϕϕ} |αj |2. Note that this is not the same as the coefficient 1-norm of the Hamiltonian, which

instead is given by

|α|1 = |Ω|
[
k4∆4

ϕΛ

4!
+ k2∆2

ϕ

(
M2 + 3d+

3

2

)]
(102)

where we take ∆ϕ =
√
2π/2nQ =

√
π/k where nQ = log2 2k is the number of qubits required to implement the field

register at a single lattice site. This choice ensures that the free part of the Hamiltonian corresponds to the usual
eigenspectrum of a harmonic oscillator.

Thus, the PREP circuit will contribute at most O(1) T gates, by preparing a superposition of the four non-trivial
coefficients in the ϕ4 Hamiltonian, since the LCUs for all the operators appearing in the Hamiltonian are all equal
weight. We need only prepare a non-trivial 2-qubit state, with real amplitudes. It was shown by Vatan and Williams
[77] that such an SO(4) operator requires at most 12 RZ gates and 2 CNOTs.
We now use the result of [28] that gives us a T gate cost of 3.067 log2(2/ϵsynth) − 4.327 to compile an RZ gate to

target precision ϵsynth. Other such cost estimates include the result of [78], which estimates that on average, the T
gate cost of a synthesized/compiled unitary V ϵsynth-approximating a single RZ gate U (i.e. |U − V | ≤ ϵsynth) is
1.15 log2(1/ϵsynth), while [79] estimates a worst case upper bound of 10+ 4 log2(1/ϵsynth) T gates per RZ gate. Since
the errors are additive, the total T gate cost increases by the number of RZ gates times the compilation cost of a
single RZ gate. Thus, the total T gate cost of the PREP circuit is given by

Count(T )PREP = 36.804 log2(2/ϵsynth)− 51.924 (103)

c. Simultaneous SELECT In principle, with the simplification of the PREP circuit described above, we could
selectively apply each of the unitaries in a particular LCU by controlling on the state of some register prepared in equal
superposition of all bitstrings. However, this decomposition also allows us to simultaneously apply all the SELECTi
circuits corresponding to these unitaries. In particular, by making use of the comparator CMP operation, defined as

CMP |i⟩ |j⟩ |0⟩ = |i⟩ |j⟩ |j < i⟩ (104)

we can apply the following lemma
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Lemma 19. For integers i and j, we have

CMP† (I⊗ I⊗ Z) CMP |i⟩ |j⟩ |0⟩ = (2Θ(j − i)− 1) |i⟩ |j⟩ |0⟩ (105)

where the step function Θ(x) is defined in Eq. (88).

from which we readily obtain the following corollary

Corollary 20. Let |ψ⟩ =∑D−1
j=0 αj |j⟩ denote the state of the scalar field at some lattice point, and |+⟩ =∑D−1

i=0
1√
D
|i⟩

an equal superposition register. Then,

|+⟩ ⊗ Φ̂

Φmax
|ψ⟩ ⊗ |0⟩ = CMP† (I⊗ I⊗ Z) CMP |+⟩ |ψ⟩ |0⟩ (106)

where Φmax = k∆Φ.

In this way, we obviate the need to selectively apply each of the unitaries U (i) appearing in Eq. (95) individually.
Instead, we can apply all of them in superposition by a single application of the comparator and its inverse. This
simplifies the SELECTi circuits necessary to implement each of the terms in the Hamiltonian. Fig 3 demonstrates
this circuit equivalence, and the advantage it confers. Applying each of the equally weighted unitaries individually
would require O(|Ω|k) many operations controlled on the state of O(log |Ω|k) many qubits, leading to a T gate count
of O(|Ω|k log |Ω|k). Instead, we have O(|Ω|) many single-qubit operations controlled on the state of O(log |Ω|) many
qubits, leading to a significantly reduced T gate count of O(|Ω| log |Ω|) for the SELECT operation.

Note that instead of the comparator, we are also free to apply any other operator CMP′ of the form

CMP′ |i⟩ |j⟩ |scratch⟩ |0⟩ = |Ψi,j,scratch⟩ |j < i⟩ (107)

which may significantly reduce the gate cost. An example of such an operation would be to compute the high carry bit

of j + i = j − i, which is 1 iff j < i, but leaves the state of the |i⟩, |j⟩ and other ancillary qubits |scratch⟩ entangled.
Once the appropriate phase has been extracted from the |j < i⟩ qubit, we simply run the inverse of this operation.
Noting also that

|x⟩ ⟨x| ⊗
(
U†V U

)
+
∣∣x⊥〉 〈x⊥∣∣⊗ I =

(
I⊗ U†) (|x⟩ ⟨x| ⊗ V +

∣∣x⊥〉 〈x⊥∣∣⊗ I
)
(I⊗ U) (108)

this means that the controlled version of the entire operation H⊗mCMP′†ZancCMP
′H⊗m simply needs to control the

Zanc operation. An example circuit involving the CMP′ operation is depicted in Fig. 4.
We can now split up the entire SELECT circuit as

SELECT =
∑

i∈{π2,ϕ2,ϕ4,ϕϕ}

|αi⟩ ⟨αi| ⊗
|Ω|−1∑
a=0

|a⟩ ⟨a| ⊗ SELECTi,a (109)

where the left-most register controls the family of terms in the Hamiltonian, the middle register controls which site
we apply an operator to, and finally the SELECTi circuits applies the relevant transformations for each of the family
of terms as described below, and further detailed in Appendix C 1 b.

d. SELECTϕϕ term To implement the −ΦΦ term, we can simply make use of Corollary (20) and the fact that
XZX = −Z to obtain

|+⟩ ⊗
(
− Φ̂

Φmax

)
|ψ⟩ ⊗ |0⟩ = CMP† (I⊗ I⊗XZX) CMP |+⟩ |ψ⟩ |0⟩ (110)

Then, for any two lattice sites a and b, the operator
(
−Φ̂aΦ̂b

)
/(∆Φ)2 is then implemented by the product of

operations given in Eqs. (20) and (110). In D spatial dimensions, a lattice site has 2D neighbors. Since the operation(
CMP†ZancCMP

)
squares to the identity, this means we only need to apply the operation

(
CMP†XancZancXancCMP

)
on

each of the neighbors of a given lattice site, without applying a similar operation on the given lattice site itself. Thus,
the entire sub-select unitary for this family of terms is then given by

SELECTϕϕ,a =

2D−1∑
b=0

|b⟩ ⟨b| ⊗
(
CMP†ZancCMP

)
a

(
CMP†XancZancXancCMP

)
b

(111)
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FIG. 3: Circuit equivalence demonstrating how the comparator CMP can implement the entire sum of unitaries in
Eq. (95). The “family” register controls which of the 4 families of terms in the Hamiltonian we want to apply, the
“site” register controls which of the lattice sites we want to apply the operator to, and the “LCU term” register

controls which of the unitaries of Eq. (95) we wish to apply.

FIG. 4: An example circuit for k = 4 implementing the operation CMP′†ZancCMP
′ using the logical AND construction

of [76]. The field register |ϕ⟩ = |a2⟩ |a1⟩ |a0⟩ is compared against an equal superposition of bitstrings using CMP′, the
comparison recorded onto an ancilla using Zanc, followed by the uncomputation CMP′† which involves measurements

and post-measurement Clifford operations.

where the |b⟩ register, consisting of log2 2D qubits, controls which of the neighbors we apply the operation to. For
notational simplicity, in the expression above, the subscripts a and b denote not just the respective lattice sites, but
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also the associated ancilla required to implement the CMP, as well as the Xanc and Zanc operations. As described
earlier, the only operation inside the parantheses above that needs to be controlled is the Zanc operation, since all other
operations on either side of it are self-conjugate. Any given lattice site will receive one application of

(
CMP†ZancCMP

)
and 2D applications of

(
CMP†XancZancXancCMP

)
coming from its neighbors. Between these successive applications,

CMP and its inverse multiply to the identity, as do several applications of the X operator. Therefore, per lattice site, we
require one application each of CMP and its conjugate, two applications of the Xanc operator, and 2D+1 applications
of a controlled Zanc operator, each of which is controlled on the state of log2 (8D|Ω|) (= 2+log2 |Ω|+log2 (2D)) many
qubits, where the factor of 2 comes from the PREP circuit, the factor of log2 |Ω| from the lattice size, and log2 (2D)
from the number of neighboring lattice sites in D spatial dimensions.

A Cn-Z gate can be implemented [76, 80] with n − 2 ancillas initialized in the |0⟩ state, using n − 1 logical AND
computations (and just as many uncomputations) along with 2 Hadamard gates. Each logical AND computation
requires 4 T gates. Therefore, the controlled Zanc operations naively require O(D|Ω| log2 (D|Ω|)) T gates across the
entire lattice, and in each of the D spatial dimensions.
A more efficient approach using unary iteration is also described in [70], which brings the cost for implementing

such a SELECT operation consisting of L operations down to 4L − 4 T gates, instead of O(L log2 L). Briefly, this
method exploits the fact that successive control patterns differ in at most a constant number of bits, so that the
collective circuit can be simplified. In our case, we have L = |Ω|(2D + 1) many controlled operations to apply across
the entire lattice, which incurs a T gate cost of 4L− 4 = 4|Ω|(2D + 1)− 4.

As described before, the CMP operations may be replaced by CMP′ operations described by Eq. (107). For two n-bit
numbers i and j, the operation CMP′ records the Boolean value of j < i onto an ancillary qubit, and requires n many
logical AND computations. Each of these in turn can be implemented using 4 T gates. The CMP′† computations
are simply the logical AND uncomputations that require measurements on the ancilla and classically conditioned
post-measurement Clifford operations. In our case, we require the comparison of two log2 (2k)-bit numbers. Thus,
the CMP′ operations contribute a total T gate count of 4|Ω| log2 (2k) across the entire lattice.

The total T gate count for the ϕϕ part of the Hamiltonian is therefore

Count(T)ϕϕ = 4|Ω| (2D + log2 k + 2)− 4 (112)

e. SELECTΦ2 term The sub-select circuit for Φ2 term can be constructed quite similarly. The comparator is
still used to extract the relevant phase. The only difference is that now we must massage an ancillary register with

some initial set of operations that we summarize as Uϕ
2

initial.
Specifically, given |ψ⟩ = ∑

j cj |j⟩, denoting the field register at some lattice point, and another ancillary register

|k⟩, we require

Uϕ
2

initial

∑
j

cj |j⟩

 |k⟩ |scratch⟩ |0⟩ = |Ψ′⟩
∣∣k2 + (j + 1− k)2

〉
. (113)

Once the value k2 + (j + 1 − k)2 has been written onto a register, we can repeat the procedure described earlier of
using a comparator, extracting out the relevant phase, then undoing the comparison. In sum, for each lattice site a

SELECTΦ2,a =
(
Uϕ

2,†
initialCMP

†ZancCMPU
ϕ2

initial

)
a
. (114)

As shown in the Appendix , the cost of the Uϕ
2

initial operation and its inverse incurs a total T gate cost of

8|Ω|
(
4 (log2 2k)

2
+ 2 log2 2k − 6

)
, where the leading term comes from multiplying two log2 2k-bit numbers, while

other terms come from other arithmetic operations, such as addition.
The CMP′ operation (and its inverse), replacing the CMP operation as before, compares two log2 2k

2-qubit num-
bers and costs log2 2k

2 many logical ANDs. Thus, the comparisons require |Ω| log2 2k2 many logical ANDs across
the entire lattice, contributing to a T gate count of 4|Ω| log2 2k2. In addition, we have |Ω| many multi-controlled Z
gates to apply across the entire lattice, which incurs a cost of 4|Ω|−4 T gates using the unary iteration method of [70].

In all, the total T gate count for this family of terms is given by

Count(T )ϕ2 = 8|Ω|
(
4 (log2 2k)

2
+ 2 log2 2k − 6

)
+ 4|Ω|

(
log2 2k

2 + 1
)
− 4

= 8|Ω|
(
4 log22 k + 11 log2 k + 1

)
− 4 (115)
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f. SELECTπ2 term Using the relation π = F†ϕF ⇒ π2 = F†ϕ2F , where F denotes the discrete Fourier trans-
form, we see that the SELECTπ2 circuit is essentially the same as the SELECTϕ2 except that at each lattice site,
we have additional (uncontrolled) log2 2k-qubit Fourier transforms and their inverses at every lattice site. For each
lattice site a, we have

SELECTπ2,a =
(
F†Uϕ

2,†
initialCMP

†ZancCMPU
ϕ2

initialF
)
a

(116)

where F now represents the quantum Fourier transform (QFT) circuit. Here, we use the approximate QFT (AQFT)
circuit of [71], which incurs a T gate cost of approximately

Count(T )AQFT ≈ 8n log2

(
n

ϵAQFT

)
+ log2

(
n

ϵAQFT

)
log2

 log2

(
n

ϵAQFT

)
ϵAQFT

 (117)

for a target precision of ϵAQFT . One application each of the AQFT and its inverse at each lattice site incurs a total
cost of 2|Ω| times the expression in Eq. (117) with n = log2 2k. The total T gate cost for this family of terms is then

Count(T )π2 = Count(T )ϕ2 + Count(T )AQFT

= 8|Ω|
(
4 log22 k + 11 log2 k + 1

)
− 4 + 16|Ω| log2 2k log2

(
log2 2k

ϵAQFT

)
+ log2

(
log2 2k

ϵAQFT

)
log2

 log2

(
log2 2k
ϵAQFT

)
ϵAQFT


(118)

g. SELECTϕ4 term The sub-select circuit for the Φ4 term can be constructed similarly to that of the Φ2 term.
As before, we apply an initial transformation to record an appropriate value to an ancillary register, to which the
comparator is applied, and subsequently the appropriate phase extracted to match the entries of the signature matrices
of the equal weight LCU Eq. (98).

Assuming |ψ⟩ =
∑
j cj |j⟩ denotes the field register at some lattice point, and we have another ancillary register

initialized to |k⟩, along with an entire |scratch⟩ ancillary register to assist with various sub-routines, as well as another
ancillary register initialized to |0⟩, we require

Uϕ
4

initial

∑
j

cj |j⟩

 |k⟩ |scratch⟩ |0⟩ = |Ψ′⟩
∣∣∣k4 + (j + 1− k)

4
〉

(119)

Once the value k4 + (j + 1− k)
4
has been recorded in superposition, we can apply the usual comparator technique

as described above to extract the relevant phase and produce the desired LCU. In all, we have for each lattice site a

SELECTΦ4,a =
(
Uϕ

4,†
initialCMP

†ZancCMPU
ϕ4

initial

)
a

(120)

As before, the Uϕ
4

initial circuit requires the implementation of a few basic arithmetic sub-routines, including binary
multiplication of two O(log k)-bit numbers, which contributes the dominant cost of O(|Ω|(log k)2) T gates. As shown
in the appendix, this part of the circuit contributes a total T gate cost of 8|Ω|

(
20 log22 (2k)− 10 log2 (2k) + 1

)
.

The cost of the CMP′ (simplifying the CMP operation), which now compares two log2 2k
4-bit numbers, is 4|Ω| log2 2k4.

As in the case of the ϕ2 term, we have |Ω| many multi-controlled Z gates to apply across the entire lattice, which
contributes a cost of 4|Ω| − 4 T gates using the unary iteration method of [70].

In all, the total T gate count for this family of terms is

Count(T )ϕ4 = 8|Ω|
(
log22 k − 6 log2 k − 7

)
− 4 (121)

The explicit construction of the Uϕ
4

initial circuit, as well as a detailed counting of the T gates, is provided in the
Appendix.

h. Total cost for Hamiltonian simulation The constructions above create a block encoding of the Hamiltonian
via (⟨G| ⊗ I)U (|G⟩ ⊗ I) = H where |G⟩ = UPREP

∣∣0〉 and U = USELECT . Since U
2
SELECT = I, by Corollary 9 of [5],

we have that the walk operator

W =
((

2UPREP |0⟩ ⟨0|U†
PREP − I

)
⊗ I
)
USELECT (122)
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also provides a block encoding of the Hamiltonian, i.e. (⟨G| ⊗ I)W (|G⟩ ⊗ I) = H but in an SU(2) invariant subspace
containing |G⟩, i.e. in qubitized form. It is this qubitized block encoding that we shall employ to perform phase
estimation in order to subsequently estimate scattering matrix elements.

The cost of this block encoding is then given by the sum of twice the cost of the PREP oracle, the cost of the
SELECT oracle, and the cost of the reflection operator 2 |0⟩ ⟨0| − I. The cost of PREP circuit is given by Eq. (103),
while the cost of the SELECT circuit is given by the sum of Eqs. (112), (115), (118) and (121). The cost of the
reflection operator is at most logarithmic in all parameters, and is exponentially sub-dominant to the other costs, so
we neglect it in our analysis. In all, we have

Cost(T )W = 72|Ω| log22 k + 168|Ω| log2 k + 8|Ω|D − 32|Ω|+ 73.608 log2 (2/ϵsynth)

+16|Ω| log2 2k log2
(
log2 2k

ϵAQFT

)
+ log2

(
log2 2k

ϵAQFT

)
log2

 log2

(
log2 2k
ϵAQFT

)
ϵAQFT

− 119.848 (123)

In order to employ this block-encoding for Hamiltonian simulation using QSVT, we need

Θ

|α|1t+
log 1/ϵ

log
(
e+ log (1/ϵ)

|α|1t

)
 (124)

many queries to the walk operator W , where the coefficient 1-norm is given by Eq. (102).
i. Ancilla count To implement the operations described above, we need several ancillary qubits. First, we need

2 ancillae for the 4 families of terms in the Hamiltonian, log2 |Ω| ancillae for the |Ω| sites on the lattice, and log2 (2D)
ancillae for the neighbors of a given lattice site. These are common across all the SELECTi,a operations, even though
the last register is only used for the SELECTϕϕ,a operation.
Second, the comparison operations can only be carried out in succession, and may thus be recycled for use at

each lattice site (or lattice site-neighbor pair in the case of the SELECTϕϕ,a operation). The largest comparisons
we require are for the SELECTϕ4,a operation. Each such comparison requires log2 (2k

4) qubits to compare against,
another log2 (2k

4) qubits to hold temporary carry values, and 1 more qubit for the Zanc or (XZX)anc operation. The
controlled-Z operation further requires at most log2 (|Ω|D) many ancillary qubits.

Similarly, the ancillae involved in the various Uinitial operations can be recycled for use across each site and across
each family of terms. The dominant cost is for the ϕ4 term, and provided in the appendix. In addition to the ancilla
qubits, we also have |Ω| log2 (2k) many qubits to hold the values of the scalar field across the entire lattice. Adding
all these counts together, we find

Count(Qubits) = |Ω| log2 (2k) + 18 log22 k + 60 log2 k + log2 (|Ω|D) + 29 ∈ O
(
|Ω| log k + log2 k

)
(125)

2. Algorithm II : Trotterization with Z operators

In this section we describe a decomposition of the operators Φ,Φ2,Φ4 as a function of Z operators, thus making it
amenable to Trotterization. In the next section we will use these LCU decompositions to estimate the simulation cost
using QSVT or QSP. The sum of the ℓ1 norm of the coefficients in these decompositions is referred to as the ℓ1 norm
of the decomposition or operator. This is also an upper bound on the spectral norm of the operators and is useful to
bound the complexity of LCU based simulation algorithms.

a. Decomposition of Φ, Φ2 and Φ4 : We decompose Φ
∆Φ as follows, as done in Eq. 89.

Φ

∆Φ
= −1

2

log2 k∑
j=0

2jZj −
1

2
I

Thus, (
Φ

∆Φ

)2

=

(
Φ

∆Φ
+

I
2

)2

−
(

Φ

∆Φ
+

I
2

)
+

I
4

=
1

6

(
22 log2 k+1 + 1

)
I+

log2 k−1∑
j=0

log2 k∑
k>j

2j+k−1ZjZk +
1

2

log2 k∑
j=0

2jZj (126)
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and so
(

Φ
∆Φ

)4
can be obtained by squaring the above equation and hence can be expressed as sum of Z operators as

well. The ℓ1 norm of the decomposition of
(

Φ
∆Φ

)
,
(

Φ
∆Φ

)2
and

(
Φ
∆Φ

)4
is k, k2 and k4, respectively. The detail of these

calculations have been provided in Appendix C 2.

Plugging in the above LCU decomposition of the operators into Eq. 11, we obtain the following decomposition of
Hamp. We keep in mind that we have a lattice with |Ω| vertices, where each vertex has D neighbors. Let us denote
the set of edges by ED.

Hamp = Hπ +Hϕ (127)

Hπ =
∑
x∈Ω

Hπx :=
∑
x∈Ω

1

2
Π2(x) =

∑
x∈Ω

F

γ0I+∑
j

γjZj +
∑
j,k

γjkZjZk

F† (128)

Hϕ′ =
∑
x∈Ω

I+
∑
j

αjZj +
∑
j,k

αjkZjZk +
∑
j,k,l

αjklZjZkZl +
∑
j,k,l,m

αjklmZjZkZlZm

 (129)

Hϕ′′ =
∑
x,x′

(x,x′)∈ED

∑
j,j′

βjj′ (Zj)x (Zj′)x′ (130)

Hϕ = Hϕ′ +Hϕ′′ (131)

In the above set of equations the coefficients γ0, γj , γjk, αj , αjk, αjkl, αjklm, βjj′ are determined by the LCU decom-
position of the operators as well as Eq. 11. We ignore the identity term, since if Hamp = Hamp′ + β0I, where β0 is a

constant, then e−iH
′
ampτ ∝ e−iHampτ upto some global phase. So the gate complexity to implement the exponentials

is the same.

We have two non-commuting components, Hϕ and Hπ. We first analyze the gate complexity to implement e−iHϕτ

and e−iHπτ , where τ is one Trotter step. As mentioned, Trotterization becomes quite straight-forward with this
decomposition. We require 1 Rz gate and few CNOT gates (to compute the parity) for each exponentiated Z operator.
Thus we need at most

|Ω|
((

log2 k + 1

1

)
+

(
log2 k + 1

2

)
+

(
log2 k + 1

3

)
+

(
log2 k + 1

4

))
+ ED(log2 k + 1)2 (132)

number of Rz gates and at most

2|Ω|
((

log2 k + 1

2

)
+ 2

(
log2 k + 1

3

)
+ 3

(
log2 k + 1

4

))
+ 2ED(log2 k + 1)2 (133)

number of CNOT gates. We observe that in order to implement the required exponential of the operators we require
a number of CNOT that will realize the necessary paritites i.e. the XOR of all combinations of 2, 3 and 4 qubits.
Such a circuit is usually referred to as a ’parity network’. The Rz gates are placed at that point of the circuit where
the corresponding parity is realized. The number of CNOT gates can be optimized using algorithms like [81, 82].
Additionally we require 2|Ω| number of log2 2k-qubit QFT. If we use the approximate QFT (AQFT) circuit of [71]
then we require

2|Ω|

8(log2 2k) log2

(
log2 2k

ϵQFT

)
+ log2

(
log2 2k

ϵQFT

)
log2

 log2

(
log2 2k
ϵQFT

)
ϵQFT

 (134)

number of additional T gates.

Now we bound the error using the 2nd order Trotter formula [67, 68], in a similar manner as discussed in Section
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IVC. We need to calculate the second level nested commutators. Here, for convenience we fragment Hϕ as follows.

Hϕ := H1ϕ +H2ϕ +H3ϕ (135)

H1ϕ :=
∑
x∈Ω

H1ϕx =
∑
x∈Ω

1

2
(M2 + d+ 1)Φ2(x) (136)

H2ϕ :=
∑
x∈Ω

H2ϕx =
∑
x∈Ω

Λ

24
Φ4(x) (137)

H3ϕ :=
∑
x∈Ω

H3ϕx =
∑
x∈Ω

−2
∑
x′:

(x,x′)∈ED

Φ(x)Φ(x′)

 :=
∑
x∈Ω

∑
x′:

(x,x′)∈ED

H3ϕxx′ (138)

We observe the following commutation relations between Hπx (Eq. 128) and the Hamiltonian fragments in the above
equations.

[H1ϕx, H2ϕx′ ] , [H1ϕx, H3ϕx′ ] , [H3ϕx, H2ϕx′ ] = 0 for all x,x′,

[Hπx, H1ϕx′ ] , [Hπx, H2ϕx′ ] ̸= 0 if and only if x = x′,

and [Hπx, H3ϕx′ ] ̸= 0 if and only if (x,x′) ∈ ED. (139)

Now assuming H ′
1ϕ =

∑
x∈ΩH

′
1ϕx =

∑
x∈ΩH1ϕx +H2ϕx = H1ϕ +H2ϕ, we have

α̃comm ≤
(
∥[[Hπ, H

′
1ϕ], Hπ] + [[Hπ, H

′
1ϕ], H

′
1ϕ]∥

)
+
(
∥[[Hπ, H

′
1ϕ], H3ϕ] + [[Hπ, H3ϕ], Hπ] + [[Hπ, H3ϕ], H

′
1ϕ] + [[Hπ, H3ϕ], H3ϕ]∥

)
:= S1 + S2. (140)

For the first sum, we use Eq. (139) and observe that Eq. (57) can be applied along with triangle inequality in order
to have the following bound.

S1 =
∑
x∈Ω

∥[[Hπx, H
′
1ϕx], Hπx]∥+ ∥[[Hπx, H

′
1ϕx], H

′
1ϕx]∥

≤
∑
x∈Ω

∥[Hπx, H
′
1ϕx]∥

(
∥H ′

1ϕx∥+ ∥Hπx∥
)
≤ |Ω|∥[Hπx, H

′
1ϕx]∥

(
∥H ′

1ϕx∥+ ∥Hπx∥
)

(141)

≤
∑
x∈Ω

(
M2 + d+ 1

4
∥[Π2(x),Φ2(x)]∥+ Λ

48
∥[Π2(x),Φ4(x)]∥

)(
1

2
(M2 + d+ 1)∥Φ2∥+ Λ

24
∥Φ4∥+ 1

2
∥Π2∥

)
≤ |Ω|

(
M2 + d+ 1

2
∥Π2(x)∥∥Φ2(x)∥+ Λ

24
∥Π2(x)∥∥Φ4(x)∥

)(
1

2
(M2 + d+ 1)∥Φ2∥+ Λ

24
∥Φ4∥+ 1

2
∥Π2∥

)
For the second sum S2 we again use Eq. (139) and triangle inequality and obtain the following bound.

S2 ≤
∑
x∈Ω

∑
x′:

(x,x′)∈ED

∑
x′′:(x,x′′)∈ED

or (x′,x′′)∈ED

(
∥[[Hπx, H

′
1ϕx], H3ϕxx′ ]∥+ ∥[[Hπx, H3ϕxx′ ], Hπx′′ ]∥+ ∥[[Hπx, H3ϕxx′ ], H ′

1ϕx′′ ]∥

+ ∥[[Hπx, H3ϕxx′ ], H3ϕxx′′ ]∥+ ∥[[Hπx, H3ϕxx′ ], H3ϕx′x′′ ]∥)
≤ |Ω|d2

(
∥[Hπx, H

′
1ϕx]∥∥H3ϕxx′∥+ ∥[Hπx, H3ϕxx′ ]∥

(
∥Hπx′′∥+ ∥H ′

1ϕx′′∥+ ∥H3ϕxx′′∥+ ∥H3ϕx′x′′∥
))

(142)

We already mentioned that the ℓ1 norm for the decomposition of
(

Φ
∆Φ

)
,
(

Φ
∆Φ

)2
and

(
Φ
∆Φ

)4
is k, k2 and k4, respectively

(Appendix C 2). Also ∥Π∥ = ∥Φ∥ since they are Fourier conjugates and so using triangle inequality we have,

∥H ′
1ϕx∥ ≤ 1

2
(M2 + d+ 1)∥Φ2(x)∥+ Λ

24
∥Φ4(x)∥ ≤ 1

2
(M2 + d+ 1)k2∆2 +

Λ

24
k4∆4;

∥H3ϕxx′∥ ≤ 2∥Φ(x)∥∥Φ(x′)∥ ≤ 2k2∆2; ∥Hπx∥ ≤ 1

2
∥Π2(x)∥ ≤ 1

2
k2∆2;

∥[Hπx, H
′
1ϕx]∥ ≤ 2∥Hπx∥∥H ′

1ϕx∥ ≤ 1

2
(N2 + d+ 1)k4∆4 +

Λ

24
k6∆6;

∥[Hπx, H3ϕxx′ ]∥ ≤ 2∥Hπx∥∥H3ϕxx′∥ ≤ 2k4∆4. (143)
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Thus, from Eq. (141) and 142 we have

S1 ≤ |Ω|
(
1

2
(M2 + d+ 1)k4∆4 +

Λ

24
k6∆6

)(
1

2
(M2 + d+ 2)k2∆2 +

Λ

24
k4∆4

)
= |Ω|

(
1

4
(M2 + d+ 1)(M2 + d+ 2)k6∆6 +

Λ

48
(2M2 + 2d+ 3)k8∆8 +

Λ2

576
k10∆10

)
,

S2 ≤ |Ω|d2
((

1

2
(M2 + d+ 1)k4∆4 +

Λ

24
k6∆6

)
2k2∆2

+2k4∆4

(
1

2
k2∆2 +

1

2
(M2 + d+ 1)k2∆2 +

Λ

24
k4∆4 + 4k2∆2

))
= |Ω|d2

(
(2M2 + 2d+ 11)k6∆6 +

Λ

6
k8∆8

)
,

and from Eq. (140) we have

α̃comm ≤ |Ω|
(

Λ2

576
k10∆10 +

Λ

48
(2M2 + 8d2 + 2d+ 3)k8∆8+(

1

4
(M2 + d+ 1)(M2 + d+ 2) + d2(2M2 + 2d+ 11)

)
k6∆6

)
∈ O

[
|Ω|
(
Λ2k10∆10 + ΛM2k8∆8

)]
. (144)

for fixed spatial dimensionality d. We can prove the following bound on the T-gate complexity, using similar reasoning
as in Theorem 12.

Theorem 21. Given an eigenstate |ψ⟩ of H such that Hamp |ψ⟩ = E |ψ⟩, where Hamp is the amplitude basis Hamil-
tonian, as stated in Eq. (127), then there exists a quantum algorithm that outputs with probability greater than 2/3 a

value Ê such that |Ê − E| ≤ ϵE, using a number of T gates that scales as

O

(
|Ω|3/2

√
Λ2k5 + ΛM2k4 log4(k)

ϵ
3/2
E

log

( |Ω|k log k
ϵE

(
Λ2k + ΛM2

)))

T gates and O (|Ω| log2(2k)) qubits, plus an additional number of ancillary qubits required for phase estimation as
detailed in Lemma 36.

Here the log argument is derived from ϵr =
√
2ϵE

8Nr

√
ϵE

23/2α̃comm
, Nr ∈ O

(
|Ω| log42(2k)

)
and

α̃comm ∈ O
[
|Ω|
(
Λ2k10∆10 + ΛM2k8∆8

)]
, and ∆ =

√
π/k.

Proof. Suppose we allocate ϵr as an upper bound on the permitted synthesis error per Rz gate. From Eq. (132) we
find that the total number of Rz required for each Trotter step is at most

Nr := |Ω|
((

log2 k + 1

1

)
+

(
log2 k + 1

2

)
+

(
log2 k + 1

3

)
+

(
log2 k + 1

4

))
+ ED(log2 k + 1)2

and so using the T-count estimate in [32] gives the expected number of T-gates from rotations to be at most

NT/Rz
≤ Nr (3.067 log2(1/ϵr)− 4.327) .

We also require the following number of additional T-gates due to the QFT performed. Since we are using approximate
QFT, so we allocate an error of ϵQFT due to this. Thus from Eq. (134) we require the following additional number of
T-gates.

N+ := 2|Ω|

8(log2 2k) log2

(
log2 2k

ϵQFT

)
+ log2

(
log2 2k

ϵQFT

)
log2

 log2

(
log2 2k
ϵQFT

)
ϵQFT

 .

So, the total number of T-gates per Trotter step is

GT = NT/Rz
+N+ ∈ O

(
|Ω| log4(2k) log(1/ϵr)

)
.
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Using Lemmas 10 and 11 and Eq. (144), the total number of T-gates required to achieve an eigenstate within total
error ϵE is at most

GT · 2m ≤ π2
√
α̃comm

ϵ
3/2
E

GT ∈ O
(
|Ω|3/2

√
Λ2k5 + ΛM2k4 log4(2k)

ϵ
3/2
E

log(1/ϵr)

)

where we have used ∆ =
√
π/k. The total synthesis error due to approximation of the rotation gates is ϵsynth =

ϵr ·Nr + ϵQFT ≥ ϵrNr, where the value of ϵsynth is given in Eq. 65. Plugging in the values of the timestep τ and ϵθ
from Eq. (67) and (66), respectively we obtain the following bound on ϵr in order to ensure that the final error in
the estimate of the energy is at most ϵE .

ϵr ≤
√
2ϵEτ

8Nr
=

√
2ϵE
8Nr

√
ϵE

23/2α̃comm

Note that we get a slightly different pre-factor if we also account for the errors arising due to the use of the approximate
QFT, as detailed in Lemma 36, but this does not change the asymptotic scaling derived here. Using the above, we
obtain

log

(
1

ϵr

)
∈ O

(
log

( |Ω|k log k
ϵE

(
Λ2k + ΛM2

)))
, (145)

hence proving the theorem.

3. Algorithm IIIa : LCU with Z operators

In this section we discuss an approach to simulate Hamp with qubitization, using Eq. 89 that expresses ϕ as sum
of Z operators. Then we repeatedly square it to obtain an LCU decomposition for Φ2 and Φ4, as done in previous
subsection (Eq. 126). We group the terms as follows.

H1x =
∑
j

αjZj +
∑
j,k

αjkZjZk + F

∑
j

γjZj +
∑
j,k

γjkZjZk

F† (146)

H2x =
∑
j,k,l

αjklZjZkZl +
∑
j,k,l,m

αjklmZjZkZlZm (147)

H12 =
∑
x∈Ω

H1x +H2x (148)

H3xx′ =
∑
j,j′

βjj′ (Zj)x (Zj′)x′ (149)

H3 =
∑

(x,x′)∈ED

H3xx′ (150)

H ′
amp = H12 +H3 (151)

Let L1 =
(
log2 k+1

1

)
, L2 =

(
log2 k+1

2

)
, L3 =

(
log2 k+1

3

)
, L4 =

(
log2 k+1

4

)
and L5 = (log2 k + 1)2. In the following theorem

we summarize the number of gates required to block encode H ′
amp by repeatedly applying Theorem 13.

Theorem 22. Let H ′
amp be the Hamiltonian defined in Eq. 151 and ∥H ′

amp∥ be the ℓ1 norm of the coefficients

defined in its decomposition (Eq. 146-150). Then it is possible to have a
(
∥H ′

amp∥, ·, 0
)
block-encoding of H ′

amp with
O (|Ω| log k) qubits, using the following number of rotation gates

Nr ∈ O
(
log4 k

)
,

and the following number of additional T gates (that are not in the decomposition of rotation gates).

Nt ∈ O
(
|Ω| log4 k

)
.
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The proofs and more detailed explanations have been given in Appendix C 2. We give a very concise summary of the
complete block-encoding procedure here. Let ∥H1x∥ =

∑
j(|αj |+ |γj |) +

∑
j,k(|αjk|+ |γjk|), ∥H2x∥ =

∑
j,k,l |αjkl|+∑

j,k,l,m |αjklm| and ∥H3xx′∥ =
∑
j,j′ |βjj′ |. We first design PREP (Eq. C61, C63, C69) and SELECT (Eq. C62,

C64, C70) procedures to obtain (∥H1x∥, ., 0), (∥H2x∥, ., 0), (∥H3xx′∥, ., 0) block-encoding of H1x, H2x and H3xx′ ,
respectively.

Here we briefly describe the block encoding of H1x⃗. We assume a bijective map between j′ = (j, k) to some integer
in [L1 + 1, L1 + L2]. The ancilla preparation sub-routine is as follows.

PREP1x⃗ |0⟩1+log2(L1+L2) =
1

N1x⃗

 L1∑
j=1

√
αj |j, 0⟩+

L1+L2∑
j′=L1+1

√
αj′ |j′, 0⟩+

L1∑
j=1

√
γj |j, 1⟩

+

L1+L2∑
j′=L1+1

√
γj′ |j′, 0⟩

 [N1x⃗ is normalization constant.]

The last qubit is used to select the QFT. We require 1 + log2(L1 + L2) qubits. For the state preparation we require
1 + log2(L1 + L2) H, 4(L1 + L2)− 2 rotation gates and 4(L1 + L2) + 3 log2(L1 + L2)− 4 CNOT.

The select sub-routine does the following.

SELECT1x⃗ |j, 0⟩ |ψ⟩ → |j, 0⟩Zj |ψ⟩
SELECT1x⃗ |j, 1⟩ |ψ⟩ → |j, 1⟩ FZjF† |ψ⟩

If j > L1 + 1 then we applly two Z gates depending on the mapping. The last qubit is used to selectively apply the
pairs of (log2 k + 1)-qubit QFT. We require L1 + L2 compute-uncompute pairs of C log2(L1+L2)X gates, which can be
synthesized efficiently using Theorem 14 [27]. Assuming equal partitioning into 2 groups and using the constructions
in [75, 76] we require at most

4
√
L1 + L2 (log2(L1 + L2)− 2) + 4(L1 + L2)

T gates and √
L1 + L2 (4 log2(L1 + L2)− 6) + 5(L1 + L2)

CNOT gates. Additionally we require (log2 k + 1) + log2 k(log2 k+1)
2 = (log2 k+1)(log2 k+2)

2 number of CZ gates and two

(log2 k+ 1)-qubit QFT. To implement the QFTs (approximately) [71] we require O
(
(log2 2k) log2

(
log2 2k
ϵ

))
T gates

and almost an equal number of CNOT gates. With similar procedures we can obtain the block encoding of H2x and
H3xx′ .

Next, using the recursive block encoding Theorem 13 we obtain a (|Ω|(∥H1x∥+ ∥H2x∥), ., 0) and (|ED|∥H3xx′∥, ., 0)
block-encoding of H12 and H3, respectively. We can block encode H1x⃗ + H2x⃗ using ancilla preparation sub-routine
that has 1 H and 2 rotation gates. The unitary selection sub-routine adds an extra control to each unitary. For
H12 we prepare an equal superposition of log2 |Ω| qubits, using log2 |Ω| H gates and use these to select an ancilla
of each subspace. The rest of the operations of H1x and H2x in each subspace are controlled on this. For H3 we
prepare log2 |ED| qubits in equal superposition, using log2 |ED| H gates. We use these to select two sub-spaces.
Specifically, each superimposed state selects an ancilla. From this ancilla we use two CNOTs to select an ancilla in
each of the two corresponding sub-spaces. The rest of the operations of H3xx′ in pair of subspaces are controlled on
these ancillae. Finally, we again apply Theorem 13 in order to obtain a (∥H ′

amp∥, ., 0) block-encoding of H ′
amp, where

∥H ′
amp∥ = ∥H12∥+∥H3∥ is the sum of the coefficients in the LCU decomposition of Hamp′ (Eq. 146-150). We prepare

1 qubit in equal superposition, using 1 H gate. Controlled on this, we implement the operations in H12 and H3.
More detail explanations and gate count estimates have been provided in Appendix C 2, and summarized in the

statement of Theorem 22. The following lemma gives a bound on the ℓ1 norm of Hamp′ .

Lemma 23.

∥H ′
amp∥ ≤ |Ω|

(
λ∆4

27
k4 + k2

((
M2 + 7d+ 1

3

)
∆2 − 0.048611λ∆4

)
+ k

(
−3d∆2 + 0.03125λ∆4

)
+∆2

(−M2 + 8d− 4

6

)
− 0.0081019λ∆4

)
(152)
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The detail proof has been provided in Appendix C 2 a. From [21], we require

R ∈ O

(
∥H ′

amp∥t+
log(1/ϵ)

log log(1/ϵ)

)
(153)

calls to the block encoding of
H′

amp

∥H′
amp∥

in order to implement an ϵ-precise block encoding of e−iH
′
ampt. Thus the total

gate complexity is obtained by multiplying R with the number of gates obtained in Theorem 22.

4. Algorithm IIIb : LCU with binary decomposition of integers

In this section we discuss a more compact decomposition of the field operators. The central idea stems from the
fact that by using binary representation we can express an integer diagonal matrix as a sum of O(log k) number
of signature matrices, as stated in Lemma 16. In our case Φ2 and Φ4 are diagonal matrices, consisting of 2nd and
4th power of consecutive integers, respectively. If ζ ′ is the maximum number of bits required to express the highest

integer, then we can express any other integer n = (bζ′ , . . . , b1) =
∑ζ′

j=1 bj2
j−1. For smaller integers we append

leading zeros. The leftmost bit bζ′ is referred to as the most significant bit, while the rightmost bit is referred to as
the least significant bit. The jth signature matrix is obtained by taking the jth bit in the binary expansion of each
diagonal integer, replacing 0s by 1 and 1s by -1.

The circuit complexity of the SELECT circuits can be bounded by the sum of gates, qubits, etc required to
implement the signature matrices. In order to design efficient circuits for each signature matrix we exploit their
structure, which is obtained from the binary decomposition of integers. We first prove the following.

Lemma 24. Suppose n is a positive integer and (bm, bm−1, . . . , b1) is its binary expansion. Then,

bℓ = 0 if n = 2ℓk, 2ℓk + 1, . . . 2ℓk + 2ℓ−1 − 1

= 1 if n = 2ℓk + 2ℓ−1, 2ℓk + 2ℓ−1 + 1, . . . 2ℓk + 2ℓ − 1

where k is a non-negative integer.

Proof. We have

n = bm2m−1 + bm−12
m−2 + · · ·+ bℓ+12

ℓ + bℓ2
ℓ−1 + bℓ−12

ℓ−2 + · · ·+ b1

= 2ℓ
(
bm2m−1−ℓ + bm−12

m−2−ℓ + · · ·+ bℓ+1

)
+ bℓ2

ℓ−1 +
(
bℓ−12

ℓ−2 + · · ·+ b1
)

:= 2ℓSR + bℓ2
ℓ−1 + SL.

SR is any non-negative integer which we denote k. SL is also a positive integer whose minimum value is 0 when
(bℓ−1, . . . , b1) = (0, . . . , 0) and the maximum value is

2ℓ−2 + 2ℓ−3 + ·+ 2 + 1 = 2ℓ−1 − 1,

when (bℓ−1, . . . , b1) = (1, . . . , 1). It follows that if bℓ = 0 then n can take any value between 2ℓk to 2ℓk + 2ℓ−1 − 1,
while if bℓ = 1 then the value of n ranges from 2ℓk + 2ℓ−1 to 2ℓk + 2ℓ−1 + 2ℓ−1 − 1 = 2ℓk + 2ℓ − 1.

Lemma 25. (a) Let n be an integer and (bm′ , . . . , b1) be the binary decomposition of n2. Then b1 = 0 for even n
and 1 for odd n and b2 = 0. For ℓ > 2, bℓ = 1 if and only if n = 2ℓ−1j + j′, where j, j′ are integers such that
1 ≤ j′ ≤ 2ℓ−1 − 1.
(b) Let n be an integer and (bm′′ , . . . , b1) be the binary decomposition of n4. Then b1 = 0 for even n and 1 for odd

n and b2 = b3 = b4 = 0. For ℓ ̸= 2, 3, 4, bℓ = 1 if and only if n = 2ℓ−2j + j′, where j, j′ are integers such that
1 ≤ j′ ≤ 2ℓ−2 − 1.

Proof. (a) The inference about b1 is easy to deduce. Next, we observe that for any integer n,

(2n)2 = 4n2, and (2n+ 1)2 = 4n2 + 4n+ 1 = 4n(n+ 1) + 1. (154)

From Lemma 24 we know that −1 occurs whenever j2 is of the form 4k + 2 and 4k + 3 and there does not exist any
integer whose square can be expressed in this form, as evident from Equation 154.
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Suppose n = 2ℓ−1j + j′. Then, squaring we have the following.

n2 =
(
2ℓ−1j + j′

)2
= 22ℓ−2j2 + 2ℓjj′ + j′2

= 2ℓ
(
2ℓ−2j2 + jj′

)
+ j′2

If 1 ≤ j′ ≤ 2ℓ−1 − 1 then there exists at least one value of j′ such that j′2 mod 2ℓ ≥ 2ℓ−1. From Lemma 24 it follows
that bℓ = 1.
In the other direction, let bℓ = 1. Then from Lemma 24 n2 = 2ℓt + t′, where t is a non-negative integer and

2ℓ−1 ≤ t′ ≤ 2ℓ − 1. Let a1, a2 be positive integers such that n = a1 + a2. Then,

n2 = 2ℓt+ t′ = (a1 + a2)
2 = a21 + a22 + 2a1a2

= 2a1

(a1
2

+ a2

)
+ a22.

The above equality is satisfied if 2a1 = 2ℓa′1, for some integer a′1 and a22 = t′. This implies a1 = 2ℓ−1a′1 and definitely
a2 < 2ℓ−1. Thus n is of the desired form as stated in the statement of the lemma. Even if we simply equate powers
of 2 i.e. 2a1a2 = 2ℓt, then we arrive at similar conclusions.
(b) The inference about b1 is easy to deduce. Next, we observe that for any integer n,

(2n)4 = 16n2,

and (2n+ 1)4 = (4n(n+ 1) + 1) = 8n(n+ 1) (2n(n+ 1) + 1) + 1

= 16

(
n(n+ 1)

2

)
(2n(n+ 1) + 1) + 1. (155)

From Lemma 24 and Equation 155 we observe that no integer of the form (2n)4 or (2n+1)4 can have 1 at bit positions
2, 3 and 4.

Suppose n = 2ℓ−2j + j′. Taking the fourth power, we have the following.

n4 =
(
2ℓ−2j + j′

)4
= 24ℓ−8j4 + 4 · 23ℓ−6j3j′ + 6 · 22ℓ−4j2j′2 + 4 · 2ℓ−2jj′3 + j′4

= 2ℓ
(
23ℓ−8j4 + 23ℓ−4j3j′ + 3 · 22ℓ−3j2j′2 + jj′3

)
+ j′4

If 1 ≤ j′ ≤ 2ℓ−1 − 1 then there exists at least one value of j′ such that j′4 mod 2ℓ ≥ 2ℓ−1. From Lemma 24 it follows
that bℓ = 1.
In the other direction, let bℓ = 1. Then from Lemma 24 n4 = 2ℓt + t′, where t is a non-negative integer and

2ℓ−1 ≤ t′ ≤ 2ℓ − 1. Let a1, a2 be positive integers such that n = a1 + a2. Then,

n4 = 2ℓt+ t′ = (a1 + a2)
4 = a41 + 4a31a2 + 6a21a

2
2 + 4a1a

3
2 + a42

= 22a1

(
a31
22

+ a21a2 + 3
a1a

2
2

2
+ a32

)
+ a42.

The above equality is satisfied if 22a1 = 2ℓa′1, for some integer a′1 and a42 = t′. This implies a1 = 2ℓ−2a′1 and definitely
a2 < 2ℓ−2. Thus n is of the desired form as stated in the statement of the lemma. Even if we simply equate sum of
terms that have powers of 2 we arrive at similar conclusions.

We perform the following tests which verify the above result and also helps us conjecture certain circuit complexity
bounds, as explained later. First, we numerically calculate the squares and fourth powers of all integers till 27 = 128.
We compute their binary decomposition and list those with 1 at particular bit positions, as shown in Tables IV and
V, respectively. Next, we consider integers till 2x where x = 2, . . . , 12. For each such 2x we enumerate all integers
n ≤ 2x such that n2 and n4 have a binary decomposition with 1 at a particular bit position, as shown in Tables VI
and VII, respectively. For these tables we have not mentioned the integers explicitly, due to lack of space, but these
can be obtained from our code. The obtained data corroborates the conclusions drawn in the above lemma.

For convenience, we write

Φx = diag ((k − 1)x, (k − 2)x, . . . , 1, 0, 1, . . . , (k − 1)x, kx) . [x ∈ {2, 4}] (156)

Let ζ ′ = 1 + 2 log k and ζ ′′ = 1 + 4 log k be the maximum number of bits in the binary decomposition of k2 and k4,
respectively. Using Lemma 16,

Φ2 = c0I+
ζ′∑
ℓ=1

cℓUℓ and Φ4 = c′0I+
ζ′′∑
ℓ=1

c′ℓU
′
ℓ, (157)



36

where c0, c
′
0, cℓ and c

′
ℓ are real coefficients. Uℓ is a signature matrix obtained from the ℓth bit in the binary decompo-

sition of {0, 1, . . . , k2} and then replacing the 0s with 1 and 1s with -1, as discussed earlier. Similarly, U ′
ℓ is a signature

matrix obtained from the ℓth bit in the binary decomposition of {0, 1, . . . , k4}.
If we index the rows as 0, 1, 2, . . . , 2k−1 then the integer jx (j ̸= 0) appears at rows (k−1)−j and (k−1)+j of the

matrix ϕx (Eq.156). The binary decomposition of a row (equivalently, diagonal) index gives the state of the qubits for
which a certain phase is incurred on the quantum circuit. There are ζ = log(2k) qubits and let j = (bζ , bζ−1, b2, b1)
be the binary decomposition of the row indexed by integer j. Then if the jth diagonal entry is -1, it implies that
whenever the state of the qubits is (bζ , bζ−1, . . . , b2, b1) a phase of -1 is incurred. A naive way of implementing a
circuit is to apply multi-controlled-Z, where the controls correspond to the state of the qubits for which a -1 phase is
applied. However, we can design much more compact and efficient circuits by exploiting patterns in the position of
±1 in each signature matrix and this information can be obtained from Lemma 25. For example, this lemma implies
that both U1 and U ′

1 consist of alternate +1 and -1 and hence can be implemented with a single Z on qubit 1. Also,
U2, U

′
2, U

′
3, U

′
4 are all 0 matrices. Now, let us consider Uℓ where ℓ > 2. From Lemma 25, -1 appears at rows (k− 1)± j

where j = 2ℓ−1t+ t′, t, t′ are integers and t′ ≤ 2ℓ−1 − 1. If we consider the binary decomposition of any integer then
multiplying by 2ℓ−1 shifts the bits ℓ − 1 positions to the left (more significant positions) and appends ℓ − 1 zeros
(the lesser significant positions). So binary representation of j can be obtained by shifting the bits in the binary
decomposition of t by ℓ − 1 places to the left and then appending the (ℓ − 1) bits in the binary decomposition of t′.
If we consider a Boolean table of ζ bits, then the set of binary strings obtained from integers of the form 2ℓ−1t + t′

induce a “don’t care” logical condition on the most significant ℓ− 1 bits. We observe that adding or subtracting k− 1
simply permutes the all possible strings on these “don’t care” bits. Thus to implement Uℓ it is sufficient to control on
the values of the last (significant) ℓ−1 qubits. Similar deductions can be drawn about U ′

ℓ. Here we keep in mind that
in this paper we focus on number of qubits and T-gates required, as already mentioned. In our circuits the T-gate
contribution increases as we increase the number of controls on Z gate.

Fact 26. Let us order the qubits qζ , . . . , q1 corresponding to the bit positions bζ , . . . , b1 in the binary decomposition
of an integer k, as defined in Eq. 156. The leftmost bit is the most significant one. U1, U

′
1 can be implemented with

a single Z on qubit 1. U2, U
′
2, U

′
3, U

′
4 are all 0 matrices. Uℓ can be implemented with a circuit which has gates acting

on qubits qx, . . . , q1, where x = min(ζ, ℓ − 1). U ′
ℓ can be implemented with a circuit which has gates acting on qubits

qx′ , . . . , q1, where x
′ = min(ζ, ℓ− 2).

This also implies that the T-count of Uℓ (ℓ ≤ 2 log k) and U ′
ℓ (ℓ ≤ 4 log k) is O(1) i.e. a constant independent of

k (but dependent on ℓ). In other words the T-count of Uℓ and U
′
ℓ is at most κℓ and κ

′
ℓ, respectively. The T-count of

U1+2 log k and U ′
1+4 log k is O(log k).

Now we want to bound κℓ and κ
′
ℓ and for this we identify the possibility of another set of “don’t care” conditions

from our data. From the statements of Lemma 24 and 25, their proof and previous explanations we can say that the
number of controls in multi-controlled-Z and hence the number of T-gates is determined by the number of j′ such
that 1 ≤ j′ ≤ 2ℓ−1 − 1 and j′2 mod 2ℓ ≥ 2ℓ−1. Similar conditions hold when considering the fourth power, as in part
(b) of Lemma 25.

Lemma 27. (a) Let ℓ > 2 and S1ℓ = {j′ : 1 ≤ j′ ≤ 2ℓ−1 − 1 and j′2 mod 2ℓ ≥ 2ℓ−1}. If j′ ∈ S1ℓ then
2ℓ−1 − j′ ∈ S1ℓ.
(b) Let ℓ > 4 and S2ℓ = {j′ : 1 ≤ j′ ≤ 2ℓ−2 − 1 and j′4 mod 2ℓ ≥ 2ℓ−1}. If j′ ∈ S2ℓ then 2ℓ−2 − j′ ∈ S2ℓ.

Proof. (a) Suppose j′ ∈ S1ℓ and x = 2ℓ−1 − j′. Then,

x2 = 22ℓ−2 − 2ℓj′ + j′2 = 2ℓ
(
2ℓ−2 − j′

)
+ j′2, (158)

and if j′ ∈ S1ℓ then clearly x ∈ S1ℓ.
(a) Suppose j′ ∈ S2ℓ and x = 2ℓ−2 − j′. Then,

x2 = 24ℓ−8 − 4 · 23ℓ−6j′ + 6 · 22ℓ−4j′2 − 4 · 2ℓ−2j′3 + j′4

= 2ℓ
(
23ℓ−8 − 22ℓ−4j′ + 3 · 2ℓ−3j′2 − j′3

)
+ j′4, (159)

and if j′ ∈ S2ℓ then clearly x ∈ S2ℓ.

From the data in Tables IV, VI, V and VII we observe that for ℓ ≤ x + 1, |S1ℓ| ≈ 2ℓ−2 where the approximation
ratio tends to 1 as ℓ increases. When x + 2 ≤ ℓ ≤ 2x, then 0.5 · 2x−1 ≤ |S1ℓ| ≤ 0.94 · 2x−1. Also, for ℓ ≤ x + 2,
2ℓ−4 ≤ |S2ℓ| ≤ 2ℓ−3 and for x+3 ≤ ℓ ≤ 4x, we have 0.6 ·2x−2 ≤ |S2ℓ| ≤ 1.05 ·2x−1. This also follows from Eq. 158 and
159 when we consider all possible values of j′ such that the multiple of 2ℓ is positive. We keep in mind that in Tables
IV and VI , the listed or enumerated integers are a subset of S1ℓ whenever k = 2x ≥ 2ℓ+1 because the remaining
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integers are bigger than 2x. For similar reasons, in Tables V and VII the listed integers are a subset of S2ℓ whenever
k = 2x ≥ 2ℓ+2.
Next, let us observe the following. Consider a circuit with x qubits and suppose a “don’t care” condition exists

involving y < x of them. This implies that for every possible combination of binary values on y qubits, there is a
certain state of the remaining x− y qubits when a -1 phase is implemented. The number of possible states is 2y and
to implement this logic in a quantum circuit we require a single Z gate controlled on the state of x− y qubits. Many
kinds of “don’t care” conditions exist, for example involving parity. Suppose for every possible binary combinations
on y qubits where there are odd number of 1s, there exists a certain state of the x−y qubits when -1 phase is incurred.
Here too, there are exponential number of such states and to implement this circuit we require a number of CNOTs
to check the parity and a Z-controlled on x − y + 1 qubits. In summary, as the number of “don’t care” conditions
increases, so the number of states that satisfy a certain value also increases, usually exponentially. But the increase
in the circuit complexity is less. This implies, if we consider Tables VI and VII then we can say that as the number
of integers in each cell increase with respect to k = 2x and ℓ, the probability of the existence of more ”don’t care”
conditions becomes higher and hence κℓ and κ′ℓ grow more slowly with respect to ℓ. We have already mentioned
that the number of integers in each cell increase exponentially with respect to ℓ, but the cell at the intersection of
b1+2 log k (or b1+4 log k) and k (i.e. 2x) has value 1. That is why T-count of U1+2 log k and U ′

1+4 log k is O(log k). Thus
we conjecture the following.

Conjecture 28. The T-count needed to exactly implement Uℓ and U
′
ℓ is at most O (min{ℓ, log k}).

In Appendix C 2 b we have explicitly constructed some circuits of signature matrices arising in this compact decom-
position of Φ2 and Φ4. Now, we discuss the cost of simulating Hamp. The procedure is similar to the one described
in the previous section for Algorithm IIIa. In this case we partition Hamp as follows.

Hϕ2x =
1

2
Π2(x) +

1

2
(M2 + d+ 1)Φ2(x)

Hϕ4x = Φ4(x)

Hϕxx′ = Φ(x)Φ(x′) = H3xx′

H3 =
∑

x,x′∈ED

H3xx′

H ′
12 =

∑
x∈Ω

Hϕ2x +
Λ

4!
Hϕ4x

Hamp = H ′
12 +H3 (160)

We summarize the gate complexity for block-encoding Hamp in the following theorem.

Theorem 29. Let Hamp be the Hamiltonian defined in Eq. 160 and ∥Hamp∥ be the ℓ1 norm of the coefficients defined
in its decomposition Eq. 160. Then it is possible to have a (∥Hamp∥, ·, 0) block-encoding of Hamp with O (|Ω| log k)
qubits, using the following number of rotation gates

N ′
r ∈ O

(
log2 k

)
,

and the following number of additional T gates (that are not in the decomposition of rotation gates)

N ′
t ∈ O

(
|Ω| log2 k

)
.

The bound on N ′
t is obtained assuming Conjecture 28.

The recursive block encoding is done by repeatedly applying Theorem 13, as explained before. We explain these in
detail in Appendix C 2 b. In this case we have

∥Hamp∥ ≤ |Ω|
4

(
k2∆2(2 +M2 + d) +

Λ

12
k4∆4

)
+

3

4
|ED|∆2k2. (161)

We again remember that this norm is sum of absolute value of the coefficients from the non-identity terms only. From
[21], we require

R′ ∈ O

(
∥Hamp∥t+

log(1/ϵ)

log log(1/ϵ)

)
(162)

calls to the block encoding of
Hamp

∥Hamp∥ in order to implement an ϵ-precise block encoding of e−iHampt. Thus the total

gate complexity is obtained by multiplying R′ with the number of gates obtained in Theorem 29.
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5. Phase estimation in the amplitude basis

As described earlier, we can perform phase estimation to compute scattering matrix elements. For simplicity, let us
first focus on the 2 → 2 particle scattering. In the center of mass frame, the two incoming momenta can be descibred
by p1 = p = −p2, while the Mandesltam variable is given by s = E2

CM = 2(m2 + p2). The expression for the energy
in Eq. (29) is given as E = E2-particle state − E0, where E0 is the ground state. Although not equal to the spectral
gap of the Hamiltonian, for values of the coupling away from the critical value, i.e. λ ̸= λc, we can solve for E by
extracting the difference between the first excited state and the ground state in the even-particle sector of the model’s
Z2 symmetry (ϕ ↔ −ϕ). Similarly, the difference between the first excited state and the ground state in the odd
sector gives us the renormalized mass.

a. State preparation Although ground state preparation is in general a QMA-hard problem, it has been shown
that the ground states of free scalar fields, namely a Gaussian in the amplitude basis, is efficient to prepare [59, 83].
In the presence of interactions, the ground state can in principle be prepared adiabatically. Here, we assume that we
are provided with a state that has polynomial overlap with the two lowest interacting eigenstates. Provided such a
state, we seek to prepare the even and the odd sectors of the model. In the field amplitude basis, the even and odd
sectors are given by the states of the form

|ϕeven⟩ =
|ϕ⟩+ |−ϕ⟩√

2

|ϕodd⟩ =
|ϕ⟩ − |−ϕ⟩√

2
(163)

where given (for a single lattice site) |ϕ⟩ =
∑
j αj |j⟩, we define |−ϕ⟩ =

∑
j α−j |j⟩. Given our encoding, where

j ∈ {−k + 1, . . . k} for some cutoff k, we only exchange the coefficients α−j ↔ αj for j ∈ {−k + 1, . . . , k + 1}, and
assume that k is chosen large enough that αk ≈ 0. Thus, the quantum circuit U we use to map |ϕ⟩ to |−ϕ⟩ leaves the
basis states carrying the coefficients for both α0 and αk unchanged.

The discretized field values j ∈ {−k+1, . . . , k} map to binary numbers b = j+k−1 in our encoding. For simplicity,
we assume that the number of basis status used is some power of 2, i.e. 2k = 2m for some positive integer m, which
gives the number of qubits used in the encoding. The required transformation can then be implemented by flipping
a bit only if all the bits to the right of this bit form any bitstring except for the all 1’s bitstring. An example circuit
that achieves this transformation for k = 4 is shown in Fig. 5.

To achieve the transformation U : |ϕ⟩ → |−ϕ⟩ more generally for some given k, setting m = log2 (2k), requires
m − 2 many ancillary qubits. In addition, we need two each of Cm−1X, Cm−2X, . . . , C2X operations, as well as
m−1 CNOT and X gates. In turn, each CnX operations, with targets intialized to |0⟩, can be constructed using n−2
ancillas and n− 1 logical AND operations, each of which require 4 T gates. The even sector can then be prepared by
implementing the projector I + U , while the odd sector can similarly be prepared by applying the projector I − U .

These projectors can be realized using the Hadamard test. In the LCU picture, this is described simply as initializing
an ancillary qubit in the |+⟩ state, and applying a controlled-U operation controlled on the ancilla, and targeted on
the field register. Upon measuring the ancilla in the X-basis, by applying a Hadamard gate before measurement, an
outcome of 0 would project the field register onto the even sector while an outcome of 1 would project it onto the
odd sector. This operation can be described as

(H ⊗ I) (|0⟩ ⟨0| ⊗ I+ |1⟩ ⟨1| ⊗ U) (H ⊗ I) |0⟩ |ϕ⟩ =
1√
2
(|0⟩ |ϕeven⟩+ |1⟩ |ϕodd⟩) (164)

We must apply one such operation for each of the lattice sites. With these considerations, we can gate cost the
operation that produces an equal superposition of the even and odd sectors.

Lemma 30. The total number of T gates required to simulate a controlled-U operation where U : |ϕ⟩ → |−ϕ⟩ is
2|Ω| (log2 k + 1) (log2 k + 2)− 8 ∈ O

(
|Ω| log22 k

)
where k = ϕmax/∆ϕ and further obeys k > 3/2.

Proof. From the above considerations, taking m = log2 2k, we have that the total T gate count for implementing C-U
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for a single lattice site is given by

# T gates for C-U =

m∑
n=3

Cost(CnX) + (m− 1)Cost(logical AND)

=

m∑
n=3

(n− 1)Cost(logical AND) + 4(m− 1)

= 4

m∑
n=3

(n− 1) + 4(m− 1)

= 2m(m+ 1)− 8 (165)

The total number of T gates is then simply the product of the number of lattice sites |Ω| with the expression above.

Similarly, we can cost the total number of ancillary qubits needed to implement such a controlled-U operation

Lemma 31. Under the assumptions of Lemma 30, the total number of ancillary qubits required to implement a
controlled-U operation is

1

2

(
log22 2k + log2 2k − 4

)
∈ O

(
log22 k

)
if we reuse ancillae, and

|Ω|
2

(
log22 k + log2 k − 6

)
+ 1 ∈ O

(
|Ω| log22 k

)
if we do not reuse ancillae and thereby allow the operations to be executed in parallel.

Proof. In addition to a single ancilla serving as the control qubit, we also need m − 2 ancillary qubits to apply a
controlled version of U to an m-qubit register where m = log2 2k for a single lattice site. Moreover, each of the
{CnX}mn=3 operations required to implement C-U require n− 2 ancillae each. This gives a total number of ancillary
qubits as

1 + (m− 2) +

m∑
n=3

(n− 2) =
1

2
(m2 −m− 4) (166)

If the ancillae are re-used across all the lattice sites, the total number of ancillary qubits is then simply given by
the above expression. If instead the C-U is performed in parallel across the entire lattice, then all except 1 of the
ancillae, the one used to control the entire operation, have to be associated with each of the lattice sites, giving a
total count of

|Ω|(m− 2) + 1 +
|Ω|
2

(m2 − 3m− 2) =
|Ω|
2

(
m2 −m− 6

)
+ 1 (167)

Plugging in m = log2 2k into these expressions gives the statement of the lemma.

b. Eigenvalue extraction for qubitization To extract the energy eigenvalues, we perform phase estimation on the
walk operator

W =
(
2PREP |0⟩ ⟨0|PREP† ⊗ I− I

)
· SELECT (168)

which provides a qubitized block encoding of the Hamiltonian, and furnishes a direct sum of two-dimensional irre-
ducible representations, where each two-dimensional subspace is labelled by an eigenstate of the Hamiltonian.

W = ⊕k

 Ek

|α|

√
1−

(
Ek

|α|

)2
−
√

1−
(
Ek

|α|

)2
Ek

|α|

 = ⊕kei arccos (Ek/|α|)Y (169)

with eigenvalues ± arccos (Ek/|α|), from which one may readily, with classical post-processing, obtain the desired
eigenvalues Ek. In practice, we would run I ⊗ W on the input state given in Eq. (164), and keep measurements
whenever the ancilla measures out to be 0 (1) to infer eigenvalues in the even (odd) sector.

Due to compilation errors, the phase information we extract would be different from the ideal ones. In order to
bound this error in the phase, and consequently the energy eigenvalues, we first note a series of observations below.
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FIG. 5: Example circuit that maps |ϕ⟩ to |−ϕ⟩ for k = 4.

Lemma 32. Let PREP′ and SELECT′ denote the compiled versions of PREP and SELECT, such that they can be
written as

PREP′ |0⟩⊗ log2m =

m∑
j=1

βj |j⟩

SELECT′ =

m∑
j=1

|j⟩ ⟨j| ⊗ Uj (170)

where βj ∈ C. Then, PREP′†SELECT′PREP′ provides a
(∑

j |βj |2, log2m, 0
)
-block encoding of the operator H ′ =∑m

j=1 |βj |2Uj. Furthermore, H ′ is Hermitian.

Proof. The proof of the statement that

H ′ = (⟨0| ⊗ I) PREP′†SELECT′PREP′ (|0⟩ ⊗ I) =
m∑
j=1

|βj |2Uj (171)

directly follows from the LCU lemma of [3, 84]. To see that H ′ is also Hermitian, we note that all the Uj ’s in the
LCU are Hermitian diagonal signature matrices, except those that come from the LCU of the momentum (squared)
term. The compilation errors do not affect the Hermiticity of the signature matrices, and only impact the Fourier
transforms acting on each of the lattice site to diagonalize the momentum (squared) term. If we denote the true
quantum Fourier transform circuit as F and its compiled version as F ′, then it is straightforward to see that F ′V F ′†

is also Hermitian, given the (Hermitian) signature matrix V. Since the sum of Hermitian operators is Hermitian, H ′

is also Hermitian.

The Hermiticity of the block-encoded operator is an important property to ensure that the walk operator we
construct using these (compiled) primitives provides a qubitized block-encoding of the same operator. Furthermore, we
note that the SELECT operation, as well as its compiled version SELECT′, squares to the identity. As a consequence,
it follows from Lemma 8 and Corollary 9 of [73] that the walk operator

W ′ =
(
2PREP′ |0⟩ ⟨0|PREP′† ⊗ I− I

)
· SELECT′ (172)
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provides a qubitized block encoding of the perturbed Hamiltonian H ′, and furnishes a direct sum of two-dimensional
irreducible representations, where each two-dimensional subspace is labelled by an eigenstate of H ′.

W ′ = ⊕k


E′

k

|α|

√
1−

(
E′

k

|α|

)2
−
√
1−

(
E′

k

|α|

)2
E′

k

|α|

 = ⊕kei arccos (E
′
k/|α|)Y (173)

will yield eigenvalues ± arccos (E′
k), where E

′
k are the eigenvalues of H ′. We can now bound the absolute difference

between the eigenvalues extracted from the compiled walk operator and the ideal walk operator. The various sources
of errors are the number of ancillary qubits used for phase estimation, the QFT part of the phase estimation circuit
(which is negligible in gate cost), the synthesis error of the rotation gates and the error in the approximate quantum
Fourier transforms (AQFTs) used. We bound these errors in terms of the target error in the estimate of energy
eigenstates below, in analogy with Lemma 11.

Lemma 33. To obtain an estimate of an eigenvalue of a Hamiltonian within error ϵE, it suffices to perform phase
estimation of the compiled walk operator with the following bounds on the contributing errors

2m ≥ πα√
2ϵE

ϵr ≤ 1

3
√
2

ϵE
αNr

ϵf ≤ 1

3
√
2

ϵE
αNf

(174)

where m is the number of ancillary qubits used for phase estimation, ϵr is the synthesis error per RZ gate, ϵf is the
approximation error per individual approximate quantum Fourier transform (AQFT), and Nr and Nf are respectively
the total number of rotation gates and AQFTs used in the circuit compiling the walk operator.

Proof. We can approximate, similarly as in Lemma 11, the error in the phase estimate as

ϵθ ≈
√( π

2m+1

)2
+
(
πϵ2QFT + ϵsynth + ϵ2AQFT

)2
(175)

where m is the number of ancillary qubits used for phase estimation, ϵQFT is the error in the QFT part of the phase
estimation circuit, ϵsynth is the total synthesis error due to compiling single qubit RZ gates into T gates, and ϵAQFT
is the total error due to the approximate quantum Fourier transforms. Distributing the errors roughly equally, we
bound ( π

2m+1

)2
≤ ϵ2θ

2
, πϵQFT = ϵsynth = ϵAQFT ≤ 1

3

ϵθ√
2

(176)

Performing phase estimation of the walk operator with error ϵθ induces an error ϵE in the estimate of the eigenvalue
of the Hamiltonian where the two are related by ϵθ = ϵE/α where α is the (coefficient) 1-norm of the Hamiltonian.
Using this relation, we can readily solve the bounds for the synthesis error per rotation gate ϵr = ϵsynth/Nr and the
error per approximate quantum Fourier transform (AQFT) ϵf = ϵAQFT /Nf , where Nr and Nf are respectively the
total number of rotation gates and AQFTs used in the circuit. These bounds are reported in the statement of the
lemma.

We now use the above results to report the T gate count of performing phase estimation using the qubitization
based algorithms I, IIIa and IIIb as follows.

Theorem 34. The total cost of performing phase estimation to estimate an eigenvalue of the Hamiltonian to within
error ϵE is given by

Cost(QPE)(I) ∈ O

( |Ω|2
ϵE

[
k2Λ + kM2

]
log2 k

)
Cost(QPE)(IIIa) ∈ O

( |Ω|2
ϵE

[
k2Λ + kM2

]
log4 k

)
(177)
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while the total number of logical qubits required, including those employed for phase estimation, are

Count(Qubit)(I) ∈ O

(
|Ω| log k + log2 k + log

(
|Ω|
[
k2Λ + kM2

]
ϵE

))

Count(Qubit)(IIIa) ∈ O

(
|Ω| log k + log

[
|Ω|
(
k2Λ + kM2

)
ϵE

])
(178)

where the superscript denotes the algorithm employed.

Proof. The total T gate cost for performing quantum phase esimation (QPE) using any of the qubitization algorithms
described above can be approximated as

Cost(QPE) ≈ 2m
[
Nr ·N (s)(ϵr) +Nf ·N (f)(ϵf ) +N+

]
(179)

where m is the total number of ancillary qubits used for QPE, Nr and Nf are respectively the total number of rotation
gates and AQFTs used in the circuit compiling the walk operator, N+ is the total number of other T gates used, and

N (s)(ϵr) = 3.067 log2(2/ϵr)− 4.327 (180)

is the T gate cost of compiling a single RZ gate from [32] to within synthesis error ϵr, and

N (f)(ϵf ) = 8(log2 (2k)) log2

(
(log2 (2k))

ϵf

)
+ log2

(
(log2 (2k))

ϵf

)
log2

 log2

(
(log2 (2k))

ϵf

)
ϵf

 (181)

is the cost of compiling a single AQFT to within error ϵf obtained simply by plugging in n = log2 (2k) in Eq. (60).
For Algorithm 1, we have

Nr = 24

Nf = 2|Ω|
N+ = 72|Ω| log22 k + 168|Ω| log2 k + 8|Ω|D − 32|Ω| − 16 (182)

Using the above, as well as the expression for the coefficient 1-norm α of the Hamiltonian provided in Eq. (102) for

∆ϕ =
√
π/k, and Eq. (174) from Lemma 33, we find (for fixed spatial dimensionality)

2m ∈ O

( |Ω|
ϵE

[
k2Λ + kM2

])
Nr ·N (s)(ϵr) ∈ O

(
log

(
α

ϵE

))
∈ O

(
log

( |Ω|k(Λ +M2)

ϵE

))
Nf ·N (f)(ϵf ) ∈ O

(
|Ω| log k log

[
log k · |Ω|k(Λ +M2)

ϵE

])
N+ ∈ O

(
|Ω| log2 k

)
(183)

The dominant cost is that of 2mN+ and so, in all,

Cost(QPE)(I) ∈ O

( |Ω|2
ϵE

[
k2Λ + kM2

]
log2 k

)
(184)

Meanwhile, adding the qubit count from Eq. (125) and m = log2
πα√
2ϵE

, we get

Count(Qubit)(I) ∈ O

(
|Ω| log k + log2 k + log

(
|Ω|
[
k2Λ + kM2

]
ϵE

))
(185)

Similarly, we recall these gate counts for Algorithm 3a, borrowing from Eqs. (C82) and (C80) here for convenience,

Nr = 4(L1 + L2) + 2(L3 + L4) + 2L5 − 4

Nf = 2|Ω|
N+ = |Ω|

[
4
√
L1 + L2 (log2(L1 + L2)− 2) + 12(L1 + L2) + 4

√
L3 + L4 (log2(L3 + L4)− 2) + 12(L3 + L4)

]
+|ED|

(
4
√
L5 (log2 L5 − 2) + 8L5

)
+ 4
√
|Ω| (log2 |Ω| − 2) + 4|Ω|+ 4

√
|ED| (log2 |ED| − 2) + 4|ED| (186)
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and from Eq. (C92), we have that the coefficient 1-norm scales as α ∈ O
(
|Ω|
(
k2Λ + kM2

))
, similarly as in Algorithm

1. Using the results of Lemma 174 as before, we find

2m ∈ O

( |Ω|
ϵE

[
k2Λ + kM2

])
Nr ·N (s)(ϵr) ∈ O

(
log4 k · log

[
|Ω| log k

(
k2Λ + kM2

)
ϵE

])

Nf ·N (f)(ϵf ) ∈ O

(
|Ω| log k log

[
log k · |Ω|k(Λ +M2)

ϵE

])
N+ ∈ O

(
|Ω| log4 k

)
(187)

The dominant cost is that of 2mN+, and so we have

Cost(QPE)(IIIa) ∈ O

( |Ω|2
ϵE

[
k2Λ + kM2

] [
log4 k + |Ω|

])
(188)

We estimate the total number of logical qubits used in Algorithm IIIa as the sum total of |Ω| log2 2k many qubits used
to represent the field itself, log2 |Ω| used to control the lattice site, log2 log2 k used to control the unitary in the LCU
expansion, and m = log2

πα√
2ϵE

many ancillary qubits used for QPE. Thus, the total qubit count used in Algorithm

IIIa is esimated as

Count(Qubit)(IIIa) ≈ |Ω| log2 2k + log2 |Ω|+ log2 log2 k + log2
πα√
2ϵE

∈ O

(
|Ω| log k + log

[
|Ω|
(
k2Λ + kM2

)
ϵE

])
(189)

Proposition 35. Assuming Conjecture 28, the T gate and qubit cost of the qubitization based algorithm IIIb in the
amplitude basis is given by

Cost(QPE)(IIIb) ∈ O

( |Ω|2
ϵE

[
k2Λ + kM2

]
log2 k

)
Count(Qubit)(IIIb) ∈ O

(
|Ω| log k + log

[
|Ω|
(
k2Λ + kM2

)
ϵE

])
(190)

Proof. As in Theorem 34, the total T gate cost for performing QPE using this qubitization based algorithm can be
approximated as

Cost(QPE) ≈ 2m
[
Nr ·N (s)(ϵr) +Nf ·N (f)(ϵf ) +N+

]
(191)

where m is the total number of ancillary qubits used for QPE, Nr and Nf are respectively the total number of rotation
gates and AQFTs used in the circuit compiling the walk operator, N+ is the total number of other T gates used, and
N (s)(ϵr) and N (f)(ϵf ) are respectively the T gate cost of compiling a single RZ gate within synthesis error ϵr, and
the T gate cost of compiling a single AQFT within error ϵf .

For convenience, we recall the relevant number of gates from Appendix C 2 b

Nr = 12 log2 k + 2(log2 k + 1)2 − 3

Nf = 2|Ω|
N+ = |Ω|

(
4
√
2 log2 k(log2(2 log2 k)− 2) + 8 log2 k + 4

√
4 log2 k(log2(4 log2 k)− 2) + 16 log2 k

)
+4
√
|Ω| (log2 |Ω| − 2) + 4|Ω|+ |ED|

(
8(log2 k + 1)(log2(log2 k + 1)− 1) + 4(log2 k + 1)2 + 4

)
+4
√

|ED|(log2 |ED| − 2) +O
(
|Ω| log22 k

)
(192)
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Using the expression for the coefficient 1-norm given in Eq. (161), we find

α = ∥Hamp∥ ∈ O
(
|Ω|
(
k2Λ + kM2

))
⇒ 2m ∈ O

(
|Ω|
(
k2Λ + kM2

)
ϵE

)
(193)

The dominant cost is now that of 2mN+, and so we have

Cost(QPE)(IIIb) ∈ O

( |Ω|2
ϵE

[
k2Λ + kM2

]
log2 k

)
(194)

For the qubit counts, we require a total of O (|Ω| log k) many qubits to hold the field values, and an additional
O (log log k) qubits for the implementation of the signature matrices in the O(log k) LCU decomposition, a cost which
is sub-dominant. In addition, we would require an additional number of m ∈ O(∥Hamp∥/ϵE) ancillary qubits used for
phase estimation, so that in all we have

Count(Qubit)(IIIb) ∈ O

(
|Ω| log k + log

[
|Ω|
(
k2Λ + kM2

)
ϵE

])
(195)

In order to perform a similar analysis for Algorithm II in the amplitude basis, which is a Trotter based algorithm
that also employs the approximate QFT, which would incur its own error, we make use of the following lemma.

Lemma 36. To obtain an estimate of an eigenvalue of a Hamiltonian within error ϵE, in the presence of Trotter,
synthesis, and approximate QFT errors, it suffices to perform phase estimation on a single Trotter step with the
following bounds on the contributing errors

2m ≥ π23/4
α
1/2
comm

ϵ
3/2
E

ϵr ≤ 24/15
ϵ
3/2
E

Nrα
1/2
comm

ϵf ≤ 24/15
ϵ
3/2
E

Nfα
1/2
comm

(196)

Proof. The proof proceeds similarly to Lemmas 11 and 174, except that we now also account for both Trotter and
approximate QFT errors here. Specifically, we approximate the error in the phase as

ϵθ ≈
√( π

2m+1

)2
+
(
πϵ2QFT + ϵTrotter + ϵsynth + ϵAQFT

)2
(197)

The error in the phase error ϵθ is related to the error in the energy estimate ϵE as ϵθ = ϵEτ , where τ is the total
simulation time. Distributing the errors roughly equally, we bound( π

2m+1

)2
≤ ϵ2θ

2
, πϵQFT = ϵTrotter = ϵsynth = ϵAQFT ≤ 1

4

ϵθ√
2

(198)

Using the Trotter error bound, we obtain

ϵTrotter ≤ 1

4

ϵEτ√
2

≤ αcommτ
3

⇒ τ ≥
√

ϵE
25/2αcomm

(199)

Therefore, ( π

2m+1

)2
≤ ϵ2θ

2

⇒ 2m ≥ π23/4
α
1/2
comm

ϵ
3/2
E

(200)
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Similarly, we can derive

ϵsynth = ϵrNr ≤ 1

4

ϵθ√
2

⇒ ϵr ≤ 24/15
ϵ
3/2
E

Nrα
1/2
comm

(201)

and similarly,

ϵAQFT = ϵfNf ≤ 1

4

ϵθ√
2

⇒ ϵf ≤ 24/15
ϵ
3/2
E

Nfα
1/2
comm

(202)

The total numnber of T gates for phase estimation using Algorithm II has already been detailed in Theorem 21.
The additional number of ancillary qubits required for phase estimation is described in the following lemma.

Lemma 37. The total number of qubits required for phase estimation using the amplitude basis Algorithm II is given
by

Count(Qubit)(II) ≈ O

(
log2

(
|Ω|Λk

(
Λk +N2

)
ϵE

))
(203)

Proof. As already noted in Theorem 21, the total number of qubits used for block-encoding sis O(|Ω| log k). A further
number of ancillary qubits used for phase estimation is given by Lemma 36 and Eq. (144) as

m ∈ O

(
log2

(
α
1/2
comm

ϵ
3/2
E

))

∈ O

(
log2

(
|Ω|Λk

(
Λk +N2

)
ϵE

))
(204)

where we have repeatedly used log
(
Am

Bn

)
∈ O

(
log
(
A
B

))
for constant m,n > 0.

6. Raw gate costs for phase estimation

We have reported the asymptotic T gate costs of all the algorithms discussed above in Table 1. Here, we numerically
compute the raw T gate costs, taking care of pre-factors and other factors missing from the asymptotic expressions.
We estimate the total cost of phase estimation as

Cost(QPE) ≈ 2m
[
Nr ·N (s)(ϵr) +Nf ·N (f)(ϵf ) +N+

]
(205)

where m is the total number of ancillary qubits used for QPE, Nr and Nf are respectively the total number of rotation
gates and AQFTs used in the circuit compiling the walk operator, N+ is the total number of other T gates used, and

N (s)(ϵr) = 3.067 log2(2/ϵr)− 4.327 (206)

is the T gate cost of compiling a single RZ gate from [32] to within synthesis error ϵr, and

N (f)(ϵf ) = 8(log2 (2k)) log2

(
(log2 (2k))

ϵf

)
+ log2

(
(log2 (2k))

ϵf

)
log2

 log2

(
(log2 (2k))

ϵf

)
ϵf

 (207)

is the cost of compiling a single AQFT to within error ϵf obtained simply by plugging in n = log2 (2k) in Eq. (60).
The bounds for the errors, and the expressions for Nr, Nf and N+ for the various algorithms have been recalled for

convenience in Lemma 11, Theorem 12, Theorem 21, Lemma 33, Theorem 34, Proposition 35, and Lemmas 36 and
37 above.
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FIG. 6: a) The T gate count on a log axis as a function of the field amplitude cutoff k . Algorithm IIIb is plotted
with a dotted line as the precise scaling rests upon conjectured behaviour of the field operator binary decomposition
(Conjecture 28)). Unknown constant prefactors have been set to 1 here. b) The T gate count on a log axis. as a

function of the field occupation cutoff N . For both, we consider a strong-coupling regime λ =M = 1, with |Ω| = 102.
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FIG. 7: The T gate count on a log axis as a function of the momentum volume cutoff |Ω|. Here we consider a
strong-coupling regime λ =M = 1 and ϵE = 10−2. Here we have k = 20. By dimensional analysis we expect an

approximate scaling relation of N ∼
√
k. In order to illustrate the proper scaling relations (and optimum nature of

the amplitude basis) with respect to |Ω|, we select a larger (and therefore more accurate to the physics) value for
N = 9. Algorithm IIIb is again plotted with a dotted line as the precise scaling rests upon conjectured behaviour

(Conjecture 28).

F. Resource Estimates for Simulation Algorithms

We will now compare the T -count and logical qubit estimates for implementing the various algorithms described so
far. A summary of the cost analysis has been provided in Table I (Section I) and Fig. 6, 7, 8, 9.

In Fig. 6(a) we show the variation of T-gate count of the amplitude basis algorithms with respect to the field
amplitude cutoff k and in Fig. 7(b) we show the variation of the T-gate count of the occupation basis algorithm with
respect to the field occupation cutoff N . We consider the strong coupling regime λ = M = 1 with |Ω| = 102. We
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FIG. 8: a) The logical qubit count on a log axis as a function of the field amplitude cutoff k. b) The logical qubit
count on a log axis as a function of the field occupation cutoff N . For both, we consider a strong-coupling regime

λ =M = 1, with |Ω| = 102 and ϵE = 10−2.

20 40 60 80 100
|Ω|

102

103

Q
u

b
it

co
u

nt

Algorithm Occ

Algorithm I

Algorithm II

Algorithm IIIa

Algorithm IIIb

FIG. 9: The logical qubit count on a log axis as a function of the momentum volume cutoff |Ω|. Here we consider a
strong-coupling regime λ =M = 1 and ϵE = 10−2. Here we have k = 20. By dimensional analysis we expect an

approximate scaling relation of N ∼
√
k. In order to illustrate the proper scaling relations (and optimum nature of

the amplitude basis) with respect to |Ω|, we select a larger (and therefore more accurate to the physics) value for
N = 9.

observe that the Trotter based algorithms, both for the occupation basis and the amplitude basis (Algorithm II),
have higher T-count than the qubitization based algorithms (Algorithms I, IIIa and IIIb). One reason for this is the
use of more number of rotation gates in Trotter-based algorithms. For a complete fault-tolerant implementation we
decompose each of them further into Clifford+T. One solution to circumvent this problem can be the use of partial
fault-tolerant implementation where the rotations are implemented non-fault-tolerantly but the Clifford gates have a
fault-tolerant implementation [85]. Among the qubitization based algorithms, Algorithm IIIb has the minimum T-gate
count, but its estimates depend on Conjecture 28. Algorithm IIIa has the minimum rigorously proved T-gate-count
estimate.

In Fig. 7 we plot the T-gate-count as a function of the momentum volume cutoff |Ω| in the strong coupling regime
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λ = M = 1 and ϵE = 10−2. We consider the field amplitude cutoff k = 20 and an expected relation N ∼
√
k with

the field occupation cutoff. Here, we observe that the occupation basis Trotter algorithm performs better than all
the amplitude basis algorithms in a small range. It performs better than Algorithms I and II for a larger range. For
nearly the complete range of values considered, amplitude basis Algorithms IIIa and IIIb (with Conjecture 28) has
the minimum T-gate-count.

In Fig. 8(a) we plot the logical qubit count of the amplitude basis algorithms as a function of the field amplitude
cutoff k, while in Fig. 8(b) we show the logical qubit count of the occupation basis algorithm with respect to the
occupation basis cutoff N . Again we consider the strong coupling regime λ =M = 1 and |Ω| = 102. We observe that
the qubit count of Algorithms II, IIIa and IIIb is much better than the others. This is due to the LCU decomposition
of Φ, Φ2 and Φ4 operators based on binary representation of integers. We remember that the qubit cost of Algorithm
IIIb does not depend on any conjecture.

In Fig. 9 we show the variation of the logical qubit count of all the algorithms with respect to the momentum
volume cutoff |Ω|. Again, as explained before we consider the strong coupling regime λ = M = 1 and ϵE = 10−2,

k = 20, N ∼
√
k. Here we observe that the qubit count of the occupation basis Trotter algorithm is much less than

the amplitude basis LCU based algorithm I. However, again the qubit counts of the other amplitude basis algorithms -
both Trotter based Algorithm II and LCU based Algorithms IIIa and IIIb, are the minimum among all the algorithms
considered.

In summary, the amplitude basis qubitization based Algorithm IIIa and its improved version Algorithm IIIb have
better cost estimates i.e. the minimum T-gate-count and logical qubit count compared to other algorithms. One
reason for this is the particular binary representation based LCU decomposition of the operators. The Trotterization
algorithm using this decomposition, though enjoys the benefit of lower qubit count, but has higher T-gate count
because of more rotation gates, as mentioned earlier. The other amplitude basis qubitization based Algorithm I has
much lower T-gate-count in most cases compared to the Trotter algorithms - both in the occupation basis as well as
Algorithm II. But it has much higher qubit count compared to all the algorithms, in nearly all the cases considered.
The qubit cost of the occupation basis Trotter algorithm is somewhat intermediate and its T-gate-count, though low
in a small regime, soon becomes higher than the others.

V. FAULT TOLERANT IMPLEMENTATION

To create fault-tolerant non-Clifford T gates within the surface code, one needs to prepare highly accurate magic
states |AL⟩ which are then fed into the logical computation circuit to affect logical T gates, |AL⟩ = TH|0⟩ [86].
Note that these states are prepared in an area of the surface code that is separate from the area where the logical
computation is taking place. The process of magic state distillation is resource intensive and is often responsible for
the highest footprint of surface code-based fault-tolerant computation.

In this section we provide an estimate for the resources required to generate sufficiently accurate T gates, following
Fowler’s treatment in [40]. Assuming NT = 1012 logical T gates and a physical gate measurement time of tm = 10−7

seconds, the shortest possible time to compute the NT consecutive gates is tc = tmNT = 105 seconds, or around 28
hours.

To calculate the physical qubit footprint, note that each logical T gate needs one highly distilled ancilla (magic)
state |AL⟩ injected into the logical circuit. The tolerable error rate per |AL⟩ state must then satisfy

PAL
< 1/NT = 10−12. (208)

Assuming an injection error rate of PI = 10−3, and an error-free distillation circuit, the error rate associated with the
first layer of distillation will be,

P1 = 35P 3
I ∼ 3.5× 10−8, (209)

which is greater than the required PAL
, thus a second layer of distillation will be required. The error probability in

this case will be,

P2 = 35P 3
1 ∼ 1.5× 10−21, (210)

which is less than PAL
, therefore two layers of distillation will be sufficient to purify an ancilla state with the desired

accuracy.
Using the 15-qubit Reed-Muller encoding for the distillation of |AL⟩, the first stage requires 15 sets of distillation

circuits, each acting on 16 logical qubits, for a total of 240 logical qubits, operating in 8× 5d1/4 = 10 d1 surface code
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cycles where d1 is the distance associated with the first layer of distillation. To estimate d1, note that the error rate
for |AL⟩ after the first distillation is

PAL1
= 1800 d1PL1

. (211)

Here the coefficient 1800 results from 240 logical qubits, two types of logical qubits, three types of error chains, and
5d1/4 surface code cycles. The logical error rate for the first layer PL1

is related to the distance with the following
relation,

PL1
≃ 3× 10−2(

P

Pth
)

d1
2 , (212)

where Pth = 10−2 is the threshold error and we assume the a physical error rate of P ≃ 10−3.
We need to find d1 such that

35(PAL1
)3 < PAL

< 10−12. (213)

We find that the shortest distance for which this requirement is satisfied is for d1 = 15. Assuming the rate of
r1 = 5/2 × 5d21/4 physical qubits per logical qubit, we need n1 = 1.7 × 105 physical qubits and t1 = 10 d1 = 150
surface code cycles.

The second stage of distillation requires another encoding with 16 logical qubits and t2 = 10 d2 surface code cycles,
where again d2 is the corresponding code distance for the second distillation. To find this distance, we need to satisfy,

PAL2
= 120 d2PL2 < PAL

< 10−12, (214)

where the coefficient, 120, stems from 16 logical qubits, two types of logical qubits, three types of error chains and
5d2/4 surface code cycles and,

PL2 ≃ 3× 10−2

(
P

Pth

) d2
2

. (215)

We find that for d2 = 29 this requirement is satisfied. Given the rate of r2 = 5/2× 5d22/4 physical qubits per logical
qubit, we need a total of n2 = 4.2× 104 physical qubits and t2 = 10d2 = 290 surface code cycles for the second round
of distillation.

Note that the qubits used in the first round of distillation can be reused during the second round, thus total
resources required for two rounds of distillation will be n1 = 1.7× 105 physical qubits and t1 + t2 = 440 surface code
cycles or tAAA = 4.4× 10−5 seconds, assuming a surface code cycle time of 100 nanoseconds. Following the argument
in [40], this space-time footprint is enough to distill three ancilla states, or an AAA factory.

If we use only one AAA factory, the time to distill all 1012 |AL⟩ states will be t = 1.5× 107 seconds or ∼ 6 months.
To achieve the minimal computation time of tc = 105 seconds, we need to create parallel AAA factories. To calculate
this number, note that each AAA factory prepares 3 ancilla states in time tAAA = 4.4× 10−5 seconds. Therefore, in
time tc = 105 seconds we can create 3tc/tAAA = states. Thus to achieve the desired number of states NT = 1012 in
tc = 105 seconds we need to create NAAA = NT /(3tc/tAAA) or ∼ 147 parallel AAA factories. This parallelization will
save us time but instead increases our space footprint to 147× 1.7× 105 ≃ 2.5× 107 physical qubits.

If we use the distance of the second layer of distillation for our logical computation, the cost of encoding a logical
qubit will be 5/2× 5× (16)2/4 = 2.6× 106 physical qubits, which is ∼ 10% of the number of physical qubits needed
for the distillation of all the required ancilla states in the desired time. Thus the total footprint for the computation
will be 2.8× 107 physical qubits.
If we reduce the error per gate to P ≃ 10−4, we can reduce the spacial footprint of the distillation circuit. Following

the same logic as before we find that we still need two layers of distillations, where for the first layer we need a code
with distance d1 = 8, n1 ≃ 4.8 × 104 physical qubits and t1 = 80 cycles. For the second round we need d2 = 14,
n2 ≃ 9.8 × 103 physical qubits and t2 = 140 cycles. As before the qubits in the first layer can be recycled in the
second layer so the total required resources per distilled state will be n = n1 = 4.8× 104 qubits and t = t1 + t2 = 220
cycles or 2.2 × 10−5 seconds for an AAA factory. If we were to use only a single AAA factory, the time to prepare
NT = 1012 state would be 7.3 × 106 seconds or ∼ 3 months. To keep pace with the computational time tc = 10−5

seconds, we need to use 1012/(3 × 105/(2.2 × 10−5)) ∼ 74 parallel AAA factories with the footprint of ∼ 3.5 × 106

physical qubits.
A logical computational qubit in this case will cost 3.125× 142 = 612 physical qubits, hence for 1000 logical qubits

we need ∼ 6.2 × 105 physical qubits, which is is ∼ 17% of the distillation footprint, bringing the total number of
physical qubits to 4.2× 106. A summary of these results is given in table III.
The calculations in this section follow closely the arguments of [87]. Depending on the need to optimize either time

or space, the methods discussed in more recent references, e.g. [42], can be used to modify the estimates.
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p/pth 10−1 10−2

First distillation distance d1 15 8
Second distillation distance d2 29 14

Time per AAA (s) 4.4× 10−5 2.2× 10−5

Total time for 1012 A states without parallelization (s) 1.5× 107 7.3× 106

Total time for 1012 A states with parallelization (s) 1.0× 105 1.0× 105

Number of parallel AAA factories 147 74
Number of Physical qubits per AAA factory 1.7× 105 4.8× 104

Total Physical qubits for distillation with parallelization 2.5× 107 3.5× 106

Physical qubits for 1000 logical computational qubits 2.6× 106 7.4× 105

Total physical qubits including computational qubits 2.8× 107 4.2× 106

TABLE III: Summary of the estimated resources required for the fault-tolerant implementation of the algorithm
using the surface code. Note that the best possible logical computation time, which is limited by the gate time of
tm = 10−7 seconds, is tc = 105 seconds or ∼ 28 hours. This time can be achieved by parallelizing magic state

factories whose footprint is partially determined by the ratio p/pth
.

VI. CONCLUSION

A central challenge that has remained unanswered within the quantum simulation community involves deciding
whether simulation of scalar field theories can be practically done on a quantum computer. Here we have addressed
this by providing a new method that uses phase estimation to estimate elements of the S-matrix for elastic collisions
and designing optimized circuits for Qubitization and Trotter based simulation of scalar field theory in amplitude
or occupation basis. We find that simulation of scalar field theory in 1 + 1D with a occupation cutoff of 9 or field
cutoffs of 20 with a field volume Ω = 100 leads to a number of T gates that is on the order of 1012 and the number of
logical qubits that are on the order of 1000 for the occupation basis and in on the order of 500 logical qubits for the
qubitization based amplitude basis algorithm. We show that the calculation can be performed in just over a day.

These estimates are predicated on 5 new algorithms considered in this paper. In the occupation basis we describe
a Trotter-based simulation algorithm. Of the 4 algorithms described in the amplitude basis, the three qubitization
based ones perform better. Among these, the most efficient one in terms of T-gate-count and number of logical qubits,
is the one where the LCU decomposition of operators have been done using binary representation of integers. We can
prove that the number of T gates needed for the Trotter-based algorithm, for coupling strength λ, occupation cutoff
N , mass M , and energy uncertainty ϵE , is

NT,occ ∈ Õ

(
λN7|Ω|3

M5/2ϵ
3/2
E

)
. (216)

We compute this by evaluating commutator bounds on the second-order Trotter formula. This algorithm performs best
in circumstances where the particle mass is large, when the number of particles in occupation basis is dramatically lower
than the maximum field or when the coupling strength is relatively weak. Higher order formulas can give better scaling,
but we focus on the low-order formulas because the tightest bounds available are for the second order formula [30, 67].
It is worth noting however, that even the tightest bounds on Trotter error are pessimistic [28, 30, 88, 89]. Nonetheless,
we note that, if one is interested in high energy scattering, this basis can be ideally suited for such problems. This
results from the fact at high energies the particles participating in scattering events can be thought as being nearly
free (i.e. weak coupling), as long as the occupation number is small, while a field based picture would fail to efficiently
describe such a scenario. Further, the occupation or particle based pictures have advantages in the extraction of
physical observables such as particle number, while in the field basis such quantities are harder to obtain. For further
discussion on these issues, see [22, 43, 90].

The most performant field amplitude basis algorithms are based on qubitization and for field cutoff k require a
number of T -gates that scale as

NT,amp = Õ

( |Ω|2
ϵE

[
k2Λ + kM2

])
(217)

where Λ is a rescaled interaction strength. These bounds provide much better scaling with the error tolerance and
slightly better scaling with the volume of the simulation. It is worth noting that this scaling is likely to be close to
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the empirical performance of the algorithm because the error estimates for qubitization tend to be much tighter than
those of the Trotter formula [30].

This work opens up a number of additional questions. In particular the development of improved methods for
computation of the elements of the S-matrix in higher dimensions or for inelastic collisions. Further more detailed
estimates of the Trotter error may reveal that the cost of these methods are substantially lower than current estimates.
In a similar vein, identification of algorithms that may only require partial error correction can allow these applications
to become feasible in early fault-tolerant quantum computers. For example, one possible candidate may be the Trotter
based algorithm in the amplitude basis.

Perhaps the most important issue that needs to be addressed involves the theory itself. Scalar ϕ4 theory is often
used as a toy theory rather than one that accurately models realistic scattering events in colliders. Further studies
such as ours are needed to consider gate count estimates for more realistic field theories. The direct extension of this
work would be to consider complex scalar theories, or vector field theories. The next step towards realistic theories
would then be to develop algorithms for boson-fermion coupled theories. It is our hope that this will not only reveal
that field theory can be practically simulated on a quantum computer, but also help us understand the ultimate goal
of figuring out whether quantum computers can simulate all physically realistic processes in polynomial time.
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Appendix A: Quantum circuit for simulating in the Field Occupation Basis

In this section we derive the quantum circuits required to simulate the interacting Hamiltonian Hφ (Eq. 48). As
explained in Section IVA, we divide the terms in the sum into 4 groups, i.e. Hφ := H1φ+H2φ+H3φ+H4φ. We map
the resulting bosonic expressions into qubit space. We use the following two lemmas repeatedly in order to derive the
Pauli expressions for the sum in each of these groups (Eq. 49, 50, 52, 53).

Lemma 38. If n̂p is the number operator on momentum mode p then for any integer r ≥ 1 we have,

(n̂p)
r
=
∑
n

nr

2
(In − Zn)p.

Proof. We prove the lemma by considering the action of the operators on the LHS and RHS in the Fock basis. The
action of the number operator on the LHS is given as

n̂p
∑
n

|p, n⟩ =
∑
n

n |p, n⟩ , and so (n̂p)
r
∑
n

|p, n⟩ =
∑
n

nr |p, n⟩ .

Since (I − Z) |0⟩ = 0 and (I − Z) |1⟩ = 2 |1⟩, so given our unary encoding in Eq. 37 we have(∑
n

nr

2
(In − Zn)p

)(∑
n′

|p, n′⟩
)

=
∑
n

nr

2
(In − Zn)p |p, n⟩ =

∑
n

nr |p, n⟩ ,

which proves the lemma.
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Lemma 39. If m ≥ 1 and r ≥ 0 are integers then we have,

(a†p)
m(np)

r + (np)
r(ap)

m =
1

2

∑
n

√
(n+m)!

n!
nr(XnXn+m + YnYn+m)p. (A1)

Proof. First, let r = 0 and we prove the fact that,

(a†p)
m + (ap)

m =
1

2

∑
n

√
(n+m)!

n!
(XnXn+m + YnYn+m)p. (A2)

For m = 1 we can use the explicit qubit mapping in Eq.38, plug in the operators in Eq. 39 to get the above equation.
For m > 1 we consider the action of the operators on the LHS and RHS in the Fock basis.
The nonzero matrix elements of a, a† in this basis are given by an,n−1 =

√
n, (a†)n,n+1 =

√
n+ 1. The corresponding

action is given as (
ap + a†p

)∑
n

|p, n⟩ =
∑
n

(√
n+ 1 |p, n+ 1⟩+√

n |p, n− 1⟩
)

The nonzero matrix elements of the ladder operators, raised to power m ≥ 1, can be explicitly computed to be

(am)n, n−m =

√
n!

(n−m)!
,

(
(a†)m

)
n,n+m

=

√
(n+m)!

n!
.

This gives the action on the Fock basis as

(
(ap)

m + (a†p)
m
)∑

n

|n⟩ =
∑
n

(√
(n+m)!

n!
|p, n+m⟩+

√
n!

(n−m)!
|p, n−m⟩

)
. (A3)

Also, the action of the Pauli operator on the RHS of Eq. A2 is,

1

2

(∑
n

√
(n+m)!

n!
(XnXn+m + YnYn+m)p

)∑
n

|p, n⟩

=
1

2

∑
n,n′

√
(n+m)!

n!
(XnXn+m + YnYn+m) |p, n′⟩

=
1

2

∑
n

√
(n+m)!

n!
(XnXn+m + YnYn+m)(|p, n⟩+ |p, n+m⟩)

=
∑
n

√
(n+m)!

n!
(|p, n+m⟩+ |p, n⟩)

=
∑
n

(√
(n+m)!

n!
|p, n+m⟩+

√
n!

(n−m)!
|p, n−m⟩

)
.

The second last line is obtained from the fact that (XnXn+m + YnYn+m)p |p, n⟩ = 2 |p, n+m⟩,
(XnXn+m + YnYn+m)p |p, n+m⟩ = 2 |p, n⟩ and (XnXn+m + YnYn+m)p |p, n′⟩ = 0 if n′ ̸= n, n + m. The last line

follows by relabeling the indices in the second summation. Thus when r = 0, we have φ(p, n,m, r) = 1
2

√
(n+m)!
n! .

Now let us consider the case when r > 0. We prove that

(a†p)
m(np)

r + (np)
r(ap)

m =
1

2

∑
n

nr
√

(n+m)!

n!
(XnXn+m + YnYn+m)p. (A4)

Since n̂p |p, n⟩ = n |p, n⟩, so the action of the operator on the LHS of the above equation, in the Fock basis is as
follows.

(
(ap)

m(n̂p)
r + (n̂p)

r(a†p)
m
)∑

n

|p, n⟩ =
∑
n

(√
(n+m)!

n
nr |p, n+m⟩+

√
n!

(n−m)!
(n−m)r |p, n−m⟩

)
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Similar to the analysis before, we can show that the action of the Pauli operator on the RHS of Eq. A4, in the Fock
basis is as follows.

1

2

∑
n

nr
√

(n+m)!

n
(XnXn+m + YnYn+m)

∑
n

|p, n⟩

=
∑
n

√
(n+m)!

n
nr(|p, n+m⟩+ |p, n⟩)

=
∑
n

√
(n+m)!

n
nr |p, n+m⟩+

√
n!

(n−m)!
(n−m)r |p, n−m⟩

Thus in this case φ(p, n,m, r) = 1
2

√
(n+m)!

n nr and this proves the lemma.

Now we explain how we derive quantum circuits to implement the exponentiated sum in each group i.e. e−iH1φt,
e−iH2φt, e−iH3φt and e−iH4φt. We follow the methods described in [26]. Very briefly, we first divide the Pauli terms into
mutually commuting sets. For each such set we derive an eigenbasis and from the diagonalized operator we calculate
the number of distinct non-zero eigenvalues (ignoring sign), which is equal to the number of (controlled)-rotations
we require. We apply some logical reasoning and optimizations to derive the remaining elements of circuits. The
resulting Trotter error due to such splitting, has been calculated in Appendix B. We would like to emphasize that the
quantum circuits and hence resource estimates depend on the grouping into commuting Paulis and we do not claim
to give the optimal grouping in this paper.

Before we consider our 4 Hamiltonian groups, we derive quantum circuits for the exponential of some specific
summation of Paulis. We fix some convention and notation. We denote P0 := X, P1 := Y and for any binary variable
v we denote its complement by v := 1⊕v. Consider the following two sums of Paulis that act on 2n and 2n+1 qubits
respectively, which we index by 1, 2, . . . , 2n+ 1. We denote Z(j) to imply that the operator Z acts on qubit j. When
we denote a Pauli by Pj , j ∈ {0, 1} then we do not mention explicitly in the subscript the qubit it acts on, in order to
avoid clutter. We assume that the left-most operator is applied on qubit 1, then next one on qubit 2 and so on and
this should be clear from the context.

T1 = θ
∑

a1,...,an∈{0,1}

Pa1Pa1Pa2Pa2 . . . PanPan

T2 = θ

 ∑
a1,...,an∈{0,1}

Pa1Pa1Pa2Pa2 . . . PanPan

(I(2n+1) − Z(2n+1)

)
(A5)

It is quite clear that the above two terms are sum of mutually commuting Paulis belonging to the following two sets,
respectively.

G1 = {Pa1Pa1Pa2Pa2 . . . PanPan : aj ∈ {0, 1}, j = 1, . . . , n}
G2 =

{
Pa1Pa1Pa2Pa2 . . . PanPanZ

b
(2n+1) : aj , b ∈ {0, 1}, j = 1, . . . , n

}
(A6)

Now we derive the eigenbasis for each of these terms.

Lemma 40 (Eigenbasis for G1 and G2). Let w, v2, . . . v2n ∈ {0, 1}. Then the eigenvectors of the Paulis in G1 and
G2 are of the following form, respectively.

|v1,±⟩ =
1√
2
(|0v2 . . . v2n⟩ ± |1v2, . . . v2n⟩) , |v2,±⟩ =

1√
2
(|0v2 . . . v2nw⟩ ± |1v2, . . . v2nw⟩)

Specifically, if β1 = a1v2+a2(v3+v4)+ · · ·+an(v2n−1+v2n) and β2 = a1v2+a2(v3+v4)+ · · ·+an(v2n−1+v2n)+wb,
then we have the following.

Pa1Pa1Pa2Pa2 . . . PanPan |v1,±⟩ = ±(−1)a1+a2+···+an+β1 |v1,±⟩
Pa1Pa1Pa2Pa2 . . . PanPanZ

b
(2n+1) |v2,±⟩ = ±(−1)a1+a2+···+an+β2 |v2,±⟩
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Proof. We have the following.

Pa1Pa1Pa2Pa2 . . . PanPan |0v2 . . . v2n⟩ = i2(a1+···+an)(−1)a1v2+a2(v3+v4)+···+an(v2n−1+v2n) |1v2 . . . v2n⟩
= (−1)a1+···+an+β1 |1v2 . . . v2n⟩

Pa1Pa1Pa2Pa2 . . . PanPan |1v2 . . . v2n⟩ = i2(a1+···+an)(−1)a1+a1(v2+1)+a2(v3+1+v4+1)+···+an(v2n−1+1+v2n+1) |0v2 . . . v2n⟩
= (−1)a1+···+an+β1 |0v2 . . . v2n⟩

Therefore,

Pa1Pa1Pa2Pa2 . . . PanPan |v1,±⟩ = ±(−1)a1+···+an+β1 |v1,±⟩ ,
making |v1,±⟩ an eigenvector for the Paulis in G1. Similarly we can prove that the eigenvectors of the Paulis in G2

are of the form |v2,±⟩.
It is easy to see that there are 22n−1 · 2 = 22n mutually orthogonal vectors of the form |v1,±⟩ and 22n · 2 = 22n+1

mutually orthogonal vectors of the form |v2,±⟩, and so we have complete eigenbases for the Paulis in G1 and G2. Now,
we derive diagonalizing circuits for the set of Paulis in G1 and G2.

Theorem 41 (Diagonalizing circuit for G1 and G2 ). Let W =
(∏2n

j=2 CNOT(1,j)

)
H(1) and

Z̃1 = Z(1)Z
a1
(2)Z

a2
(3)Z

a2
(4) . . . Z

an
(2n−1)Z

an
(2n), Z̃2 = Z(1)Z

a1
(2)Z

a2
(3)Z

a2
(4) . . . Z

an
(2n−1)Z

an
(2n)Z

b
(2n+1), where a1, . . . an, b ∈ {0, 1}.

Then,

(−1)a1+···+anW Z̃1W
† = Pa1Pa1Pa2Pa2 . . . PanPan ∈ G1

(−1)a1+···+anW Z̃2W
† = Pa1Pa1Pa2Pa2 . . . PanPanZ

b
(2n+1) ∈ G2

Proof. We prove the theorem by showing that the operators on the LHS and RHS have equivalent actions on an
eigenbasis of the Paulis in G1 and G2, respectively. Let us first consider the operators in G1. We show the evolution of
the eigenvectors in Lemma 40 when the operator on the LHS is applied. We first apply W †. Let β1 = a1v2 + a2(v3 +

v4) + · · ·+ an(v2n−1 + v2n) and Uc =
∏2n
j=2 CNOT(1,j).

|v1,+⟩ Uc−→ |0v2 . . . v2n⟩+ |1v2 . . . v2n⟩√
2

H(1)−→ |0v2 . . . v2n⟩ Z̃1−→ (−1)β1 |0v2 . . . v2n⟩

H(1)−→ (−1)β1
|0v2 . . . v2n⟩+ |1v2 . . . v2n⟩√

2

Uc−→ |v1,+⟩

Also,

|v1,−⟩ Uc−→ |0v2 . . . v2n⟩ − |1v2 . . . v2n⟩√
2

H(1)−→ |1v2 . . . v2n⟩ Z̃1−→ −(−1)β1 |1v2 . . . v2n⟩

H(1)−→ (−1)β1
|0v2 . . . v2n⟩ − |1v2 . . . v2n⟩√

2

Uc−→ |v1,−⟩

Thus the Paulis in G1 and the operators on the LHS of the first equation in the statement of the theorem, have same
eigenvalues for the eigenvectors in Lemma 40.

Similarly, we can prove that the operators on the RHS of the second equation in the statement of the theorem have
similar action on an eigenbasis (shown in Lemma 40) of the Paulis in G2. This proves the theorem.

Using the above theorem, we diagonalize the terms in T1 and T2 and re-write them as follows.

T1 = W

θZ(1)

∑
a2,...,an∈{0,1}

(−1)a2+···+anZa2(3)Z
a2
(4) . . . Z

an
(2n) − θZ(1)Z(2)

∑
a2,...,an∈{0,1}

(−1)a2+···+anZa2(3)Z
a2
(4) . . . Z

an
(2n)

W †

T2 = W

θZ(1)

∑
a2,...,an∈{0,1}

(−1)a2+···+anZa2(3)Z
a2
(4) . . . Z

an
(2n)(I(2n+1) − Z(2n+1))

−θZ(1)Z(2)

∑
a2,...,an∈{0,1}

(−1)a2+···+anZa2(3)Z
a2
(4) . . . Z

an
(2n)(I(2n+1) − Z(2n+1))

W †
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Then using Lemma 2.3 in [26], the eigenvalues of the sum of Z-operators can be expressed as functions of Boolean
variables x1, . . . , x2n, x2n+1, as follows.

ϕ1 = θ(−1)x1

∑
a2,...,an∈{0,1}

(−1)a2+···+an(−1)x
a2
3 +x

a2
4 +···+xan

2n − θ(−1)x1+x2

∑
a2,...,an∈{0,1}

(−1)a2+···+an(−1)x
a2
3 +x

a2
4 +···+xan

2n

= θ(−1)x1 (1− (−1)x2)

 ∑
a2,...,an∈{0,1}

(−1)a2+···+an(−1)x
a2
3 +x

a2
4 +···+xan

2n


ϕ2 = θ(−1)x1 (1− (−1)x2) (1− (−1)x2n+1)

 ∑
a2,...,an∈{0,1}

(−1)a2+···+an(−1)x
a2
3 +x

a2
4 +···+xan

2n

 (A7)

Lemma 42. Let y1, y2, . . . , y2m are Boolean variables. Then

∑
a1,...,am∈{0,1}

(−1)a1+···+am(−1)y
a1
1 +y

a1
2 +···+yam

2m =

m∏
j=1

(
1− (−1)y2j−1+y2j

)
.

Proof. We use induction to prove this lemma. The base case corresponds to the case when m = 1. Then, it is easy to
see that

(−1)0(−1)y
0
1+y

0
2 + (−1) + (−1)1(−1)y

1
1+y

1
2 = 1− (−1)y1+y2 .

Now we assume that the lemma is true when m = k − 1. That is

∑
a1,...,ak−1∈{0,1}

(−1)a1+···+ak−1(−1)y
a1
1 +y

a1
2 +···+y

ak−1
2k−2 =

k−1∏
j=1

(
1− (−1)y2j−1+y2j

)
.

Then, ∑
a1,...,ak∈{0,1}

(−1)a1+···+ak(−1)y
a1
1 +y

a1
2 +···+yak

2k

=
∑

a1,...,ak−1∈{0,1}

(−1)a1+···+ak−1(−1)y
a1
1 +···+y

ak−1
2k−2 −

∑
a1,...,ak−1∈{0,1}

(−1)a1+···+ak−1(−1)y
a1
1 +···+y

ak−1
2k−2 +y2k−1+y2k

=
(
1− (−1)y2k−1+y2k

) k−1∏
j=1

(
1− (−1)y2j−1+y2j

)
=

k∏
j=1

(
1− (−1)y2j−1+y2j

)
,

thus proving the lemma.

Applying the above lemma in Eq. A7 we obtain,

ϕ1 = θ(−1)x1 (1− (−1)x2)

n∏
j=2

(
1− (−1)x2j−1+x2j

)
ϕ2 = θ(−1)x1 (1− (−1)x2) (1− (−1)x2n+1)

n∏
j=2

(
1− (−1)x2j−1+x2j

)
(A8)

Now, ϕ1 = (−1)x12nθ when x2 = x2j−1 ⊕ x2j = 1, where j = 2, . . . , n; else it is 0. Similarly, ϕ2 = (−1)x12n+1θ when
x2 = x2n+1 = x2j−1 ⊕ x2j = 1, where j = 2, . . . , n; else it is 0. Thus, using Lemma 2.4 in [26] we can implement
a circuit for e−iT1t and e−iT2t, using one controlled-Rz. The complete circuits (for one time-step) have been shown
in Figure 10 and 11, respectively. In both these circuits we require 2n − 1 CNOT, controlled on qubit 1 and target
on qubit 2 ≤ j ≤ 2n, and 2 H gates to implement the diagonalizing circuit W . The we use n − 1 CNOT with
control on qubit 2j and target on qubit 2j − 1, where 2 ≤ j ≤ n, to test the parity constraints. Then we apply the
multi-controlled-Rz to implement the rotation when the parity constraints are satisfied. Thus, the total number of
gates required for implementing these exponentials per time step, can be summarized in the following lemma.
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2n • •

2n− 1 •

2n− 2 • •

2n− 3 •

...
...

...
...

...
...

2 •

1 • H Rz(2
n+1θ) H •

FIG. 10: Circuit implementing the exponential of the sum T1 (Eq. A5) i.e. e−iT1t.

Theorem 43. Suppose T1 and T2 are sum of Pauli terms, as defined in Eq. A5. Then it is possible to implement
e−iT1t and e−iT2t using 6n− 4 CNOT and 2 H gates per time step. Additionally, we require one CnRz gate (per time
step) for e−iT1t and one Cn+1Rz gate for e−iT2t.

Here CkRz refers to a Rz gate controlled on k qubits. We can decompose CkRz into compute-uncompute CkX
pairs, cRz (single-qubit controlled Rz) and a single ancilla. We can then further decompose CkX using 4k− 4 T and
4k − 3 CNOT gates [75]. If we use the logical AND construction in [76] then we require similar number of T and
CNOT for both compute-uncompute pair, but at the cost of using measurement and additional classical resources.

2n+ 1 •
2n • •

2n− 1 •

2n− 2 • •

2n− 3 •

...
...

...
...

...
...

2 •

1 • H Rz(2
n+2θ) H •

FIG. 11: Circuit implementing the exponential of the sum T2 (Eq. A5) i.e. e−iT2t.

We consider another specific sum of Paulis and give the cost of implementing its exponential per time step.

Theorem 44. Let T3 is a sum of Paulis, as defined below.

T3 = θ

n∏
j=1

(I(n) − Z(n))

Then it is possible to implement e−iT3t using one CnRz gate and an extra ancilla, per time step.

Proof. Using Lemma 2.3 in [26], the eigenvalues of T3 can be expressed as functions of Boolean variables x1, . . . , xn,
as follows.

ϕ3 = θ

n∏
j=1

(1− (−1)xj )

It is easy to see that ϕ3 = 2nθ if and only if xj = 1 for j = 1, . . . , n; else it is zero. Thus using Lemma 2.4 in [26], we
can implement a circuit for e−iT3t, using one controlled-Rz. Specifically, we require a C

nRz gate and an extra ancilla,
initialized to |0⟩. The controls select the proper state of the qubits. The target Rz gate is applied on the ancilla.
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Now, we consider the 4 Hamiltonian groups - H1φ (Eq. 49), H2φ (Eq. 50), H3φ (Eq. 52) and H4φ (Eq. 53);
and estimate the number of gates and qubits required to implement their exponentials per time step, thus proving
Lemma5-8. As discussed, we have two sources of T-gates, one that comes from the approximately implementable
(controlled)-rotation gates and the other that comes from the other exactly implementable components, for example,
multi-controlled-X gates. When we report the number of T-gates we do not include the ones in the implementation of
the rotation gates. The overall T-count can be easily obtained by plugging in the T-count estimates of (controlled)-
rotation gates. More discussion on these bounds have been provided in Section IA.

a. Group I : H1φ : We re-write Eq. 49, for convenience. S4p⃗ = {p⃗ = (p1, p2, p3, p4) : pi ∈ Γ; i =
1, . . . , 4 and ∃k ∈ Z s.t.p3 = p1 + k, p4 = p2 − k} and S4n⃗ = {n⃗ = (n1, n2, n3, n4) : ni = 1, . . . ,M ; i = 1, . . . , 4}
are ordered 4-tuples of momentum modes and momentum states.

: H1φ :=
λ

24 · 64|Ω|3
∑
p⃗∈S4p⃗

∑
n⃗∈S4n⃗

∏
(pj ,nj)∈(p⃗,n⃗)

√
nj + 1

wpj

(
Xpj ,nj

Xpj ,nj+1 + Ypj ,nj
Ypj ,nj+1

)
We see that for a given p⃗, n⃗, the sum of the 16 terms in the innermost summation is of the form T1 (Eq. A5), with
n = 4. Thus we can apply Theorem 43 and conclude that we require 20 CNOT, 2 H and one C4Rz gate to implement
its exponential. The C4Rz gate can be decomposed further into 1 cRz, 12 T and 13 additional CNOT. In this case

|S4p⃗| ≤
(
V
2

)
·V = V 2(V−1)

2 and |S4n⃗| =M4. The 4! permutations of the elements in n⃗ lead to the same coefficient, and

hence can be summed together, resulting a form similar to T1, with n = 4. Hence, to implement e−iH1φt we require

at most M4V 2(V−1)
48 cRz,

12M4V 2(V−1)
48 T, 33M4V 2(V−1)

48 CNOT and 2M4V 2(V−1)
48 H gates per time step. This proves

Lemma 5
b. Group II : H2φ : The sum of the terms in this group (Eq. 50) is as follows.

: H2φ :

=
λ

96|Ω|
∑
p,k

1

ωp
√
ωp+kωp−k

( ∑
n1,n2,n3

c(1)n (Xn1Xn1+2 + Yn1Yn1+2)p(Xn2Xn2+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1)p−k

+
∑

n1,n2,n3

c(2)n (In1 − Zn1)p(Xn2Xn2+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1)p−k

)

where c
(1)
n =

√
(n1+2)(n1+1)(n2+1)(n3+1)

8 , c
(2)
n =

n1

√
(n2+1)(n3+1)

4 .
For every p, k, n1, n2, n3 there are two sums, one of the form T1, with n = 3 and the other of the form T2, with

n = 2 (Eq. A5). Using Theorem 43 we require 14+8=22 CNOT, 4 H gates and two C3Rz gates to implement the
exponential of these sums. Each C3Rz can be implemented with 1 cRz, 8 T and 9 additional CNOT. In this case,
|S4p⃗| ≤ V 2, |S4n⃗| ≤ M3 and there are 3! permutations of the momentum states i.e. n1, n2, n3 that can be summed

together, because they have the same coefficients. Hence, to implement e−iH2φt we require at most M3V 2

3 cRz,
8M3V 2

3

T, 20M3V 2

3 CNOT and 2M3V 2

3 H gates, per time step t, thus proving Lemma 6
c. Group III : H3φ : From Eq. 52 we can re-write the following.

: H3φ :

=
λ

96|Ω|
∑
p1,p2

1

ωp1ωp2

(∑
n1,n2

c(3)n (Xn1
Xn1+2 + Yn1

Yn1+2)p1(Xn2
Xn2+2 + Yn2

Yn2+2)p2

+
∑
n1,n2

c(4)n (Xn1
Xn1+2 + Yn1

Yn1+2)p1(In2
− Zn2

)p2 +
∑
n1,n2

c(5)n (Xn2
Xn2+2 + Yn2

Yn2+2)p2(In1
− Zn1

)p1

+
∑
n1,n2

n1n2(In − Zp1,n1 − Zp2,n2 + Zp1,n1Zp2,n2)

)

where c
(3)
n =

√
(n1+2)(n1+1)(n2+2)(n2+1)

4 , c
(4)
n =

n2

√
(n1+2)(n1+1)

2 , c
(5)
n =

n1

√
(n2+2)(n2+1)

2 .
Here we see that for a given p1, p2, n1, n2, there is one sum of the form T1 with n = 2 (Eq. A5), two sums of the form

T2 with n = 1 (Eq. A5) and one sum of the form T3 with n = 2 (Theorem 44). Using Theorem 43 we can implement
the exponential of the first sum using 8 CNOT, 2 H and one C2Rz gates; each of the second type of exponentiated
sums (T2) using 2 CNOT, 2 H and one C2Rz gates. Using Theorem 44 we can implement the exponential of the last
type of sum (T3) using one C2Rz gate per time step. We can decompose each of the C2Rz using 4 T gates, 1 cRz and
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5 CNOT gates. In this case, |S4p⃗| ≤ V (V−1)
2 and |S4n⃗| ≤M2 and the 2! permutations of each (n1, n2) can be summed

together. Thus, overall we require 2M2V (V − 1) cRz, 8M
2V (V − 1) T, 16M2V (V − 1) CNOT and 3M2V (V − 1) H

gates. This proves Lemma 7.
d. Group IV : H4φ : We re-write the terms in H4φ from Eq. 53.

: H4φ :

=
λ

96

∑
p,n

1

(ωp)2

(√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2
(XnXn+4 + YnYn+4)p

+2n
√

(n+ 2)(n+ 1)(XnXn+2 + YnYn+2)p + 3(n2 − n)(In − Zn)p

)
We see that for a given p, n there are two sums of the form T1 with n = 1 (Eq. A5) and the exponentials of these
can be implemented with 2 cRz, 4 H and 4 CNOT (Theorem 43). The exponential of each term of the form In − Zn
can be implemented with one Rz gate. In this case |S4p⃗| ≤ V and |S4n⃗| ≤M . Thus, overall we require 3MV (c)-Rz,
4MV H and 4MV CNOT gates, proving Lemma 8.

Appendix B: Trotter error when simulating in the Field Occupation Basis

We bound the Trotter error, resulting from approximating the exponentiated sum of Hamiltonian operators by
a product of exponentiated Hamiltonian operators. We use the bound given in [67], which shows the dependence

on nested commutators. If a Hamiltonian H =
∑Γ
γ=1Hγ is a sum of Γ fragment Hamiltonians, then e−iτH can be

approximated by product of exponentials, using the pth order Trotter-Suzuki formula [68], Sp(τ) = e−iτH + A (τ),

where ∥A (τ)∥ ∈ O
(
α̃commτ

p+1
)
if each Hγ are Hermitian. Here α̃comm =

∑Γ
γ1,γ2,...,γp+1=1 ∥[Hγp+1

, . . . [Hγ2 , Hγ1 ]]∥.
We use the following bound given in [27]. In this section, ∥ · ∥ refers to the spectral norm [67], which is defined as the
induced Euclidean norm on the Hamming-Weight 1 subspace S

∥O∥ = max
|x⟩∈S:∥x∥2=1

∥O|x⟩∥2. (B1)

This definition corresponds with the Schatten infinity-norm which yields the maximum singular value of a matrix.
We also need the following result to simplify the calculation of our norms.

We also make use of the bound.

α̃comm ≤ 2p−(p′+1)
∑

γi1 ,γi2 ,...,γip′+1

∥[Hγp′+1
, [. . . [Hγ3 , [Hγ2 , Hγ1 ]] . . .]]∥

(
Γ∑
γ=1

∥Hγ∥
)p−p′

[1 ≤ p′ ≤ p] (B2)

In this paper we derive expressions and rigorous bounds for the first order or innermost commutators, i.e. we take
p′ = 1. In Section IVA we have expressed the occupation basis Hamiltonian as the sum of 5 other Hamiltonians (Eq.
46, 49, 50, 52, 53).

Hocc = H0 +H1φ +H2φ +H3φ +H4φ

Each of these Hamiltonians has been expressed as sum of Pauli operators. First, we re-group these summands into
sets of mutually commuting Paulis. Then we derive bounds on the norm of the Hamiltonians. Next, we derive bounds
on the pair-wise commutators. Finally, we combine these to derive bound on α̃comm and hence the pth order Trotter
error, thus formally proving Lemma 10.

We make the following observations. Let P ∈ {X,Y, Z} is a Pauli operator. Then,

[Pp,nPp,n+j , Pp′,n′Pp′,n′+k] = 0 if p ̸= p′ or p = p′ but n′ ̸= n, n+ j, n− k, n+ j − k. (B3)

Let Z be the set of integers, including 0. We define the following sets.

S10 = 2Z; S11 = 2Z+ 1;

S20 = {1 + 4Z}
⋃

{2 + 4Z}; S21 = {3 + 4Z}
⋃

{4Z};

S40 = {1 + 8Z}
⋃

{2 + 8Z}
⋃

{3 + 8Z}
⋃

{4 + 8Z}; S41 = {5 + 8Z}
⋃

{6 + 8Z}
⋃

{7 + 8Z}
⋃

{8Z};
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We sum H0 and H4φ into one Hamiltonian H ′
4φ.

: H ′
4φ :=: H4φ : + : H0 :

=
λ

96

∑
p,n

√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2ω2
p

(XnXn+4 + YnYn+4)p

+

(
λ

48

)∑
p,n

n
√
(n+ 2)(n+ 1)

ω2
p

(XnXn+2 + YnYn+2)p

+
∑
p,n

(
nωp
2

+
λ(n2 − n)

32(ωp)2

)
(In − Zn)p := H41 +H42 +H43 +H44 +H45; (B4)

where,

H41 =
λ

96

∑
p,n∈S40

√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2ω2
p

(XnXn+4 + YnYn+4)p :=
λ

96

∑
p,n∈S40

A
(4)
1pn

H42 =
λ

96

∑
p,n∈S41

√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2ω2
p

(XnXn+4 + YnYn+4)p :=
λ

96

∑
p,n∈S41

A
(4)
1pn

H43 =

(
λ

48

) ∑
p,n∈S20

n
√
(n+ 2)(n+ 1)

ω2
p

(XnXn+2 + YnYn+2)p :=

(
λ

48

) ∑
p,n∈S20

A
(4)
2pn

H44 =

(
λ

48

) ∑
p,n∈S21

n
√
(n+ 2)(n+ 1)

ω2
p

(XnXn+2 + YnYn+2)p :=

(
λ

48

) ∑
p,n∈S21

A
(4)
2pn

H45 =
∑
p,n

(
nωp
2

+
λ(n2 − n)

32(ωp)2

)
(In − Zn)p :=

∑
p,n

C(4)
pn (B5)

It is possible to check that each H4j , where j = 1, . . . , 5, consists of sum of mutually commuting Pauli operators.

S
(0)
4n = {n⃗ = (n1, n2, n3, n4) : Any 2, 4 or 0 of the nj are in S10 and the remaining are in S11; j = 1, . . . , 4}

and S
(1)
4n = {n⃗ = (n1, n2, n3, n4) : Any 1 or 3 of the nj are in S10 and the remaining are in S11; j = 1, . . . , 4}.

Given a certain p ∈ S4⃗p and n⃗ ∈ S4n⃗, let

A
(1)
p,n⃗ :=

∏
(pj ,nj)∈(p,n⃗)

√
nj + 1

ωpj

(
Xpj ,njXpj ,nj+1 + Ypj ,njYpj ,nj+1

)
, (B6)

then from Eq. 49, we have that we can express the first term from the ϕ4 term that arises in Hocc as the following.

: H1φ : =
λ

1536

∑
p∈S4p

∑
n⃗∈S4n⃗

A
(1)
p,n⃗

=
λ

1536

∑
p∈S4p

∑
n⃗∈S(0)

4n

A
(1)
p,n⃗ +

λ

1536

∑
p∈S4p

∑
n⃗∈S(1)

4n

A
(1)
p,n⃗

:= H11 +H12 (B7)

Again, both H11 and H12 consists of sum of mutually commuting Pauli operators. Let,

S
(0)
3n = {(n1, n2, n3) : n1 ∈ S21, n2, n3 ∈ S10; or n1 ∈ S20, n2 ∈ S10, n3 ∈ S11; (B8)

or n1 ∈ S20, n2 ∈ S11, n3 ∈ S10; or n1 ∈ S21, n2, n3 ∈ S11} (B9)

S
(1)
3n = {(n1, n2, n3) : n1 ∈ S20, n2, n3 ∈ S11; or n1 ∈ S21, n2 ∈ S11, n3 ∈ S10; (B10)

or n1 ∈ S21, n2 ∈ S10, n3 ∈ S11; or n1 ∈ S20, n2, n3 ∈ S10} (B11)

S
(0)
2n = {(n2, n3) : n2 ∈ S10, n3 ∈ S11; or n2 ∈ S11, n3 ∈ S10} (B12)

S
(1)
2n = {(n2, n3) : n2, n3 ∈ S11; or n2, n3 ∈ S10} (B13)
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Given p, k, n1, n2, n3, let

A
(2)
pkn⃗ :=

c
(1)
n

ωp
√
ωp+kωp−k

(Xn1Xn1+2 + Yn1Yn1+2)p (Xn2Xn2+1 + Yn2Yn2+1)p+k (Xn3Xn3+1 + Yn3Yn3+1)p−k (B14)

and

B
(2)
pkn⃗ :=

c
(2)
n

ωp
√
ωp+kωp−k

(In1
− Zn1

)p (Xn2
Xn2+1 + Yn2

Yn2+1)p+k (Xn3
Xn3+1 + Yn3

Yn3+1)p−k (B15)

where c
(1)
n =

√
(n1+2)(n1+1)(n2+1)(n3+1)

8 and c
(2)
n =

n1

√
(n2+1)(n3+1)

4 . Then, from Eq. 50, we have the following.

: H2φ : =
λ

96

∑
p,k

∑
n1,n2,n3

A
(2)
pkn⃗ +

λ

96

∑
p,k

∑
n1,n2,n3

B
(2)
pkn⃗

=
λ

96

∑
p,k

∑
(n1,n2,n3)

∈S(0)
3n

A
(2)
pkn⃗ +

λ

96

∑
p,k

∑
(n1,n2,n3)

∈S(1)
3n

A
(2)
pkn⃗ +

λ

96

∑
p,k

∑
n1

(n2,n3)∈S(0)
2n

B
(2)
pkn⃗

+
λ

96

∑
p,k

∑
n1

(n2,n3)∈S(1)
2n

B
(2)
pkn⃗

:= H21 +H22 +H23 +H24 (B16)

where each H2j , for j = 1, . . . , 4, consists of sum of mutually commuting Pauli operators.

Let, S
(2)
2n = {(n1, n2) : n1 ∈ S20, n2 ∈ S21; or n1 ∈ S21, n2 ∈ S20};

and S
(3)
2n = {(n1, n2) : n1, n2 ∈ S20; or n1, n2 ∈ S21}.

Given p1, p2, n1, n2, let A
(3)
pn⃗ =

c(3)n

ωp1ωp2
(Xn1

Xn1+2 + Yn1
Yn1+2)p1 (Xn2

Xn2+2 + Yn2
Yn2+2)p2 ;

B
(3)
1pn⃗ =

c(4)n

ωp1ωp2
(Xn1

Xn1+2 + Yn1
Yn1+2)p1 (In2

− Zn2
)p2 ; B

(3)
2pn⃗ =

c(5)n

ωp1ωp2
(Xn2

Xn2+2 + Yn2
Yn2+2)p2 (In1

− Zn1
)p1 ; and

C
(3)
pn⃗ = n1n2

ωp1ωp2
(In1

− Zn1
)p1 (In2

− Zn2
)p2 , where c

(3)
n =

√
(n1+2)(n1+1)(n2+2)(n2+1)

4 , c
(4)
n =

n2

√
(n1+2)(n1+1)

2 , c
(5)
n =

n1

√
(n2+2)(n2+1)

2 . From Eq. 52 we get the following.

: H3φ :

=
λ

96

∑
p1,p2

∑
n1,n2

(
A

(3)
pn⃗ +B

(3)
1pn⃗ +B

(3)
2pn⃗ + C

(3)
pn⃗

)
(B17)

=
λ

96

∑
p1,p2

∑
(n1,n2)

∈S(2)
2n

A
(3)
pn⃗ +

λ

96

∑
p1,p2

∑
(n1,n2)

∈S(3)
2n

A
(3)
pn⃗ +

λ

96

∑
p1,p2

∑
n1∈S20
n2

B
(3)
1pn⃗ +

λ

96

∑
p1,p2

∑
n1∈S21
n2

B
(3)
1pn⃗

+
λ

96

∑
p1,p2

∑
n2∈S20
n1

B
(3)
2pn⃗ +

λ

96

∑
p1,p2

∑
n2∈S21
n1

B
(3)
2pn⃗ +

λ

96

∑
p1,p2

∑
n1,n2

C
(3)
pn⃗

:= H31 +H32 +H33 +H34 +H35 +H36 +H37 (B18)

Again, each H3j , where j = 1, . . . , 7, consists of sum of mutually commuting Pauli operators.

1. Norm of Hamiltonians

In this subsection we derive bounds on the norm of the operators that appear in the decomposition of Hocc. Since
we use the triangle inequality it is sufficient to derive bounds on the norm of each Hjφ, where j = 0, 1, . . . , 4. Let
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minp ωp = ωmin and maxp ωp = ωmax. Due to truncation we have 1 ≤ n ≤ N . We first bound the norm of H0 (Eq.
46).

∥H0∥ ≤ ∥ 1

|Ω|
∑
n,p

nωp
2

(In − Zn)p∥ ≤ max
n,p

nωp
2

∥(In − Zn)p∥

≤ |Ω|ωmaxmax
n

n

2
· 2 =

ωmaxN

2
(B19)

Next, we bound the norm of H1φ from Eq. 49. We recall that S4p = {(p1, p2, p1 + k, p2 − k) : p1, p2, k ∈ Z} and
S4n⃗ = {(n1, n2, n3, n4) : ni = 0, . . . , N ; i = 1, . . . , 4} are 4-tuples of momentum modes and states. Also,

|S4p| ≤
1

2
(B20)

and |S4n⃗| ≤ N4, as discussed in Appendix A.

∥H1φ∥ ≤ ∥ λ

24 · 64
∑

p∈S4p

∑
n⃗∈S4n⃗

∏
(pj ,nj)∈(p,n⃗)

√
nj + 1

ωpj
(Xpj ,njXpj ,nj+1 + Ypj ,njYpj ,nj+1)∥

≤ λ

24 · 64 max
p∈S4p

max
n⃗∈S4n⃗

∥
∏

(pj ,nj)∈(p,n⃗)

√
nj + 1

ωpj
(Xpj ,nj

Xpj ,nj+1 + Ypj ,nj
Ypj ,nj+1)∥

≤ λ|S4p|
24 · 64 max

p∈S4p

max
n⃗∈S4n⃗

(N + 1)2

ω2
min

· 16

≤ λ

24 · 64 · (N + 1)2

2ω2
min

· 16

=
λ(N + 1)2

192ω2
min

(B21)

Now, we bound the norm of H2φ (Eq. 50). In Appendix A we have shown that the number of possible pairs (p, k),
where 1 ≤ p, k ≤ |Ω| are integers, is at most |Ω|2; while the number of tuples (n1, n2, n3), where 1 ≤ ni ≤ N are
integers, is at most N3.

∥H2φ∥ ≤ λ

96
max
p,k

max
n1,n2,n3

1

ωp
√
ωp+kωp−k

[√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8
∥(Xn1

Xn1+2 + Yn1
Yn1+2)p

(Xn2Xn2+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1)p−k∥+
n1
√
(n2 + 1)(n3 + 1)

4
∥(In1 − Zn1)p

(Xn2Xn2+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1)p−k∥]

≤ λ

96
max
p,k

max
n1,n2,n3

1

ω2
min

[
(N + 1)3/2(N + 2)1/2

8
· 8 + N(N + 1)

4
· 8
]

≤
λ(N + 1)

(√
(N + 1)(N + 2) + 2N

)
96ω2

min

(B22)

Next, we bound the norm of H3φ (Eq. 52). In Appendix A we have shown that the number of possible pairs (p1, p2),
where 1 ≤ p1, p2 ≤ |Ω| are unequal integers, is at most |Ω|(|Ω| − 1); while the number of tuples (n1, n2), where
1 ≤ ni ≤ N are integers, is at most N2.
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∥H3φ∥ ≤ λ

96|Ω|2 max
p1,p2

max
n1,n2

1

ωp1ωp2

[√
(n1 + 1)(n1 + 2)(n2 + 1)(n2 + 2)

4
∥(Xn1

Xn1+2 + Yn1
Yn1+2)p1

(Xn2
Xn2+2 + Yn2

Yn2+2)p2∥+
n2
√
(n1 + 2)(n1 + 1)

2
∥(Xn1

Xn1+2 + Yn1
Yn1+2)p1(In2

− Zn2
)p2∥

+
n1
√
(n2 + 2)(n2 + 1)

2
∥(Xn2Xn2+2 + Yn2Yn2+2)p2(In1 − Zn1)p1∥+ n1n2∥(In1 − Zn1)p1(In2 − Zn2)p2∥

]

≤ λ

96
· 1

ω2
min

·
[
(N + 1)(N + 2)

4
· 4 + N

√
(N + 1)(N + 2)

2
· 4 + N

√
(N + 1)(N + 2)

2
· 4 +N2 · 4

]

≤ λ

96ω2
min

(√
(N + 1)(N + 2) + 2N

)2
(B23)

Finally, we bound the norm of H4φ given in Eq. 53. First note that as we are summing over p distinct momentum
modes the norm can be bounded above by

∥H4φ∥ ≤ λ

96
max
p,n

1

ω2
p

[√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2
∥(XnXn+4 + YnYn+4)p∥

+2n
√

(n+ 2)(n+ 1)∥(XnXn+2 + YnYn+2)p∥+ 3(n2 − n)∥(In − Zn)p∥
]

≤ λ

96
max
p,n

1

ω2
min

[√
(N + 4)(N + 3)(N + 2)(N + 1)

2
· 2 + 2N

√
(N + 2)(N + 1) · 2 + 3N2 · 2

]

≤ λ

96ω2
min

(√
(N + 4)(N + 3)(N + 2)(N + 1) + 4N

√
(N + 2)(N + 1) + 6N2

)
(B24)

2. First level commutators

In this sub-section we compute the first-level or innermost commutators between pairs of HamiltoniansH1φ, H2φ, H3φ, H
′
4φ,

including the commutator between the non-commutator terms of each, using Eq. B5-B18. We use the following results
repeatedly. Let us define the adjoint operator adx : y → [x, y].

Lemma 45 (Decomposition of Commutators [27]). Let Xj =
∑mj

ij=1A
(j)
ij

, for j = 1, . . . , p, where A
(j)
ij

are elements

from the same ring. Then,

adXpadXp−1 . . . adX3adX2X1 =

mp∑
ip=1

mp−1∑
ip−1=1

· · ·
m2∑
i2=1

m1∑
i1=1

ad
A

(p)
ip

ad
A

(p−1)
ip−1

. . . ad
A

(3)
i3

ad
A

(2)
i2

A
(1)
i1
.

a. Commutators within H1φ : The sum of the commutators within the terms of H1φ (Eq. B7) is as follows.
In order to have two terms that do not commute, we need to ensure that at least one of the indices match for the

momentum modes. The first such terms involve the commutator of terms of the form [A
(1)
p,n⃗, A

(1)

p′,n⃗′ ] where A
(1)
p,n⃗

is defined in Eq. B6. We can see that unless at least one component of p and p′ overlap then the commutator
of [Xp,nXp,n+1, Yp.mYp,m+1] is zero. Similarly, if there exists j, k such that none of the conditions nj = n′k, nj =

n′k+1, njn
′
k−1. Thus for each (p, n⃗) there exists at most 3

|S4p|
|Ω| A

(1)
p,n⃗ terms that do not commute with it in the

commutator expansion. This is due to the fact that there are still two momentum modes to sum over other than the



63

overlapped mode. This observation leads to the following commutator bound.

∥[H11, H12]∥ = 1
|Ω|6 ∥

∑
p,p′∈S4p

∑
n⃗∈S(0)

4n

∑
n⃗′∈S(1)

4n

(
λ

1536

)2

[A
(1)
p,n⃗, A

(1)

p′,n⃗′ ]∥

= 3| |S4p|2
|Ω|6

(
λ

1536

)2
4

max
ℓ=1

max
p,p′:
|p∩p′|
=ℓ

max
n⃗∈S(0)

4n ;

n⃗′∈S(1)
4n

∥[A(1)
p,n⃗, A

(1)

p′,n⃗′ ]∥ (B25)

Now, A
(1)
p,n⃗ and A

(1)

p′,n⃗′ are each sum of 16 Pauli operators and each of the Pauli operator A
(1)
p,n⃗ can anti-commute

with 8 Pauli operators from A
(1)

p′,n⃗′ . So if ωmin = minp ωp, then

∥[A(1)
p,n⃗, A

(1)

p′,n⃗′ ]∥ ≤ 16 · 8 · 2 · max
n⃗,n⃗′,p,βp′

4∏
j=1

(√
(nj + 1)(n′j + 1)

ωpjωp′j

)
= 28

(N + 1)4

ω4
min

. (B26)

Hence, we have from the fact that |S4p| ≤ 1/2,

∥[H11, H12]∥ ≤
(

λ

16 · 96ω2
min

)2

3 · 27(N + 1)4 =

(
λ

ω2
min

)2(
(N + 1)4

3 · 211
)
. (B27)

b. Commutators within H2φ : Let S3p = {(p1, p2, p3) : ∃k ∈ Z s.t. p2 = p1+ k, p3 = p1− k}. From Eq. B16,
norm of the sum of commutators within H2φ is.

∥
4∑

j,k=1
j ̸=k

[H2j , H2k]∥ ≤
4∑

j,k=1
j ̸=k

∥[H2j , H2k]∥

We now bound each of the summands in the above equation. In this case, each p is in S3p and thus is of the
form (p, p + k, p − k), where p, k ∈ Z. Two of the coordinates uniquely determines the third. So, two tuples
p = (p, p+ k, p− k),p′ = (p′, p′ + k′, p′ − k′) can have either 1 or 3 equal components. ℓ = |p∩p′| = 1 if either p = p′

or k = k′. Thus we can have at most 2 · |Ω| · |Ω|2 = 2 such pairs of (p,p′). ℓ = 3 if p = p′ and k = k′ and thus we
can have at most |Ω|2 such pairs. There is a normalization factor of +|Ω|2 for if there are 1 or 2 overlap δ functions,
so these factors reduce to factor of 3.

Also, each A
(2)
pkn⃗ is sum of 8 Pauli operators and each of these operators can anti-commute with at most 4 Pauli

operators in A
(2)

p′k′n⃗′ . Similarly, B
(2)
pkn⃗ is sum of 8 Pauli operators and each can anti-commute with at most 4 Pauli

operators of Ap′k′n⃗′ . Each of the 8 Pauli operators of B
(2)
pkn⃗ can anti-commute with at most 4 Pauli operators of

B
(2)

p′k′n⃗′ . So,

∥A(2)
pkn⃗, A

(2)

p′k′n⃗′∥ ≤ 8 · 4 · 2 max
n⃗,n⃗′,p,p′,k,k′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

√
(n′1 + 2)(n′1 + 1)(n′2 + 1)(n′3 + 1)

8ωp′
√
ωp′+k′ωp′−k′

≤ (N + 1)3(N + 2)

ω4
min

∥A(2)
pkn⃗, B

(2)

p′k′n⃗′∥ ≤ 8 · 4 · 2 max
n⃗,n⃗′,p,p′,k,k′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

n′1
√

(n′2 + 1)(n′3 + 1)

4ωp′
√
ωp′+k′ωp′−k′

≤ 2N(N + 1)5/2(N + 2)1/2

ω4
min

∥B(2)
pkn⃗, B

(2)

p′k′n⃗′∥ ≤ 8 · 4 · 2 max
n⃗,n⃗′,p,p′,k,k′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp+kωp−k

n′1
√
(n′2 + 1)(n′3 + 1)

4ωp′
√
ωp′+k′ωp′−k′

≤ 4N2(N + 1)2

ω4
min

, (B28)

where ωmin = minp ωp. In each of the cases below, if ℓ = 1 then there can be overlap of Pauli terms on any one of

the 3 coordinates of n⃗ and n⃗′; and if ℓ = 3 then also there can be overlap on any one of the 3 coordinates or on all
the 3 coordinates.
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In each of these cases we first apply triangle inequality to expand the sum and then count the number of pairs

(n⃗, n⃗′) that satisfy the constraints below the sum. We have already enumerated the number of pairs (p,p′) when
ℓ = 1, 3; and bounded the norm of the innermost commutator. We first consider the following commutator.

∥ [H21, H22] ∥ ≤
(
λ

96

)2 ∑
ℓ∈{1,3}

∑
p,p′

|p∩p′|
=ℓ

∥∥∥∥∥∥∥∥∥∥
∑
n⃗∈S(0)

3n

n⃗′∈S(1)
3n

[A
(2)
pkn⃗, A

(2)

p′k′n⃗′ ]

∥∥∥∥∥∥∥∥∥∥
. (B29)

Using the previous bounds on the number of non-zero commutators

∥ [H21, H22] ∥ ≤
(
λ

96

)2
1

ω4
min

(N + 1)2 [(N + 1)(N + 2)] . (B30)

Next, consider the following commutator.

∥ [H21, H23] ∥ ≤
(
λ

96

)2

max
ℓ={1,3}

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(0)

3n

(n′
2,n

′
3)∈S

(0)
2n ;n′

1

∥[A(2)
pkn⃗, B

(2)

p′k′n⃗′ ]∥ (B31)

Using Eq. B28, we have

∥ [H21, H23] ∥ ≤
(

λ

96ω2
min

)2

2N(N + 1)5/2(N + 2)1/2. (B32)

It is not hard to see that we can bound each of the terms below with arguments similar to ∥[H21, H23]∥. ad

∥ [H2i, H2j ] ∥ ≤
(
λ

96

)2

3 max
ℓ={1,3}

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

3n

(n′
2,n

′
3)∈S

(j−3)
2n

n′
1

∥[A(2)
pkn⃗, B

(2)

p′k′n⃗′ ]∥ [i ∈ {1, 2}; j ∈ {3, 4}] (B33)

And hence,

∥ [H21, H23] ∥+ ∥ [H21, H24] ∥+ ∥ [H22, H23] ∥+ ∥ [H22, H24] ∥

≤
(

λ

96ω2
min

)2

8N · 3(N + 1)5/2(N + 2)1/2. (B34)

Now we bound the following.

∥ [H23, H24] ∥ ≤
(
λ

96

)2

3 max
ℓ={1,3}

max
p,p′

|p∩p′|
=ℓ

max
n⃗,n⃗′

∥[B(2)
pkn⃗, B

(2)

p′k′n⃗′ ]∥ (B35)

∥ [H23, H24] ∥ ≤
(

λ

96ω2
min

)2

34N2(N + 1)2. (B36)

Hence we get the following bound on the sum of the commutators within H2φ.

∥
4∑

j,k=1
j ̸=k

[H2j , H2k]∥ ≤
(

λ

96ω2
min

)2

3
[
4N2(N + 1)2 + 8N(N + 1)5/2(N + 2)1/2

]
(B37)
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c. Commutators within H3φ : Let S2p = {(p1, p2) : p1 ̸= p2}. From Eq. B18, sum of commutators within H3φ

are as follows.

∥
7∑

j,k=1
j ̸=k

[H3j , H3k]∥ ≤ 7
max
j,k=1
j ̸=k

∥[H3j , H3k]∥ (B38)

Now, A
(3)
pn⃗ is sum of 4 Pauli operators and each of these can anti-commute with at most 2 Pauli operators in A

(3)

p′n⃗′ .

Each of B
(3)
1pn⃗ and B

(3)
2pn⃗ is sum of 4 Pauli operators, each of which anti-commutes with at most 2 Pauli operators in

A
(3)

p′n⃗′ . Also, each Pauli operator in B
(3)
1pn⃗ anti-commutes with at most 2 Pauli operators in B

(3)

2p′n⃗′ and B
(3)

1p′n⃗′ . Each

of the 3 non-identity Pauli operators in C
(3)
pn⃗ can anit-commute with at most 4 Pauli operators in A

(3)

p′n⃗′ . Two of the

Pauli operators in C
(3)
pn⃗ can anti-commute with at most 4 Pauli operators in each of B

(3)

1p′n⃗′ , B
(3)

2p′n⃗′ , while the third

commutes with all. There are |Ω| overlaps. So, we have the following.

∥[A(3)
pn⃗, A

(3)

p′n⃗′ ]∥ ≤ 4 · 2 · 2 max
n⃗,n⃗′,p,p′

√
(n1 + 1)(n1 + 2)(n2 + 1)(n2 + 2)

4ωp1ωp2

√
(n′1 + 1)(n′1 + 2)(n′2 + 1)(n′2 + 2)

4ωp′1ωp′2

≤ (N + 1)2(N + 2)2

ω4
min

∥[A(3)
pn⃗, B

(3)

jp′n⃗′ ]∥ ≤ 4 · 2 · 2 max
n⃗,n⃗′,p,p′

√
(n1 + 1)(n1 + 2)(n2 + 1)(n2 + 2)

4ωp1ωp2

n′1
√

(n′2 + 1)(n′2 + 2)

2ωp′1ωp′2
[j ∈ {1, 2}]

≤ 2N(N + 1)3/2(N + 2)3/2

ω4
min

∥[B(3)
jpn⃗, B

(3)

kp′n⃗′ ]∥ ≤ 4 · 2 · 2 max
n⃗,n⃗′,p,p′

n2
√

(n1 + 1)(n1 + 2)

2ωp1ωp2

n′1
√
(n′2 + 1)(n′2 + 2)

2ωp′1ωp′2

≤ 4N2(N + 1)(N + 2)

ω4
min

[j, k ∈ {1, 2}; j ̸= k]

∥[A(3)
pn⃗, C

(3)

p′n⃗′ ]∥ ≤ 3 · 4 · 2 max
n⃗,n⃗′,p,p′

√
(n1 + 1)(n1 + 2)(n2 + 1)(n2 + 2)

4ωp1ωp2

n′1n
′
2

ωp′1ωp′2

≤ 6N2(N + 1)(N + 2)

ω4
min

∥[B(3)
jpn⃗, C

(3)

p′n⃗′ ]∥ ≤ 2 · 4 · 2 max
n⃗,n⃗′,p,p′

n1
√

(n2 + 1)(n2 + 2)

2ωp1ωp2

n′1n
′
2

ωp′1ωp′2

≤ 8N3(N + 1)1/2(N + 2)1/2

ω4
min

[j ∈ {1, 2}] (B39)

Now we bound each of the summands on the RHS of Inequality B38. First we consider the following.

∥ [H31, H32] ∥ ≤
(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(2)

2n

n⃗′∈S(3)
2n

∥[A(3)
pn⃗, A

(3)

p′n⃗′ ]∥

using Eq. B39,

∥ [H31, H32] ∥ =

(
λ

96ω2
min

)2

(N + 1)2(N + 2)2

Now we consider the following.

∥ [H31, H33] ∥ ≤
(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(2)

2n

n′
1∈S20;n

′
2

∥[A(3)
pn⃗, B

(3)

1p′n⃗′ ]∥
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Using Eq. B39, we have

∥ [H31, H33] ∥ =

(
λ

96ω2
min

)2

2(N + 1)3/2(N + 2)3/2.

We can also check that the following terms can be bound with arguments similar to ∥[H31, H33]∥.

∥ [H3i, H3j ] ∥ ≤
(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i+2)

2n

n′
1∈S2(j−3);n

′
2

∥[A(3)
pn⃗, B

(3)

1p′n⃗′ ]∥ [i ∈ {1, 2}; j ∈ {3, 4}]

∥ [H3i, H3j ] ∥ ≤
(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i+2)

2n

n′
2∈S2(j−5);n

′
1

∥[A(3)
pn⃗, B

(3)

2p′n⃗′ ]∥ [i ∈ {1, 2}; j ∈ {5, 6}]

Hence we have,

2
max
j=1

6
max
ℓ=3

∥ [H3j , H3ℓ] ∥ ≤
(

λ

96ω2
min

)2

16(N + 1)3/2(N + 2)3/2.

Now we consider the following two commutators that can be bound with similar arguments.

∥ [H3i, H37] ∥ ≤
(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗′

n⃗∈S(i+2)
2n

∥[A(3)
pn⃗, C

(3)

p′n⃗′ ]∥ [i ∈ {1, 2}]

2∑
j=1

∥ [H3j , H37] ∥ ≤
(

λ

96ω2
min

)2

24N2(N + 1)(N + 2). (B40)

Next, we consider the following commutators that can be bound with similar arguments.

∥ [H33, H34] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S20,n2

n′
1∈S21,n

′
2

∥[B(3)
1pn⃗, B

(3)

1p′n⃗′ ]∥

∥ [H33, H35] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S20,n2

n′
2∈S20,n

′
1

[B
(3)
1pn⃗, B

(3)

2p′n⃗′ ]

∥ [H33, H36] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S20,n2

n′
2∈S21,n

′
1

∥[B(3)
1pn⃗, B

(3)

2p′n⃗′ ]∥

∥ [H34, H35] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S21,n2

n′
2∈S20,n

′
1

∥[B(3)
1pn⃗, B

(3)

2p′n⃗′ ]∥

∥ [H34, H36] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S21,n2

n′
2∈S21,n

′
1

[B
(3)
1pn⃗, B

(3)

2p′n⃗′ ]

∥ [H35, H36] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n2∈S20,n1

n′
2∈S21,n

′
1

∥[B(3)
2pn⃗, B

(3)

2p′n⃗′ ]∥
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Again, the number of pairs (n⃗, n⃗′) intersecting one one given coordinate is at most N3 and these are the cases that
give a non-zero commutator. Thus, using Eq. B39 we get the following.

5
max
j=3

6
max
ℓ=j+1

∥ [H3j , H3ℓ] ∥ ≤
(

λ

96ω2
min

)2

48N2(N + 1)(N + 2) (B41)

Finally, we consider the following group of commutators, which also can be bound with similar arguments.

∥ [H33, H37] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S20,n2

n⃗′

∥[B(3)
1pn⃗, C

(3)

p′n⃗′ ]∥

∥ [H34, H37] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n1∈S21,n2

n⃗′

∥[B(3)
1pn⃗, C

(3)

p′n⃗′ ]∥

∥ [H35, H37] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n2∈S20,n1

n⃗′

∥[B(3)
2pn⃗, C

(3)

p′n⃗′ ]∥

∥ [H36, H37] ∥ ≤
(
λ

96

)2

| 2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n2∈S21,n1

n⃗′

∥[B(3)
2pn⃗, C

(3)

p′n⃗′ ]∥

As before, the number of pairs (n⃗, n⃗′) that give non-zero commutator are the ones that have overlap on a single
coordinate and the number of such pairs that intersect on a given coordinate is at most N3. Hence, using Eq. B39
we have,

6
max
j=3

∥ [H3j , H37] ∥ ≤
(

λ

96ω2
min

)2

64N3(N + 2)1/2(N + 1)1/2 (B42)

Therefore, we get the following bound on the sum of the commutators within H3φ.

∥
7∑

j,k=1
j ̸=k

[H3j , H3k] ∥ ≤
(

λ

96ω2
min

)2 [
2N2(N + 1)(N + 2)

+16N3(N + 1)1/2(N + 2)1/2
]

(B43)

d. Commutators within H ′
4φ : From Eq. B5, sum of commutators within H4φ is as follows.

∥
5∑

j,i=1
j ̸=ℓ

[H4j , H4i]∥ ≤ 5
max
j,i=1
j ̸=i

∥[H4j , H4i]∥ (B44)

Here, each of A
(4)
1pn and A

(4)
2pn are sum of 2 Pauli operators and each can anti-commute with at most 1 Pauli operator of

A
(4)
1p′n′ and A

(4)
2p′n′ . C

(4)
pn has a single non-identity Z operator and it can anti-commute with at most 2 Pauli operators

in A
(4)
1p′n′ and A

(4)
2p′n′ . Hence, we have the following. The Trotter error also requires p = p′ which occurs |Ω| times.



68

∥
[
A

(4)
1pn, A

(4)
1p′n′

]
∥ ≤ 2 · 1 · 2 max

n,n′,p,p′
|
√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2ω2
p

√
(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

=
(N + 4)(N + 3)(N + 2)(N + 1)

2ω4
min

∥
[
A

(4)
1pn, A

(4)
2p′n′

]
∥ ≤ 2 · 1 · 2 max

n,n′,p,p′
|
√
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

2ω2
p

n′
√

(n′ + 2)(n′ + 1)

ω2
p′

≤ 2N(N + 1)(N + 2)(N + 3)1/2(N + 4)1/2

ω4
min

∥
[
A

(4)
2pn, A

(4)
2p′n′

]
∥ ≤ 2 · 1 · 2 max

n,n′,p,p′
|n
√
(n+ 2)(n+ 1)

ω2
p

n′
√
(n′ + 2)(n′ + 1)

ω2
p′

=
4N2(N + 1)(N + 2)

ω4
min

(B45)

Also,

∥
[
C(4)
pn , A

(4)
1p′n′

]
∥ ≤ 1 · 2 · 2 max

n,n′,p,p′
δp,p′

[
nωp
2

+
λ(n2 − n)

32ω2
p

] √
(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

≤ 2(N + 1)1/2(N + 2)1/2(N + 3)1/2(N + 4)1/2

ω2
min

max
n,p

[
nωp
2

+
λn(n− 1)

32ω2
p

]
Let maxn,p

[
nωp

2 + λn(n−1)
32ω2

p

]
occurs when n = Nβ for some fraction 0 ≤ β ≤ 1, that is a function of p, ωp, λ, L, d.

That is,

max
n,p

[
nωp
2

+
λn(n− 1)

322ω2
p

]
=
Nβωmax

2
+
λNβ(Nβ − 1)

32ω2
min

(B46)

In the rest of this section, unless stated we assume this fact for simplicity and convenience. We will discuss about our
choice of β later, at appropriate place. So,

∥
[
C(4)
pn , A

(4)
1p′n′

]
∥ ≤ N

√
(N + 1)(N + 2)(N + 3)(N + 4)

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
∥
[
C(4)
pn , A

(4)
2p′n′

]
∥ ≤ 1 · 2 · 2 max

n,n′,p,p′

(
nωp
2

+
λ(n2 − n)

32ω2
p

)
n′
√
(n′ + 2)(n′ + 1)

ω2
p′

≤ 2N2
√
(N + 1)(N + 2)

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B47)

Now we bound the following commutator, using the above inequalities.

∥ [H41, H42] ∥ ≤
(
λ

96

)2

max
p

max
n∈S40

n′=n+4

∥[A(4)
1pn, A

(4)
1pn′ ]∥

≤
(

λ

96ω2
min

)2

(N + 1)(N + 2)(N + 3)(N + 4) (B48)

We consider the following commutators, which can be bounded with similar arguments, using Inequalities B45.

∥ [H4i, H4j ] ∥ ≤ 2

(
λ

96

)2

max
p

max
n∈S4(i−1)

n′∈S2(j−3)

∥[A(4)
1pn, A

(4)
2pn′ ]∥ [i ∈ {1, 2}; j ∈ {3, 4}]

In each of the above cases, for a given n there can be only one n′ for which there is an overlap between the Pauli
terms and so,

2
max
j=1

4
max
ℓ=3

∥ [H4j , H4ℓ] ∥ ≤ 16

(
λ

96ω2
min

)2

|Ω|N(N + 1)(N + 2)
√

(N + 3)(N + 4).
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Next, we consider the following and bound the commutators using inequalities B47.

∥ [H41, H45] + [H42, H45] ∥ ≤
(
λ

96

)2

|max
p

max
n∈S40

n′=n,n+1

∥[A(4)
1pn, C

(4)
pn′ ]∥+

(
λ

96

)2

|max
p

max
n∈S41

n′=n,n+1

∥[A(4)
1pn, C

(4)
pn′ ]∥

≤ 2 ·
(

λ

96ωmin

)2

N
√
(N + 1)(N + 2)(N + 3)(N + 4)

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B49)

Now, we consider the following commutators.

∥ [H43, H45] + [H44, H45] ∥ ≤
(
λ

48

)
|max

p
max
n∈S20

n′=n,n+1

∥[A(4)
2pn, C

(4)
pn ]∥+

(
λ

48

)2

max
p

max
n∈S21

n′=n,n+1

∥[A(4)
2pn, C

(4)
pn ]∥

≤ 2 ·
(

λ

48ω2
min

)
2N2

√
(N + 1)(N + 2)

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]

Finally, we bound the following commutator using Inequality B45.

∥ [H43, H44] ∥ ≤
(
λ

48

)2∑
p

∑
n∈S20

n′=n+2

∥[A(4)
2pn, A

(4)
2pn′ ]∥

≤ 16

(
λ

96ω2
min

)2

N2(N + 1)(N + 2)

Therefore, we get the following bound on the sum of commutators within H ′
4φ.

∥
5∑

j,i=1
j ̸=i

[H4j , H4i] ∥ ≤
(

λ

96ω2
min

)2

(N + 1)(N + 2)
[
(N + 3)(N + 4) + 16N

√
(N + 3)(N + 4) + 16N2

]

+

(
λ

48ω2
min

)√
(N + 1)(N + 2)

[√
(N + 3)(N + 4) + 4N

]
·
[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B50)

a. Intergroup Commutators

Now we bound the commutators between Hiφ and Hjφ, where i ̸= j. We keep in mind that when referring to
Hamiltonians in H1φ, H2φ, H3φ, then p, n⃗ are 4-tuples, 3-tuples and 2-tuples, respectively. This should be clear from
the context.

a. [H1φ,H2φ] : Using Lemma 45 in Eq. B7 and B16 we have the following.

∥ [H1φ, H2φ] ∥ ≤
2∑
i=1

4∑
j=1

∥ [H1i, H2j ] ∥ (B51)

We now bound each of the summands in the above equation. We first bound the commutators between the terms

A
(1)
p,n⃗ in Eq. B7 and A

(2)
pkn⃗, B

(2)
pkn⃗ in Eq. B16. A

(1)
p,n⃗ is a sum of 16 Pauli operators and each of these can anti-commute

with at most 4 of the 8 Pauli operators in A
(2)

p′k′n⃗′ and B
(2)

p′k′n⃗′ . We also require the overlap of at least one momentum
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mode pi = p′ ± k. This occurs 2 times. So, we have the following.

∥[A(1)
p,n⃗, A

(2)

p′k′n⃗′ ]∥ ≤ 16 · 4 · 2 · max
n⃗,n⃗′

p,p′,k′

 4∏
j=1

√
nj + 1

ωpj

 √(n′1 + 1)(n′1 + 2)(n′2 + 1)(n′3 + 1)

8ωp′
√
ωp′+k′ωp′−k′

≤ 16(N + 1)7/2(N + 2)1/2

ω4
min

∥[A(1)
p,n⃗, B

(2)

p′k′n⃗′ ]∥ ≤ 16 · 4 · 2 · max
n⃗,n⃗′

p,p′,k′

 4∏
j=1

√
nj + 1

ωpj

 n′1
√

(n′2 + 1)(n′3 + 1)

4ωp′
√
ωp′+k′ωp′−k′

≤ 32N(N + 1)3

ω4
min

(B52)

We can bound ∥[H1i, H2j ]∥, i, j ∈ {1, 2} in a similar fashion where,

∥[H1i, H2j ]∥ ≤ 1

16

(
λ

96

)2
3

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

4n

n⃗′∈S(j−1)
3n

∥A(1)
pn⃗, A

(2)

p′n⃗′∥ [i ∈ {1, 2}; j ∈ {1, 2}].

We have

∥[H11, H21]∥ ≤
(

λ

96ω2
min

)2

8(N + 1)7/2(N + 2)1/2 (B53)

and thus,

2∑
i=1

2∑
j=1

∥[H1i, H2j ]∥ ≤
(

λ

96ω2
min

)2

32(N + 1)7/2(N + 2)1/2 (B54)

We can also bound ∥[H1i, H2j ]∥, i ∈ {1, 2}, j ∈ {3, 4} with similar arguments where,

∥[H1i, H2j ]∥ ≤
(
λ

96

)2 3∑
ℓ=1

∑
p,p′

|p∩p′|
=ℓ

∑
n⃗∈S(i−1)

4n

(n′
2,n

′
3)∈S

(j−3)
2n

n′
1

∥A(1)
pn⃗, B

(2)

p′n⃗′∥ [i ∈ {1, 2}; j ∈ {3, 4}]

Let us consider ∥[H11, H23]∥. The conditions for the overlaps on the momentum modes and states that give non-zero
commutators are similar to that of ∥[H11, H21]∥. So,

2∑
i=1

4∑
j=3

∥H1i, H2j∥ ≤
(

λ

96ω2
min

)2

32N(N + 1)3 (B55)

and thus plugging in these bounds in Eq. B51 we obtain the following.

∥[H1φ, H2φ]∥ ≤
(

λ

96ω2
min

)2

16N(N + 1)3 ·
[√

(N + 1)(N + 2) + 2N
]

(B56)

b. [H1φ,H3φ] : We use Lemma 45 to obtain the commutator between H1φ (Eq. B7) and H3φ (Eq. B18).

∥[H1φ, H3φ]∥ ≤
2∑
i=1

7∑
j=1

∥[H1i, H3j ]∥ (B57)

We first bound the commutators between A
(1)
pn⃗ (Eq. B7) and A

(3)
pn⃗, B

(3)
1pn⃗, B

(3)
2pn⃗, C

(3)
pn⃗ (Eq. B18). A

(1)
pn⃗ is a sum of 16

Pauli operators, each of which can anti-commute with at most 2 of the 4 Pauli operators in A
(3)

p′n⃗′ , B
(3)

1p′n⃗′ , B
(3)

2p′n⃗′ .
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Also, each of them anti-commutes with at most 3 of the non-identity Pauli operators in C
(3)

p′n⃗′ . There are 2 momentum

overlaps. So we have the following.

∥A(1)
pn⃗, A

(3)

p′n⃗′∥ ≤ 16 · 2 · 2 ·max
p,p′

n⃗,n⃗′

 4∏
j=1

√
nj + 1

ωpj

 ·
√

(n′1 + 1)(n′1 + 2)(n′2 + 1)(n′2 + 2)

4ωp′1ωp′2

≤ 16(N + 1)3(N + 2)

ω4
min

∥A(1)
pn⃗, B

(3)

jp′n⃗′∥ ≤ 16 · 2 · 2 ·max
p,p′

n⃗,n⃗′

 4∏
j=1

√
nj + 1

ωpj

 · n
′
2

√
(n′1 + 1)(n′1 + 2)

2ωp′1ωp′2

≤ 32N(N + 1)5/2(N + 2)1/2

ω4
min

[j ∈ {1, 2}]

∥A(1)
pn⃗, C

(3)

p′n⃗′∥ ≤ 16 · 3 · 2 ·max
p,p′

n⃗,n⃗′

 4∏
j=1

√
nj + 1

ωpj

 · n′1n
′
2

ωp′1ωp′2
≤ 96(N + 1)2

ω4
min

(B58)

We can bound the following commutators in a similar way.

∥[H1i, H3j ]∥ ≤
8

(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

4n

n⃗′∈S(j+1)
2n

∥[A(1)
pn⃗, A

(3)

p′n⃗′ ]∥ [i ∈ {1, 2}; j ∈ {1, 2}]

Let us consider ∥[H11, H31]∥. Again we recap that p is of the form (p1, p2, p1 + k, p2 − k), where p1, p2, k ∈ Z and p′

is of the form (p1, p2), where p1, p2 ∈ Z. Let ℓ = |p ∩ p′| = 1 i.e. the momentum modes overlap on 1 index. Then

a non-zero commutator can occur if there is intersection among the momentum states n⃗, n⃗′ on that particular index.
So,

2∑
i=1

2∑
j=1

∥H1i, H3j∥ ≤
(

λ
96ω2

min

)2
32(N + 1)3(N + 2) [i ∈ {1, 2}; j ∈ {1, 2}]

We consider the following commutators, which have similar bound, using similar arguments.

∥[H1i, H3j ]∥ ≤
8

(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

4n

n′
1∈S2(j−3);n

′
2

∥[A(1)
pn⃗, B

(3)

1p′n⃗′ ]∥ [i ∈ {1, 2}; j ∈ {3, 4}]

∥[H1i, H3j ]∥ ≤
8

(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

4n

n′
2∈S2(j−5);n

′
1

∥[A(1)
pn⃗, B

(3)

2p′n⃗′ ]∥ [i ∈ {1, 2}; j ∈ {5, 6}]

In each of the above sums, the conditions for overlap of momentum modes and states in order to give a non-zero
commutator is similar to that of ∥[H11, H31]∥. So,

2∑
i=1

6∑
j=3

∥[H1i, H3j ]∥ ≤
(
128

λ

96ω2
min

)2

2(N + 1)5/2(N + 2)1/2 (B59)

Next, we consider the following commutators with similar arguments on their bounds.

∥[H1i, H36]∥ ≤
8

(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

4n

n′
1,n

′
2

∥[A(1)
pn⃗, C

(3)

p′n⃗′ ]∥ [i ∈ {1, 2}]

Again, the conditions for overlap of momentum modes and states in order to give a non-zero commutator is similar
to that of ∥[H11, H31]∥. So,

2∑
i=1

∥[H1i, H36]∥ ≤ 1

48

(
λ

ω2
min

)2

(N + 1)2 (B60)
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Plugging these bounds in Eq.B57 we obtain,

∥[H1φ, H3φ]∥ ≤
(

λ

96ω2
min

)2

64Ω|4(N + 1)2 ·
[
(N + 1)(N + 2) + 4N

√
(N + 1)(N + 2) + 3N2

]
(B61)

c. [H1φ,H
′
4φ] : Using the definitions of H1φ, H4φ from Eq. B7, B5, respectively and Lemma 45 we obtain,

∥[H1φ, H4φ]∥ ≤
2∑
i=1

5∑
j=1

∥[H1i, H4j ]∥. (B62)

We first bound the commutators between A
(1)
pn⃗ (Eq. B7) and A

(4)
1pn, A

(4)
2pn, C

(4)
pn (Eq. B5). A

(1)
pn⃗ is a sum of 16 Pauli

operators, each of which can anti-commute with at most 1 of the 2 Pauli operators in A
(4)
1p′n′ , A

(4)
2p′n′ and the only

non-identity Pauli operator in C
(4)
p′n′ . Thus, we have the following.

∥[A(1)
pn⃗, A

(4)
1p′n′ ]∥ ≤ 16 · 1 · 2 ·max

p,p′

n⃗,n′

 4∏
j=1

√
nj + 1

ωpj

 ·
√

(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

≤ 16(N + 1)5/2(N + 2)1/2(N + 3)1/2(N + 4)1/2

ω4
min

∥[A(1)
pn⃗, A

(4)
2p′n′ ]∥ ≤ 16 · 1 · 2 ·max

p,p′

n⃗,n′

 4∏
j=1

√
nj + 1

ωpj

 · n
′
√
(n′ + 2)(n′ + 1)

ω2
p′

≤ 32N(N + 1)5/2(N + 2)1/2

ω4
min

∥[A(1)
pn⃗, C

(4)
p′n′ ]∥ ≤ 16 · 1 · 2 ·max

p,p′

n⃗,n′

 4∏
j=1

√
nj + 1

ωpj

 ·
(
n′ωp′

2
+
λ(n′2 − n)

32(ω2
p′)

)

≤ 16N(N + 1)2

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B63)

We consider the following commutators which can be bound with similar arguments.

2∑
i=1

2∑
j=1

∥[H1i, H4j ]∥ ≤ 1

16

(
λ

96

)2 2∑
i=1

2∑
j=1

max
p∈S4p

4
max
ℓ=1

max
p′:

p′=pℓ

max
n⃗∈S(i−1)

4n

n′∈S4(j−1)

∥[A(1)
pn⃗, A

(4)
1p′n′ ]∥

In this case, an overlap in the momentum modes can occur if p′ is equal to any of the 3 unique coordinates of p.
There can be at most 4|Ω|2 such pairs (p,p′).
A non-zero commutator can occur if there is intersection among the momentum states n⃗, n′ on the index where the
modes intersect. Number of such pairs (n⃗, n′) with overlap on one given coordinate is at most 2N ·N3 = 2N4. Thus
using Eq. B63, we get

2∑
i=1

2∑
j=1

∥[H1i, H4j ]∥ ≤
(

λ

96ω2
min

)2

32(N + 1)5/2
√

(N + 2)(N + 3)(N + 4) (B64)

Now we consider the following commutators that can also be bound with similar arguments. The conditions for
overlap of momentum modes and states, in order to have a non-zero commutator, is same as before. Thus, bounding
the innermost commutators using Eq. B63 we get,

2∑
i=1

4∑
j=3

∥[H1i, H4j ]∥ ≤
8

(
λ

96

)2 2∑
i=1

4∑
j=3

max
p∈S4p

4
max
ℓ=1

max
p′:

p′=pℓ

max
n⃗∈S(i−1)

4n

n′∈S2(j−3)

∥[A(1)
pn⃗, A

(4)
2p′n′ ]∥

≤
(

λ

96ω2
min

)2

128(N + 1)5/2(N + 2)1/2.
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Next, we consider the following commutators with similar arguments for bounding the norm. As before, the conditions
for overlap of momentum modes and states, in order to have a non-zero commutator, remains the same. So, using
Eq. B63 we get,

2∑
i=1

∥[H1i, H45]∥ ≤ λ

16 · 964 ·
2∑
i=1

∑
p∈S4p

4∑
ℓ=1

∑
p′:

p′=pℓ

∑
n⃗∈S(i−1)

4n

n′

∥[A(1)
pn⃗, C

(4)
p′n′ ]∥

≤
(
λ

96

)
· 16N(N + 1)2

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]

Finally, plugging the above bounds in Eq. B62 we obtain the following.

∥[H1φ, H4φ]∥ ≤
(

λ

96ω2
min

)2

32(N + 1)5/2(N + 2)1/2
[√

(N + 3)(N + 4) + 4N
]

+

(
λ

96ω2
min

)
16N(N + 1)2

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B65)

d. [H2φ,H3φ] : Applying Lemma 45 to the sum in Eq. B16 (H2φ) and Eq. B18 (H3φ) we have,

∥[H2φ, H3φ]∥ ≤
4∑
i=1

7∑
j=1

∥[H2i, H3j ]∥ (B66)

As before, we first bound the following commutators between the following operators, obtained from Eq. B16 and

Eq. B18. We observe that A
(2)
pkn⃗, B

(2)
pkn⃗ is a sum of 8 Pauli operators, each of which anti-commutes with at most 2 of

the 4 Pauli operators in A
(3)

p′n⃗′ , B
(3)

1p′n⃗′ , B
(3)

2p′n⃗′ . Also, each of them anti-commutes with at most 3 of the non-identity
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Pauli operators in C
(3)

p′n⃗′ .

∥[A(2)
pkn⃗, A

(3)

p′n⃗′ ]∥ ≤ 8 · 2 · 2 · max
p,k,p′

n⃗,n⃗′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

·
√

(n′1 + 2)(n′1 + 1)(n′2 + 2)(n′2 + 1)

4ωp′1ωp′2

≤ (N + 1)5/2(N + 2)3/2

ω4
min

∥[A(2)
pkn⃗, B

(3)

jp′n⃗′ ]∥ ≤ 8 · 2 · 2 · max
p,k,p′

n⃗,n⃗′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

· n
′
1

√
(n′2 + 2)(n′2 + 1)

2ωp′1ωp′2
[j ∈ {1, 2}]

≤ 2N(N + 1)2(N + 2)

ω4
min

∥[A(2)
pkn⃗, C

(3)

p′n⃗′ ]∥ ≤ 8 · 3 · 2 · max
p,k,p′

n⃗,n⃗′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

· n′1n
′
2

ωp′1ωp′2

≤ 6N2(N + 1)3/2(N + 2)1/2

ω4
min

∥[B(2)
pkn⃗, A

(3)

p′n⃗′ ]∥ ≤ 8 · 2 · 2 · max
p,k,p′

n⃗,n⃗′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp−kωp+k

·
√
(n′1 + 2)(n′1 + 1)(n′2 + 2)(n′2 + 1)

4ωp′1ωp′2

≤ 2N(N + 1)2(N + 2)

ω4
min

∥[B(2)
pkn⃗, B

(3)

jp′n⃗′ ]∥ ≤ 8 · 2 · 2 · max
p,k,p′

n⃗,n⃗′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp−kωp+k

· n
′
1

√
(n′2 + 2)(n′2 + 1)

2ωp′1ωp′2
[j ∈ {1, 2}]

≤ 4N2(N + 1)3/2(N + 2)1/2

ω4
min

∥[B(2)
pkn⃗, C

(3)

p′n⃗′ ]∥ ≤ 8 · 3 · 2 · max
p,k,p′

n⃗,n⃗′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp−kωp+k

· n′1n
′
2

ωp′1ωp′2

≤ 12N3(N + 1)

ω4
min

(B67)

In this case we recall that the momentum modes of the operators in H2φ are 3-tuples of the form p = (p, p+ k, p− k)
and can be denoted by two integers p, k. The momentum modes of the operators in H3φ are 2-tuples of the form
p′ = (p1, p2), where p1 ̸= p2, and can also be represented by two integers. So p and p′ can intersect non-trivially or
have common values in 1 or 2 coordinates. We consider the following sum. With one momentum overlap, there are
still |Ω|2 possibilities for the two free momentums, giving possibilities.

2∑
i=1

2∑
j=1

∥[H2i, H3j ]∥ ≤
2∑
i=1

2∑
j=1

(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

3n

n⃗′∈S(j+1)
2n

∥[A(2)
pn⃗, A

(3)

p′n⃗′ ]∥

2∑
i=1

2∑
j=1

∥[H2i, H3j ]∥ ≤
(

λ

96ω2
min

)2

48(N + 1)5/2(N + 2)3/2

Next, we consider the following sum of commutators, which be bound in a similar fashion. The conditions of overlap
of the momentum modes and states, in order to have a non-zero commutator is same as before. So, using Eq. B67 to
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bound the innermost commutators, we have,

2∑
i=1

4∑
j=3

∥[H2i, H3j ]∥+
2∑
i=1

6∑
j=5

∥[H2i, H3j ]∥

≤
(
λ

96

)2 2∑
i=1

2∑
ℓ=1


4∑
j=3

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

3n

n′
1∈S2(j−3);n

′
2

∥[A(2)
pn⃗, B

(3)

1p′n⃗′ ]∥+
6

max
j=5

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

3n

n′
2∈S2(j−5);n

′
1

∥[A(2)
pn⃗, B

(3)

2p′n⃗′ ]∥


≤
(

λ

96ω2
min

)2

192N(N + 1)2(N + 2)

Now we consider the following commutators, which again can be bound with similar arguments and we use Eq. B67
to bound the innermost commutators.

2∑
i=1

∥[H2i, H37]∥ ≤
(
λ

96

)2 2∑
i=1

2∑
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
n⃗∈S(i−1)

3n

n⃗′

∥[A(2)
pn⃗, C

(3)

p′n⃗′ ]∥

≤
(

λ

96ω2
min

)2

144N(N + 1)3/2(N + 2)1/2 (B68)

Till now, we count the commutators betweenH21, H22 andH3j , where j = 1, . . . , 7. Now, we consider the commutators
between H23, H24 and each H3j . We observe that the grouping of commutators that can be bound with similar
arguments are same as before. Also, the conditions for overlap of momentum modes and momentum states, in order
to have a non-zero overlap, are also similar. The innermost commutators change and they can be bound using Eq.
B67. Thus we have,

4∑
i=3

2∑
j=1

∥[H2i, H3j ]∥ ≤ |Ω|
4∑
i=3

2∑
j=1

(
λ

96

)2
2

max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
(n2,n3)∈S(i−3)

2n ;

n1,n⃗′∈S(j+1)
2n

∥[B(2)
pn⃗ , A

(3)

p′n⃗′ ]∥

≤ 1

96

(
λ

ω2
min

)2

|Ω|N(N + 1)2(N + 2); (B69)

and
4∑
i=3

4∑
j=3

∥[H2i, H3j ]∥+
4∑
i=3

6∑
j=5

∥[H2i, H3j ]∥

≤
(
λ

96

)2 4∑
i=3

2∑
ℓ=1


4∑
j=3

∑
p,p′

|p∩p′|
=ℓ

∑
(n2,n3)∈S(i−3)

2n ;n1

n′
1∈S2(j−3);n

′
2

∥[B(2)
pn⃗ , B

(3)

1p′n⃗′ ]∥+
6∑
j=5

∑
p,p′

|p∩p′|
=ℓ

∑
(n2,n3)∈S(i−3)

3n ;n1

n′
2∈S2(j−5);n

′
1

∥[B(2)
pn⃗ , B

(3)

2p′n⃗′ ]∥


≤
(

λ

96ω2
min

)2

384N2(N + 1)3/2(N + 2)1/2; (B70)

and finally

4∑
i=3

∥[H2i, H37]∥ ≤
(
λ

96

)2 4∑
i=3

2
max
ℓ=1

max
p,p′

|p∩p′|
=ℓ

max
(n2,n3)∈S(i−3)

2n

n1;n⃗′

∥[B(2)
pn⃗ , C

(3)

p′n⃗′ ]∥

≤
(
λ

96

)2
288N3(N + 1)

ω4
min

Therefore, plugging in Eq. B66 we have the following.

∥[H2φ, H3φ]∥ ≤
(

λ

96ω2
min

)2 [
48N2(N + 1)3/2(N + 2)1/2 + 288N3(N + 1)

]
(B71)
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e. [H2φ,H
′
4φ] : We consider the definitions ofH2φ andH4φ, as given in Eq. B16 and B5, respectively. Applying

Lemma 45 we obtain

∥[H2φ, H4φ]∥ ≤
4∑
i=1

5∑
j=1

∥[H2i, H4j ]∥. (B72)

We first bound the commutators between the following operators in the definition of H2φ and H4φ. Both A
(2)
pkn⃗ and

B
(2)
pkn⃗ are sum of 8 Pauli operators, each of which anti-commute with at most 1 of the 2 Pauli operators in A

(4)
1p′n′ ;

A
(4)
2p′n′ and the single non-identity Pauli operator in C

(4)
p′n′ . Hence, we have the following, where we leave the factors

of ω till the final max expression for simplicity.

∥[A(2)
pkn⃗, A

(4)
1p′n′ ]∥ ≤ 8 · 1 · 2 · max

p,k,p′

n⃗,n′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

·
√

(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

≤ (N + 1)2(N + 2)
√

(N + 3)(N + 4)

ω4
min

∥[A(2)
pkn⃗, A

(4)
2p′n′ ]∥ ≤ 8 · 1 · 2 · max

p,k,p′

n⃗,n′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

· n
′
√

(n′ + 2)(n′ + 1)

ω2
p′

≤ 2N(N + 1)2(N + 2)

ω4
min

∥[A(2)
pkn⃗, C

(4)
p′n′ ]∥ ≤ 8 · 1 · 2 · max

p,k,p′

n⃗,n′

√
(n1 + 2)(n1 + 1)(n2 + 1)(n3 + 1)

8ωp
√
ωp+kωp−k

·
(
n′ωp′

2
+
λ(n′2 − n′)

32ω2
p′

)

≤ N(N + 1)3/2(N + 2)1/2

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
∥[B(2)

pkn⃗, A
(4)
1p′n′ ]∥ ≤ 8 · 1 · 2 · max

p,k,p′

n⃗,n′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp−kωp+k

·
√

(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

(B73)

≤ 2N(N + 1)3/2
√

(N + 2)(N + 3)(N + 4)

ω4
min

∥[B(2)
pkn⃗, A

(4)
2p′n′ ]∥ ≤ 8 · 1 · 2 · max

p,k,p′

n⃗,n′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp−kωp+k

· n
′
√

(n′ + 2)(n′ + 1)

ω2
p′

≤ 4N2(N + 1)3/2(N + 2)1/2

ω4
min

∥[B(2)
pkn⃗, C

(4)
p′n′ ]∥ ≤ 8 · 1 · 2 · max

p,k,p′

n⃗,n′

n1
√
(n2 + 1)(n3 + 1)

4ωp
√
ωp−kωp+k

·
(
n′ωp′

2
+
λ(n′2 − n′)

32ω2
p′

)

≤ 2N2(N + 1)

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B74)

We first bound the following commutators between H21, H22 and H4j , where j = 1, . . . , 5. Here there are |Ω| overlaps
and |Ω| possible options with one free variable. Using Eq. B74 we have

2∑
i=1

2∑
j=1

∥[H2i, H4j ]∥ ≤
2∑
i=1

2∑
j=1

(
λ

96

)2

max
p

3
max
ℓ=1

max
p′:

p′=pℓ

max
n⃗∈S(i−1)

3n

n′∈S4(j−1)

∥[A(2)
pn⃗, A

(4)
1p′n′ ]∥

≤
(

λ

96ω2
min

)2

24(N + 1)2(N + 2)
√
(N + 3)(N + 4);
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and

2∑
i=1

4∑
j=3

∥[H2i, H4j ]∥ ≤ |Ω|
2∑
i=1

4∑
j=3

(
λ

96

)2

max
p

3
max
ℓ=1

max
p′:

p′=pℓ

max
n⃗∈S(i−1)

3n

n′∈S2(j−3)

∥[A(2)
pn⃗, A

(4)
2p′n′ ]∥

≤ 1

96

(
λ

ω2
min

)2

N(N + 1)2(N + 2);

and finally

2∑
i=1

∥[H2i, H45]∥ ≤
2∑
i=1

(
λ

96

)
max
p

3
max
ℓ=1

max
p′:

p′=pℓ

max
n⃗∈S(i−1)

3n

n′

∥[A(2)
pn⃗, C

(4)
p′n′ ]∥

≤
(

λ

96ω2
min

)
12N2(N + 1)3/2(N + 2)1/2

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
.

Now, we consider the commutators between H23, H24 and each H4j , where j = 1, . . . , 5. We observe that the grouping
of commutators that can be bound with similar arguments are same as before. Also, the conditions for overlap of
momentum modes and momentum states, in order to have a non-zero overlap, are also similar. The innermost
commutators change and they can be bound using Eq. B74. Hence we have

4∑
i=3

2∑
j=1

∥[H2i, H4j ]∥ ≤
4∑
i=3

2∑
j=1

(
λ

96

)2

max
p

3
max
ℓ=1

max
p′:

p′=pℓ

max
(n2,n3)∈S(i−3)

2n ;

n1,n
′∈S4(j−1)

∥[B(2)
pn⃗ , A

(4)
1p′n′ ]∥

≤
(

λ

96ω2
min

)2

48N(N + 1)3/2
√

(N + 2)(N + 3)(N + 4);

and

4∑
i=3

4∑
j=3

∥[H2i, H4j ]∥ ≤
4∑
i=3

4∑
j=3

(
λ

96

)2∑
p

3∑
ℓ=1

∑
p′:

p′=pℓ

∑
(n2,n3)∈S(i−3)

2n

n1,n
′∈S2(j−3)

∥[B(2)
pn⃗ , A

(4)
2p′n′ ]∥

≤
(

λ

96ω2
min

)2

192|Ω|N2(N + 1)3/2(N + 2)1/2;

and finally

4∑
i=3

∥[H2i, H45]∥ ≤
4∑
i=3

(
| λ
96

)
Ω|4 max

p

3
max
ℓ=1

max
p′:

p′=pℓ

max
n⃗∈S(i−1)

3n

n′

∥[A(2)
pn⃗, C

(4)
p′n′ ]∥

≤
(
λ

96

)
24N3(N + 1)

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
.

Thus, plugging in Eq. B72 we have the following.

∥[H2φ, H4φ]∥ ≤
(

λ

96ω2
min

)2

24N(N + 1)3/2(N + 2)1/2
[√

(N + 1)(N + 2) + 2N
] [√

(N + 3)(N + 4) + 4N
]

+

(
λ

96ω2
min

)
12N2(N + 1)

[√
(N + 1)(N + 2) + 2N

] [
βωmax +

λβ(Nβ − 1)

16ω2
min

]
. (B75)

f. [H3φ,H
′
4φ] : Using Lemma 45 along with the definition of H3φ and H4φ in Eq. B18 and B5, respectively,

we have

∥[H3φ, H4φ]∥ ≤
7∑
i=1

5∑
j=1

∥[H3i, H4j ]∥ (B76)
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We first bound the following commutators between the operators in Eq. B18 and B5. Each of A
(3)
pn⃗, B

(3)
1pn⃗ and B

(3)
2pn⃗

are sum of 4 Pauli operators. Each of these Pauli operators can anti-commute with at most 1 of the 2 Pauli operators

in A
(4)
1p′n′ , A

(4)
2p′n′ and the single non-identity Pauli operator in C

(4)
p′n′ . C

(3)
pn⃗ is a sum of 3 non-identity Pauli operators,

each of which can anti-commute with both the Pauli operators in each of A
(4)
1p′n′ , A

(4)
2p′n′ and the single non-identity

Pauli operator in C
(4)
p′n′ . So, we have the commutators for the inner terms, again we leave the factors of ω till the final
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max expression for simplicity.

∥[A(3)
pn⃗, A

(4)
1p′n′ ]∥ ≤ 4 · 1 · 2 ·max

p,p′

n⃗,n′

√
(n1 + 2)(n1 + 1)(n2 + 2)(n2 + 1)

4ω2
p

·
√
(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

≤ (N + 1)3/2(N + 2)3/2
√

(N + 3)(N + 4)

ω4
min

∥[B(3)
jpn⃗, A

(4)
1p′n′ ]∥ ≤ 4 · 1 · 2 ·max

p,p′

n⃗,n′

n2
√
(n1 + 2)(n1 + 1)

2ω2
p

·
√

(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

[j ∈ {1, 2}]

≤ 2N(N + 1)(N + 2)
√
(N + 3)(N + 4)

ω4
min

∥[C(3)
pn⃗ , A

(4)
1p′n′ ]∥ ≤ 3 · 2 · 2 ·max

p,p′

n⃗,n′

n1n2
ω2
p

·
√

(n′ + 4)(n′ + 3)(n′ + 2)(n′ + 1)

2ω2
p′

≤ 6N2
√
(N + 1)(N + 2)(N + 3)(N + 4)

ω4
min

∥[A(3)
pn⃗, A

(4)
2p′n′ ]∥ ≤ 4 · 1 · 2 ·max

p,p′

n⃗,n′

√
(n1 + 2)(n1 + 1)(n2 + 2)(n2 + 1)

4ω2
p

· n
′
√
(n′ + 1)(n′ + 2)

ω2
p′

≤ 2N(N + 1)3/2(N + 2)3/2

ω4
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∥[B(3)
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(4)
2p′n′ ]∥ ≤ 4 · 1 · 2 ·max

p,p′

n⃗,n′

n2
√
(n1 + 2)(n1 + 1)

2ω2
p

· n
′
√

(n′ + 1)(n′ + 2)

ω2
p′

[j ∈ {1, 2}]

≤ 4N2(N + 1)(N + 2)

ω4
min

∥[C(3)
pn⃗ , A

(4)
2p′n′ ]∥ ≤ 3 · 2 · 2 ·max

p,p′

n⃗,n′

n1n2
ω2
p

· n
′
√
(n′ + 1)(n′ + 2)

ω2
p′

≤ 12N3
√

(N + 1)(N + 2)

ω4
min

∥[A(3)
pn⃗, C

(4)
p′n′ ]∥ ≤ 4 · 1 · 2 ·max

p,p′

n⃗,n′

√
(n1 + 2)(n1 + 1)(n2 + 2)(n2 + 1)

4ω2
p

·
(
n′ωp′

2
+
λ(n′2 − n′)

32ω2
p′

)

≤ N(N + 1)(N + 2)

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
∥[B(3)

jpn⃗, C
(4)
p′n′ ]∥ ≤ 4 · 1 · 2 ·max

p,p′

n⃗,n′

n2
√
(n1 + 2)(n1 + 1)

2ω2
p

·
(
n′ωp′

2
+
λ(n′2 − n′)

32ω2
p′

)
[j ∈ {1, 2}]

≤ 2N2
√
(N + 1)(N + 2)

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
∥[C(3)

pn⃗ , C
(4)
p′n′ ]∥ ≤ 3 · 1 · 2 ·max

p,p′

n⃗,n′

n1n2
ω2
p

·
(
n′ωp′

2
+
λ(n′2 − n′)

32ω2
p′

)

≤ 3N3

ω2
min

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
(B77)
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We first bound the commutators between H31, H32 and H4j , where j = 1, . . . , 5. We consider the following sum,
where each commutator has the same bound. There are |Ω|2 commutators as before. Using Eq. B77 we have

2∑
i=1

2∑
j=1

∥[H3i, H4j ]∥ ≤
(
λ

96

)2 2∑
i=1

2∑
j=1

2
max
ℓ=1

max
p,p′:
p′=pℓ

max
n⃗∈S(i+1)

2n

n′∈S4(j−1)

∥[A(3)
pn⃗, A

(4)
1p′n′ ]∥

=

(
λ

96ω2
min

)2

16(N + 1)3/2(N + 2)3/2
√
(N + 3)(N + 4);

and

2∑
i=1

4∑
j=3

∥[H3i, H4j ]∥ ≤ 2 ·
(
λ

96

)2 2∑
i=1

4∑
j=3

2
max
ℓ=1

max
p,p′:
p′=pℓ

max
n⃗∈S(i+1)

2n

n′∈S2(j−3)

∥[A(3)
pn⃗, A

(4)
2p′n′ ]∥

=

(
λ

96ω2
min

)2

64N(N + 1)3/2(N + 2)3/2;

and finally

2∑
i=1

∥[H3i, H45]∥ ≤
(
λ

96

) 2∑
i=1

2
max
ℓ=1

max
p,p′:
p′=pℓ

max
n⃗∈S(i+1)

2n

n′

∥[A(3)
pn⃗, C

(4)
p′n′ ]∥

=

(
λ

96ω2
min

)
8N2(N + 1)(N + 2)

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
.

Now we have

4∑
i=3

2∑
j=1

∥[H3i, H4j ]∥+
6∑
i=5

2∑
j=1

∥[H3i, H4j ]∥

≤
(
λ

96

)2 2∑
j=1

2
max
ℓ=1

 4∑
i=3

max
p,p′:
p′=pℓ

max
n1∈S2(i−3);n2

n′∈S4(j−1)

∥[B(3)
1pn⃗, A

(4)
1p′n′ ]∥+ 6

max
i=5

max
p,p′:
p′=pℓ

max
n2∈S2(i−5);n1

n′∈S4(j−1)

∥[B(3)
2pn⃗, A

(4)
1p′n′ ]∥


≤
(

λ

96ω2
min

)2

64N(N + 1)(N + 2)
√
(N + 3)(N + 4); (B78)

and

4∑
i=3

4∑
j=3

∥[H3i, H4j ]∥+
6∑
i=5

4∑
j=3

∥[H3i, H4j ]∥

≤ 2 ·
(
λ

96|

)2 4∑
j=3

2
max
ℓ=1

 4
max
i=3

max
p,p′:
p′=pℓ

max
n1∈S2(i−3);n2

n′∈S2(j−3)

∥[B(3)
1pn⃗, A

(4)
2p′n′ ]∥+

6∑
i=5

max
p,p′:
p′=pℓ

max
n2∈S2(i−5);n1

n′∈S2(j−3)

∥[B(3)
2pn⃗, A

(4)
2p′n′ ]∥


≤
(

λ

96ω4
min

)2

256N2(N + 1)(N + 2);

again

4∑
i=3

∥[H3i, H45]∥+
6∑
i=5

∥[H3i, H45]∥

≤
(
λ

96|

) 2∑
ℓ=1

 4∑
i=3

∑
p,p′:
p′=pℓ

∑
n1∈S2(i−3);n2

n′

∥[B(3)
1pn⃗, C

(4)
p′n′ ]∥+

6∑
i=5

∑
p,p′:
p′=pℓ

∑
n2∈S2(i−5);n1

n′

∥[B(3)
2pn⃗, C

(4)
p′n′ ]∥


≤
(

λ

96ω2
min

)
32N2

√
(N + 1)(N + 2)

[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
.



81

We now consider the commutators between H33, H34, H35, H36 and each H4j , where j = 1, . . . , 5. We observe
that the conditions for overlap of the momentum modes and momentum states, in order to have a non-zero overlap,
are also similar. The innermost commutators change and they can be bound using Eq. B77. Next, we consider
the commutators between H37 and each H4j , where j = 1, . . . , 5. We observe that the conditions for overlap of
the momentum modes and momentum states, in order to have a non-zero overlap, are also similar. The innermost
commutators change and they can be bound using Eq. B77. Thus we have

2∑
j=1

∥[H37, H4j ]∥ ≤
(
λ

96

)2 2∑
j=1

2
max
ℓ=1

max
p,p′:
p′=pℓ

max
n⃗;

n′∈S4(j−1)

∥[C(3)
pn⃗ , A

(4)
1p′n′ ]∥

=

(
λ

96ω2
min

)2

24N2
√

(N + 1)(N + 2)(N + 3)(N + 4);

and

4∑
j=3

∥[H37, H4j ]∥ ≤ 2 ·
(
λ

96

)2 4∑
j=3

2∑
ℓ=1

∑
p,p′:
p′=pℓ

∑
n⃗;

n′∈S2(j−3)

∥[C(3)
pn⃗ , A

(4)
2p′n′ ]∥

=
96

(
λ

ω2
min

)2

N3
√
(N + 1)(N + 2);

and finally

∥[H37, H45]∥ ≤
(
λ

96

) 2∑
ℓ=1

∑
p,p′:
p′=pℓ

∑
n⃗,n′

∥[C(3)
pn⃗ , C

(4)
p′n′ ]∥

=

(
12N3λ

96ω4
min

)[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
.

Therefore, plugging in Eq. B76 we have

∥[H3φ, H4φ]∥ ≤
(

λ

96ω2
min

)2

16
√
(N + 1)(N + 2)

[√
(N + 1)(N + 2) +N

]
·
[√

(N + 1)(N + 2) + 3N
] [√

(N + 1)(N + 2) + 4N
]

+

(
λ

96ω2
min

)
4N
[
2(N + 1)(N + 2) + 8N

√
(N + 1)(N + 2) + 3N2

]
·
[
βωmax +

λβ(Nβ − 1)

16ω2
min

]
. (B79)

3. Bounding α̃comm and hence the Trotter error

Now we are in a position to bound α̃comm according to Eq. B2. First we sum Eq. B19-B24 to get a bound on the
sum of norms, which is

≤ ωmaxN(N + 1)

2
+

(
λ

96ω2
min

)
|Ω|
[
(N + 1)2

2
+ (N + 2)2 + (N + 2) + (N + 4)2

]
. (B80)

Next, we bound the sum of first-level commutators by adding Eq. B27, B37, B43, B50, B56, B61, B65, B71, B75 and
B79 and it is as follows.

∈ O

(
λ2N4

ω4
min

+
λN4

ω4
min

(
βωmaxω

2
min + λβ2N

))
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Since β < 1, ωmin =M and ωmax =
√
M2 + P 2

max ∼M , so we have since these commutators only fire when there is
a momentum overlap, we have

α̃comm ∈ O

(
λ3N6

ω6
min

+
λ2ωmaxN

6

ω6
min

+
λ2N6

ω6
min

(
βωmaxω

2
min + λβ2N

) (
1 +

ωmax
λ

))
∈ O

(
λ2N6(M + λ)

M6

)
,

∈ O

(
λ2N6

M5

)
, assuming λ < N |Ω|; (B81)

and hence the Trotter error is in O
(
λ2N6τ3

M5

)
.

Appendix C: Field Amplitude Basis Algorithms

1. Equal weight LCU

Here, we provide proofs of Lemmas and Theorems stated in Section IVE1.

Proof of Lemma 19. For integers i, j and k, we note the following identities:

Θ(i− j − 1) = (j < i)

Θ(−k − 1) = 1−Θ(k)

Z |k⟩ = (1− 2k) |k⟩ (C1)

We then have

CMP† (I⊗ I⊗ Z) CMP |i⟩ |j⟩ |0⟩
= CMP† (I⊗ I⊗ Z) |i⟩ |j⟩ |j < i⟩
= CMP† (I⊗ I⊗ Z) |i⟩ |j⟩ |Θ(i− j − 1)⟩
= CMP† (1− 2Θ(i− j − 1)) |i⟩ |j⟩ |Θ(i− j − 1)⟩
= CMP† (1− 2 (1−Θ(j − i))) |i⟩ |j⟩ |Θ(i− j − 1)⟩
= CMP† (2Θ(j − i)− 1) |i⟩ |j⟩ |j < i⟩
= (2Θ(j − i)− 1) |i⟩ |j⟩ |0⟩ (C2)

Proof of Corollary 20. Given some state on a single lattice site |ψ⟩ = ∑2k−1
j=0 cj |j⟩ ∈ Hϕ, an ancillary register |0⟩ =
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|0⟩⊗m ∈ HP where m = ⌈log2 k + 1⌉, and a single additional ancillary qubit |0⟩anc ∈ Hscratch, we have

USUB−PREPϕ
|0⟩|ψ⟩ =

(
H⊗m|0⟩⊗m

)
|ψ⟩ = |+⟩|ψ⟩(

USUB−SELECTϕ
|+⟩|ψ⟩

)
|0⟩anc = CMP

†
P,ϕ,ancZancCMPP,ϕ,anc|+⟩|ψ⟩|0⟩anc

= CMP
†
P,ϕ,ancZancCMPP,ϕ,anc

(
1√
2k

2k−1∑
i=0

|i⟩
)2k−1∑

j=0

cj |j⟩

 |0⟩anc

= CMP
†
P,ϕ,ancZanc

1√
2k

2k−1∑
i,j=0

cj |i⟩ |j⟩ |Θ(i− j − 1)⟩anc

= CMP
†
P,ϕ,anc

1√
2k

2k−1∑
i,j=0

cj (1− 2Θ(i− j − 1)) |i⟩ |j⟩ |Θ(i− j − 1)⟩anc

=
1√
2k

2k−1∑
i,j=0

cj (2Θ(j − i)− 1) |i⟩ |j⟩ |0⟩anc

=
1√
2k

2k−1∑
i=0

|i⟩ ⊗
2k−1∑
m=0

(2Θ(m− i)− 1) |m⟩ ⟨m|

2k−1∑
j=0

cj |j⟩

 |0⟩anc

=
1√
2k

(
2k−1∑
i=0

|i⟩ ⊗ U (i)|ψ⟩
)
|0⟩anc (C3)

Note that

(
⟨+| ⊗ I

)
CMP†ZancCMP|+⟩|ψ⟩|0⟩anc =

(
1

2k

2k−1∑
i=0

U (i)|ψ⟩
)
|0⟩anc

=
ϕ̂

k∆ϕ
|ψ⟩|0⟩anc

=
ϕ̂

ϕmax
|ψ⟩|0⟩anc (C4)

and so we have

(
H⊗mCMP†ZancCMPH

⊗m) |0⟩|ψ⟩|0⟩anc = (|0⟩ ϕ̂

ϕmax
|ψ⟩+ |Φ⊥⟩

)
|0⟩anc (C5)

where
(
|0⟩⟨0| ⊗ I

)
|Φ⊥⟩ = 0, and we obtain the state ϕ̂|ψ⟩ with probability |ϕ̂|ψ⟩|2

|ϕmax|2 .

a. Arithmetic primitives

a. Addition: Our first result provides the resources needed to implement a generic addition circuit in the Clifford
+ T gate set. Our construction can be thought of as an elaboration on top of the Gidney adder given in [76].

Lemma 46 (Addition Circuit). Let U ∈ C23n−1×3n−1

for n ∈ Z+ be a unitary matrix such that U acts as a reversible
adder meaning that for any x, y ∈ Z2n , U |x⟩ |y⟩ |0⟩ = |x+ y mod 2n⟩ |y⟩ |0⟩ can be constructed using the following
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resources

T-count = 4n

Ancilla count = n

Measurement depth = n

CNOT count = 12n− 3

CZ count = n

S count = n

H count = 2n (C6)

Proof. Let us consider addition of two n-bit binary numbers a and b using the classical full-adder, which takes two
single-bit inputs ai and bi and ci;in, the carry-in bit from the previous bit addition, and outputs the sum si and the
carry-out ci;out. In Reed-Muller form, these are given by

si = ai ⊕ bi ⊕ ci;in

ci;out = aibi ⊕ aici;in ⊕ bici;in (C7)

Let us assume that we are allowed to over-write one of the registers storing the binary representations of a and b
with that of (a + b). Let us also assume that we can selectively measure out and reset a subset of the total qubits
available to us. Then, we carry out this primitive using n ancillas, n − 1 to store the values of the carry bits, and 1
to hold the value of the left-most (most significant) digit of (a+ b), if we can selectively reset the ancillas to perform
a similar subsequent computation. A bit more explicitly,

c0 = 0 , s0 = a0 ⊕ b0

ci+1 = aibi ⊕ aici ⊕ bici , si = ai ⊕ bi ⊕ ci ∀ 0 ≤ i ≤ n− 1

sn = cn (C8)

For actually carrying out the binary addition, we follow the method described in [76]. The first step is to note a
construction of the logical AND gate that transforms |x⟩ |y⟩ |0⟩ → |x⟩ |y⟩ |xy⟩, and that uses only 4 T gates, as shown
in Fig. 12.

FIG. 12: Logical AND gate construction using 4 T gates.

Step by step, we can prove that this construction computes |xy⟩ given input bits |x⟩ and |y⟩ as follows

|x⟩ |y⟩ |T ⟩ → |x⟩ |y⟩ 1√
2

(
|x⟩+ eiπ/4 |x⊕ 1⟩

)
→ |x⟩ |y⟩ 1√

2

(
|x⊕ y⟩+ eiπ/4 |x⊕ y ⊕ 1⟩

)
→ 1√

2

(
|y⟩ |x⟩ |y ⊕ x⟩+ eiπ/4 |y ⊕ 1⟩ |x⊕ 1⟩ |x⊕ y ⊕ 1⟩

)
→ 1√

2

(
ei

π
4 (x⊕y−x−y) |y⟩ |x⟩ |x⊕ y⟩+ ei

π
4 (x⊕y⊕1−x⊕1−y⊕1) |y ⊕ 1⟩ |x⊕ 1⟩ |x⊕ y ⊕ 1⟩

)
→ 1√

2

(
ei

π
4 (x⊕y−x−y) |x⟩ |y⟩ |x⊕ y⟩+ ei

π
4 (x⊕y⊕1−x⊕1−y⊕1) |x⟩ |y⟩ |x⊕ y ⊕ 1⟩

)
→ |x⟩ |y⟩ ((1− xy) |0⟩ − i(xy) |1⟩)
→ |x⟩ |y⟩ ((1− xy) |0⟩+ (xy) |1⟩)
= |x⟩ |y⟩ |xy⟩ (C9)
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where we have used CNOT |a⟩ |b⟩ = |a⟩ |a⊕ b⟩, T |a⟩ = eiaπ/4 |a⟩, T † |a⟩ = e−iaπ/4 |a⟩, H |a⟩ = |0⟩+eiπa|1⟩√
2

, in the third

last step used the truth tables

x y x⊕ y − x− y x⊕ y ⊕ 1− x⊕ 1− y ⊕ 1
0 0 0 0
0 1 0 0
1 0 0 0
1 1 -2 2

and

x y
(
x⊕y−x−y

4

)
+ (x⊕ y)

(
x⊕y⊕1−x⊕1−y⊕1

4

)
+ (x⊕ y ⊕ 1)

0 0 0 1
0 1 1 0
1 0 1 0
1 1 -1/2 3/2

so that

1

2
|x⟩ |y⟩ |0⟩

(
eiπ/4(x⊕y−x−y) + eiπ/4(x⊕y⊕1−x⊕1−y⊕1

)
= (1− xy) |x⟩ |y⟩ |0⟩

1

2
|x⟩ |y⟩ |1⟩

(
eiπ(

x⊕y−x−y
4 )+(x⊕y) + eiπ(

x⊕y⊕1−x⊕1−y⊕1
4 )+(x⊕y⊕1)

)
= −i(xy) |x⟩ |y⟩ |0⟩ (C10)

While this allows us to compute the carry-out bit using 4 T gates, we must also uncompute this operation if we are
to leave the sum register unentangled with all the ancillae at the end of the computation. To this end, [76] constructs
the (irreversible) uncomputation step depicted in Fig. 13 that notably uses no T gates.

FIG. 13: Uncomputing the logical AND gate with no T gates.

To see that this works, let us start with some arbitrary 2-qubit superposition |ψ⟩ = ∑1
i,j=0 αij |i⟩ |j⟩ and suppose

that we have applied the Toffoli gate above in the first step. Following this, we have the series of transformations

|ψ⟩ |0⟩ → α00 |00⟩ |0⟩+ α01 |01⟩ |0⟩+ α10 |10⟩ |0⟩+ α11 |11⟩ |1⟩
I⊗I⊗H−−−−−→ (α00 |00⟩+ α01 |01⟩+ α10 |10⟩)

( |0⟩+ |1⟩√
2

)
+ α11

( |0⟩ − |1⟩√
2

)
=

1√
2
(α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩) |0⟩

+
1√
2
(α00 |00⟩+ α01 |01⟩+ α10 |10⟩ − α11 |11⟩) |1⟩

Measure and correct−−−−−−−−−−−−−→ (α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ (CZ)x(−1)xα11 |11⟩) |x⟩
= (α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩) |x⟩ = |ψ⟩ |x⟩ (C11)

We can use this in an adder by first computing a carry-out bit given a carry-in, and the two bits to be added as
depicted in Fig. 14.

Note that this uses a single AND gate (and therefore 4 T gates), and we have used the identity (ik ⊕ ck)(tk ⊕ ck) =
iktk⊕ikck⊕tkck⊕ck. We can then use the carry-out bit for later computation. After it is used, we need to uncompute
it and over-write one of the bits to hold the addition computation. This is performed by first carrying out a single
CNOT between the carry-in qubit and the carry-out qubit as depicted in Fig. 15.

The bottom-most qubit now holds the logical AND of the two qubits above it, so that we can now measure and
discard this qubit while keeping the above qubits in the state shown in Fig. 15 using the uncomputation technique



86

FIG. 14: Computing the carry-out bit in the first part of the adder primitive.

FIG. 15: The first stage in the uncomputation part of the adder.

FIG. 16: The last stage in the uncomputation part of the adder, completing the addition computation.

described above. After this measure and fix part, we simply carry out two CNOTs as depicted in Fig. 16 to complete
the addition. Note that the Gidney adder is reversible.

To make everything a bit more explicit, this method of addition performs the following series of transformations

UA+B |a⟩ |b⟩ |scratch⟩ : (|0⟩ |an−1⟩ . . . |a0⟩) (|bn−1⟩ . . . |b0⟩)
(
|0⟩⊗n−1

)
→ (|cn⟩ |an−1 ⊕ cn−1⟩ . . . |a1 ⊕ c1⟩ |a0⟩) (|bn−1 ⊕ cn−1⟩ . . . |b1 ⊕ c1⟩ |b0⟩) (|cn−1⟩ . . . |c1⟩)
→ (|cn⟩ |sn−1⟩ . . . |s0⟩) (|bn−1⟩ . . . |b0⟩)

(
|0⟩⊗n−1

)
= |a+ b⟩ |b⟩ |scratch⟩ (C12)

Only the first arrow above requires any AND operations. In all, we require 4n T gates, as well as n ancillary qubits. We
also have 6 CNOTs per AND gate, 3(n−1) CNOTs during the computation part, and an additional 3n CNOTs during
the uncomputation part. Lastly, we have 1 S gate, 1 CZ gate and 2 H gates for every AND compute/uncompute
pair. These results are summarized in the statement of the lemma and thus this concludes our proof.

b. Substraction: Given a modular adder it is often straight forward to construct a modular subtraction circuit.
Such subtraction circuits are extremely helpful for LCU decompositions because performing a subtraction between two
numbers and examining the sign allows us to find the maximum of two numbers. Below we outline a ones compliment
approach for constructing such a subtractor / comparator.

Corollary 47 (Subtraction Circuit). Let U ∈ C23n−1×3n−1

for n ∈ Z+ be a unitary matrix such that U acts as a
reversible subtractor meaning that for any x, y ∈ Z2n , U |x⟩ |y⟩ |0⟩ = |x− y mod 2n⟩ |y⟩ |0⟩ can be constructed using
the following resources
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T-count = 4n

Ancilla count = n

Measurement depth = n

CNOT count = 12n− 3

CZ count = n

S count = n

H count = 2n (C13)

Pauli-X count = 2n (C14)

(C15)

Using that the ones’ complement, i.e. bitwise complementation, of a is given by a = 2n − 1 − a, we arrive at the
identity

a− b = 2n − 1− (2n − 1− a+ b) = (a+ b) (C16)

which allows us to implement subtraction in essentially the same way as addition, plus some single qubit X gates.
For ease of notation, let us define

c′0 = 0 , s′0 = a0 ⊕ b0 ⊕ 1

c′k+1 = akbk ⊕ bkc
′
k ⊕ akc

′
k ⊕ bk ⊕ c′k , s′k = ak ⊕ bk ⊕ c′k ⊕ 1

s′n = c′n (C17)

Explicitly, we run the following series of transformations

UA−B |a⟩ |b⟩ |scratch⟩ : (|0⟩ |an−1⟩ . . . |a0⟩) (|bn−1⟩ . . . |b0⟩)
(
|0⟩⊗n−1

)
→ (|0⟩ |an−1 ⊕ 1⟩ . . . |a0 ⊕ 1⟩) (|bn−1⟩ . . . |b0⟩)

(
|0⟩⊗n−1

)
→

(
|c′n⟩

∣∣an−1 ⊕ 1⊕ c′n−1

〉
. . . |a1 ⊕ 1⊕ c′1⟩ |a0 ⊕ 1⟩

) (∣∣bn−1 ⊕ c′n−1

〉
. . . |b1 ⊕ c′1⟩ |b0⟩

) (∣∣c′n−1

〉
. . . |c′1⟩

)
→

(
|c′n⟩

∣∣s′n−1

〉
. . . |s′0⟩

)
(|bn−1⟩ . . . |b0⟩)

(
|0⟩⊗n−1

)
→

(
|c′n ⊕ 1⟩

∣∣s′n−1 ⊕ 1
〉
. . . |s′0 ⊕ 1⟩

)
(|bn−1⟩ . . . |b0⟩)

(
|0⟩⊗n−1

)
= |a− b⟩ |b⟩ |scratch⟩ (C18)

Only the second arrow above (computing the carry-bits) requires any ANDs. The resource counts are the same as in
Eq. (C6), and also additionally 2n X gates.

c. Incrementer: In the special case where we want to add only 1 to some other number, we have the much
simpler case

c0 = 0 , s0 = a0 ⊕ 1

c1 = a0 , s1 = a1 ⊕ a0 (C19)

and for n ≥ 2,

cn = an−1an−2 . . . a0

sn = an ⊕ cn (C20)

In the worst case, to add 1 to an n-bit number, we need n+1 bits to express the answer. This requires first computing
n − 2 many logical ANDs to compute all the necessary carry bits c2, . . . , cn+1 with cn+1 = sn+1. We then perform
CNOTs controlled on the carry bits, targeted on the input register to over-write it with the value of the sum, i.e.
ai → ci ⊕ ai for every i ≥ 2. To handle the least significant two bits, we first simply perform a CNOT controlled
on a0 and targeted on a1, and then perform a NOT operation on a0. After this, we uncompute all the logical
ANDs expressing the carry bits except the very high bit cn+1. Thus, to add 1 to an n-qubit register, we need n− 1
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ancillas, and n − 1 ANDs. Each of these AND operations requires 4 T gates, 6 CNOTs, 1 S gate, 1 CZ gate and 2
H gates. There are also an additional n−1 CNOTs and a single X gate. The total resource count is then given below.

T-count = 4(n− 1)

Ancilla count = n− 1

Measurement depth = n− 1

CNOT count = 7(n− 1)

CZ count = n− 1

S count = n

H count = 2(n− 1)

X count = 1 (C21)

d. Comparator: In order to implement the comparator, i.e.

CMPA,B,C |i⟩ |j⟩ |0⟩ = |i⟩ |j⟩ |j < i⟩ (C22)

we can compute the high-bit of j − i, which is 1 if and only if j < i. Essentially, we can run the same circuit as
subtraction, use a CNOT to write out the value of c′n⊕ 1 onto an ancillary qubit, and then reversibly undo the entire
subtraction circuit.

CMPA,B,C |i⟩ |j⟩ |0⟩ : |i⟩ |j⟩ |0⟩ |scratch⟩
→ |i⟩ |j − i⟩ |0⟩ |scratch⟩
= |in−1⟩ . . . |i0⟩ |(j − i)n⟩ . . . |(j − i)0⟩ |0⟩ |scratch⟩
→ |in−1⟩ . . . |i0⟩ |(j − i)n⟩ . . . |(j − i)0⟩ |(j − i)n⟩ |scratch⟩
= |i⟩ |j − i⟩ |(j − i)n⟩ |scratch⟩
→ |i⟩ |j⟩ |(j − i)n⟩ |scratch⟩
= |i⟩ |j⟩ |j < i⟩ |scratch⟩ (C23)

However, this scheme would require running the subtraction circuit twice, once in the forward direction, and once in
the reverse direction. This would result in a gate count of 2n ANDs, and therefore 8n T gates.
We can do better, by simply running the circuit until computing the carry-bits, running a CNOT to write out

the high-bit onto an ancillary (scratch) qubit, and then undoing the carry-bit computations. This way, the entire
operation requires n ANDs, and therefore 4n T gates. It is this operation that is referred to as CMP′ in the main text.
The main use of this operation is in applying CMP′†ZancCMP. Apart from the Zanc, the cost of this composite operation
is the same as that of CMP. Equivalently, the cost of this is the same as that of the subtraction circuit, which in turn
is the same as that of the addition circuit Eq. (C6), plus an additional 2n X gates.
e. Multiplication: To perform binary multiplication, we can use bitwise shift operations (by simply adding

ancilla qubits), as well as the addition technique described above. As an example, consider adding two 3-bit numbers

a2 a1 a0
b2 b1 b0

0 0 (b0a2) (b0a1) (b0a0)
0 (b1a2) (b1a1) (b1a0) 0

(b2a2) (b2a1) (b2a0) 0 0

(C24)

Each of the products in parantheses above can be computed using a total of n2 AND gates. In general, we need
n + (n − 1) many additional qubits to hold the values of each of the binary numbers in each of the lines above. We
then need to add all these numbers together. Since some of the bits in these numbers are 0, the circuits for as well
as the numbber of ancillary qubits required for addition can be simplified. However, we simply report the upper
bound, where we assume that we require n registers of 2n− 1 many qubits, contributing to an ancillary qubit count
of n(2n− 1). These registers must be added in a sequence of n additions. We also require 1 additional ancilla to hold
the value of the highest bit for the very last addition.
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Each of the n additions require 2n− 1 ancillary qubits for the computation. Since these additions must be carried
out sequentially, these 2n − 1 ancillae can be recycled. Apart from this ancilla count, the cost associated will be n
times the resources reported in Eq. (C6). In all, we require 2n2 − 1 ANDs. Putting everything together, we find the
following resource counts for performing multiplication of two n-qubit registers.

T-count = 8n2 − 4

Ancilla count = (n+ 1)(2n− 1) + 1

Measurement depth = 2n2 − 1

CNOT count = 12n2 − 6

CZ count = 2n2 − 1

S count = 2n2 − 1

H count = 4n2 − 2 (C25)

b. Sub-SELECT circuits

a. Sub-PREPARE and SELECT circuits for ϕ̂ (toy example) Then, given some state |ψ⟩ =∑2k−1
j=0 cj |j⟩ ∈ Hϕ, an

ancillary register |0⟩ = |0⟩⊗m ∈ HP where m = ⌈log2 k + 1⌉, and a single additional ancillary qubit |0⟩anc ∈ Hscratch,
we have

USUB−PREPϕ
|0⟩|ψ⟩ =

(
H⊗m|0⟩⊗m

)
|ψ⟩ = |+⟩|ψ⟩(

USUB−SELECTϕ
|+⟩|ψ⟩

)
|0⟩anc = CMP

†
P,ϕ,ancZancCMPP,ϕ,anc|+⟩|ψ⟩|0⟩anc

= CMP
†
P,ϕ,ancZancCMPP,ϕ,anc

(
1√
2k

2k−1∑
i=0

|i⟩
)2k−1∑

j=0

cj |j⟩

 |0⟩anc

= CMP
†
P,ϕ,ancZanc

1√
2k

2k−1∑
i,j=0

cj |i⟩ |j⟩ |Θ(i− j − 1)⟩anc

= CMP
†
P,ϕ,anc

1√
2k

2k−1∑
i,j=0

cj (1− 2Θ(i− j − 1)) |i⟩ |j⟩ |Θ(i− j − 1)⟩anc

=
1√
2k

2k−1∑
i,j=0

cj (2Θ(j − i)− 1) |i⟩ |j⟩ |0⟩anc

=
1√
2k

2k−1∑
i=0

|i⟩ ⊗
2k−1∑
m=0

(2Θ(m− i)− 1) |m⟩ ⟨m|

2k−1∑
j=0

cj |j⟩

 |0⟩anc

=
1√
2k

(
2k−1∑
i=0

|i⟩ ⊗ U (i)|ψ⟩
)
|0⟩anc (C26)

Note that (
⟨+| ⊗ I

)
CMP†ZancCMP|+⟩|ψ⟩|0⟩anc =

(
1

2k

2k−1∑
i=0

U (i)|ψ⟩
)
|0⟩anc

=
ϕ̂

k∆ϕ
|ψ⟩|0⟩anc

=
ϕ̂

ϕmax
|ψ⟩|0⟩anc (C27)

and so we have (
H⊗mCMP†ZancCMPH

⊗m) |0⟩|ψ⟩|0⟩anc = (|0⟩ ϕ̂

ϕmax
|ψ⟩+ |Φ⊥⟩

)
|0⟩anc (C28)
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where
(
|0⟩⟨0| ⊗ I

)
|Φ⊥⟩ = 0, and we obtain the state ϕ̂|ψ⟩ with probability |ϕ̂|ψ⟩|2

|ϕmax|2 . Moreover, instead of using the

CMP primitive, we are also free to use any other primitive CMP′ that instead applies any unitary transformation of the
form

CMP′ |i⟩ |j⟩ |scratch⟩ |0⟩ = |Ψi,j,scratch⟩ |j < i⟩ (C29)

which may significantly reduce the gate cost. An example of such an operation would be to compute the high carry bit

of j + i = j − i, which is 1 iff j < i, but leaves the state of the |i⟩, |j⟩ and other ancillary qubits |scratch⟩ entangled.
Once the appropriate phase has been extracted from the |j < i⟩ qubit, we simply run the inverse of this operation.
Noting also that

|x⃗⟩ ⟨x⃗| ⊗
(
U†V U

)
+
∣∣x⃗⊥〉 〈x⃗⊥∣∣⊗ I =

(
I⊗ U†) (|x⃗⟩ ⟨x⃗| ⊗ V +

∣∣x⃗⊥〉 〈x⃗⊥∣∣⊗ I
)
(I⊗ U) (C30)

this means that the controlled version of the entire operation H⊗mCMP′†ZancCMP
′H⊗m simply needs to control the

Zanc operation. We use log2 2k ancillary qubits to compare against, an additional log2 2k ancillary qubits to compute

the carry bits, with an arbitrary state at a single site on the lattice |ϕi⟩ =
∑1
a0,a1,a2=0 ca2,a1,a0 |a2, a1, a0⟩. In general,

this circuit involves log2 2k logical ANDs (and just as many uncomputations of those ANDs), 6(log2 2k − 1) many
CNOTs, 2 log2 2k many X gates and a single Z gate. The controlled version of this circuit only requires a control on

the single Z gate. The circuit for − ϕ̂
∆ϕ is essentially the same, except that we replace Z with XZX.

At this point, we can use these primitives to use the Taylor series method to construct an approximation to eiϕ̂t, but
this approach does not yield optimal scaling, so we instead adopt the QSVT approach.

Note that in order to apply all ϕ̂i where i denotes the lattice site, we would need to run something like the circuit on
top part of Fig. 3 where we control on the family of terms in the Hamiltonian, the lattice site as well as the particular
unitary on that lattice site. With this construction however, we can simply control on the family and site indices, as
shown in Fig. 3.While in principle we might need to control on the state of some ancillary qubit register to apply each

unitary in the LCU for the entire family of ϕ̂ operators, this becomes unnecessary with the use of the comparator.
We now apply much fewer controlled operations, controlled on the state of much fewer qubits. In the above, we have
used different ancillary registers for the field registers at sites 0 and |Ω| − 1 (in which case the computation can be
trivially parallelized) though in principle we could use the same ancillary registers again. This is just a toy demo for
a fictitious Hamiltonian H =

∑
x⃗∈Ω ϕ(x⃗)+ . . . , but similar constructions, and consequent simplifications, hold for the

actual ϕ4 Hamiltonian we consider.

To compute the LCU for − ϕ̂
∆ϕ , we simply run XZX on the ancillary qubit instead of Z to extract the phase (see

next section). We can run this circuit in parallel to the one for ϕ̂
∆ϕ , for the same gate depth but twice the gate count,

to run the sub-select circuit for a single −ϕ̂aϕ̂b term in the Hamiltonian. A single such term requires 4 log2 2k ancillary
qubits, 2 log2 2k logical AND computations, 2 log2 2k logical AND uncomputations (along with any additional ancillas
these require), 12(log2 2k−1) CNOTs, 4 log2 2k X gates and 2 Z gates. All such terms in the Hamiltonian will require
D|Ω| times this number many gates.

The circuit depth is the circuit depth of log2 2k logical ANDs + circuit depth of log2 2k logical AND uncomputations
+ 8 log2 2k − 5. The circuit depth for the entire group of such terms is at least 2D, since the same site has to couple
to all its spatial neighbors (in the positive direction for each of the D directions), and any site is also the neighbor of

some other site (and hence the factor of 2), but this parallelization requires |Ω|
2 (4 log2 2k) ancillary qubits.

b. Sub-SELECT circuit for −ϕ̂(x⃗)ϕ̂(x⃗′) In order to keep the coefficients of the (families of) terms in the Hamilto-
nian positive, we simply absorb the negative sign of the nearest-neighbor coupling site into the LCUs themselves. This
means the action of such a term on sites a and b is given on some general state |ϕ⟩ =∑j1,...,jN

cj1...jN |j1⟩⊗ · · ·⊗ |jN ⟩
(where 1 . . . N denote the lattice sites) as

−ϕ̂aϕ̂b |ϕ⟩ =

(
∆ϕ

2

)2 2k−1∑
m,m′=0

2k−1∑
j1...ja...jb...jN=0

[2Θ(ja −m)− 1] [1− 2Θ(jb −m′)]

cj1...ja...jb...jN |j1⟩ . . . |ja⟩ . . . |jb⟩ . . . |jN ⟩
(C31)
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We assume we are given some arbitrary field state |ϕ⟩ =
∑2k−1
j1,...,jN=0 cj1...jN |j1⟩ . . . |jN ⟩, with ancillary registers

|+⟩ = |+⟩⊗ log2 2k ∈ HPa
, |+⟩ = |+⟩⊗ log2 2k ∈ HPb

, |0⟩ ∈ Hanc,a and |0⟩ ∈ Hanc,b. Then, using

CMPA,B,C |i⟩ |j⟩ |0⟩ = |i⟩ |j⟩ |Θ(i− j − 1)⟩
1− 2Θ(x− 1) = 2Θ(−x)− 1

Z |Θ(i− j − 1)⟩ = [2Θ(j − i)− 1] |Θ(i− j − 1)⟩
XZX |Θ(i− j − 1)⟩ = [1− 2Θ(j − i)] |Θ(i− j − 1)⟩ (C32)

we have

CMP
†
Pa,ϕa,anca

CMP
†
Pb,ϕb,ancb

ZancaXancbZancbXancbCMPPb,ϕb,ancbCMPPa,ϕa,anca |+⟩ |+⟩ |ϕ⟩ |0⟩anca |0⟩ancb
= CMP

†
Pa,ϕa,anca

CMP
†
Pb,ϕb,ancb

ZancaXancbZancbXancbCMPPb,ϕb,ancbCMPPa,ϕa,anca |+⟩ |+⟩ 2k−1∑
j1,...,jN=0

cj1...jN |j1⟩ . . . |jN ⟩

 |0⟩anca |0⟩ancb

= CMP
†
Pa,ϕa,anca

CMP
†
Pb,ϕb,ancb

ZancaXancbZancbXancb 2k−1∑
j1,...,jN=0

2k−1∑
ma,mb=0

1

2k
cj1...ja...jb...jN [2Θ(ja −ma)− 1] [1− 2Θ(jb −mb)]

|ma⟩ |mb⟩ |j1 . . . jN ⟩ |Θ(ma − ja − 1)⟩ |Θ(mb − jb − 1)⟩)

=

2k−1∑
j1,...,jN=0

2k−1∑
ma,mb=0

1

2k
cj1...jN [2Θ(ja −ma)− 1] [1− 2Θ(jb −mb)] |ma⟩ |mb⟩ |j1 . . . jN ⟩ |0⟩anc,a |0⟩anc,b

=

2k−1∑
j1,...,jN=0

2k−1∑
ma,mb=0

1

2k
cj1...jN


2k−1∑
j′a=0

[2Θ(j′a −ma)− 1] |j′⟩ ⟨j′|a




2k−1∑
j′b=0

[1− 2Θ(j′b −mb)] |j′⟩ ⟨j′|b


|ma⟩ |mb⟩ |j1 . . . jN ⟩ |00⟩anc

=

(
2k−1∑

ma,mb=0

1

2k
|ma⟩ |mb⟩U (ma)

ϕa
U

(mb)
ϕb

) 2k−1∑
j1,...,jN=0

cj1...jN |j1 . . . jN ⟩

 |00⟩anc

=

2k−1∑
ma,mb=0

1

2k
|ma⟩ |mb⟩

(
U

(ma)
ϕa

U
(mb)
ϕb

|ϕ⟩
)
|00⟩anc

≡ |ϕ′⟩ (C33)

Note that

(
|+⟩ |+⟩ ⊗ I

)
|ϕ′⟩ = − 1

(2k)2

(
2k−1∑
ma=0

U
(ma)
ϕa

)(
2k−1∑
mb=0

U
(mb)
ϕb

)
|ϕ⟩ |00⟩anc

= − ϕ̂aϕ̂b
|ϕmax|2

|ϕ⟩ |00⟩anc (C34)

Thus, we have(
H⊗2 log2 2kCMP

†
Pa,ϕa,anca

CMP
†
Pb,ϕb,ancb

ZancaXancbZancbXancbCMPPb,ϕb,ancbCMPPa,ϕa,ancaH
⊗2 log2 2k

)
|0⟩⊗2 log2 2k |ϕ⟩ |0⟩⊗2

=

(
|0⟩⊗2 log2 2k

(
− ϕ̂aϕ̂b
|ϕmax|2

)
|ϕ⟩+

∣∣Φ⊥〉) |00⟩anc

= U†
PREPUSUB−SELECTϕaϕb

UPREP |0⟩⊗2 log2 2k |ϕ⟩ |0⟩⊗2
(C35)
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The entire sub-select unitary for this family of terms is then given by

USUB−SELECTϕϕ
=
∏
x⃗∈Ω

D∏
i=1

CMP
′†
Pa,ϕx⃗,anca

(
|x⃗⟩ ⟨x⃗| ⊗ |i⟩ ⟨i| ⊗ Zanc,a +

∣∣Φ⊥〉 〈Φ⊥∣∣⊗ I
)
CMP′Pa,ϕx⃗,anca

·CMP′†Pb,ϕx⃗+δx̂i
,ancb

Xanc,b

(
|x⃗⟩ ⟨x⃗| ⊗ |i⟩ ⟨i| ⊗ Zanc,b +

∣∣Φ⊥〉 〈Φ⊥∣∣⊗ I
)
Xanc,bCMP

′
Pb,ϕx⃗+δx̂i

,ancb

(C36)

Thus, we require 2|Ω|D many controlled Z gates (here, the factor of 2 comes from the fact that we have to apply ϕ̂
at each of the neighboring sites), each controlled on the state of log2 |Ω|D + 2 = log2 4|Ω|D many qubits (here, the
factor of 2 comes from the fact that there are 4 groups of families in the Hamiltonian). Each of these can in turn be
performed using [76, 80] log2 4|Ω|D−1 = log2 2|Ω|D many logical AND computations (and as many uncomputations)
using log2 4|Ω|D − 2 = log2 |Ω|D ancillary qubits initialized in the |0⟩ state. Thus, these controlled operations con-
tribute a total T gate count of 4×2|Ω|D×log2 (2|Ω|D) = 8|Ω|D log2 (2|Ω|D), independent of k (or equivalently, ϕmax).

In addition, each CMP′ operation requires log2 2k many logical ANDs (and just as many uncomputations of these
ANDs via the CMP′† operations). There are 2|Ω|D such operations (here, the factor of 2 comes from the 2 sites).
These contribute a total T gate count of 4× 2|Ω|D × log2 2k = 8|Ω|D log2 (2k).

The total T gate count for the ϕϕ part of the Hamiltonian is therefore

Count(T)ϕϕ = 8|Ω|D (log2 (2|Ω|D) + log2 (2k))

= 8|Ω|D (log2 |Ω|Dk + 2)

= 8|Ω|D
(
log2

|Ω||ϕmax|D
∆ϕ

+ 2

)
(C37)

c. SELECTΦ2 term For L = 2k, nmax = k2 and ni = (k − i− 1)2 in Eq. (87), we get

(
ϕ̂

∆ϕ

)2

=
1

2

2k2−1∑
i=0

U (i), where

U (i) =

2k−1∑
j=0

[
2Θ(k2 + (k − j − 1)2 − i− 1)− 1

]
|j⟩⟨j| (C38)
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Then, we run the following series of operations

|+⟩⊗ log2 2k2 |ϕ⟩ |k⟩ |0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩

=

 1√
2k2

2k2−1∑
i=0

|i⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩

UP+1−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩

Uϕa+1−−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1 . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩

Uϕ−k−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩


|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩

CNOTϕ,ϕanc⊗CNOTK,Kanc−−−−−−−−−−−−−−−−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩) |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩
Uϕ×ϕanc,ϕ2

anc
⊗UK×Kanc,K2

anc−−−−−−−−−−−−−−−−−−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣(ja + 1− k)2

〉 ∣∣k2〉) |scratch⟩
ϕ2
anc+K

2
anc−−−−−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣k2 + (ja + 1− k)2

〉 ∣∣k2〉) |scratch⟩
(C39)

Let us denote this entire sequence of operations as Uinitial for succinctness. The point of these operations is to bring
the registers to a form where a comparison of values can be made followed by an extraction of a phase, similar to the

toy example of the ϕ̂ operator discussed previously. Let n = log2 2k. The two incrementers above require 2n− 3 and
n−2 ANDs respectively[91], the subtraction n ANDs, the CNOTs none, the multiplications (2n2−1)+(2(n−1)2−1)
ANDs[92], and the addition 2n− 1 ANDs. Adding all these, the cost of Uinitial is 4n

2 + 2n− 6 ANDs. Since the cost

of U†
initial is the same, these operations cost a total of 2|Ω|

(
4n2 + 2n− 6

)
ANDs, which equals 8|Ω|

(
4n2 + 2n− 6

)
T

gates.
The ancilla count for Uinitial is given by the number of ancillae used to store values, as well as those used in the

|scratch⟩ register actually used to compute the values. Those used to store values are given by

• log2 (2k
2) (for the comparison)

• log2 (k) (store |k⟩)
• log2 (2k) (copy |ϕ⟩a)
• log2 (k) (copy |k⟩)
• 2 log2 (2k) (product of two log2 (2k) numbers)

• 2 log2 (k) (product of two log2 (k) numbers)
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In addition, the number of ancillae used in |scratch⟩ to actually carry out the various computations in Uinitial is given
by

• log2 (2k
2)− 1 (UP+1)

• log2 (2k)− 1 (Uϕa+1)

• log2 (2k) (Uϕ−k)

• [log2 (2k) + 1] [2 log2 (2k)− 1] + 1 (Uϕ×ϕanc,ϕ2
anc

)

• [log2 (k) + 1] [2 log2 (k)− 1] + 1 (UK×Kanc,K2)

• 2 log2 (2k) (ϕ
2
anc +K2

anc)

Once we have run Uinitial, we then run the following series of operations. 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣k2 + (ja + 1− k)2

〉 ∣∣k2〉) |0⟩ |scratch⟩
CMP−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣k2 + (ja + 1− k)2

〉 ∣∣k2〉 ∣∣Θ(i− k2 − (k − j − 1)2)
〉
anc

)
|scratch⟩

Zanc−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

[
1− 2Θ(i− k2 − (k − j − 1)2)

] ∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣k2 + (ja + 1− k)2

〉 ∣∣k2〉 ∣∣Θ(i− k2 − (k − j − 1)2)
〉
anc

)
|scratch⟩

=

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

[
2Θ(k2 + (k − j − 1)2)− i− 1

] ∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣k2 + (ja + 1− k)2

〉 ∣∣k2〉 ∣∣Θ(i− k2 − (k − j − 1)2)
〉
anc

)
|scratch⟩

CMP†−−−→

 1√
2k2

2k2−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

[
2Θ(k2 + (k − j − 1)2)− i− 1

] ∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣k2 + (ja + 1− k)2

〉 ∣∣k2〉) |0⟩anc |scratch⟩
U†

initial−−−−−→

 1√
2k2

2k2−1∑
i=0

|i⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

[
2Θ(k2 + (k − j − 1)2)− i− 1

] ∣∣j1 . . . ja . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |scratch⟩
(C40)

With a similar analysis as before, we see that with the identifications

UPREP = H⊗⌈1+2 log2 k⌉ ⊗ I
USELECT = U†

initialCMP
†ZancCMPUinitial (C41)

we have

U†
PREPUSELECTUPREP |0⟩ |ϕ⟩ |0⟩anc =

(
|0⟩ ϕ̂2

|ϕmax|2
|ϕ⟩+

∣∣Φ⊥〉) |0⟩anc (C42)

where
(
|0⟩⟨0| ⊗ I

)
|Φ⊥⟩ = 0, and we obtain the state ϕ̂2|ϕ⟩ with probability |ϕ̂2|ϕ⟩|2

|ϕmax|4 upon post-selection.



95

The CMP′ operation (and its inverse), replacing the CMP operation as before, compares two log2 2k
2-qubit numbers

and costs log2 2k
2 many logical ANDs. Thus, the comparisons require |Ω| log2 2k2 many logical ANDs across the

entire lattice, contributing to a T gate count of 4|Ω| log2 2k2.

In addition, we have |Ω| many multi-controlled Z gates to apply across the entire lattice, which incurs a cost of
4|Ω| − 4 T gates using the unary iteration method of [70].

In all, the total T gate count for this family of terms is given by the following, as also noted in the main text in
Eq. (115)

Count(T )ϕ2 = 8|Ω|
(
4 log22 k + 11 log2 k + 1

)
− 4 (C43)

d. SELECTΦ4 term In much the same way as for the ϕ2 term, we can construct an LCU for ϕ̂4 as

(
ϕ̂

∆ϕ

)4

=
1

2

2k4−1∑
i=0

U (i), where

U (i) =

2k−1∑
j=0

[
2Θ(k4 + (k − j − 1)4 − i− 1)− 1

]
|j⟩ ⟨j| (C44)

with essentially the same method for ϕ̂2 as described above, except that Uinitial is modified as follows.

|+⟩⊗ log2 2k4 |ϕ⟩ |k⟩ |0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |0⟩⊗2 log2 k−1

|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩

=

 1√
2k4

2k4−1∑
i=0

|i⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |0⟩⊗2 log2 k−1

|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩

UP+1−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |0⟩⊗2 log2 k−1

|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩

Uϕa+1−−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1 . . . j|Ω|
〉 |k⟩

|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |0⟩⊗2 log2 k−1

|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩

Uϕ−k−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩


|0⟩⊗ log2 2k |0⟩⊗ log2 k |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |0⟩⊗2 log2 k−1

(C45)
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|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩

CNOTϕ,ϕanc⊗CNOTK,Kanc−−−−−−−−−−−−−−−−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩) |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 2k−1 |0⟩⊗2 log2 k−1 |0⟩⊗2 log2 k−1

|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩
Uϕ×ϕanc,ϕ2

anc
⊗UK×Kanc,K2

anc−−−−−−−−−−−−−−−−−−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣(ja + 1− k)2

〉
|0⟩⊗2 log2 2k−1 ∣∣k2〉 |0⟩⊗2 log2 k−1

)
|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩

CNOT ladder⊗CNOT ladder−−−−−−−−−−−−−−−−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣(ja + 1− k)2

〉 ∣∣(ja + 1− k)2
〉 ∣∣k2〉 ∣∣k2〉)

|0⟩⊗4 log2 2k−3 |0⟩⊗4 log2 k−2 |scratch⟩
Uϕ2×ϕ2,ϕ4

anc
⊗Uk2×k2,k4

anc−−−−−−−−−−−−−−−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣(ja + 1− k)2

〉 ∣∣(ja + 1− k)2
〉 ∣∣k2〉 ∣∣k2〉)∣∣(ja + 1− k)4

〉 ∣∣k4〉 |scratch⟩
Uϕ4

anc+K4
anc−−−−−−−−→

 1√
2k4

2k4−1∑
i=0

|i+ 1⟩

 2k−1∑
j1...ja...j|Ω|=0

cj1...ja...j|Ω|

∣∣j1 . . . ja + 1− k . . . j|Ω|
〉
|k⟩

|ja + 1− k⟩ |k⟩
∣∣(ja + 1− k)2

〉 ∣∣(ja + 1− k)2
〉 ∣∣k2〉 ∣∣k2〉)∣∣k4 + (ja + 1− k)4

〉 ∣∣k4〉 |scratch⟩
(C46)

As before, the ancilla count for Uinitial is given by the number of ancillae used to store values, as well as those used
in the |scratch⟩ register actually used to compute the values. Those used to store values are now given by

• log2 (2k
4) (for the comparison)

• log2 (k) (store |k⟩)

• log2 (2k) (copy |ϕ⟩a)

• log2 (k) (copy |k⟩)

• 2 log2 (2k) (product of two log2 (2k) numbers)

• 2 log2 (k) (product of two log2 (k) numbers)

• 2 log2 (2k) (copy (ja + 1− k)2)

• 2 log2 (k) (copy k
2)

• 4 log2 (2k) (product of two 2 log2 (2k) numbers)

• 4 log2 (k) (product of two 2 log2 (k) numbers)

In addition, the number of ancillae used in |scratch⟩ to actually carry out the various computations in Uinitial is given
by

• log2 (2k
2)− 1 (UP+1)
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• log2 (2k)− 1 (Uϕa+1)

• log2 (2k) (Uϕ−k)

• [log2 (2k) + 1] [2 log2 (2k)− 1] + 1 (Uϕ×ϕanc,ϕ2
anc

)

• [log2 (k) + 1] [2 log2 (k)− 1] + 1 (UK×Kanc,K2)

• [2 log2 (2k) + 1] [4 log2 (2k)− 1] + 1 (Uϕ2×ϕ2,ϕ4
anc

)

• [2 log2 (k) + 1] [4 log2 (k)− 1] + 1 (UK2×K2,K2
anc

)

• 4 log2 (2k) (Uϕ4
anc+K

4
anc

)

With this redefinition of Uinitial and the resultant definitions using Eq. (C41), we obtain

U†
PREPUSELECTUPREP |0⟩ |ϕ⟩ |0⟩anc =

(
|0⟩ ϕ̂4

|ϕmax|4
|ϕ⟩+

∣∣Φ⊥〉) |0⟩anc (C47)

where
(
|0⟩⟨0| ⊗ I

)
|Φ⊥⟩ = 0, and we obtain the state ϕ̂4|ϕ⟩ with probability |ϕ̂4|ϕ⟩|2

|ϕmax|8 upon post-selection.

Just as before, let us denote this entire sequence as Uinitial. Let n = log2 2k. The two incrementers cost
(n − 2) + (4n − 3) ANDs, the subtraction n, the (first round of) multiplications (2n2 − 1) + (2(n − 1)2 − 1), the
(first round of) CNOTs none, the (second round of) multiplications (8n2 − 1) + (8(n− 1)2 − 1), and the addition 4n

ANDs. Adding all these, the cost of Uinitial is now 20n2 − 10n+1 ANDs. Since the cost of U†
initial is the same, these

operations cost a total of 2|Ω|
(
20n2 − 10n+ 1

)
ANDs, or 8|Ω|

(
20n2 − 10n+ 1

)
T gates.

Just as before, we follow this with a CMP′ operation, followed by a (multi)-controlled Z, then the CMP′† operation.
The CMP′ operation (and its inverse) compares two log2 2k

4-qubit numbers and costs log2 2k
4 many ANDs. Thus,

the comparisons require |Ω| log2 2k4 many logical ANDs across the entire lattice, contributing to a T gate count of
4|Ω| log2 2k4.

In addition, each Z gate must be controlled on the state of 2 + log2 |Ω| = log2 4|Ω| many qubits. Each of
these can be performed using log2 4|Ω| − 1 = log2 2|Ω| many logical ANDs (and as many uncomputations). Thus,
these controlled gates contribute a total of |Ω| log2 2|Ω| many logical ANDs, and therefore 4|Ω| log2 2|Ω| many T gates.

In all, the total T gate count for this family of terms is given by

Count(T )ϕ4 = 2|Ω|
(
20 log22 k + 38 log2 k + 2 log2 |Ω|+ 15

)
(C48)

2. Block encoding of Hamp using binary decompositions

In this section first we describe in detail Algorithm IIIa, outlined in Section IVE3, that simulates Hamp (Eq. 11)
using an LCU decomposition of Φ, obtained from the binary decomposition of integers. This helps in expressing Φ as
sum of Z operators and hence we obtain LCU decompoition of Φ2 and Φ4 as sum of Z operators. The ℓ1 norm of the
coefficients of an LCU is referred to as the ℓ1 norm of the decomposition or operator. We recall thatHamp = cI+H ′

amp,

for some constant c. Thus it is sufficient to implement e−iH
′
ampτ because it is equal to e−iHampτ up to some global

phase. We describe a block-encoding of H ′
amp by first block encoding each of its partitions and then combining them

using Theorem 13. We implement the circuits using Clifford+T and rotation gates and apply optimization techniques
(for example Theorem 14). Thus we prove Theorem 22 in Section IVE3. Next, we prove a bound on the ℓ1 norm of
the Hamiltonian in Section C 2 a. Finally, we provide a more detailed explanation about Algorithm IIIb outlined in
Section IVE4, where we obtain LCU decomposition of Φ2 and Φ4 from binary representation of integers.
a. Decomposition of Φ : We decompose Φ

∆Φ as follows, as done in [15].

Φ

∆Φ
= diag(−k, . . . ,−1, 0, 1, . . . , k − 1) =

1

2
diag(−2k + 1, . . . ,−1, 1, . . . , 2k − 1)− 1

2
I

= −1

2

log2 k∑
j=0

2jZj −
1

2
I (C49)

Number of non-identity unitaries in the above LCU is (log2 k + 1) and the ℓ1 norm is 1
2

[
1 +

∑log2 k
j=0 2j

]
= k.
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b. Decomposition of Φ2 : From Eq. (C49), we have(
Φ

∆Φ

)2

=

(
Φ

∆Φ
+

I
2

)2

−
(

Φ

∆Φ
+

I
2

)
+

I
4

=
1

12

(
4log2 k+1 − 1

)
I+

log2 k−1∑
j=0

log2 k∑
k>j

2j+k−1ZjZk +
1

2

log2 k∑
j=0

2jZj +
I
4

=
1

6

(
22 log2 k+1 + 1

)
I+

log2 k−1∑
j=0

log2 k∑
k>j

2j+k−1ZjZk +
1

2

log2 k∑
j=0

2jZj . (C50)

Number of non-identity unitaries in this expansion is

1 +
log2 k(log2 k + 1)

2
+ (log2 k + 1) = 1 +

(log2 k + 1)(log2 k + 2)

2
. (C51)

If log2 k = ζ, then the ℓ1 norm is

1

6

(
22ζ+1 + 1

)
+

1

2

ζ∑
j=0

2jZj +
1

2

ζ−1∑
j=0

2j
ζ∑
k>j

2k

=
1

6

(
2k2 + 1

)
+

1

2

(
2ζ+1 − 1

)
+

1

2

ζ−1∑
j=0

2j+j+1

ζ−(j+1)∑
k=0

2k

=
k2

3
+

1

6
+ k − 1

2
+

1

2

ζ−1∑
j=0

22j+1(2ζ−j − 1)

=
k2

3
+ k − 1

3
+

ζ−1∑
j=0

2ζ+j −
ζ−1∑
j=0

4j

=
k2

3
+ k − 1

3
+ 2ζ(2ζ − 1)− 4ζ − 1

3

=
k2

3
+ k − 1

3
+ k2 − k − k2

3
+

1

3
= k2. (C52)

c. Decomposition of Φ4 : Since
(

Φ
∆Φ

)4
=
((

Φ
∆Φ

)2)2
, so we can express it as sum of terms with 1, 2, 3 and up

to 4 Z gates. So number of unitaries in the decomposition can be at most

1 +

(
ζ

1

)
+

(
ζ

2

)
+

(
ζ

3

)
+

(
ζ

4

)
∈

=
1

24

(
ζ4 − 2ζ3 + 11ζ2 + 14ζ + 24

)
[ζ = log2 k]

∈ O(ζ4) or O
(
log42 k

)
. (C53)

To derive the ℓ1 norm of this decomposition we first observe that

(
Φ

∆Φ

)4

=

((
Φ

∆Φ

)2

− 2k2 + 1

6
I

)2

+ 2
2k2 + 1

6

((
Φ

∆Φ

)2

− 2k2 + 1

6
I

)
+

(
2k2 + 1

6

)2

I.

From Eq. C52 we know that that the ℓ1 norm of
((

Φ
∆Φ

)2 − 2k2+1
6 I

)
is k2 − 2k2+1

6 = 2k2

3 − 1
6 . Thus the ℓ1 norm of(

Φ
∆Φ

)4
is at most (

2k2

3
− 1

6

)2

+ 2 · 2k
2 + 1

6

(
2k2

3
− 1

6

)
+

(
2k2 + 1

6

)2

= k4. (C54)
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Proof of Theorem 22. We re-collect that we have partitioned the Hamiltonian H ′
amp (i.e. Hamp without the I part)

as follows.

H1x⃗ =
∑
j

αjZj +
∑
j,k

αjkZjZk + F

∑
j

γjZj +
∑
j,k

γjkZjZk

F† (C55)

H2x⃗ =
∑
j,k,l

αjklZjZkZl +
∑
j,k,l,m

αjklmZjZkZlZm (C56)

H12 =
∑
x⃗∈Ω

H1x⃗ +H2x⃗ (C57)

H3x⃗x⃗′ =
∑
j,j′

βjj′ (Zj)x⃗ (Zj′)x⃗′ (C58)

H3 =
∑

(x⃗,x⃗′)∈ED

H3x⃗x⃗′ (C59)

H ′
amp = H12 +H3 (C60)

Let L1 =
(
log2 k+1

1

)
, L2 =

(
log2 k+1

2

)
, L3 =

(
log2 k+1

3

)
, L4 =

(
log2 k+1

4

)
and L5 = (log2 k + 1)2.

d. Block encoding of H1x⃗ : The ancilla preparation sub-routine is as follows. We assume a bijective map between
j′ = (j, k) to some integer in [L1 + 1, L1 + L2].

PREP1x⃗ |0⟩1+log2(L1+L2) =
1

N1x⃗

 L1∑
j=1

√
αj |j, 0⟩+

L1+L2∑
j′=L1+1

√
αj′ |j′, 0⟩+

L1∑
j=1

√
γj |j, 1⟩

+

L1+L2∑
j′=L1+1

√
γj′ |j′, 0⟩

 [N1x⃗ is normalization constant.] (C61)

The last qubit is used to select the QFT. We require 1 + log2(L1 + L2) qubits. For the state preparation we require
1 + log2(L1 + L2) H, 4(L1 + L2)− 2 rotation gates and 4(L1 + L2) + 3 log2(L1 + L2)− 4 CNOT.

The select sub-routine does the following.

SELECT1x⃗ |j, 0⟩ |ψ⟩ → |j, 0⟩Zj |ψ⟩
SELECT1x⃗ |j, 1⟩ |ψ⟩ → |j, 1⟩ FZjF† |ψ⟩ (C62)

If j > L1 + 1 then we applly two Z gates depending on the mapping. The last qubit is used to selectively apply the
pairs of (log2 k + 1)-qubit QFT. We require L1 + L2 compute-uncompute pairs of C log2(L1+L2)X gates, which can be
synthesized efficiently using Theorem 14 [27]. If we divide the control qubits into M1 groups such that the jth group
has 1

rj
fraction of the qubits, then we require

M1∑
i=1

(L1 + L2)
1
ri C

log(L1+L2)
ri X + (L1 + L2) · CM1X

(compute-uncompute) pairs of gates. We assume equal partitioning into 2 groups i.e. M1 = 2 and r1 = 1
2 . Then,

using the constructions in [75, 76] , i.e. from Eq. 85 we require

4
√
L1 + L2 (log2(L1 + L2)− 2) + 4(L1 + L2)

T gates and √
L1 + L2 (4 log2(L1 + L2)− 6) + 5(L1 + L2)

CNOT gates. Additionally we require (log2 k + 1) + log2 k(log2 k+1)
2 = (log2 k+1)(log2 k+2)

2 number of CZ gates and two
(log2 k + 1)-qubit QFT. To implement the QFTs we require approximately [71]

8(log2 2k) log2

(
log2 2k

ϵ

)
+ log2

(
log2 2k

ϵ

)
log2

 log2

(
log2 2k
ϵ

)
ϵ


T gates and almost an equal number of CNOT gates.
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e. Block encoding of H2x⃗ : The ancilla preparation sub-routine is as follows.

PREP2x⃗ |0⟩log2(L3+L4) =
1√N2x⃗

L3+L4∑
j=1

√
α′′
j |j⟩ (C63)

where α′′
j are the weights obtained while expressing H2x⃗ as sum of Z operators (Eq. C56). For the state preparation

we require log2(L3 + L4) H, 2(L3 + L4) + 3 log2(L3 + L4)− 7 CNOT and 2(L3 + L4)− 2 rotation gates.
The select sub-routines does the following :

SELECT2x⃗ |j⟩ |ψ⟩ → |j⟩Uj |ψ⟩ , (C64)

where Uj is the jth unitary in the LCU decomposition of H2x⃗ in Eq. C56. To selectively implement the unitaries we

require L3 + L4 compute-uncompute pairs of C log2(L3+L4)X gates. Using Theorem 14 and assuming that the control
qubits have been divided into two equal groups, we require

2(L3 + L4)
1
2C

log(L3+L4)
2 X + (L3 + L4) · C2X (C65)

(compute-uncompute) pairs. These in turn can be decomposed into

4
√
L3 + L4 (log2(L3 + L4)− 2) + 4(L3 + L4) (C66)

T gates and √
L3 + L4 (4 log2(L3 + L4)− 6) + 5(L3 + L4) (C67)

CNOT gates. Additionally, we require(
log2 k + 1

3

)
+

(
log2 k + 1

4

)
=

(
log2 k + 2

4

)
(C68)

CZ gates.
f. Block encoding of H3x⃗x⃗′ : The ancilla preparation sub-routine is as follows.

PREP3x⃗x⃗′ |0⟩log2 L5 =
1

N3x⃗x⃗′

L5∑
j=1

√
β′
j |j⟩ (C69)

where β′
j are the weights given in Eq. C58. For state preparation we require log2 L5 H gates, 2L5 + 3 log2 L5 − 7

CNOT and 2L5 − 2 rotation gates.
The selection sub-routine is as follows.

SELECT3x⃗x⃗′ |j⟩ |ψ⟩ → |j⟩Uj |ψ⟩ (C70)

where Uj is the corresponding unitary. We require L5 compute-uncompute pairs of C log2 L5X gates. Again we apply
Theorem 14 and assume that the control qubits have been divided into two equal groups. Then we require

2L
1
2
5 C

log L5
2 X + L5 · C2X (C71)

(compute-uncompute) pairs of gates. These can be further decomposed [75, 76] into

4
√
L5 (log2 L5 − 2) + 4L5 (C72)

T gates and √
L5 (4 log2 L5 − 6) + 5L5 (C73)

CNOT gates. Additionally we require (log2 k + 1)
2
CZ gates.
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g. Block encoding of H12 : We use the recursive block encoding Theorem 13. We can block encode H1x⃗ +H2x⃗

using ancilla preparation sub-routine that has 1 H and 2 rotation gates. The unitary selection sub-routine adds an
extra control to each unitary. For H12 we prepare an equal superposition of log2 |Ω| qubits, using log2 |Ω| H gates
and use these to select an ancilla of each subspace. The rest of the operations are controlled on this. Thus this adds
another control. We require |Ω| number of C log2 |Ω|X compute-uncompute pairs of gates. Using Theorem 14 and
assuming an equal partitioning of the control qubits into two equal groups, we can implement the multi-controlled-X
gates using

|Ω| 12C log |Ω|
2 + |Ω| · CM4X (C74)

(compute-uncompute) pairs, that can be further decomposed [75, 76] into

4
√
|Ω| (log2 |Ω| − 2) + 4|Ω| (C75)

T gates and √
|Ω| (4 log2 |Ω| − 6) + 5|Ω| (C76)

CNOT gates.
h. Block encoding of H3 : We use Theorem 13. We prepare log2 |ED| qubits in equal superposition, using

log2 |ED| H gates. We use these to select two sub-spaces. Specifically, each superimposed state selects an ancilla.
From this ancilla we use two CNOTs to select an ancilla in each of the two corresponding sub-spaces. The rest of
the operations are controlled on these ancillae. So, each unitary of H3x⃗x⃗′ has 1 extra control. Using Theorem 14 and
assuming an equal partitioning into two groups, for the selection we require

2|ED|
1
2C

log |ED|
2 X + |ED| · CM5X (C77)

(compute-uncompute) pairs. These, in turn can be decomposed [75, 76] into

4
√
|ED| (log2 |ED| − 2) + 4|ED| (C78)

T gates and √
|ED| (4 log2 |ED| − 6) + 5|ED| (C79)

CNOT gates.
i. Block encoding of H : We prepare 1 qubit in equal superposition using 1 H. The rest of the operations are

controlled on this. So it adds an extra control. Thus overall, unitaries in H1x⃗, H2x⃗ have 3 extra controls and unitaries
in H3x⃗x⃗′ have 2 extra controls. Thus for each unitary in H1x⃗, H2x⃗ we require a (compute-uncompute) pair of C3X,
that can be implemented with 8 T and 9 CNOT gates. Each unitary in H3x⃗x⃗′ require a (compute-uncompute) pair
of C2X, that can be implemented with 4 T and 5 CNOT gates.

Overall, we require following numbers of T gates,

Nt ≤ |Ω|
[
4
√
L1 + L2 (log2(L1 + L2)− 2) + 12(L1 + L2) + 4

√
L3 + L4 (log2(L3 + L4)− 2) + 12(L3 + L4)

]
+|ED|

(
4
√
L5 (log2 L5 − 2) + 8L5

)
+ 4
√

|Ω| (log2 |Ω| − 2) + 4|Ω|+ 4
√
|ED| (log2 |ED| − 2) + 4|ED|

+2|Ω|

8(log2 2k) log2

(
log2 2k

ϵQFT

)
+ log2

(
log2 2k

ϵQFT

)
log2

 log2

(
log2 2k
ϵQFT

)
ϵQFT

 (C80)

following number of CNOT gates,

Ncx ∈ |Ω|
[√

L1 + L2 (4 log2(L1 + L2)− 6) + 14(L1 + L2) +
√
L3 + L4 (4 log2(L3 + L4)− 6) + 14(L3 + L4)

]
+|ED|

(√
L5 (4 log2 L5 − 6) + 10L5

)
+
√
|Ω| (4 log2 |Ω| − 6) + 5|Ω|+

√
|ED| (4 log2 |ED| − 6) + 5|ED|

+2|Ω|

8(log2 2k) log2

(
log2 2k

ϵQFT

)
+ log2

(
log2 2k

ϵQFT

)
log2

 log2

(
log2 2k
ϵQFT

)
ϵQFT


+2(2(L1 + L2) + L3 + L4 + L5) + 3(log2(L1 + L2) + log2(L3 + L4) + log2 L5)− 21 (C81)
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following number of rotation gates,

Nr ≤ 4(L1 + L2) + 2(L3 + L4) + 2L5 − 4 (C82)

following number of CZ gates

Ncz ≤ |Ω| (L1 + L2 + L3 + L4) + |ED|L5, (C83)

and the following number of H gates,

Nh ≤ 3 + log2(L1 + L2) + log2(L3 + L4) + log2 L5 + log2 |ED|+ log2 |Ω|, (C84)

where L1 = log2 k + 1, L2 =
(
log2 k+1

2

)
, L3 =

(
log2 k+1

3

)
, L4 =

(
log2 k+1

4

)
and L5 = (log2 k + 1)2. Hence we prove

Theorem 22.

a. ℓ1 norm of H ′
amp

In this section we prove a bound on the ℓ1 norm of the implemented Hamiltonian i.e. Hamp′ , as decomposed in Eq
C55-C60.

Proof of Lemma 23. We try to shave off most of the identity factors, as these contribute to a global phase only. Let
|∆Φ| := ∆ and log2 k := ζ.

B1 :=

ζ∑
j=0

2jZj

B2 :=

ζ−1∑
j=0

ζ∑
k>j

2j+kZjZk

A1 :=

(
Φ̂

∆

)2

− 2k2 + 1

6
I =

B1 +B2

2

Each one of the above matrices is a sum of non-identity operators. Now we express each summand as a function of
the above operators and identity.

(
Φ̂

∆

)2

= A1 +
2k2 + 1

6
I (C85)

(
Φ̂

∆

)4

= A2
1 +

2k2 + 1

3
A1 +

(
2k2 + 1

6

)2

I+
(
2k2 + 1

3

)
A1 (C86)

(
Π

∆

)2

= F
(
Φ̂

∆

)2

F† = FA1F† +
2k2 + 1

6
I (C87)

B2
1 =

 ζ∑
j=0

2jZj

2

=
4k2 − 1

3
I+

1

2
B2 (C88)

A2
1 =

1

4

(
B2

1 +B2
2 + 2B1B2

)
=

4k2 − 1

12
I+

1

8
B2 +

1

4
B2

2 +
1

2
B1B2 (C89)
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Now consider the following term.∑
x⃗∈Ω

∑
x⃗′∈Nx

Φ(x⃗)Φ(x⃗′)

=

(
∆

2

)2∑
x⃗

∑
x⃗′∈Nx

I+
ζ∑
j=0

2jZj,x +

ζ∑
j′=0

2j
′
Zj′,x′ +

ζ∑
j,j′=0

2j+j
′
Zj,xZj′,x′


=

(
∆

2

)2∑
x⃗

∑
x⃗∈Nx

I+B1,x +B1,x′ +

ζ∑
j,j′=0

2j+j
′
Zj,xZj′,x′


:=

(
∆

2

)2∑
x⃗

∑
x⃗′∈Nx

(I+B1,x +B1,x′ +B3,x,x′) (C90)

Plugging Eq. C85-C90 in the expression for Hamp we obtain the following.

Hamp =
∑
x⃗

cII+
∑
x⃗

(
λ∆4

24
A2

1 +
∆2

2
FA1F† +

(
(M2 + 1)∆2

4
+
λ∆4(2k2 + 1)

144

)
B1(

(M2 + d)∆2

4
+
λ∆4(2k2 + 1)

144

)
B2

)
− ∆2

2

∑
x⃗

∑
x⃗′∈Nx

B3,x,x′

=
∑
x⃗

c′II+
∑
x⃗

∆2

2
FA1F† − ∆2

2

∑
x⃗,x⃗′

B3,x,x′ +
∑
x⃗

(
(M2 + 1)∆2

4
+
λ∆4(2k2 + 1)

144

)
B1

+
∑
x⃗

λ∆4

48
B1B2 +

∑
x⃗

(
(M2 + d)∆2

4
+
λ∆4(2k2 + 1)

144
+
λ∆4

192

)
B2 +

∑
x⃗

λ∆4

96
B2

2 (C91)

Now we compute the norms of the following.

∥A1∥ ≤ 2k2

3
− 1

6

∥B3,x,x′∥ ≤ (2k − 1)2

∥B1∥ ≤ 2k − 1

∥B2∥ ≤ 2

(
2k2

3
− k +

1

3

)
∥B2

2∥ ≤ 4

(
4k4

9
− 4k3

3
+

13k2

9
− 2k

3
+

1

9

)
∥B1B2∥ ≤ 2

(
4k3

3
− 8k2

3
+

5k

3
− 1

3

)
Substituting the above inequalities in Eq. C91 we have the following, thus proving Lemma 23.

∥H ′
amp∥ ≤ |Ω|

(
λ∆4

27
k4 + k2

((
M2 + 7d+ 1

3

)
∆2 − 0.048611λ∆4

)
+ k

(
−3d∆2 + 0.03125λ∆4

)
+∆2

(−M2 + 8d− 4

6

)
− 0.0081019λ∆4

)
(C92)

b. Block encoding using binary decomposition for all operators

In this section we first prove Theorem 29 in detail and then we explicitly construct some circuits for the signature
matrices arising in the decomposition of Φ2 and Φ4.
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Proof of Theorem 29. In this case we partition Hamp as follows.

Hϕ2x⃗ = Π2(x⃗) + (M2 + d+ 1)Φ2(x⃗)

Hϕ4x⃗ = Φ4(x⃗)

Hϕx⃗x⃗′ = Φ(x⃗)Φ(x⃗′) = H3x⃗x⃗′

H3 =
∑

x⃗,x⃗′∈ED

H3x⃗x⃗′

H ′
12 =

1

2

∑
x⃗∈Ω

Hϕ2x⃗ +
Λ

4!
Hϕ4x⃗

Hamp = H ′
12 +H3 (C93)

The recursive block encoding is done in a similar fashion as before. We give brief descriptions with gate complexity.

a. Block encoding of Hϕ2x⃗ : Let Φ2 =
∑2 log2 k
j=0 Uj , where Uj is a signature matrix. These can be obtained using

Lemma 16, as described in Section IVE4. The ancilla preparation sub-routine is,

PREPϕ2x⃗ =
1

Nϕ2x⃗

2 log2 k∑
j=0

√
αj |j, 0⟩+

2 log2 k∑
l=0

√
βl |l, 1⟩

 , (C94)

where the weights αj and βl include the coefficients from LCU decomposition of operators Φ2 and Π2 = FΦ2F†, as
well as the coefficients of Φ2 and Π2 in the definition of the Hamiltonian. The last qubit is used to select the QFT.
We require 1 + log2(2 log2 k) qubits. For the state preparation we require 1 + log2(2 log2 k) H, 4 log2(k)− 2 rotations,
4 log2(k) + 3 log2(2 log2 k)− 7 CNOT gates.

The SELECT sub-routine does the following.

SELECTϕ2x⃗ |j, 0⟩ |ψ⟩ 7→ |j, 0⟩Uj |ψ⟩
SELECTϕ2x⃗ |j, 1⟩ |ψ⟩ 7→ |j, 0⟩ FUjF† |ψ⟩ (C95)

As explained, we require 2 log2 k number of C log(2 log k)X gates to select the unitaries. Using Theorem 14, if we divide
the control qubits into 2 equal groups then we require the following number of T gates to implement the control that
selects the signature matrices

4
√

2 log2 k(log(2 log2 k)− 2) + 8 log2 k, (C96)

and the following number of CNOT gates√
2 log2 k(4 log(2 log2 k)− 6) + 10 log2 k. (C97)

Additionally, assuming Conjecture 28 we require O(log2 k) number of T-gates for the implementation of the signature
matrices. We also requrie two log2 k + 1-qubit QFT.

b. Block encoding of Hϕ4x⃗ : Let Φ4 =
∑4 log2 k
j=0 Uj , where Uj is a signature matrix obtained using Lemma 16,

as described in Section IVE4. The ancilla preparation sub-routine is as follows.

PREPϕ4x⃗ =
1

Nϕ4x⃗

4 log2 k∑
j=0

√
αj |j⟩ (C98)

where the weights αj include the coefficients from LCU decomposition of operators Φ4. We require 1 + log2(4 log2 k)
qubits. For the state preparation we require 1+ log2(4 log2 k) H, 8 log2(k)−2 rotations, 8 log2(k)+3 log2(4 log2 k)−7
CNOT gates.

The SELECT sub-routine does the following.

SELECTϕ4x⃗ |j, 0⟩ |ψ⟩ 7→ |j⟩Uj |ψ⟩
(C99)

As explained, we require 4 log2 k number of C log(4 log k)X gates to select the unitaries. Using Theorem 14, if we divide
the control qubits into 2 equal groups then we require the following number of T gates

4
√

4 log2 k(log(4 log2 k)− 2) + 16 log2 k, (C100)
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and the following number of CNOT gates√
4 log2 k(4 log(4 log2 k)− 6) + 20 log2 k. (C101)

Assuming Conjecture 28 we require O(log2 k) T-gates to implement the signature matrices.
c. Block encoding of H ′

12 : We use the recursive block encoding Theorem 13. We can block encodeHϕ2x⃗+
Λ
24Hϕ4x⃗

using ancilla preparation sub-routine that has 1 H and 2 rotation gates. For H ′
12 we prepare an equal superposition

of log2 |Ω| qubits, using log2 |Ω| H gates and use these to select an ancilla of each subspace. The rest of the operations
are controlled on this. Thus this adds another control. We require |Ω| number of C log2 |Ω|X compute-uncompute pairs
of gates. Using Theorem 14 and assuming an equal partitioning of the control qubits into two equal groups, we can
implement the multi-controlled-X gates using

|Ω| 12C log |Ω|
2 X + |Ω| · C2X (C102)

(compute-uncompute) pairs, that can be further decomposed [75, 76] into

4
√
|Ω| (log2 |Ω| − 2) + 4|Ω| (C103)

T gates and √
|Ω| (4 log2 |Ω| − 6) + 5|Ω| (C104)

CNOT gates.

d. Block encoding of H3x⃗x⃗′ and H3 : The block encoding of Φ(x⃗)Φ(x⃗′) = H3x⃗x⃗′ is provided earlier. For the
preparation sub-routine we require log2 |ED|+ log2(log2 k + 1)2 H, 2(log2 k + 1)2 − 2 rotation gates, 2(log2 k + 1)2 +
3 log2(log2 k + 1)2 − 7 CNOT gates. For the selection sub-routine we require

|ED|
(
8(log2 k + 1)(log2(log2 k + 1)− 1) + 4(log2 k + 1)2

)
+4
√
|ED|(log2 |ED| − 2) + 4|ED| (C105)

T gates and

|ED|
(
(log2 k + 1)(8 log2(log2 k + 1)− 6) + 5(log2 k + 1)2

)
+
√
|ED|(4 log2 |ED| − 6) + 5|ED| (C106)

CNOT gates and (log2 k + 1)2 CZ gates.
e. Block encoding of Hamp : Using Theorem 13 we can block encode Hamp using a PREP sub-routine with

1 H and 2 rotation gates and a SELECT sub-routine that adds an extra control. Thus under the assumptions of
Conjecture 28 we require

N ′
t ≤ |Ω|

(
4
√
2 log2 k(log2(2 log2 k)− 2) + 8 log2 k + 4

√
4 log2 k(log2(4 log2 k)− 2) + 16 log2 k

)
+4
√
|Ω| (log2 |Ω| − 2) + 4|Ω|+ |ED|

(
8(log2 k + 1)(log2(log2 k + 1)− 1) + 4(log2 k + 1)2 + 4

)
+4
√
|ED|(log2 |ED| − 2)

+2|Ω|(8(log2 2k) log2
(
log2 2k

ϵQFT

)
+ log2

(
log2 2k

ϵQFT

)
log2

 log2

(
log2 2k
ϵQFT

)
ϵQFT

) +O
(
|Ω| log22 k

)
(C107)

T gates,

N ′
cx ≤ |Ω|

(√
2 log2 k(4 log2(2 log2 k)− 6) + 10 log2 k +

√
4 log2 k(4 log2(4 log2 k)− 6) + 20 log2 k + 5

)
+
√
|Ω| (4 log2 |Ω| − 6) + |ED|

(
(log2 k + 1)(8 log2(log2 k + 1)− 6) + 5(log2 k + 1)2 + 5

)
+
√
|ED|(4 log2 |ED| − 6)

+2|Ω|

8(log2 2k) log2

(
log2 2k

ϵQFT

)
+ log2

(
log2 2k

ϵQFT

)
log2

 log2

(
log2 2k
ϵQFT

)
ϵQFT

 (C108)

CNOT gates,

Nr ≤ 12 log2 k + 2(log2 k + 1)2 − 3 (C109)

rotation gates. This proves Theorem 29



106

(a) (b) (c)

(d) (e) (f)

FIG. 17: Quantum circuits for (a) U3, (b) U4, (c) U5, (d) U6, (e) U7 and (f) U14. Qubits not affected by gate
operations have not been shown.

c. Quantum circuits for signature matrices in the decomposition of ϕ2

In this section we describe the explicit constructions of signature matrices appearing in the LCU decomposition of
Φ2, as discussed in Section IVE4. We recall that

Φ2 = diag
(
(k − 1)2, (k − 2)2, . . . , 1, 0, 1, . . . , (k − 1)2, k2

)
= +c0I+

ζ′∑
ℓ=1

cℓUℓ, (C110)

where c0, cℓ are real coefficients and Uℓ is a signature matrix obtained from the ℓth bit in the binary decomposition
of 0, 1, . . . , k2 and then replacing the 0 with 1 and 1 with -1, as explained earlier. ζ ′ = 1 + 2 log k is the maximum
number of bits in the binary expansion of k2. We assume k = 2k

′
for some integer k′ since we have a unitary. As

mentioned earlier, in Table IV we have listed all integers n such that n ≤ 27 = 128 and the bthℓ (1 ≤ ℓ ≤ 15) bit in
the binary decomposition of n2 has 1. In Table VI we enumerate all integers n ≤ 2x (where x = 2, . . . , 12) such that
n2 has a binary decomposition with 1 at a particular bit position.

We consider the case where k = 27. So our circuits consist of 8 qubits and we label them as q8, . . . , q1, corresponding
to the 8 bits - b8, . . . , b1, in the binary decomposition of any number with value at most 27. b8 and b1 are the most
and the least significant bits, respectively. In Fact 26 we have mentioned that U1 can be implemented with a single
Z gate on qubit q1 and U2 is an all 0 matrix.

ℓ = 3 : From Lemma 24 we know that −1 occurs whenever n ∈ {8k+4, 8k+5, 8k+6, 8k+7} and it can be square
of an integer if it is of the form 8k + 4 (Eq. 154). Now, 8k + 4 = 4(2k + 1) = 22(2k + 1) and so it is a square of the
form (2(2k′′ + 1))2, where k′′ is an integer. If (2(2k′′ + 1))2 = j2 then it can occur at row (k − 1)− j and k − 1 + j.
If we expand all integers of the form 2(2k′′ + 1) we observe that they have a trailing 10. Adding or subtracting k− 1
changes these two bits to 01. Thus all such integers appear in those rows whose index has a trailing 01. This implies
whenever the state of the first qubit is 1 and second qubit is 0, a -1 phase is incurred. Thus we can implement U3

with a (compute-uncompute) pair of Toffoli, X, and a Z on an extra ancilla, as shown in Fig. 17a. To implement
controlled-U3 we add one control to Z, which does not contribute to additional T gates.

ℓ = 4 : From Lemma 24 we know that −1 occurs whenever n ∈ {16k+8, 16k+9, . . . 16k+15} and it can be square
of an integer if it is of the form 16k+9 (Equation 154). The integers whose squares are of this form have trailing 011
or 101, for example 33, 52, 112, 132, etc. So they occur at positions with trailing 100 or 010. U4 can be implemented
with 4 CNOT and 1 CZ, as shown in Fig. 17b. To implement controlled-U4 we add an extra control to CZ, that
contributes to T gates.

ℓ = 5 : Integers, the binary decomposition of whose squares have 1 in the 5th position are of the form 16n+m, where n
is a non-negative integer and m ∈ {4, 5, 7, 9, 11, 12} (Table IV) and in binary m ∈ {0100, 0101, 0111, 1001, 1100, 1011}.
The trailing bits in the binary decomposition of integers of the form 16n+m are in {0100, 0101, 0111, 1001, 1100, 1011}
and so in U5 they appear at positions whose binary decomposition have the following trailing bits
- 1011, 1010, 1000, 0110, 0011, 0100. So we can implement U5 with the circuit shown in Fig. 17c, consisting of 3
double-controlled-Z and 4 pairs of CNOT. To implement controlled-U5 we add extra controls to the CZs.
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ℓ = 6 : In Table IV we have listed the integers such that the binary decomposition of their squares have 1 in the
6th position. These are of the form 32n+m where n is a non-negative integer and

m ∈ Sm = {6, 7, 10, 11, 13, 15, 17, 19, 21, 22, 25, 26}.

In binary the integers in Sm are as follows.

Sm ∈ {00110, 00111, 01010, 01011, 01101, 01111, 10001, 10011, 10101, 10110, 11001, 11010}

We obtain the row positions by adding and subtracting 11 . . . 111, which implies that the trailing 5 bits get comple-
mented. Thus U6 can be implemented with the circuit shown in Fig. 17d, consisting of 6 (compute-uncompute) pairs
of CNOT and 3 2-qubit-controlled-Z. To implement controlled-U6 we need to add one control to each multi-controlled
Z.
ℓ = 7 : In Table IV we have listed the integers such that the binary decomposition of their squares have 1 in the

7th position. These are of the form 64n+m where n is a non-negative integer and m ∈ Sm, a set specified in Table
IV. As explained, the gates in this unitary act on 6 qubits, corresponding to the last significant 6 bits in the binary
representation of an integer. We calculate the binary representation of integers in Sm. We obtain the row positions
with −1 by adding and subtracting 11 . . . 111. We group appropriate binary strings in order to induce ”Don’t care”
conditions, in order to optimize the circuit. Thus we obtain the circuit in Fig. 17e, that implements U7.
ℓ = 14 : From Table IV we observe that squares of integers from 91 (01011011) to 127 (01111111) are such that

their binary expansions have 1 in the 14th bit position. These integers appear at rows 0-36 and 218-254. The binary
encoding of these rows range from 00000000 (0) - 00100100 (36) and 11011010 (218) - 11111110 (254). Thus when the
state of the qubits are within the stated range the circuit incurs a phase of -1. So U14 can be implemented with the
circuit shown in Fig. 17f. Again, we have optimized the circuit by identifying ”Don’t care” conditions among groups
of binary strings.

d. Quantum circuits for signature matrices in the decomposition of ϕ4

In this section we describe the explicit constructions of signature matrices appearing in the LCU decomposition of
Φ4, as discussed in Section IVE4. We recall that

Φ4 = diag
(
(k − 1)4, (k − 2)4, . . . , 1, 0, 1, . . . , (k − 1)4, k4

)
= +c′0I+

ζ′′∑
ℓ=1

c′ℓU
′
ℓ, (C111)

where c′0, c
′
ℓ are real coefficients and U ′

ℓ is a signature matrix obtained from the ℓth bit in the binary decomposition
of 0, 1, . . . , k4 and then replacing the 0 with 1 and 1 with -1, as explained earlier. ζ ′′ = 1 + 4 log k is the maximum
number of bits in the binary expansion of k4. As mentioned earlier, in Table V we have listed all integers n such that
n ≤ 27 = 128 and the bthℓ (1 ≤ ℓ ≤ 29) bit in the binary decomposition of n4 has 1. In Table VII we enumerate all
integers n ≤ 2x (where x = 2, . . . , 12) such that n4 has a binary decomposition with 1 at a particular bit position.
As in previous section, we consider the case where k = 27. So our circuits consist of 8 qubits and we label them
as q8, . . . , q1, corresponding to the 8 bits - b8, . . . , b1, in the binary decomposition of any number with value at most
27. b8 and b1 are the most and the least significant bits, respectively. In Fact 26 we have mentioned that U1 can be
implemented with a single Z gate on qubit q1 and U2, U3, U4 are all 0 matrix.
ℓ = 5 : In Table V we have enlisted all the integers such that the binary decomposition of their fourth power has 1 in

the 5th bit position. These are of the form 8n+2, 8n+3, 8n+5, 8n+6, where n is a non-negative integer. The binary
decomposition of 2, 3, 5 and 6 are 010, 011, 101 and 110, respectively. So the trailing bits in the binary decomposition
of integers of the above form are either 010, 011, 101 or 110. These appear in rows whose binary decomposition has
any of the four trailing bits - 101, 100, 010, 001. Therefore, U ′

5 can be implemented with the circuit shown in Figure
18a, consisting of 4 (compute-uncompute) pairs of CNOT and 2 CZ. Controlled-U ′

5 can be implemented by adding
extra controls to each CZ.
ℓ = 6 : Consider integers of the form 16n+m, where n is a non-negative integer and

m ∈ Sm = {5(0101), 7(0111), 9(1001), 11(1011)}.

From Table V, we observe that the binary decomposition of the fourth power of these integers has 1 in the 6th bit
position. In Φ4 these integers appear at rows such that the binary decomposition of their index has trailing 4 bits
which are complements of those in Sm. Thus, U ′

6 can be implemented with the circuit in Figure 18b, consisting of 2
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(a) (b) (c)

(d) (e)

FIG. 18: Quantum circuits for (a) U ′
5, (b) U

′
6, (c) U

′
7, (d) U

′
8 and (f) U ′

28. Qubits not affected by gate operations
have not been shown.

(compute-uncompute) pairs of CNOTs, and 1 CZ. Controlled-U ′
6 can be implemented by adding an extra control to

CZ.
ℓ = 7 : Consider integers of the form 32n+m, where n is a non-negative integer and

m ∈ Sm = {3(00011), 5(00101), 7(00111), 15(01111), 17(10001), 25(11001), 27(11011), 29(11101)}.

From Table V we can say that the binary decomposition of the fourth power of these integers has 1 in the 7th bit
position. These integers appear at rows whose binary decomposition has the last 5 bits that are complements of the
ones in Sm. So, U ′

7 can be implemented with the circuit in Figure 18c, consisting of 6 (compute-uncompute) pairs of
CNOT and two double-controlled-Z. Controlled- U ′

7 can be implemented by adding extra control to the controlled-Z.
ℓ = 8 : In Table V we have listed the integers such that the binary decomposition of their fourth power have 1 in

the 8th position. These are of the form 64n+m where n is a non-negative integer and m ∈ Sm, a set specified in Table
V. As explained, the gates in this unitary act on 6 qubits, corresponding to the last significant 6 bits in the binary
representation of an integer. We calculate the binary representation of integers in Sm. We obtain the row positions
with −1 by adding and subtracting 11 . . . 111. We group appropriate binary strings in order to induce ”Don’t care”
conditions, in order to optimize the circuit. Thus we obtain the circuit in Fig. 18d, that implements U ′

8.
ℓ = 28 : From Table V we observe that the fourth power of integers from 108 to 127 are such that their binary

expansions have 1 in the 14th bit position. These integers appear at rows 0-19 and 235-254. The binary encoding of
these rows range from 00000000 (0) - 00010011 (19) and 11101011 (218) - 11111110 (254). Thus when the state of the
qubits are within the stated range the circuit incurs a phase of -1. So U ′

28 can be implemented with the circuit shown
in Figure 18e. Again, we have optimized the circuit significantly by identifying appropriate ”Don’t care” conditions.
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Bit Integers #Integers
b1 2n+ 1 : 0 ≤ n ≤ 63 64
b2 ∅ 0
b3 2(2n+ 1) : 0 ≤ 31 32
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b9 16, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 36, 37, 38, 39, 43, 44, 45, 48, 49, 50, 54, 55, 58, 59, 62, 63, 66, 67,
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Bit Integers #Integers
b1 2n+ 1 : 0 ≤ n ≤ 63 64
b2 ∅ 0
b3 ∅ 0
b4 ∅ 0
b5 8n+ 2, 8n+ 3, 8n+ 5, 8n+ 6 : 0 ≤ n ≤ 15 64
b6 16n+m : 0 ≤ n ≤ 7, m ∈ {5, 7, 9, 11} 32
b7 32n+m : 0 ≤ n ≤ 3, m ∈ {3, 5, 7, 15, 17, 25, 27, 29} 32
b8 64n+m : n = 0, 1, m ∈ {9, 13, 15, 21, 25, 27, 29, 31, 33, 35, 37, 39, 43, 49, 51, 55} 32
b9 4, 6, 7, 9, 10, 11, 12, 13, 15, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 35, 36, 38, 42, 44, 47, 52, 54, 58, 59, 60,

61, 63, 65, 67, 68, 69, 70, 74, 76, 81, 84, 86, 90, 92, 93, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 113,
115, 116, 117, 118, 119, 121, 122, 124

64

b10 5, 10, 13, 14, 17, 18, 21, 22, 27, 29, 31, 41, 42, 43, 45, 46, 49, 50, 51, 53, 54, 57, 63, 67, 69, 73, 74, 78, 81,
82, 86, 89, 91, 93, 95, 103, 105, 106, 109, 110, 113, 114, 117, 118, 119, 121, 125, 127

48

b11 6, 10, 13, 14, 15, 17, 19, 21, 23, 25, 30, 31, 34, 35, 39, 41, 47, 49, 50, 53, 54, 58, 59, 61, 63, 69, 70, 74, 75,
77, 78, 79, 81, 85, 87, 89, 91, 93, 94, 95, 98, 101, 105, 107, 109, 111, 113, 114, 115, 118, 119, 122, 127

53

b12 7, 9, 11, 13, 18, 19, 26, 27, 29, 30, 33, 37, 39, 41, 42, 43, 50, 51, 54, 58, 62, 63, 66, 67, 69, 70, 74, 75, 78,
83, 86, 87, 89, 91, 93, 97, 98, 102, 107, 110, 121, 123, 125, 127

44

b13 8, 9, 11, 12, 14, 18, 19, 20, 21, 22, 24, 25, 26, 27, 30, 31, 33, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51,
52, 54, 56, 57, 62, 63, 67, 69, 70, 72, 73, 76, 79, 81, 84, 88, 89, 91, 94, 95, 97, 101, 104, 105, 107, 108, 116,
117, 118, 120, 121, 122, 126, 127

63

b14 10, 11, 13, 19, 20, 21, 25, 26, 28, 34, 35, 36, 42, 43, 44, 47, 49, 51, 53, 54, 55, 58, 59, 62, 65, 67, 77, 82, 83,
84, 86, 87, 90, 92, 93, 98, 100, 102, 103, 105, 106, 108, 109, 111, 113, 114, 119, 126, 127

49

b15 12, 13, 15, 17, 19, 20, 21, 23, 25, 26, 28, 29, 30, 34, 35, 38, 39, 42, 46, 47, 49, 50, 53, 59, 60, 61, 62, 63, 65,
67, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103, 106, 108, 109, 111,
113, 115, 116, 117, 118, 119, 121, 122, 125, 126, 127

67

b16 14, 15, 18, 19, 21, 22, 25, 26, 29, 35, 36, 37, 38, 45, 49, 52, 54, 55, 58, 59, 60, 66, 69, 71, 74, 75, 78, 81, 82,
84, 85, 86, 95, 97, 99, 100, 101, 102, 105, 108, 109, 113, 115, 116, 119, 121, 123, 124, 126

49

b17 16, 17, 18, 19, 22, 24, 25, 28, 36, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 52, 54, 55, 57, 60, 61, 62, 66, 67, 69,
71, 73, 74, 76, 80, 82, 84, 88, 89, 90, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 108, 109, 112, 113, 114,
117, 119, 124, 125, 126, 127

60

b18 20, 21, 22, 26, 29, 31, 33, 35, 38, 39, 40, 41, 42, 45, 47, 49, 50, 51, 52, 55, 56, 61, 67, 68, 70, 71, 72, 75, 79,
84, 86, 87, 88, 91, 94, 95, 97, 98, 101, 102, 105, 106, 108, 110, 113, 116, 117, 118, 119, 121, 124

51

b19 23, 24, 25, 26, 30, 31, 34, 35, 37, 38, 40, 42, 43, 45, 46, 49, 50, 51, 52, 56, 58, 60, 68, 70, 76, 78, 83, 84, 85,
89, 91, 92, 93, 94, 97, 98, 100, 103, 105, 106, 111, 113, 115, 118, 120, 121, 122, 123, 124, 125, 126

51

b20 27, 28, 29, 30, 31, 36, 37, 38, 41, 42, 44, 45, 47, 50, 52, 53, 55, 58, 59, 69, 70, 72, 74, 76, 77, 85, 87, 89, 90,
95, 98, 99, 104, 105, 108, 109, 110, 111, 115, 116, 117, 118, 120, 125

44

b21 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 48, 49, 50, 53, 56, 59, 61, 63, 65, 67, 69, 72, 73, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 88, 89, 91, 93, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 110, 113, 114, 119, 120,
122, 124

56

b22 39, 40, 41, 42, 43, 44, 45, 51, 52, 53, 57, 58, 59, 62, 63, 66, 67, 70, 73, 75, 76, 78, 80, 82, 84, 87, 89, 90, 93,
94, 98, 99, 100, 101, 102, 103, 104, 105, 109, 110, 112, 113, 115, 117, 119, 122, 123

47

b23 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 68, 69, 70, 74, 75, 76, 79, 80, 83, 84, 86, 87, 90, 92, 93, 95, 97,
98, 100, 102, 104, 107, 109, 112, 115, 116, 119, 120, 121

41

b24 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 72, 73, 74, 75, 76, 81, 82, 83, 84, 88, 89, 90, 94, 95, 99, 100, 103,
104, 106, 107, 110, 113, 116, 118, 119, 121, 123, 125, 127

40

b25 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89, 90, 96, 97, 98, 99, 100, 105, 106, 107,
111, 112, 113, 117, 118, 119, 122, 123, 126, 127

37

b26 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107, 114, 115, 116, 117,
118, 119, 124, 125, 126, 127

31

b27 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 120, 121, 122, 123, 124, 125, 126,
127

25

b28 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127 20
b29 128 1

TABLE V: The leftmost column stores bit positions, indicated by bi. The second column stores integers such that
the binary decomposition of their fourth power has 1 in the bthi bit position. The third column stores the number of

integers whose fourth power has 1 in the bthi bit position. We have listed integers until 128.
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22 23 24 25 26 27 28 29 210 211 212

b1 2 4 8 16 32 64 128 256 512 1024 2048
b2 0 0 0 0 0 0 0 0 0 0 0
b3 1 2 4 8 16 32 64 128 256 512 1024
b4 1 2 4 8 16 32 64 128 256 512 1024
b5 1 3 6 12 24 48 96 192 384 768 1536
b6 0 2 6 12 24 48 96 192 384 768 1536
b7 0 1 6 14 28 56 112 224 448 896 1792
b8 0 0 4 11 28 56 112 224 448 896 1792
b9 0 0 1 11 27 60 120 240 480 960 1920
b10 0 0 0 9 24 55 120 240 480 960 1920
b11 0 0 0 1 22 53 121 248 496 992 1984
b12 0 0 0 0 18 47 108 233 496 992 1984
b13 0 0 0 0 1 44 106 236 493 1008 2016
b14 0 0 0 0 0 37 97 221 478 995 2016
b15 0 0 0 0 0 1 88 212 469 983 2017
b16 0 0 0 0 0 0 74 195 446 957 1990
b17 0 0 0 0 0 0 1 175 422 932 1952
b18 0 0 0 0 0 0 0 149 389 891 1915
b19 0 0 0 0 0 0 0 1 350 847 1864
b20 0 0 0 0 0 0 0 0 299 779 1786
b21 0 0 0 0 0 0 0 0 1 699 1692
b22 0 0 0 0 0 0 0 0 0 599 1560
b23 0 0 0 0 0 0 0 0 0 1 1397
b24 0 0 0 0 0 0 0 0 0 0 1199
b25 0 0 0 0 0 0 0 0 0 0 1

TABLE VI: Number of integers less than 2x, x = 2, 3, . . . , 12, such that the binary decomposition of their square has
1 at a certain bit position. That is, the cell at the intersection of row labeled by bit bi and column labeled by integer

2x stores the number of integers n ≤ 2x such that the binary decomposition of n2 has 1 at bit position bi.
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22 23 24 25 26 27 28 29 210 211 212

b1 2 4 8 16 32 64 128 256 512 1024 2048
b2 0 0 0 0 0 0 0 0 0 0 0
b3 0 0 0 0 0 0 0 0 0 0 0
b4 0 0 0 0 0 0 0 0 0 0 0
b5 2 4 8 16 32 64 128 256 512 1024 2048
b6 0 2 4 8 16 32 64 128 256 512 1024
b7 1 3 4 8 16 32 64 128 256 512 1024
b8 0 0 3 8 16 32 64 128 256 512 1024
b9 1 3 9 19 32 64 128 256 512 1024 2048
b10 0 1 4 11 23 48 96 192 384 768 1536
b11 0 1 5 12 25 53 96 192 384 768 1536
b12 0 1 4 10 22 44 91 192 384 768 1536
b13 0 1 5 16 35 63 135 263 512 1024 2048
b14 0 0 3 9 24 49 102 213 439 896 1792
b15 0 0 3 13 28 67 122 226 451 905 1792
b16 0 0 2 9 21 49 102 217 447 886 1763
b17 0 0 1 8 26 60 116 261 507 1029 2073
b18 0 0 0 6 22 51 106 216 458 935 1915
b19 0 0 0 6 22 51 123 248 487 987 1970
b20 0 0 0 5 19 44 105 222 465 935 1876
b21 0 0 0 1 18 56 118 235 503 1023 2080
b22 0 0 0 0 15 47 108 226 458 961 1941
b23 0 0 0 0 12 41 103 241 494 995 2026
b24 0 0 0 0 10 40 96 225 465 958 1928
b25 0 0 0 0 1 37 104 231 478 1019 2038
b26 0 0 0 0 0 31 93 208 447 927 1936
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