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We provide practical simulation methods for scalar field theories on a quantum computer that
yield improved asymptotics as well as concrete gate estimates for the simulation and physical qubit
estimates using the surface code. We achieve these improvements through two optimizations. First,
we consider a different approach for estimating the elements of the S-matrix. This approach is
appropriate in general for 1+1D and for certain low-energy elastic collisions in higher dimensions.
Second, we implement our approach using a series of different fault-tolerant simulation algorithms
for Hamiltonians formulated both in the field occupation basis and field amplitude basis. Our
algorithms are based on either second-order Trotterization or qubitization. The cost of Trotterization
in occupation basis scales as O(ANT|Q2[?/(M5/?€%/?) where X is the coupling strength, N is the
occupation cutoff || is the volume of the spatial lattice, M is the mass of the particles and e is the
uncertainty in the energy calculation used for the S-matrix determination. Qubitization in the field
basis scales as O(|Q|?(k*A + kM?)/¢) where k is the cutoff in the field and A is a scaled coupling
constant. We find in both cases that the bounds suggest physically meaningful simulations can be
performed using on the order of 4 x 10° physical qubits and 10'? T-gates which corresponds to
roughly one day on a superconducting quantum computer with surface code and a cycle time of 100
ns, placing simulation of scalar field theory within striking distance of the gate counts for the best
available chemistry simulation results.

I. INTRODUCTION

Quantum simulation has been one of the great success stories of quantum computing [IH5]. It has led to the real-
ization that non-relativistic quantum mechanics can, under most physically reasonable assumptions, be simulated in
polynomial time on a quantum computer. Further, recent work in chemistry has shown that physically meaningful
problems can be simulated using fewer than a million physical qubits and a few hours worth of compute time [6]. In
contrast, there have been numerous classical methods developed to simulate quantum field theories (QFT), with the
state of the art approaches summarized in [7]. However, even sign-problem free approaches relying on Hamiltonian
representations [8, 9], require an exponential number amount of resources [I0]. This opens up the possibility that
quantum computing may provide the only means possible for us to numerically simulate some of the most challenging
problems in quantum field theory [ITHI5]. Despite these advances, we do not yet know whether all physically mean-
ingful quantum field theories can be efficiently simulated, nor are there at present detailed estimates of the memory
and number of quantum operations required to perform quantum simulations of field theories.

The seminal work of Jordan, Lee and Preskill (JLP) [16l [I7] provided a major step towards addressing the question
of whether quantum computers can efficiently simulate quantum field theory algorithms that are capable of simulating
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scattering events for scalar ¢* theory. In addition to describing aspects of the dynamics and couplings of the Higgs
boson in the standard model, ¢* theory is an excellent model field field theory that captures non-trivial features of
the dynamics of the other fundamental quantum fields in the standard model. Even in 1+1D, classical ¢* theory has
non-trivial bound states described by kinks and anti-kinks. The theory also contains stationary topological solitons
that are periodic in time, known as “breather”-modes [I§], providing insight into the nonlinear dynamics of domains
walls in fields ranging from condensed matter to cosmology [I8]. Further, at the very high energies now accessible at
colliders, as exemplified in the parton model of Feynman and Bjorken [19, 20], scattering processes involving fermions
or bosons become alike. Thus, the study of the ¢* scalar field theory, at high energies, provides some insight into the
dynamics of more phenomenologically rich theories, which are harder to directly simulate.

The JLP [I6], [I7] proposal focused on computing the elements of the Scattering Matrix, or S-matrix, that describes
the entire information content of a scattering process in quantum mechanics and, more generally, in quantum field
theory. Specifically, the S-matrix describes how free fields of a theory at asymptotic time T' = —oo evolve through the
scattering process into either the same or other asymptotic free states of the theory at time T' = oo. The S matrix
thus allows one to predict scattering cross-sections, which represent the probability of a scattering event at a given
impact parameter, which is then be integrated over a range of impact parameters. The computation of in-vacuum
to the out-vacuum transitions embedded in the S matrix is, for 1 + 1 dimensions, promise-BQP complete. This
means that if an arbitrary quantum computation can be thought of as such a scattering experiment, and if a classical
computer could efficiently compute these matrix elements, then quantum computers would be no more powerful than
probabilistic classical computers. In the language of complexity theory, BQP= BPP.

The computation of the entire S-matrix of a QFT is exponentially difficult, although specific matrix elements
can be computed within additive error in polynomial time on a quantum computer. In [I6] the authors provide
a quantum algorithm for computing such matrix elements by directly performing a simulation and computing the
overlaps between the outgoing distribution and the incoming one. They approximate the solution by preparing well
separated wave packets, allowing them to evolve in time and scatter, and then measuring the resulting products of
the scattering.

Since the original work of Jordan, Lee and Preskill, quantum simulation algorithms have undergone a mini revo-
lution. The central problem in quantum simulation algorithms is to translate the unitary time dynamics of a closed
quantum system into a sequence of quantum gates that, up to small approximation error, implements the unitary.
At the time of the original JLP result, the dominant form of quantum simulation were product formulas [2] [3] [16]
which approximate a complicated time-evolution operator as a product of simple time-evolution operators (which are
often so simple that they can be synthesized from scratch into elementary gates. Since then a host of new meth-
ods have been developed for performing simulation; amongst these, qubitization [5] [2I] has emerged as a leading
non-Trotter based simulation approach. Neither of the two methods is believed to fully advantageous relative to the
other. Qubitization provides provably optimal scaling in worst case scenarios but is inflexible and is not suited to
take advantage of commutation relations between terms. Product (Trotter) formulas are the opposite in this regard:
they take advantage of small commutators but fail to achieve optimal scaling in the worst case scenario.

Subsequent work has provided a number of optimized methods for simulating various aspects of ¢* theory [11} 22].
There have also been considerable progress for various other field theories [23H25]. However, at present we still do not
know whether there exist practical simulation algorithms for these methods in the sense that we do not yet know
whether it is possible to perform such simulations using a reasonable number of gate operations and physical qubits
on surface-code based quantum computers.

A. Our Contributions

We provide a cost-analysis of fault tolerant calculation of scattering matrix elements using fixed volume methods
for scalar ¢* theory in this paper that is appropriate in general for 1+ 1D and for certain low-energy elastic collisions
in higher dimensions. We achieve this through two main contributions. First, we propose an alternative approach
to JLP [I6] by which we are able to readily extract values of the S-matrix through the measurement of multi-
particle energies in finite volume. These techniques can also be applied in certain cases to elastic collisions in higher
dimensions. Specifically, we discuss below (specifically in Claim [I) that direct calculation of the elements of the
S-matrix is not often needed and the low-lying eigenvalues of the field Hamiltonian can be used to estimate, under
specific circumstances, values of the S-matrix that would otherwise be impractical to compute directly as per [106] [17].

We implement our approach using a series of different fault tolerant simulation algorithms, which form the second
major contribution of this paper. We consider primarily Hamiltonians formulated both in the field occupation basis
and field amplitude basis. The occupation basis Hamiltonian is simulated with a Trotterization algorithm, while
for the amplitude basis one we describe four simulation procedures - one with Trotterization, and the three others
with modern qubitization methods. These qubitization approaches are optimized through our introduction of new



Algorithm Qubit # T gate # Reference
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TABLE I: Qubit counts and T gate cost scalings for computing ¢* scattering matrix elements as a function of the
lattice size |Q], the (rescaled) coupling constant A and mass M, which hide dependence on the lattice size, the
amplitude cutoff k in the field amplitude basis in units of the bin size, the momentum cutoff N in the occupation
basis, and the target precision in the energy estimate ez, which dictates the precision of the S-matrix through
Eq. . The O notation hides further multiplicative factors at most logarithmic in all variables. (*) For Algorithm
ITIb the estimate on the T-count has been obtained assuming Conjecture

unitary block encodings (implemented through LCU or linear combinations of unitaries approaches [3]) of ¢, ¢? and
¢* operators and in order to reduce the resource cost. Further, the implemented circuits have been optimized with
recent optimization techniques [26] 27]. The Trotterization algorithm in the occupation basis performs optimally
in the non-interacting limit, but is outperformed by qubitization methods (in the amplitude basis) with increasing
interaction strength. However, the main appeal of the occupation basis algorithm is that the basis provides a natural
extension for state preparation and measurement of direct scattering calculations in higher dimensions. In Table [[
we have compared the cost of implementing the various algorithms in terms of number of qubits and T-gates used.
Here, we mention that we have implemented our algorithms with the Clifford+T gate set, which is the most popular,
fault-tolerant, universal gate set considered for quantum simulation algorithms [15] 28H30] and affords a wide variety
of exact and approximate unitary synthesis methods [31H36]. At times, it can exactly synthesize useful gates that
could at best be approximately synthesized in other gate libraries [37H39]. The resource overhead in fault-tolerant
implementation of the non-Clifford T gate is the highest in most error-correction schemes, including the surface code.
A bound on the T-count can be can be used as a marker to reflect the complexity of fault-tolerant implementation of
a quantum algorithm[40].

We then consider implementing the Trotter and qubitization based simulation algorithms on top of the surface code
and consider the overheads of magic state distillation in the simulation algorithm. The space-time volume needed to
implement a T' gate is expected to dwarf the costs of all other gates by factors of 100 or greater. Our calculations
for surface code costs are based on canonical approaches [40]. This facilitates the translation for others towards any
preferred modern methods, (including those that may exist in future) in the ever-expanding forefront of quantum
error correction [41], [42].

The organization of paper is as follows. In Section [T} we provide a brief review of the scalar ¢* QFT. We specifically
provide derivations of the Hamiltonian for ¢* theory in both amplitude and occupation bases. We then discuss how
phase estimation can be used to estimate the scattering amplitude in Section [[TT, We use these techniques in Section[[V]
to provide quantum algorithms for estimating the elements of the S-matrix (under the assumption of elastic collisions)
in both the amplitude and the occupation basis. This section gives not only the asymptotic scalings required but also
the constant factor analysis needed to estimate the energy within fixed error. Section [V] contains our analysis of the
implementation of the quantum algorithms using the surface code along with the space-time needs for the simulation.
We finally conclude in Section [VI] and discuss future applications.

II. REVIEW OF ¢* SCALAR FIELD THEORY

In this section we introduce notation for the ¢* scalar field theory. In order to simulate scattering processes in the
theory, we need a discrete Hamiltonian representation of the continuum Lagrangian. We provide a concise definition
and derivation of the Hamiltonian in both a field and occupation basis for the field theory. The regimes and limits
where each basis may be ideal are discussed in more detail below.

We begin by considering the free-theory for a scalar bosonic field, denoted by ¢(x). The first term in our Lagrangian



density is the free Klein-Gordon Lagrangian given by

Lo= 5 040 — gm?6? = 58— L(V0)? — Sm?? (1)

where m is the bare mass of the scalar boson field. The corresponding conjugate field is given by the Euler-Lagrange
equations to state

_ L
)= 90

The simplest interaction to consider for this Lagrangian would be a quartic interaction term given by

(2)

Lint = \¢* (3)

The corresponding Hamiltonian for the theory is given as
1 1 1
H= /dd:m = /ddx [27r(x)2 +5(Vo(x)* + 5m*6(x)* + Ao(x)* (4)

Both formalisms considered here would also extend to interaction terms of arbitrary order ¢®. These higher-order
terms appear in general phenomenological Landau theories of phase transitions in non-relativistic condensed matter
and have rich applications in nonlinear dynamics [I8]. In this work however we focus on the ¢* term more in the
context of the high-energy community. This interaction is the simplest renormalizable term that is also bounded from
below.

We consider a theory of scalar ¢* inside a d-dimensional space confined to the d-cube of side length L, considering
the momentum cut-off = A(e), with d\/@ = P modes in each dimension. For simplicity, we will refer to this volume
region as Q and we assume that this region is discretized into || = (L/a)¢ points with a spacing between each of the
points of a.

A. Field Amplitude Basis

We begin by considering our Hilbert space for the theory to be of the form
H =) My, (5)

where H, is the Hilbert space that describes a field at each of the lattice sites. The discretized lattice form of the
Hamiltonian is

H = St [ 7607 + 5 (900" (0 + Jm0(0? + 60 (6)

2
xeN

where ) is the set of all (spatial) lattice sites, x = an, where a is the lattice spacing and n € Z*¢, and d is the number
of spatial dimensions.
We then consider the conjugate momentum operator

m(x) = Fo(z)F, (7)
where F is the discrete quantum Fourier transform acting on our truncated space. Starting with Eq. @, we identify

P(x + ai;) — p(x)

a

42 (x a; 2(x) — X)p(x + aZ;
= Z(Az¢(x))2 _ Z ¢ (x + ) + 97 (x) — 2¢(x)(x + ) (8)
i=1

(Vo(x)),; = Aid(x)

2
a
=1

If we assume periodic boundary conditions, then at each lattice site x, there is one contribution of ¢(x)? from each
of the d lattice sites at x(V) = x — ad; (without periodic boundary conditions, we would need to be careful about



handling the sites at the edges), and a single additional contribution coming from the ¢(x)? term. Therefore, the
Hamiltonian becomes

H= ,;2 l;adw2(x) + %(d + 1+ a®>m?)a2¢%(x) + %adqb‘l(x) — a2 i o(x)d(x + ady) (9)
Let us now define
d .= agflqﬁ, II := a%w,
M = am, A= a7\ (10)
Then, in terms of the scaled variables, our Hamiltonian simplifies to
1, 1, ) A, d )
Homp = % FIP() 4 5 (M2 4 d+ 182 (x) + 550 (x) — 2 D (x)P(x + ad;) (11)

Thus, we see that the derivative term is effectively replaced by a nearest neighbor interaction. We shall make use of
this expression, which we denote by H,,,, in both the Qubitization-based and Trotterization based implementation
in the field amplitude basis (Section .

The field amplitude basis is defined to be that in which the field operator is diagonal

D) = 6[9) (12)

and, in the continuum, is related to the Fock basis via |¢) = > 7, |n) (n| ¢), where

(6ln) = (M)M e, (ViEo) (13)

7r
where H,(z) is the (physicists’) Hermite polynomial of order n. This basis has the advantage that all terms in the
¢* Hamiltonian, except for the momentum term, are diagonal. As such, the basis should operate better in large A
coupling limits. The momentum operator, in turn, is related to the field operator through a Fourier transform. We
discuss Trotter and qubitization approaches to simulating the ¢* Hamiltonian in this basis in Section m

B. Field Occupation Basis

We note that the decomposition of the Hilbert in Eq. is not the only way to latticize the theory. In fact, despite
its clear appeal when studying low energy properties, such a discretization might not be ideal at high energies. As we
mentioned previously, an emergent particle description appears (“partons”) in high energy experiments, and therefore
in this context it may be more appropriate to discretize the theory in this parton basis. Such a description starts
then by dividing the Hilbert space into single particle sectors

H = é%l, (14)
l

where H; describes the Hilbert of a single particle, which is span by the local vacuum and all the possible momentum
(or position) modes that can be occupied. One then evolves the theory by freely propagating the particles with the
quadratic part of the Hamiltonian in each particle sector, while the interactions connect different I’s. Such a procedure
has been applied to several problems in high energy physics, see for example [22, [43-45)].

In the same spirit, the typical approach to solving the ¢* theory begins with diagonalizing the non-interacting
Klein-Gordon Hamiltonian. This is done by introducing bosonic ladder operators aL, ap which correspond to the
creation and annihilation of quanta inside the scalar field. They obey the canonical bosonic commutation relation

[ap,al] = (2m)P5(p — q) (15)

where D is the spatial dimensionality. However these operators on their own are not Hermitian. As such, we construct
Hermitian operators (and their unitary exponentiation) through considering them in conjunction with their Hermitian
conjugates. As such, we begin with their implementation.



To carry out our analysis in this basis, we require the mode expansion of the scalar field and its conjugate momentum
de eip»x
X) = — 2= (ap+adl )
$(x) / (2m)P | 2w, ( L

r(x) = / (;i:)pD(—i)eip‘x\/O;T(ap—aT o) (16)

where wp, = +/|p|? + M?2, and D denotes the spatial dimensionality. The non-interacting part of the scalar field
Hamiltonian, or the Klein-Gordon Hamiltonian Hy, is then given by

Ho = /dD”C1 [(7(x) - 7(x)) + (Vé(x) - Vo(x)) + M? (p(x) - $(x))]
DydPp! ¢iptp')x WpWp/ i
/dD /d pde 5 {V . (apfa_p> (ap/faT_p,)
I (o o) (ool }

= /(;Z:)D Wp <aLap + ;[ap,aLO (17)

The second term in the parentheses above is proportional to 6(0), and represents the zero point energy of all the
harmonic oscillator modes in the free scalar field. This formally leads to an infinite contribution to the Hamiltonian,
which must be removed to compute physical quantities. The resulting free Hamiltonian we consider is

dPr .
Ho = /W wp a;ap (18)

This Hamiltonian is now a normal ordered product of ladder operators, where all creation operators appear on the left
of all annihilation operators. This reordering is necessary to avoid spurious divergences and is denoted Hy =: H :.

This form has two primary appeals. One is that in the limit of small A\, our approach approaches a trivial diagonal
matrix. This limit up to arbitrary precision remains a challenging computational task. The primary appeal of this
approach is that for explicit scattering process that require single-particle packet preparation, this protocol also has
much simpler state preparation procedure. Next, the interaction part of the Hamiltonian is given by

A
H, = / dPx = 4| 4
A dPp,dPpydPpsdP . , . _
= 207 [ oy R (ag, e ) (S o] o)
P1¥PpP2¥PpP3*pa

(a eTiP3x +a e~ P’ x) ((lp +ipa-x +aT —ip4'x)

/ dD / delde2de3de4 el(P1+p2+P3+p4) x
4! (2m)*P 4\/Wp, Wp,Wp;Wpy

(o 0 (o ) (1812 o 1)

_ A [ dPp1dPpydPps 1 {(a ot )(a » )
4! (2m)3P 4\/wp1wp2wp3w7(p1+p2+p3) P1 —p1 P2 “ps

T T
x (aps + a—pg) (a*(P1+P2+p3) + a(p1+p2+p3))}

For the algorithm, we consider the normal ordered form : Hy :, discussed in
We consider the scalar field on a finite sized, discrete lattice, borrowing the notation from above which requires us
to replace the continuous integrals with discrete Riemann sums as

27 /a de 1%] (27T) B 1 1
JAREE 2 Goal@? - @P 2] 19)

Now the Hamiltonians reads as follows




1
: Hy := 9] pra;')ap (20)
P

We note that (a)P|Q| = L, but we retain this notation for if || increases with fixed L, i.e, taking the o — 0 continuum
limit this notation makes the scaling explicit. Furthermore, we take proper discretization of our operators ap — \/aap
so that these are dimensionless. [46]. An advantage of the momentum space-representation is that it allows for the
retention of the continuum dispersion as prepared to in position space [22].

The A term is equivalently given by

A 1
Hy = {(ap +alp) (o +0lp,) (apa ) ( o+l )}
' 4P {Pzi:} 4, /Wp,Wp,WpsW_(p; +ps+ps) e 0opy ) (T2 T 0op, (a ps ap3) Up1+p2+ps) T 4 (p, +pytps)

(21)

We leave the normal ordering until we consider the cases of momentum p; overlaps.
As a final note, due to the relativistic dispersion relationship the frequency wp depends on the momentum as well
as the mass via wp = y/M?2 + |p|2. For this reason the frequencies wy, subtley contain the mass. If we are interested

in the low momentum regime then we can take the maximum and minumum relevant frequencies to be wy,;n = M
and Wynar = /M? + P2, ~ M which gives us the required mass dependence of the Hamiltonian.

III. SCATTERING MATRIX ESTIMATION

The cost of any end-to-end quantum simulation depends on the observables that we wish to measure in addition to
the processing required to prepare the initial state and simulate the dynamics of the quantum system. Unlike previous
work, which directly examines scattering in field theories [I6] [I7], energy estimation is computationally simple and
opens up the possibility of practical simulations of quantum dynamics.

We will now go into detail about our alternative approach to that of [16, [I7], for the computation of values of the
scattering matrix or S-matrix. The scattering matrix describes the relationship between the incoming and outgoing
momenta for a quantum system. In quantum field theory in particular, it is useful to define the S-matrix in terms of
its dynamics in an interaction frame. In particular, if we define the Hamiltonian for a field to be

H = Hfree + Hint (22)

where Hgee and Hiyt are the free and interaction terms where Hiy vanishes at infinity. In order to unambiguously
define the dynamical phase of the non-interacting system as T" — oo one can go into an interaction frame of He.ee to
obtain the interaction picture Hamiltonian

Hi(t) = etHireel [l etHireet, (23)
With this definition in mind we can express the S-matrix through its matrix elements as
Ssi=out (p1p2-- | kaks);,, = Tli_lgo@wz | kakg)
T =T (24)
= lim <plp2 AP ‘Te_i ffcoo dtHI(t)‘ kAkB> .
T—o00

More specifically, by isolating the interaction terms S = 1 + T, you can identify
(1 pnliT|paps)

T
— 7‘—>£)I(rll—ie) <0 <p1 cepn | T (exp [—i /_T dtHI(t)]> pApB>O> (25)

The most important element of T can be given through the matrix element (M), which can be though of as the
scattering amplitude and includes the important dynamics.

(prp -+ [iTlkaks) = 2m)'8 (ka+ ks = > ps) - iM (ka, ks = py) (26)



This M will give all the necessary calculations for the cross-section if necessary. For reference: To one-loop order, we
can compute M in ¢?* as
A
T (—i4' /d4x<p‘}(x)>

0 <P1p2
which identifies M = —A.

Computing the entire S-matrix is exponentially difficult since the number of output momenta and input momenta
scales exponentially with the number of particles permitted. But we can readily extract at least the elastic parts
of the S-matrix through the measurement of multi-particle energies in finite volume. We will also comment on the
ability to obtain inelastic information. Here we will argue that the measurement of energies in finite volume leads
directly to information on the S-matrix elements. The simplest case where this occurs is for a non-interacting 1 + 1D
theory and where both particles have mass m. In this case, we can go into a center of mass frame where without
loss of generality both particles have momenta p and —p such that p; = —ps and by conservation of momentum the
output momenta also must be in {—p, p} In finite volume, the momenta, p;,i = 1,2 of the particles are

pApB> = —iA2m)*6W (pa +ps — p1 — p2) (27)
0

27mi
Di = T )

n; € Z, (28)

where n; are integers indexing the two particles and L is the length of the system. The energy, E, of the two particle
state is

422 1/2
p= > (et (29)

i=1,2

where we have taken ¢ = i = 1. Now what happens when interactions are turned on? Provided the energy of the
two-particle state is below threshold for particle production, the quantization condition for the two momenta is altered
to

eiplLS(pl,pz) - 1= 627rn1/L;
eP2LS(py,pr) = 1=e2™2/L, (30)
where S(p1,p2) = ¢0(P1.p2) i the two-body scattering phase, which is a a phase because the scattering is elastic in

1+ 1 dimensions.
By taking logarithms, the quantization conditions can be written in the form

2 .

7an1 =p1 — 7 log S(p1,p2);
27mno P

T =Pz 7 log S(p2, p1). (31)

If one solves the quantization condition for p; and ps one immediately knows the energy of the two-particle state via

E=) (m®+p)", (32)

i=1,2

where p; necessarily deviate from their free values. Now if instead we start with knowledge of E via measurement,
we can reverse the process and infer S(p1,p2). And by measuring E for different L, we can determine S(py,p2) over
a range of p; and ps because while p; are not free, they still will behave as 1/L over a wide range of volumes.

In any determination of the energy, E, of a two particle state en route to the determination of an S-matrix element,
there will be some uncertainty associated with its determination, 0F. If we work in the center-of-mass frame and
the particles have equal and opposite momentum, i.e., p; = —ps, the associated uncertainty in the scattering phase
d(p, —p) is given by

86(p, —p) = —géE (33)

We can see that uncertainty in the determination of the energy affects most dramatically the determination of the
scattering phase at small momentum.
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FIG. 1: The low lying spectrum of the ¢* in its broken phase (m? = —0.25, A = 0.15). The ground state energy has
been subtracted. From Fig. 10 of [47].

FIG. 2: The scattering phase inferred from the energies of the two kink states presented in Fig. [l From Fig. 11 of
[47].

As an illustration of this in the ¢* theory, we will consider an example from the ordered phase of the model (i.e.,
m? < 0). The spectrum of the theory in this regime consists of kinks and bound states of kinks (meson-like states).
As ) is increased from 0, the bound states disappear at a Ag from the spectrum and only kink-like states exist. At a
large enough A\ = )., the model becomes disordered. In our example, we will consider the regime \g < A < A.

In Fig. [1| we plot the low-lying energy levels with zero total momenta as a function of system size, L, as computed
in Ref.[47] using Hamiltonian truncation methods. The ground state energy has been subtracted. The lowest lying
level is the state whose energy is nearly degenerate to the ground state (we expect such a near-degeneracy in finite
volume in the broken phase). Beyond this state are energies corresponding to two-kink and four-kink states. We can
use the two-kink energies to back out the scattering phase as described above. This phase is plotted in Fig. [2| as a
function of energy, E. Here the energy of the two-particle state is parameterized by 6 via :

E = 2Myini, cosh(6)

In this parameterization the momenta of the two kinks are £ My, sinh(6).

What we have discussed so far concerns the elastic part of the 2 — 2 scattering matrix. We can also access inelastic
information from the measurement of energies. We can parameterize the S-matrix S(p1, p2) solely in terms of 0 (6 is
related to the Mandelstam variable, s, via s = 4m? cosh?(0/2)). The unitarity condition on the S-matrix then reads

S(0 +i€)S(—0 +ie) = f(0), (34)

where f(0) is real positive on the real line. If 6y marks the threshold beyond which inelastic processes are possible,
f(]6] < 69) = 1, while 0 < f(|0] > 6p) < 1. Using the analytic structure of the S-matrix in the complex-6 plane, we
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can write S(#) in the following form:

sinh(6) + i sin(5;) Y log f(0")
( -/ )

)

S(0) =+ 1:[ sinh(0) —isin(B;) © | J_ . 2risinh(0 — 0’ +i€) |
The first part of the parameterization involving the angles 8; are so-called Castillejo-Dalitz-Dyson (CDD) factors.
The second part of the parameterization contains information about the inelastic part of the 2-2 scattering inasmuch
as it depends on the region in § where f(6) differs from 1. Notice that because of analyticity, the inelastic part of
the S-matrix influences the elastic region 0] < 6y. With sufficiently accurate measurements of the energies, one can
use this parameterization to determine the number and values of the CDD angles, 3;, as well as the function f(¢). In
practice, extracting the function f() is difficult as it involves the inversion of an ill-posed integral equation. However
the integrated quantity,

/°° de’ log f(0") (36)

oo 2mi sinh(0 — 0 + ie€)’
has been successfully extracted from numerical data, for example, in the case of the non-integrable Ising field theory
[48].

While we have focused our discussion here on scattering in 1 4 1d, our approach can be extended to scattering
in higher dimensions, i.e., the elastic scattering phases of 2-2 particle scattering, §;, in different angular momentum
channels can be connected to measurements of the two-particle energy in finite volume [49]. While originally formulated
in [49) for two spinless identical particles, extensions have been made to identical particles with spin, asymmetric
volumes, and amplitudes containing external current - see [50] for a review. In certain cases, inelastic information
involving 3 particle scattering is available in higher dimensions [51H54].

Note that the last approach differs from that taken by Jordan Lee and Preskill [T6 [I7]. Their approach involved
preparing a Gaussian wave packet in the interacting eigenbasis rather than an eigenvector of the interacting Hamilto-
nian via phase estimation. Their approach has the advantage that it can be applied in circumstances where the gap
is large and no prior knowledge of the eigenvectors is given. Directly preparing the eigenstates as we discuss above
can be more computationally efficient than the approach given by JLP, but requires efficient approximations to the
eigenstates which may not be available in all settings.

To summarize, we see from this discussion that the excited state energy is a meaningful quantity for scattering
theory that can be used to estimate, under specific circumstances, values of the S-matrix that would otherwise be
impractical to compute. The circumstances under which the energy can be used to provide information about the
scattering is given in the following claim with increasing levels of generalization:

Claim 1. Let S be a finite dimensional version of the S-matriz for a Hamiltonian operator H(t). The value of the
excited state energies can be used to infer certain elements of S if one of the following occurs

1. We are interested in 2 — 2 elastic scattering of particles in one spatial and one temporal dimension (1+ 1D)
where the two-particle final state is below the threshold for particle production.

2. We are interested in inelastic processes in 1+ 1D in integrated form (as encoded in Eq..
3. We are interested in computing the scattering phases of elastic 2 — 2 scattering in higher dimensions [19].

4. We are interested in certain relatively simple scattering processes that include particle decay in dimensions higher
than 1 4+ 1D. This is focused primarily on scattering involving 3-particles, an active topic of current research
[51H5).

Barring the cases mentioned in the above claim, there are other reasons why the energies of both the ground
state and low lying excited states is independently interesting for the theory. It can allow us to understand phase
transitions in the strongly interacting theory [55, B56]. For all the above reasons, we focus our attention on the
computation of the energy of the low lying excited states which is also a well studied quantity to estimate using
quantum computers [28] [30].

IV. SIMULATION ALGORITHMS

Modern simulation algorithms have converged in recent years to the point that there is no optimal single quantum
simulation algorithm. Rather, different algorithms tend to have advantages and disadvantages in different regimes [I5]
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57, B68]. In this spirit, we provide five simulation algorithms for scalar field theory in the occupation as well as field
amplitude basis. These algorithms employ Trotter decompositions or qubitization and use optimized circuits to
construct the operator exponentials or oracle calls that both methods require. We further observe that the methods,
as expected, have advantages and disadvantages with respect to each other. Most obviously, the Trotter algorithm
for simulations in the occupation basis is by far the most efficient for weak coupling (A < 1) but the qubitized field
amplitude basis is likely to scale better in the strong coupling regime.

The material in this section is laid out as follows. In Section [VA] we describe an algorithm for the Hamiltonian
formulated in the field occupation basis, while in Section [[VE| we describe several algorithms for the Hamiltonian in
the field amplitude basis. The techniques and concepts in these two sections can be followed independently of the
other.

A. Field Occupation Basis

The interaction Hamiltonian can be decomposed into four cases based on matching momentum indices. We consider
the normal ordered Hamiltonian so that the unitary phases corresponding to eigenvalues that are used to construct the
S—matrix are computed with reference to the vacuum energy. First we state some essential results that are required
to map the Hamiltonian from the bosonic to qubit space. Then we synthesize quantum circuits implementing the
exponentiated Hamiltonian.

We discretize the Hilbert space of occupation into N distinct momentum states. We have a register of (N + 1)V
qubits to store information about the occupation states and we use the following one-hot unary encoding to map an
occupation state to a qubit state. We index the qubits by a pair of integers, such as (p,n), where p corresponds to
a momentum mode and n to a momentum state. For each such pair (p,n), we have a quantum state on (N + 1)V
qubits, in which each qubit is |0), except the (p,n)*™™ one, which is |1). We denote this state by |p,n), which is

|p7 n) = |01,O7 cee 70p—1,N; Op,O; ey Op,n—ly 1p,na Op,n+1a ceey Op,N; Op+1,0; ce 0V,N>
-1 Q
(®§:1 10j,0- - 70j,N>) Q1050+ Lpm - 0p3) Q) <®‘j:|p+1 0j,0--- 70j,N>) : (37)

We emphasis that each Hilbert subspace Hp is spanned only by vectors of Hamming weight 1 in order to ensure the
unary encoding. We now consider a construction of the Hamiltonian that preserves this Hamming weight without
restricting to total number conservation or conservation for each p—mode.

For convenience, we denote an operator A,, acting on pn‘® qubit by A, or (A,)p. The qubit mapping for the
creation and annihilation operators is as follows.

a;f) Z\/n—kl(a;oj{“)p
ap = Z\/n—kl(ajagﬂ)p, (38)

where
L 1 _ 1 _
ot = §(X —iY), o_= E(X +1iY). (39)
and therefore
a;‘, lp,n) =vn+1lp,n+1) and ap [p,n) = vnlp,n —1) (40)

Now, considering Hermitian pairing of operators, we have

1
ap +af, = 3 > VAT (XnXng1 + YaYoi), - (41)
n
In theory the number of momentum states range till infinity, but for our simulation, we truncate the Hilbert space
and have N momentum states, thus n varies from 0 to NV in the above summations. This truncation in the bosonic
occupation is proportional to the maximum energy expected to be simulated in semi-elastic collisions N % It is
expected that the error in this truncation is exponentially small with respect to the cutoff [7, E9H6T]. However, careful
numerical analysis of these (and other finite-system size effects) will be required in implementation [62] [63].
The details of the proofs for the following lemmas have been provided in Appendix [A]
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A similar approach was laid out in [22]. We note several distinctions between the current implementation and
previous work. The previous work has two conceptual appeals. One is the use of a binary representation for the
occupation basis of ap + a;f). Further work may examine efficient fault-tolerant arithmetic primitives required for such
an encoding, which we avoid here. The second is a diagonalization of the position space field amplitude

) o)+ o

() = - 42
Pn 7 (42)

where

1 .
an = ﬁ ZAqelzﬂn-q/Ns (43)
q
and
17 -1 1 11 -1 17 4

qui[wq2+wé]aq+§[wq2 —wé]a_q (44)

This is implemented with a squeezing operator framework. In a fault-tolerate framework, the phase factors of the
squeezing operators introduce an additional error without a clear mapping to the final error. These squeezing factors
also require a large number of controlled Rz gates Extending such an elegant implementation into the fault-tolerant
regime would be a intriguing further work.

Lemma 2. If n, is the number operator on momentum mode p then for any integer r > 1 we have,

Lemma 3. Ifm > 1 and r > 0 are integers then we have,
m T r m 1 n + m ' T
(@ 00)" + ) )™ = 5 S P (X X+ VYo (45)

We first consider the non-interacting term in Eq[I7) and derive the circuit required to simulate the unitary expo-
nential, with the following result.

Lemma 4 (Complexity of non-interacting Hamiltonian Simulation). We require at most N|Q| number of R, gates
to simulate e’iHét, where H) =: Hy :.

Proof. The normal ordered Hy i.e. : Hy : is,

R nw
tHo = pra;r»ap = pr”p = Z Tp(fn — Zn)p; (46)
p p

n,p

using Lemma 2] The above expression, up to some global phase is equal to a sum of Z operators. And the exponential
of each of them can be implemented with a R, gate, whose angle depends on the coefficient. Thus the lemma
follows. H

a. Circuits for simulating the interacting Hamiltonian : ~ We now consider the interacting part of the Hamiltonian
i.e. H,, which we are re-writing as follows, for convenience. Let Sip = {p = (p1,p2,p3,p4) : pi € ;i =1,2,3,4}, be
a set consisting of ordered 4-tuples of the momentum mode, that respects the conservation of momentum constraint
(p1 + p2 = £(p3 + p4)). We parameterize this constraint by working in the basis such that such that +p3 = p; + k
and +py = p2 — k.

Now, we can divide the terms in the above sum into 4 groups, based on equality of the momentum modes in p,
ie. H, := Hy, + Hay, + H3, + Hy,. For each such group, we map the resulting bosonic expression into the qubit
space using Equation [fI] Lemma [2] Lemma [3] and obtain the Pauli expression. From this, we derive the quantum
circuit for the exponentiated sum in each group. We follow the methods described in [26]. In short, we first derive
an eigenbasis for a set of mutually commuting Pauli terms and calculate the number of distinct non-zero eigenvalues
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(ignoring sign) for the required (weighted) sum of these Paulis. This number is equal to the number of (controlled)-
rotations we require. After that, we design the explicit quantum circuit, with appropriate optimizations. Each circuit
is implemented with Clifford+T+(controlled)-R, gates.

We have delegated the detailed description of the circuit design to Appendix [A] and in this section we only mention
the relevant results required for estimating the gate counts. As indicated, we have separated the T-gates arising
from the approximately implementable (controlled)-rotation gates and the exactly implementable Toffoli or multi-
controlled-X gates. So we report the number of (controlled)-R, required and the number of T gates in Lemma
do not include the T-gates from these rotations. The total T-count estimate is obtained by multiplying the number
of (controlled)-R, gates with the T-count of individual rotation gates and adding the product to the T-count arising
from the exactly implementable parts.

In the following discussions let Syz = {7l = (n1,n2,n3,n4) : n; =0,1,...,N;i=1,2,3,4} be an ordered 4-tuple of
momentum states.We reserved p for vectors of unbolded p, k, ¢ which themselves may be D-dimensional vectors.

B. Group I: All distinct momentum modes : p; # p2,k # 0.

We take Eql2I] with Hermitian terms grouped as

1
_ E T T T T
o 4‘|Q|3 o} 4\/wp1wp2wp3w,(pl+p2+p3) {(apl =+ aPl) (aP2 + apz) (G’PS + apa) (a—(p1+p2+p3) + a—(p1+p2+p3)>}
Pi

(47)

H)

This state divides into a tensor product of terms of the following form.

Ho = 24|Q| > 11 F (ap, +aj,) (48)

PESsp PiEP

We denote the sum of the terms having distinct momentum modes by H;,. We note that this Hamiltonian is
trivially normally order because distinct momentum operators commute. After the qubit mapping using Eq. we
get the following.

My = 24\Q|3 Z H M(Z W ”+1+Ypi7nypi,n+1)>

PES4p PiEP

[n; —|—1
- 96 - 16|Q‘3 Z Z H /Jw pJan PJ7”1+1+YPW"J§/PJ7”J+1) (49)

PESap €Sy (pj,nj)€E(p,7t

Lemma 5. It is possible to implement e~ 1ot

NQ2(12[-1)
24

4 4 4
using at most N |sz\':‘lgsz|f1) CR., N |sz\"‘im|f1) T, 11N \Qfﬁ(m\q) CNOT

and H gates per time step t.

The proof of the above lemma, including the detail of the circuit design has been given in Appendix [A]

Group II : Two distinct momentum modes : p1 = p2,k # 0.

Let Hy, is the sum of the terms with momentum modes satisfying the given constraint. Then,

A 1
o = (a +al)(apyr +al a_+aT_)
20 24|Q|2§4wp\/m (ap + a})(apsr +a) ) (ap—k +a),_;)
A 1
T 96 £~ w0y ki k ((ah) + (ap)® + 2n,) (C‘p+k + a;w) (ap—k + azT)fk) ;

ok Wp/Wp+kWp—Ek

and after using after using Eq. Lemma [2] Lemma [3] we get the following.
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(n+2)(n+1)
Pz = (XX, Y,Y, (I, — Zn)
v 96|Q|2 Z wp\/W ((Z 2 (XnXoiz +¥a¥oiz)y | o+ | 2l
n+ n+
<Z \/7 (XnXnt1+YnYni p+k> (Z Vil (XnXnt1+ Yo Yoi1)p )
- 96Iﬂl2 pr\/W
: ( Z Cgll)(anan'i‘Q * YnlY7l1+2)p(X7L2X7L2+1 + KL?YW2+1)P+’€(X7L3X713+1 + Y;Lsy;bg-‘rl)p—k
n1,n2,N3
+ Z 0%2) (Iny = Zn, )p(X"2X"2+1 + Yo, Yn2+1>P+k (anXng-‘rl + Ynsyn:;—i-l)l)—k) (50)

n1,n2,n3

where ¢} = Vu+2) ("1+?("2+1)("3+1)’ 2 = M_

—iHmpt

3 2 3 2 3 2 3 2
Lemma 6. It is possible to implement e using at most N :I))Q\ cR,, 8N3|m T, 20N3‘Q| CNOT and % H

gates per time step t.

The proof of the above lemma, including the detail of the circuit design has been given in Appendix [A]

Group III : Two distinct momentum modes : p1 7% p2,k = 0.

We use H3, to denote the sum of the terms with momentum mode satisfying the given constraint. Then,

2 2
PHyp = 24|Q‘2 Z 4wp1 (ap, +aj,)” (ap, +a},)

Wpy
A 1

96—~ w, w
P1,p2 P1¥7p2

((a;fn)2 + (ap1)2 + Qﬁpl) ((a;2)2 + (ap2)2 + Qﬁpz) . (51)

After applying Eq. Lemma [2] Lemma [3] we obtain the following.
: Hay

A 1 V(n+1)(n+2)
= XnXn Y,Y, I, - Z,
96] 22 p§2 1 n <; 2 ( +2 + YaYoio)p, + ;n( Jor
vVin+1)(n+2)
E 5 (XnXnyo + Yo Yoio)p, + E n(In — Zn)p,
n n

A 1
= 2 Z Z 0513) (anXn1+2 + Yn1Yn1+2)p1 (anXn2+2 + YH2YH2+2)]D2
96|Q‘ P1,p2 Wp, Wpy

ni,n2

+ Z 0514) (anXTL1+2 + Yn1Yn1+2)P1 (I’ﬂz - Z’ﬂz)P2 + Z CS)(X“2X”2+2 + Yn2Yn2+2)p2 (Inl - Zm)m

ni,n2 ni,n2

+ Z n1n2(Iﬂ = Zpiny — Zpans T Zpina ZP27TL2)> (52)

where ¢ff) = Yt il t2metl) | () _ ney/utdmtl) ((6) _ my/matDinaty)

Lemma 7. It is possible to implement e =3¢t ysing at most 2N2|Q|(|2 —1) cR., 8N2|Q|(|Q|—1) T, 16 N2|Q|(|Q] 1)
CNOT and 3N?|Q|(|2] — 1) H gates per time step t.

The proof of the above lemma, including the detail of the circuit design has been given in Appendix [A]
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ozt N3£§z|2 8N33|SZ|2 2ONzIﬂI2 M Lemma |6
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TABLE II: Summary of the number of gates required to implement the exponentials of the different Hamiltonian

partitions in the occupation basis.

Group IV: All equal momentum modes : p1 = p2,k = 0.

The sum of the terms with all four equal momentum mode is denoted by Hy,. These terms must be normal ordered

to be

{((a;)‘l + (ap)4) +4 ((a;)gap + a;r;(ap)g) +6 ((QDQ(CLP)Q)}

|
N
= >
E‘
] =
=
€
e

~ s 2 o () + (@) + 4 ()i + (0 +6 (0] — )

and after applying Eq. Lemma [2] Lemma [3] we get the following.

t Hyy

A 1 Vin+4)(n+3)(n+2)(n+1)
= 0 2 ( 2

(Xan+4 + YnYn+4)p

+2ny/(n+ 2) (0 + D (X Xogz + YaYara)p + 300 = 0)(In — Zu)y )

(53)

Lemma 8. It is possible to implement e~ H1et ysing at most 3N|Q| (c)-R., 4N|Q| CNOT and 4N|Q| H gates per

time step t.

The proof of the above lemma, including the details of the circuit design, has been given in Appendix[A] An estimate

of the total number of gates required to implement e~ */*

This is summarized in the following theorem, as well as in Table [[I]

Theorem 9. It is possible to implement e~ "1t with the following number of gates per time step.

1. N4‘Q|1;|Q‘_l) + N3:|))Q‘2 + 2N2(Q|(|92] = 1) + 4N|Q| (controlled)-R. gates.

2. N4‘Q|2§|m71) + SNSS‘QF +8N2|Q|(|92| — 1) additional T gates.

5, LNUGPAQI-) | 208U 4 16N2(Q)(|0| — 1) + 4N|Q| CNOT gates.

4. MG | 2NUOE 4 3N2|Q)(|2| - 1) + AN|Q| H gates.

Proof. The proof follows from Lemmas 617} and [8] which are summarized in [[T}

can be obtained by summing the gate costs in Lemma
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C. Trotter Error Analysis

In this section we discuss and bound the various errors that occur during simulation of the occupation basis
Hamiltonian. For convenience, we restate the occupation basis Hamiltonian in the following equation.

H,.. = Ho+ Hy (54)

tHy: = pra;:ap (55)
P

tHy: = Hi,+ Hop + H3p + Hay (56)

a. I Trotter Error : One primary source of error is the one inherent in the Trotterization procedure, where we
express the exponential of sum of operators as product of the exponentiated operators. This is true if and only if the
operators are commuting. If there are non-commuting parts then the resultant error in the approximation is referred
to as the Trotter error. Quite a few bounds on the Trotter error have been derived before [64H66], but we use the one
in [67], which shows the dependence on nested commutators.

If a Hamiltonian H = 25:1 H., is a sum of I" fragment Hamiltonians, then e 'H can be approximated by product of

exponentials, using the p" order Trotter-Suzuki formula [68], .7, (1) = e ""H 4+ (1), where || ()| € O (GeommT? ™)

if each H., are Hermitian [67]. Here Gcomm = 2'1;‘17”/2;“',71:4»1:1 I[Hy,i1s- - [Hyy, Hy]]l|- In most applications, it is quite
cumbersome, if not impossible, to derive a rigorous analytic expression of the nested commutators, in order to tightly

bound higher order Trotter error. We use the following bound from [27] in this work.

r P—p
eomm < 2PFHD N [Hy [ [Hy [Hy HyJ) <Z ||le|> [L<p' <pl  (57)

7i177i21-~~777‘,p/+1

The above formula is specifically useful in scenarios where we can compute tight bounds till level p’ < p of nesting.
Then we combine the tighter bound till level p’ and a looser sum of norm bound for the remaining levels. In this
paper we consider the 2% order Trotter error in our implementations. In Appendix [B| we derive rigorous expressions
and bounds on the first level commutators and norms. Then we use the above equation in order to bound the higher
order errors.

We primarily focus on these low level Trotter errors for two reasons. The symmetric low-level Trotter errors provide
tighter bounds [67]. They also appear to provide more accurate results when compared to explicit calculations [69].

Lemma 10. Let H be the occupation basis Hamiltonian derived in Eqs. . Let #5(1) be a 2" order Trotter-Suzuki
approzimation for e *TH . Then,

He"HT — yp(T)H €O (&Commrg) , (58)
where

The details of this proof are provided in Appendix [B]

D. Total T-gate cost estimate

Here we review the various contributions to the error in phase estimation. Based on previous simulation work, the
most efficent distribution of error seems a highly precise phase estimation calculation to offset a single Trotter step [6].
In particular, we focus on the scheme of [70], which allows us to obtain optimal constant factors using Fourier-based
phase estimation. We use an approximate quantum Fourier transform (AQFT) [71] in the preparation. The number
of T-gates required to approximate an n-qubit QFT circuit up to error egpr is

n n log, (ec;fw)
8nlog, <) + log, <> logy | ————= | . (60)
€QFT €QFT

€EQFT
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Lemma 11. There exists €y such that for all sufficiently small g < €} the total number of implementations of S2(7)
required to estimate an eigenstate within error eg is bounded above by

2 —
om < TV Ccomm
= 32

€E

(61)

Proof. The variance on the phase measured from QPE is given as
ev = (cos((0-8)))* - 1, (62)

known as the the Holevo variance, where 0 is the true phase and 0 is the measured outcome. This allows simple analytic
results for a compact phase that may otherwise have artificially high variance when peaked near the boundary. This
can be computed using the phase estimation algorithm implemented in [70]. The estimated phase can be written as

Ocst = Otrue + 0 + €prep) (63)

where 6 is a random variable with zero mean and Holevo variance ey describing the output of phase estimation and
€prep TepPresents the systematic errors in the phase that arise because of approximate gate synthesis, approximate QFT
and approximation due to Trotterization. In the limit of small variance, with high probability we have the following.

€ = \/IE |:(96st - etrue)2i| ~ \/€V (9) + (WGQFT + €Trotter + 6synth)2

(64)
T o\2 2
~ (W) + (’/TEQFT + Esynth + 6Trottcr) )
We select the following in order to get the above expression.
ﬂeg ﬁeg \@eg ™
€Trotter < ———, € < , €synth < , 2M > 65
Trotter > 4 QFT > ST synth > 3 = \/569 ( )
We require that the error in the Trotter-Suzuki expansion to be at most ervotter = Gcomm7>. Further, let
€9 = €ET, (66)

where eg is the estimate in the energy that comes from rescaling the estimate of the phase by a factor of 7. Thus it
suffices to choose

€E
T = 723/2&&)“”11 (67)

and therefore, the error in the phase is related to the error in the energy estimate as

69 B 23/QaiCOIIll'n

and therefore for mv/acomm/ 63]:3/ 2 > 1_2%1/8 at most

g = | D Ccomm | o IV Ceomm (69)
21/8¢ €n
Finally, as the analysis in [70] is tight in the limit as eg — 0 let us assume that eg is small enough so that
9 T o\2 2
E |:(0cst - atruc) i| - (W) + (WGQFT + €Trotter + 6synth) S €p. (70)

We then can ensure a sufficient value of m by taking ez — €g/2 and using the remaining error budget to acommodate
the error due to m being finite. Using the observation that since 2%/2 < 7 it suffices to take

TV Qcomm < 72/ Qcomm _
(/2 = gr

And thus this sufficient value is an upper bound on the necessary value.

m (71)
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Theorem 12. Given an eigenstate 1) of H such that H |[¢) = E |¢), the occupation basis Hamiltonian stated in
, then it there exists a quantum algorithm that outputs with probability greater than 2/3 a value E such that
|E — E| < eg, using a number of T gates that scales as

o ANTIQ[? Io N|Q|
M5/2€‘}53/2 S\ Mep

T gates and O (N|Q|) qubits, plus an additional O (log (1\//\1]5\;)) ancillary qubits required for phase estimation. Here
M is the particle mass for the field, the log argumenent comes from 1/e, €, = *{QTGT?, /Mﬁ, N, €O (N4|Q|3)

~ 2 776
and Geomm € O (AMAQ )

Proof. Suppose we allocate €, as an upper bound on the permitted synthesis error per R, gate. From Theorem [J] and
Table [[I| we find that the total number of (controlled)-R, required for each Trotter step is at most
NYQP2(Q -1 N3|Q|?
N, oo NIQR(RI =D | N9
48 3

and so using the T-count estimate in [32] and assuming the T-count of controlled-R, is at most the T-count of R,
[36], the expected number of T-gates from rotations is at most

+2N2|Q|(|Q] — 1) +4N|Q| (72)

Nrjp. < Ny (3.067 logy(2/e€,) — 4.327).

Also, from Theorem [J] we require the following additional number of T-gates.

NYQP2(IQ| - 1)  8N3|Q?
Ny = i i' | )+ 3| | +8N2|Q|(|Q] - 1). (73)
So, the total number of T-gates per Trotter step is
Gr < NYQP(|Q| — 1)[0.06410g,(2/€,) + 0.16] + N3|Q|*[1.0221og, (2/€,) + 1.224] (74)
+NZQ|(|Q] — 1)[6.13410g,(2/€,) — 0.654] + 4N|Q[3.067 log, (2/e,.) — 4.327]
€ O (NP logy(2/e,)) - (75)

Using Lemmas [10] and the total number of T-gates required to achieve an eigenstate within total error e is at
most

2
Gr-2m < Wivgé;;mm(N4|Q|2(|Q\—1)[0.064log2(2/e,.)—&—0.16}+N3|Q|2[1.02210g2(2/e,.)—1—1.224}
€E

+N2|Q|(|9] — 1)[6.13410g,(2/e,) — 0.654] + 4N|Q|[3.067 log,(2/e,.) — 4.327])
(W'Q'S logu/er)) . (76)

5/2¢3/2
mb/2e7)

The total synthesis error due to approximation of the rotation gates is €synin = €, - IV,, where the value of €z is
given in Eq. Plugging in the values of the timestep 7 and €y from Eq. (67) and , respectively we obtain the
following bound on ¢, in order to ensure that the final error in the estimate of the energy is at most ep.

2 2
o< V2epT _ V2ep € (77)
8N, 8N, \| 274,

To obtain the total number of ancillary qubits used, we get

o2

m € O <log <cg7;m>>
€E
AN

where we have repeatedly used log (A" /B™) € O (log (A/B)) for constant m,n > 0. Thus the theorem is proved. [




19
E. Field Amplitude Basis

In this section we describe algorithms to simulate the scalar ¢* Hamiltonian H,,y,, expressed in the amplitude basis,
as given in Eq. We use two types of algorithms - qubitization |21, [72] [73] and Trotterization [68]. For the former
we describe three approaches, which mainly differ in the LCU (linear combination of unitaries) decomposition of the
operators. Similar approaches have been considered in [25]. In Section we discuss a decomposition of ® using
an equal weight LCU decomposition of the field operator (Algorithm I). Next, in Section we describe another
LCU decomposition of ® as sum of mainly Z-operators, which not only helps us in developing a qubitization based
algorithm (Algorithm I11a) in but it also makes the expression amenable to Trotterization (Algorithm II), as
discussed in Section In Section [[VE4] we describe another more compact LCU decomposition of all operators
using binary represenation of integers. With this we describe another qubitization algorithm (Algorithm IIIb). Before
describing our algorithms we mention the following results which have been used in the LCU based approaches in
order to reduce the gate complexity.

a. Recursive block encoding : ~ We use the following theorem to recursively block encode H,,,, using a divide
and conquer approach, as described in [27], where it has been shown that with such an approach it is possible to block
encode with a smaller number of gates. Suppose without loss of generality, we have a Hamiltonian H; expressed as
a linear combination of unitaries (LCU) i.e. H; = Z ' hijUij, such that A; = 3° |hyj|. In this case, we can have a
(\i, log M;, 0)-block encoding of H; using an ancilla preparatlon subroutine and a unitary selection subroutine, which
we denote by PREP; and SELECT; respectively.

Mz
PREP; |0)'°8 M — Z ”\ (79)
M;
SELECT; = Z (j| ® Uy (80)
It can be shown that [74]
i H;
(0| PREP] - SELECT; - PREP; [0) = <. (81)

Suppose we have M Hamiltonians denoted by Hi,...,Hys, each of which has an LCU decomposition and for each
one of them we define the subroutines as in Eq. [T9] and Now we use these subroutines to define the following,

PREP |0)los M+ log i _ < wz i ) ®PREP (82)

SELECT

Z( |®®H®SELECTZ»® (%) ]1), (83)

i=1 k=1 k=i+1

where w; > 0 and A = Ef\il w;\;. We can use the above two subroutines to block encode a linear combination of
Hamiltonians as follows.

Theorem 13 ([27]). Let H = Ziwlle be the sum of M Hamiltonians and each of them is expressed as sum
of unitaries as : H; = Z ', hijUij such that \; = Z |hijl, w; > 0. Each of the summand Hamiltonian is block-
encoded using the subroutmes defined in Eq. . and Then, we can have an (A, flogﬂﬁ} 0)-block encoding of H,

where A = Z —1 Wi\, using the ancilla preparation submutme (PREP) defined in Eq E and the unitary selection
subroutine (SELECT) defined in Eq.[83

1. The PREP subroutine has an implementation cost of Cprpp = Zi‘il Cprep, +Cy, where Cprpp, is the number

).

of gates to implement PREP; and C,, is the cost of preparing the state Zf\il %
2. The SELECT subroutine can be implemented with a set of multi-controlled-X gates -

{M; pairs of C°&2Mit1X gates : i = 1,...,M}, M pairs of C'°¢MX gates and Zf\il M; single-controlled

unitaries - {cU;; :j=1,...,My;i=1,...,M}.
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Additionally, suppose in the above theorem, all the H; are the same but they act on disjoint subspaces. In this case,
each PREP; is the same and so it is sufficient to keep only one copy of PREP; in the PREP subroutine of Eq. We
can absorb w; in the weights of the unitaries obtained in the LCU decomposition of H;. Thus, in this case we have

M
, 1
PREP |0)'8 M Hlos Mi _ (, I > |i)> ® PREP;. (84)
=1

We require only [log M| H gates to prepare the superposition in the first register by padding out the number of such
subspaces to be a power of 2. We also need to make slight modifications in the SELECT procedure. This time, we
keep an extra ancilla qubit, initialized to 0, in each subspace. Given a particular state of the first register, we select
a subspace by flipping the qubit in the corresponding subspace. The unitaries in each subspace are now additionally
controlled on this qubit (of its own subspace).

b.  Group of multi-controlled-X gate synthesis : We can further optimize the number of gates by implementing the
group of multi-controlled-unitaries in the SELECT subroutines, using the following theorem [27]. Here we partition
the control qubits into different groups, store intermediate information in some ancillae and then implement the
required logic using these intermediate results.

Theorem 14 ([27]). Consider the unitary U = Zjvigl |7%j| ® U; for unitary operators U; that can be implemented

controllably. We assume M is a power of 2 for simplicity. Suppose we havelogs M qubits and M (compute-uncompute)
pairs of C'°%2M X gates for selecting the M basis states. Letry,...,r, > 1 be positive fractions such that >, L =1

=1 r;

and IO%M are integers. Then, U can be implemented with a circuit with

n 1 logg M
ZMn-C W X 4+ MO"X

i=1

1
(compute-uncompute) pairs of gates, M applications of controlled U; and at most Y, M ™ ancillae.

Following the construction in [75] [76], the number of T-gates required to implement such multiply controlled gates
is
n

T.=> M~ <410g?M—4> + M(4n — 4). (85)

r
i=1 v

With the help of logical AND gadgets we do not require to use any T-gate for the uncomputation part.

c. Equal weight LCU: Note that the Hamiltonian Eq. consists of 4 different families of terms, the I12, ®®,
®2, and ®* terms, each of which share the same coefficients. In principle, if we can further ensure that the LCU
decompositions of each of those terms provides the same weight to every unitary in the LCU, then we can exploit
this structure to drastically simplify the PREP and SELECT circuits. To achieve such an equal weight LCU, we will
make use of the following lemmma

Lemma 15. Consider any arbitrary diagonal matriz
L—1
A=3 nli)l (86)
§=0

where nj € Z*. Then,

12nma171
_ 1 (@)
A = > ; U, where
U = 651 [20(nmas + 1y —i—1) — 1] (87)

where the step-function is defined as

o= {1 4228
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Proof. We simply note that n; = % [(Rmas + ;) — (maz — 1;)], we can describe such a matrix as a sum consisting of
unitaries with entries only in £1 such that the (j, j)-th entry in the first (7,40 + n;) unitaries equals +1, and equals
—1 in the remaining (n,,q; — n;) unitaries. O

Note that while the dimensionality of the U; i  is given by L, the number of terms in the LCU Eq. (87) is independent
of L.

d. LCU decomposition of integer diagonal matrices : 1If a diagonal matrix consists of integers only then we can
have an LCU decomposition consisting of O(logm,q.) signature matrices, where m,q, is the maximum absolute
value of any of its entries. This can be obtained by a binary decomposition of each integer, as stated below.

Lemma 16 ([27]). Let My is a N x N diagonal integer matriz, which has N' positive integers whose mazimum value

is M40 and N negative integers such that ml), .. = max;{|Ml[i, ]| : M;[é,i] < 0}. Then, M =col + ZN N ¢iDs,
where D; are signature matrices and N’ < [loga(m), .. +1)] = ¢ and N” < flogQ( my.. +1)] = C” Also,

ZN+N ‘CZ|<2C _1
Specifically, we can use the following lemma to have an LCU decomposition of A%z) = diag (—k,...,—1,0,1;... . k—1).

Lemma 17 (Lemma 11 in [27]). Let U =Iy®... @111y @ Zp) @Lp—1)®...®1(1) is a tensor product of ¢ single-qubit
unitaries where Z is applied on qubit £ and I on the rest. Then U is a diagonal matriz of the following form.

Uj,j = 1 if §=2% 2k +1,.. 2%k +21 —1
= —1  if  j=2%k42 2k 42 1, 2% 420 -1
where k=0,1,...,2°¢ -1

It follows that

log2

o _ 1 Z 2z, 11 (89)
e. Error in the scalar field :  We also bound the error in the scalar field in terms of the target energy scale as

below.

Theorem 18. Let |¢pmaz| be the mazimum allowed value of the scalar field. Then, it suffices to take

| Prmaz| = (W) (90)

where Epqz > 0 is the mazimum energy scale we wish to allow in our simulation of the Hamiltonian Hgmp given in
Eq. , € = Pr(Hump > Emaz) is the probability that a measurement of the Hamiltonian exceeds Epqq, || is the
lattice size, and C(M,A,d) = M? + 3d + % +2.

Proof. Let |pmax| be the maximum allowed value of the scalar field in our simulation. Then, in the field amplitude
basis defined by ®[¢) = ¢|¢), it readily follows that (¢| D" |¢) < |dmas|™ at a single site. Similarly, since the

momentum operator is related to the field operator via a Fourier transform, M= .7-'T<I>]-', then letting '(5> = F|o), it

(92" 12)

|¢maz‘n (91)

also readily follows for a single lattice site that

(¢ 11" |9)

IN

Now, the Hamiltonian is given by

1 A 4
Homp = Y | 51P(2) + (M? + d + 1)*(& )+4¢>4f Z (Z)®(Z + ai;) (92)

2|2
e
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It therefore follows that

d
(@] Hamp |0) = Z<¢| T2 () + (M? + d + 1)@2(7) + <I>4f Z O(Z + adi) | |9)
re i=1
1 2 2 A 2
< ;;KQHM +d+1)+2d> | Prmaz| +4!|¢mw|}
<y [(1 M2 4 3d+1+ A) |¢mam|2]
reQ 2
= C(M, A, d)|Q|maz| (93)

where C(M,A,d) = M?+3d+1+ % + % Let Epar > 0 be the maximum allowed energy scale in our simulation. By
Markov’s inequality then,

H,
Pr(Hony > Epog) < (1o [9)
C(M, A, )| dmas|*
Emax
from which the statement of the theorem readily follows. O

1. Algorithm I : Equal weight LCU

Here, we describe how to construct the PREP and SELECT oracles for the ®* Hamiltonian H,,,, appearing in
Eq. ., using an equal weight LCU for the operators appearing in the Hamiltonian. By ensuring that we provide
the same coefficient to each of the unitaries appearing in the LCU decompositions of ®, ®2, ®* and I1%, we essentially
ensure that we have a total of only 4 families of terms each sharing the same coefﬁcwnt w1th1n that famlly of terms.
This drastically simplifies the PREP circuit, the only non-trivial part of which is to prepare a 2-qubit state, while
the rest of it is composed of transversal Hadamards. We also describe how to efficiently carry out a SELECT circuit
that does not require selecting each of the unitaries within a family in succession, but can rather apply all of them
simultaneously using a comparator.

Flrst we describe the decompositions of the operators appearing in the Hamiltonian of Eq. ( . We apply Lemma
5| to obtam these decompositions. The ®®, &2 and ®* terms are all built from the same basic diagonal operator

E = Diag(—k+1,...,0,...,k).
a. Decompositions First, for the d operator, we use L = 2k, Nz = k, and n; = j — k + 1 in Eq. to get

(i) 12k—1
- = (@) h
AD 2 Z I
2k—1 2k—1
v — —Zlf Ul + ZI = > 1200 =) = 1] 1)l (95)
7=0

On any two sites a and b, the operator —$,d, is then simply given by

(i) (15 1 2k—1  2k-1

a*b

“AaE = 1 2 2 [260a—ia) =1 =200 — iv)] lja) il @ 1) (i (96)
( ) ta,Ja=01p,55=0

For the ®2 term, we use L = 2k2, Ny = k2 and nj = (k—j—1)? in Eq. to get
2\ 2 2k —1
o 1 .
(m) 3 2 U where

Ui = 3 [20(k + (k—j — 1)* =i — 1) — 1] [j){j] (97)
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Similarly, for the ®* term, we use L = 2k, nmar = k* and n; = (k—j—1)"in Eq. (87) to get
&\ 4 2kt -1
) 1 ,
il - - (7) h
<A<I>> 5 E U, where
vt = 20(k" + (k—j — 1) —i—1) = 1] |j) (j] (98)

b. PREP circuit As the above decompositions illustrate, we have LCU decompositions for each of the terms
in Hgpmp such that all the unitaries share the same coefficients within each of 4 different families. In the language
of Theorem this means that we have M = 4 different families. These equal weight LCU decompositions lead
to a much simpler PREP circuit. In particular, we only need to prepare a non-trivial logo M = 2 qubit register
whose amplitudes encode the shared coefficients of the 4 groups of terms in the Hamiltonian (11). The PREP;
(sub-PREPARE) circuits for each of these groups, which would control which of the U(®)’s in the LCUs above would
be selectively applied, then simply become a layer of transversal Hadamard gates.

In other words, the PREP circuit then simplifies to

PREP = PREP; ® H®0%: |91 g f®loss 2k (99)
where
PREP |0)%% = a2 [00) + g2 [01) + avgs |10) + agg [11) (100)

where the amplitudes a; encode the coeflicients of the 4 families of terms in the Hamiltonian

s PN = 3 lagel? = (M2 4 d 1) /N
A
laga|* = /N5 lagsl* =2/N (101)

where N = >je (72,62, 6% 66} |oj|2. Note that this is not the same as the coefficient 1-norm of the Hamiltonian, which
instead is given by

lafy = €] (102)

E*ALA 3
[ 2A2 2
] + k Ad)(M +3d+2)

where we take Ay = \/21/2"e = /7w /k where ng = log, 2k is the number of qubits required to implement the field
register at a single lattice site. This choice ensures that the free part of the Hamiltonian corresponds to the usual
eigenspectrum of a harmonic oscillator.

Thus, the PREP circuit will contribute at most O(1) T gates, by preparing a superposition of the four non-trivial
coefficients in the ¢* Hamiltonian, since the LCUs for all the operators appearing in the Hamiltonian are all equal
weight. We need only prepare a non-trivial 2-qubit state, with real amplitudes. It was shown by Vatan and Williams
[T7] that such an SO(4) operator requires at most 12 RZ gates and 2 CNOTs.

We now use the result of [28] that gives us a T gate cost of 3.06710g5(2/€esyntn) — 4.327 to compile an RZ gate to
target precision €gynyp. Other such cost estimates include the result of [78], which estimates that on average, the T
gate cost of a synthesized/compiled unitary V' esynin-approximating a single RZ gate U (i.e. |U — V| < egynn) is
1.1510gy(1/€syntn ), while [T9] estimates a worst case upper bound of 10+ 41log, (1/€synsn) T gates per RZ gate. Since
the errors are additive, the total T gate cost increases by the number of RZ gates times the compilation cost of a
single RZ gate. Thus, the total T gate cost of the PREP circuit is given by

COUTLt(T)PREP = 36.80410g2(2/63ynth) —51.924 (103)

c. Simultaneous SELECT 1In principle, with the simplification of the PREP circuit described above, we could
selectively apply each of the unitaries in a particular LCU by controlling on the state of some register prepared in equal
superposition of all bitstrings. However, this decomposition also allows us to simultaneously apply all the SELECT),
circuits corresponding to these unitaries. In particular, by making use of the comparator CMP operation, defined as

CMP [4) |5) 0) = [i) [5) 7 < @) (104)

we can apply the following lemma
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Lemma 19. For integers i and j, we have
crPt (Lo L® Z) CHPi) |j) |0) = (20(j — i) — 1) [3) |;) |0) (105)
where the step function ©(z) is defined in Eq. (88).

from which we readily obtain the following corollary

Corollary 20. Let |¢)) = Zf:_ol o |j) denote the state of the scalar field at some lattice point, and |[+) = Zi’;f)l % )

an equal superposition register. Then,

+) ® s [) ®10) = cMP" (T 1 ® Z) cMP|F) |¢) |0) (106)

where @00 = kKAD.

In this way, we obviate the need to selectively apply each of the unitaries U®) appearing in Eq. individually.
Instead, we can apply all of them in superposition by a single application of the comparator and its inverse. This
simplifies the SELECT; circuits necessary to implement each of the terms in the Hamiltonian. Fig [3] demonstrates
this circuit equivalence, and the advantage it confers. Applying each of the equally weighted unitaries individually
would require O(|2|k) many operations controlled on the state of O(log |Q2|k) many qubits, leading to a T" gate count
of O(|Qklog |Qk). Instead, we have O(]©2]) many single-qubit operations controlled on the state of O(log |Q|) many
qubits, leading to a significantly reduced T' gate count of O(|2|log |Q|) for the SELECT operation.

Note that instead of the comparator, we are also free to apply any other operator CMP’ of the form

CMP' |3} |7) |scratch) [0) = |U; ; seraten) |7 < 1) (107)

which may significantly reduce the gate cost. An example of such an operation would be to compute the high carry bit
of j +i = j — i, which is 1 iff j < i, but leaves the state of the |i), |j) and other ancillary qubits |scratch) entangled.
Once the appropriate phase has been extracted from the |j < i) qubit, we simply run the inverse of this operation.
Noting also that

x) (x| ® (UTVU) + [x) (x| @I = IeU") (x) (x|@V+ |x") x| a1) (I U) (108)

this means that the controlled version of the entire operation H®™CMP'T Z,,,.CMP’ H®™ simply needs to control the
Zane operation. An example circuit involving the CMP’ operation is depicted in Fig.
We can now split up the entire SELECT circuit as

Q-1
SELECT = > o) (] @ Y a) (a] ® SELECT; (109)
i€{m?,¢2,¢%, 00} a=0

where the left-most register controls the family of terms in the Hamiltonian, the middle register controls which site
we apply an operator to, and finally the SELECT; circuits applies the relevant transformations for each of the family
of terms as described below, and further detailed in Appendix

d. SELECT4s term To implement the —®® term, we can simply make use of Corollary and the fact that
X7 X = —Z to obtain

[+) ® <—(I)q> ) l) ®]0) = cMPT (T@ T® X ZX)CMP|T) |¢) |0) (110)

Then, for any two lattice sites a and b, the operator (—@a@b) /(A®)? is then implemented by the product of

operations given in Egs. and . In D spatial dimensions, a lattice site has 2D neighbors. Since the operation
(CMPTZanCCMP) squares to the identity, this means we only need to apply the operation (CMPTXanCZamXanCCMP) on
each of the neighbors of a given lattice site, without applying a similar operation on the given lattice site itself. Thus,
the entire sub-select unitary for this family of terms is then given by

2D—1
SELECTyp0 = Z |b) (b| ® (CMP' ZonoCMP) | (CMPT X gy Zape XancCMP), (111)
b=0
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Family

Site

LCU term

Family '7‘ '7‘
Site |_0_l ..... Iﬂil
|0>®l0g22kz - _@
[$0) CMP CMP?
) ——__ Hzh

|0>®log22k El_ .

|d10-1) CMP CM Pt

10)

FIG. 3: Circuit equivalence demonstrating how the comparator CMP can implement the entire sum of unitaries in
Eq. . The “family” register controls which of the 4 families of terms in the Hamiltonian we want to apply, the
“site” register controls which of the lattice sites we want to apply the operator to, and the “LCU term” register
controls which of the unitaries of Eq. we wish to apply.

I+)
I+) S S
I+) S ©

g =
H*] @ﬂ
D
Vany
A%
57
D
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AV
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Ay

A\

(\l—lr

FIG. 4: An example circuit for k = 4 implementing the operation CMP'f Z,,,,.CMP’ using the logical AND construction

of [76]. The field register |¢) = |az) |a1) |ag) is compared against an equal superposition of bitstrings using CMP’, the

comparison recorded onto an ancilla using Z,,., followed by the uncomputation CMP’" which involves measurements
and post-measurement Clifford operations.

where the |b) register, consisting of log, 2D qubits, controls which of the neighbors we apply the operation to. For
notational simplicity, in the expression above, the subscripts a and b denote not just the respective lattice sites, but
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also the associated ancilla required to implement the CMP, as well as the X,,. and Z,,. operations. As described
earlier, the only operation inside the parantheses above that needs to be controlled is the Z,,. operation, since all other
operations on either side of it are self-conjugate. Any given lattice site will receive one application of (CMPTZM,,CCMP)
and 2D applications of (CMPTX(ch(chmmCMP) coming from its neighbors. Between these successive applications,
CMP and its inverse multiply to the identity, as do several applications of the X operator. Therefore, per lattice site, we
require one application each of CMP and its conjugate, two applications of the X, operator, and 2D + 1 applications
of a controlled Z,,,. operator, each of which is controlled on the state of log, (8D|€2]) (= 2+1log, || +1og, (2D)) many
qubits, where the factor of 2 comes from the PREP circuit, the factor of log, || from the lattice size, and log, (2D)
from the number of neighboring lattice sites in D spatial dimensions.

A C™Z gate can be implemented [76, [80] with n — 2 ancillas initialized in the |0) state, using n — 1 logical AND
computations (and just as many uncomputations) along with 2 Hadamard gates. Each logical AND computation
requires 4 T gates. Therefore, the controlled Z,,. operations naively require O(D||log, (D|€?])) T gates across the
entire lattice, and in each of the D spatial dimensions.

A more efficient approach using unary iteration is also described in [70], which brings the cost for implementing
such a SELECT operation consisting of L operations down to 4L — 4 T gates, instead of O(Llog, L). Briefly, this
method exploits the fact that successive control patterns differ in at most a constant number of bits, so that the
collective circuit can be simplified. In our case, we have L = |Q(2D + 1) many controlled operations to apply across
the entire lattice, which incurs a T gate cost of 4L — 4 = 4|Q|(2D + 1) — 4.

As described before, the CMP operations may be replaced by CMP’ operations described by Eq. (107). For two n-bit
numbers ¢ and j, the operation CMP’ records the Boolean value of j < ¢ onto an ancillary qubit, and requires n many
logical AND computations. Each of these in turn can be implemented using 4 T gates. The CMP'T computations
are simply the logical AND uncomputations that require measurements on the ancilla and classically conditioned
post-measurement Clifford operations. In our case, we require the comparison of two log, (2k)-bit numbers. Thus,
the CMP’ operations contribute a total T gate count of 4|Q|log, (2k) across the entire lattice.

The total T gate count for the ¢¢ part of the Hamiltonian is therefore

Count(T),, = 4[Qf (2D +logy k +2) — 4 (112)

e. SELECTg2 term The sub-select circuit for ®2 term can be constructed quite similarly. The comparator is

still used to extract the relevant phase. The only difference is that now we must massage an ancillary register with
2
some initial set of operations that we summarize as Ui(flitial‘
Specifically, given |¢) = > 5 |7), denoting the field register at some lattice point, and another ancillary register
|k), we require

U i | S 1) | 1K) Iscrateh) [0) = [W) [k + (j +1 - k)%). (113)
J

Once the value k2 + (j + 1 — k)2 has been written onto a register, we can repeat the procedure described earlier of
using a comparator, extracting out the relevant phase, then undoing the comparison. In sum, for each lattice site a

SELECTg2, = (U.&T CMPt Z,, CMPU®

initial znitial) .
a

(114)

As shown in the Appendix , the cost of the U

initia

8]9] (4 (log, 2k:)2 + 2log, 2k — 6), where the leading term comes from multiplying two log, 2k-bit numbers, while

;, operation and its inverse incurs a total T gate cost of

other terms come from other arithmetic operations, such as addition.

The CMP’ operation (and its inverse), replacing the CMP operation as before, compares two log, 2k?-qubit num-
bers and costs log, 2k? many logical ANDs. Thus, the comparisons require |Q|log, 2k? many logical ANDs across
the entire lattice, contributing to a T gate count of 4|Q|log, 2k?. In addition, we have |©2| many multi-controlled Z
gates to apply across the entire lattice, which incurs a cost of 4|/Q2] —4 T gates using the unary iteration method of [70].

In all, the total T gate count for this family of terms is given by

Count(T)4 = 8|9 (4 (log, 2k)* + 2log, 2k — 6) +4|Q (logy 2k* + 1) — 4
89 (4log3 k + 11logy k +1) — 4 (115)
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f. SELECT,> term Using the relation 7 = F1¢F = n2 = FT¢2F, where F denotes the discrete Fourier trans-
form, we see that the SELECT 2 circuit is essentially the same as the SELECTy4> except that at each lattice site,
we have additional (uncontrolled) log, 2k-qubit Fourier transforms and their inverses at every lattice site. For each
lattice site a, we have

SELECTyz 0 = (FIUS P ZancOWPUL, 10, ) (116)

initial

where F now represents the quantum Fourier transform (QFT) circuit. Here, we use the approximate QFT (AQFT)
circuit of [71], which incurs a T gate cost of approximately

)i logs (57) .

Count(T) agrr ~ 8nlog, (n) + log, (
€EAQFT €EAQFT

€AQFT

for a target precision of eqgpr. One application each of the AQFT and its inverse at each lattice site incurs a total
cost of 2|Q)| times the expression in Eq. (117) with n = log, 2k. The total T gate cost for this family of terms is then

Count(T) > = Count(T)y> + Count(T) aqrr

1 2k
log, 2k) log, (;gsw )
— 1Og2 —_—

log, 2k
= 8|0 (41og2 k + 11logy k + 1) — 4 + 16|92 log, 2k log, <°g2) +log, <
€AQFT €AQFT

(118)

g. SELECTg: term The sub-select circuit for the ®* term can be constructed similarly to that of the ® term.
As before, we apply an initial transformation to record an appropriate value to an ancillary register, to which the
comparator is applied, and subsequently the appropriate phase extracted to match the entries of the signature matrices
of the equal weight LCU Eq. .

Assuming [¢) = 7, ¢;|j) denotes the field register at some lattice point, and we have another ancillary register
initialized to |k), along with an entire |scratch) ancillary register to assist with various sub-routines, as well as another
ancillary register initialized to |0), we require

znztzal ZCJ |j |k |SC7"CLtCh>‘O> - |\Ij/>

+(j+17k)4> (119)

Once the value k* + (j +1 — k)4 has been recorded in superposition, we can apply the usual comparator technique
as described above to extract the relevant phase and produce the desired LCU. In all, we have for each lattice site a

SELECTg:0 = (Ufi! lCMPTZanCCMPUmml) (120)

initia

As before, the Umm o1 Circuit requires the implementation of a few basic arithmetic sub-routines, including binary
multiplication of two O(log k)-bit numbers, which contributes the dominant cost of Og\m(log k)?) T gates. As shown
in the appendix, this part of the circuit contributes a total T gate cost of 82| (201log5 (2k) — 10log, (2k) + 1).

The cost of the CMP’ (simplifying the CMP operation), which now compares two log, 2k*-bit numbers, is 4|Q| log, 2k*.
As in the case of the ¢? term, we have |Q| many multi-controlled Z gates to apply across the entire lattice, which
contributes a cost of 4[Q2] — 4 T gates using the unary iteration method of [70].

In all, the total T gate count for this family of terms is

Count(T) 4 = 8| (log3 k — 6logy k —7) — 4 (121)

The explicit construction of the Ummal circuit, as well as a detailed counting of the T' gates, is provided in the
Appendix.

h. Total cost for Hamiltonian simulation The constructions above create a block encoding of the Hamiltonian
via ((G|®@T)U (|G) @ I) = H where |G) = Upggp |0) and U = Usprpcr- Since Uy, ger =1, by Corollary 9 of [,
we have that the walk operator

W = (<2UPREP |0) <0|U1TDREP—I> ®I> UseLecr (122)
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also provides a block encoding of the Hamiltonian, i.e. ((G|®I)W (|G) ® I) = H but in an SU(2) invariant subspace
containing |G), i.e. in qubitized form. It is this qubitized block encoding that we shall employ to perform phase
estimation in order to subsequently estimate scattering matrix elements.

The cost of this block encoding is then given by the sum of twice the cost of the PREP oracle, the cost of the
SELECT oracle, and the cost of the reflection operator 2|0) (0| — I. The cost of PREP circuit is given by Eq. (103),
while the cost of the SELECT circuit is given by the sum of Egs. , , and . The cost of the
reflection operator is at most logarithmic in all parameters, and is exponentially sub-dominant to the other costs, so
we neglect it in our analysis. In all, we have

Cost(T)w = T72|Q|logs k + 168|Q|log, k + 8|Q| D — 32|Q + 73.608 log, (2/€syntn)

log, 2k

log, 2k log, 2k log, (7 )

+16]Q| log, 2k log, < 082 ) +log, <0g2) logy | ——2977/ | _119.848  (123)
€AQFT €AQFT €AQFT

In order to employ this block-encoding for Hamiltonian simulation using QSVT, we need

log1/e
log (e + log(l/f))

laf1t

o [ lalit + (124)

many queries to the walk operator W, where the coefficient 1-norm is given by Eq. .

i.  Ancilla count To implement the operations described above, we need several ancillary qubits. First, we need
2 ancillae for the 4 families of terms in the Hamiltonian, log, || ancillae for the || sites on the lattice, and log, (2D)
ancillae for the neighbors of a given lattice site. These are common across all the SELECT; , operations, even though
the last register is only used for the SELECT 44 o operation.

Second, the comparison operations can only be carried out in succession, and may thus be recycled for use at
each lattice site (or lattice site-neighbor pair in the case of the SELECT 4 , operation). The largest comparisons
we require are for the SELECT 44 , operation. Each such comparison requires log, (2k*) qubits to compare against,
another log, (2k*) qubits to hold temporary carry values, and 1 more qubit for the Z,,,. or (XZX )4, operation. The
controlled-Z operation further requires at most log, (|2|D) many ancillary qubits.

Similarly, the ancillae involved in the various U;p;itiqr Operations can be recycled for use across each site and across
each family of terms. The dominant cost is for the ¢* term, and provided in the appendix. In addition to the ancilla
qubits, we also have || log, (2k) many qubits to hold the values of the scalar field across the entire lattice. Adding
all these counts together, we find

Count(Qubits) = || log, (2k) + 18log3 k + 601log, k + log, (|Q|D) +29 € O (| log k + log” k) (125)

2. Algorithm II : Trotterization with Z operators

In this section we describe a decomposition of the operators ®, &2, &* as a function of Z operators, thus making it
amenable to Trotterization. In the next section we will use these LCU decompositions to estimate the simulation cost
using QSVT or QSP. The sum of the ¢; norm of the coefficients in these decompositions is referred to as the £; norm
of the decomposition or operator. This is also an upper bound on the spectral norm of the operators and is useful to
bound the complexity of LCU based simulation algorithms.

a. Decomposition of ®, ®> and ®* :  We decompose % as follows, as done in Eq.

log, k
® 1 , 1
A6 - 3 2 Y%l
=0
Thus,
O (e I\ e 1) I
A®)  \Ad 2 AD 2 4
1 logy k—11log, k 1 log, k
— 6(221°g2’€+1+1)11+ >y 2J'+’“—1zjz,€+5 > 2z, (126)

i=0  k>j =0
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4 . . .
and so (%) can be obtained by squaring the above equation and hence can be expressed as sum of Z operators as

well. The ¢; norm of the decomposition of ( , (%)2 and (%)4 is k, k2 and k*, respectively. The detail of these
calculations have been provided in Appendix

Plugging in the above LCU decomposition of the operators into Eq. we obtain the following decomposition of
Hymp- We keep in mind that we have a lattice with |Q| vertices, where each vertex has D neighbors. Let us denote
the set of edges by Ep.

Hymp = Hy+ Hy (127)

He = Y Hpxi= Y %HQ(X) =Y Flrl+> vz + zk:mzjzk Ff (128)
Js

xe x€Q x€EQ i
Hy = Z H+Zajzj+Zajkzjzk+zajklzjzkzl+ Z CimZ 2121 Lo, (129)
xXEN 7 7.k 7.k, ik, lm
Hyo = > > Biin(Zj) (Zi)y (130)
x,x’ 7,3’
(x,x")EED
H¢ = H¢/ —|—H¢H (131)

In the above set of equations the coefficients vo, v}, Vik, @), Ok, Ojki, Ojkim, B are determined by the LCU decom-
position of the operators as well as Eq. We ignore the identity term, since if Hgpmp = Homp + Bol, where Sy is a
constant, then e~ HampT o e=iHampT upto some global phase. So the gate complexity to implement the exponentials
is the same.

We have two non-commuting components, Hy and H,. We first analyze the gate complexity to implement e HeT

and e *H=7 where 7 is one Trotter step. As mentioned, Trotterization becomes quite straight-forward with this
decomposition. We require 1 R, gate and few CNOT gates (to compute the parity) for each exponentiated Z operator.
Thus we need at most

logo k + 1 log, k+1 logy k41 logy k+1
Q|<<Og21 >+(og22+>+(0g23 >+<Og24+)>+En(log2k+1>2 (132)

number of R, gates and at most

1 1 1 1 1 1
2|Q|((Og2§+ >+2<°g2§+ >+3<Og2i€+ )>+2ED(1og2k;+1)2 (133)

number of CNOT gates. We observe that in order to implement the required exponential of the operators we require
a number of CNOT that will realize the necessary paritites i.e. the XOR of all combinations of 2, 3 and 4 qubits.
Such a circuit is usually referred to as a ’parity network’. The R, gates are placed at that point of the circuit where
the corresponding parity is realized. The number of CNOT gates can be optimized using algorithms like [8T], 82].
Additionally we require 2|Q2| number of log, 2k-qubit QFT. If we use the approximate QFT (AQFT) circuit of [71]
then we require

log, 2k
log, 2k log, 2k log, ( : )
2|9 [ 8(log, 2k) log, < 082 ) + log, <0g2) log, | ——= 2 (134)
€QFT €QFT

number of additional T gates.

Now we bound the error using the 2"¢ order Trotter formula [67, [68], in a similar manner as discussed in Section
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@ We need to calculate the second level nested commutators. Here, for convenience we fragment Hy as follows.

H¢ = H1¢+H2¢+H3¢ (135)
1
Hy, ::E:wa:§:§uw?+d+n©%@ (136)
x€Q x€eN
A
Hyg i= )y Hoge =) 5 (%) (137)
xEQ x€EN
Hyp = Y Hype=> [-2 > @) |[:=> Y  Hiper (138)
xe) xe) x': xEN x':
(x,x")€ED (x,x")eED

We observe the following commutation relations between H,x (Eq.[128) and the Hamiltonian fragments in the above
equations.
[Hipx, Hagx] s [Higx, Hapx'| s [Hagx, Hagr] = 0 forall x,x/,
[Hrx, Higx']» [Hrexs Hogx'] # 0 if and only if x=x/,
and [Hax, H3pxr] # 0 if and only if (x,x') € Ep. (139)
Now assuming Hi¢ = xeq H{¢x = > weq Higx + Hagx = Hiy + Hay, we have

Qcomm < (” [[H‘n'v H]l.qb]v HTF] + [[H7H Hiqﬁ]? H]/.qb] H)
+ (I[[Hx, Hiy], Hsg] + [[Hr, Hzg], Hx] + [[Hx, Hagl, Hig) + [[Hr, Hag), Hag]l|)
For the first sum, we use Eq. (139) and observe that Eq. can be applied along with triangle inequality in order

to have the following bound.

Sl = Z H[[H‘IrxaHic/)x]aHﬂx]” + H[[HﬂxaHi¢x]7Hi¢x]”

xeN
< S s g (1Bl + [ El) < 1 B (1Bl + 1) (1)
xeN
M?*4+d+1 A 1 A 1
< ¥ (M o0 02l + e, o0l ) (G007 + s+ 1a2l+ g el + i) )
x€Q
M?4+d+1 A 1 A 1
< ol (L o lla ol + g Imeolletal ) (500 + d+ Dla2l + et + S

For the second sum Sy we again use Eq. (139) and triangle inequality and obtain the following bound.

Sy < Z Z Z (||[[H7TX7H{¢X}7H3¢XX/H| + ||[[H7erH3¢XX’]7H7rX”]” + H[[wa,H3¢xx’],H{¢x~}H

x€N )/(/: x"":(x,x'")EED
(x,x")EED or (x' x")€ED

+ ||[ Hﬂ'va3¢xx’]7H3¢xx”]|| + ||[[H7rxa H3¢xx’]7 H3¢x’x”]||)
< |Q|d2 (”[wayHi¢x]||||H3¢XX’H + ||[HWXaH3¢XX’]|| (||H7TX”|| + HHbe”H + ||H3¢>XX”|| + ||H3¢X’X”H)) (142)

We already mentioned that the ¢; norm for the decomposition of (%), (%)2 and (%)4 is k, k2 and k*, respectively
(Appendix [C2)). Also ||II|| = ||®|| since they are Fourier conjugates and so using triangle inequality we have,

1 A 1 A
|Higell < 52 +d+ D02 (0) | + 1840 < 5 (M2 +d+ DEA? + ZKAY
1 1
|Hspecll < 20D < 2PA% [ Heell < ST < 55207
1 A
s Hignd | < 20 ol Hgl < 5 (V2 d o+ DEAT - ZROAC,

||[H7TX=H3¢XX’]|| < 2||H7TXH||H3¢XX’” < 2k A% (143)
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Thus, from Eq. (141 and we have

A

1 2 44 | rieab 1 2 2 A2 A 404
S1 €2 (2(M +d+1)k*A +24kA 2(M +d+2)k°A +24kA

IA

2
Q| (le(MQ +d+1)(M? +d+2)kSA° + %(2]\42 +2d + 3)k®A® + 5A76k10A10) :

S

IN

Q| d? (@(M2 +d+1)E*A* + QA4k6A6> 2k2 A2

+2K* A1 (;kQAQ + %(MQ +d+1)E*A% + %k“A“ + 4k2A2)>

A
1Q|d? ((2M2 +2d + 11)k°AS + 6k8A8> ,

and from Eq. (140) we have

~ A2 A
Qcomm < |9 (576k1°A10 + @(2M2 +8d? + 2d + 3)kS A+

(i(M2 +d+1)(M? +d+2)+d*(2M? +2d + 11)> k6A6>
€ O[19 (A’K'"A" + AMPEPA®)] . (144)

for fixed spatial dimensionality d. We can prove the following bound on the T-gate complexity, using similar reasoning
as in Theorem [[2]

Theorem 21. Given an eigenstate |v) of H such that Hopmp [¢) = E|¢), where Hypy is the amplitude basis Hamil-
tonian, as stated in Eq. (127)), then there exists a quantum algorithm that outputs with probability greater than 2/3 a

value E such that |E — F| < eg, using a number of T gales that scales as

Q*2VA%k5 + AMk* log* Qk1
o(' | K+ AM2kT log (k)10g<| [klogk
€

3/2
g

Ak + AM2)>>

E

T gates and O (|Q|log,(2k)) qubits, plus an additional number of ancillary qubits required for phase estimation as
detailed in Lemma[30.

Here the log argument is derived from e, = \gveE 7E—, N, € O (| logg(Qk)) and

dcomm €0 [|Q| (A2k10A10 + AMngAS)}, and A = \/ﬂ'/k‘.

Proof. Suppose we allocate €, as an upper bound on the permitted synthesis error per R, gate. From Eq. (132) we
find that the total number of R, required for each Trotter step is at most

logo k+1 logo, k+ 1 logo k+1 log, k+1
W (8 ) () (8 ) (08 ) i 41

and so using the T-count estimate in [32] gives the expected number of T-gates from rotations to be at most
Nr/r, < N, (3.067logy(1/e,) —4.327).

We also require the following number of additional T-gates due to the QFT performed. Since we are using approximate
QFT, so we allocate an error of egpr due to this. Thus from Eq. (134)) we require the following additional number of
T-gates.

log, 2k
log, 2k log, 2k log, (2223
Ny =210 | 8(logy 2k) log, < 0g9 ) + log, <Og2> log, _T\Nerr /]
€QFT €EQFT €QFT

So, the total number of T-gates per Trotter step is

Gr = Nrjg. + Ny € O (|Q|log"(2k) log(1/e,)) -
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Using Lemmas 10| and [11| and Eq. ([144]), the total number of T-gates required to achieve an eigenstate within total
error €g is at most

2 acomm
Gp-gm < LY omm g/ngw(

€E

Q3/2/A2k5 + AM2k* log* (2k
€| - ( )log(l/er)
€

E

where we have used A = \/7/k. The total synthesis error due to approximation of the rotation gates is €syntn =
& - Ny + €grr > €, N,, where the value of €4y is given in Eq. Plugging in the values of the timestep 7 and ¢y
from Eq. and , respectively we obtain the following bound on €, in order to ensure that the final error in
the estimate of the energy is at most eg.

_ Y2epT _ V2ep 3
T=T8N, 8N, \ 252a.0mm

Note that we get a slightly different pre-factor if we also account for the errors arising due to the use of the approximate
QFT, as detailed in Lemma but this does not change the asymptotic scaling derived here. Using the above, we

obtain
1 Qlk1
log () €0 <log ("kogk (A%k + AM2))> , (145)
€

T E

hence proving the theorem. O

3. Algorithm Illa : LCU with Z operators

In this section we discuss an approach to simulate Hg,,, with qubitization, using Eq. @ that expresses ¢ as sum
of Z operators. Then we repeatedly square it to obtain an LCU decomposition for ®? and ®*, as done in previous
subsection (Eq. [126]). We group the terms as follows.

Hiy = Y 0;Z;+ > auZiZi+F (D viZi+ > vinZiZe | F' (146)
j ik j Gk
Hox = Y juZiZeZi+ Y kimZiZ6Z1Zm (147)
Gkl Jlm
Hyy = Y Hix+ Hax (148)
x€N
H3xx/ = Zﬁjjl (ZJ)x (Zj/)x’ (149)
5.3
Hy = > Haeo (150)
(x,x")EED
H;mp = His+ Hs (151)

Let L; = (1°g21k+1), Lo = (1°g22k+1), Ly = (10g23k+1), Ly = (1°g24k+1) and Lz = (log, k + 1)2. In the following theorem
we summarize the number of gates required to block encode H!, by repeatedly applying Theorem

amp

Theorem 22. Let Hy,,, be the Hamiltonian defined in Eq. |151 and ||H,,,,|| be the {1 norm of the coefficients

amp
defined in its decomposition (Eq. . Then it is possible to have a (||H[1mp\|, +,0) block-encoding of Hy,,, with
O (| log k) qubits, using the following number of rotation gates
N, € O (log" k),

and the following number of additional T gates (that are not in the decomposition of rotation gates).

Ny € O (|9 1og* k) .
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The proofs and more detailed explanations have been given in Appendix[C2] We give a very concise summary of the
complete block-encoding procedure here. Let [|Hix|| = > (laj| + [v;]) + 22, k(|%k| + 1vikl)s 1 Hoxll = 325 5 lejm| +
D idetm |Qiktm| and | Haso || = 325 5 B3| We first design PREP (Eq. @ and SELECT (Eq. @
procedures to obtain (|[Hix||,,0), ([|[Haxll,-,0), (| Hzxx||,-,0) block-encoding of Hix, Hox and Hzyx,
respectively.

Here we briefly describe the block encoding of Hz. We assume a bijective map between j' = (j, k) to some integer
in [Ly1 4+ 1, Ly + Ly]. The ancilla preparation sub-routine is as follows.

Ly Li+Lo> Ly
logo(L1+L 1 ~ ' :
PREP,7(0) 52 = o [ ST vas g0+ Y0 vaglih o)+ vali D)
o\ j'=L1+1 Jj=1
Li+Lo>
+ Z NarariY) [Viz is normalization constant.]
j'=Li+1

The last qubit is used to select the QFT. We require 1 + log, (L1 + L2) qubits. For the state preparation we require
1+logy (L1 + Lo) H, 4(Ly + La) — 2 rotation gates and 4(Ly + La) + 3logy (L1 + L) —4 CNOT.
The select sub-routine does the following.

SELECT 1z 7,0) [v) — [4,0) Z; |¢)
SELECT 1z |j, 1) [¢) — |4,1) FZ;F )

If j > L1 + 1 then we applly two Z gates depending on the mapping. The last qubit is used to selectively apply the
pairs of (log, k + 1)-qubit QFT. We require L; + Ly compute-uncompute pairs of C1°82(F1+L2) X gates, which can be
synthesized efficiently using Theorem [14] [27]. Assuming equal partitioning into 2 groups and using the constructions
in [75] [76] we require at most

4 L1 + Lg (10g2(L1 + Lg) — 2) + 4(L1 + LQ)

T gates and

L1+ Lo (4 10g2(L1 + LQ) — 6) + 5(L1 + Lg)

log, k(logy k+1) __ (logy k+1)(log,y k+2)
. =

CNOT gates. Additionally we require (logy k + 1) + 5
(logy k + 1)-qubit QFT. To implement the QFTs (approximately) [71] we require O ((log2 2k) log, (
and almost an equal number of CNOT gates. With similar procedures we can obtain the block encoding of Hax and
H3xx’ .

Next, using the recursive block encoding Theorem [L3] we obtain a (|Q|(||Hix|| + || Hzx]|), -, 0) and (|Ep|||Hsxx |, -, 0)
block-encoding of His and Hj, respectively. We can block encode Hyz + Hoz using ancilla preparation sub-routine
that has 1 H and 2 rotation gates. The unitary selection sub-routine adds an extra control to each unitary. For
H,5 we prepare an equal superposition of log, |Q| qubits, using log, |2| H gates and use these to select an ancilla
of each subspace. The rest of the operations of Hqix and Hsy in each subspace are controlled on this. For Hz we
prepare log, |Ep| qubits in equal superposition, using log, |Ep| H gates. We use these to select two sub-spaces.
Specifically, each superimposed state selects an ancilla. From this ancilla we use two CNOTs to select an ancilla in
each of the two corresponding sub-spaces. The rest of the operations of Hsxx in pair of subspaces are controlled on
these ancillae. Finally, we again apply Theorem |L3|in order to obtain a (||H,,,l|,-,0) block-encoding of Hy,, ,, where
| H},,,ll = [ Hiz2|| + || Hs]| is the sum of the coefficients in the LCU decomposition of Hapmyy (Eq. . We prepare
1 qubit in equal superposition, using 1 H gate. Controlled on this, we implement the operations in His and Hs.

More detail explanations and gate count estimates have been provided in Appendix and summarized in the
statement of Theorem The following lemma gives a bound on the ¢; norm of Hgyy,yp.

number of CZ gates and two

log, 2k
—=2= ) T gates

Lemma 23.

AA? M? +7d+1
H/ < 10 = 4 2 - e -
ol < 10 (it (25

—M?+8d—4
+A? <28> - 0.0081019>\A4> (152)

) A — 0.048611/\A4> + k (—3dA% + 0.031250A%)
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The detail proof has been provided in Appendix From [21], we require

log(1/€)
RecO||H! t 153
calls to the block encoding of ”5‘,“"”” in order to implement an e-precise block encoding of e~ *Hamp® Thus the total

gate complexity is obtained by multiplying R with the number of gates obtained in Theorem [22]

4. Algorithm IIIb : LCU with binary decomposition of integers

In this section we discuss a more compact decomposition of the field operators. The central idea stems from the
fact that by using binary representation we can express an integer diagonal matrix as a sum of O(logk) number
of signature matrices, as stated in Lemma In our case ®2 and ®* are diagonal matrices, consisting of 24 and
4t power of consecutive integers, respectively. If ¢/ is the maximum nur/nber of bits required to express the highest
integer, then we can express any other integer n = (ber,...,b1) = 25:1 bj2j_1. For smaller integers we append
leading zeros. The leftmost bit b¢s is referred to as the most significant bit, while the rightmost bit is referred to as
the least significant bit. The j** signature matrix is obtained by taking the j** bit in the binary expansion of each
diagonal integer, replacing Os by 1 and 1s by -1.

The circuit complexity of the SELECT circuits can be bounded by the sum of gates, qubits, etc required to
implement the signature matrices. In order to design efficient circuits for each signature matrix we exploit their
structure, which is obtained from the binary decomposition of integers. We first prove the following.

Lemma 24. Suppose n is a positive integer and (by,bm—1,-..,b1) is its binary expansion. Then,
be = 0o i n=2%2k+1,.. 2% +2"1 -1
1 if n=2k+27 2%k 42 41, 2%k 4201
where k is a non-negative integer.

Proof. We have

n = bm2m_1 + bm712m_2 + -+ be+12€ + bz2é_1 + b47125_2 4t by
= 24 (bm2mflfﬂ + bm_12m72*5 + 4 b£+1) + be2571 + (b£_12£72 4t bl)
= 2SR + 0,27 + 5;.

Sk is any non-negative integer which we denote k. Sy, is also a positive integer whose minimum value is 0 when
(be—1,-..,b1) = (0,...,0) and the maximum value is

272 4 o3 4y 241 =201 1,

when (by_1,...,b) = (1,...,1). Tt follows that if b, = 0 then n can take any value between 2°k to 2°k 4+ 2671 — 1,
while if by = 1 then the value of n ranges from 2k + 2671 to 2k +20-1 42071 — 1 =2k +2¢ — 1. O

Lemma 25. (a) Let n be an integer and (by,,...,b1) be the binary decomposition of n?. Then by = 0 for even n
and 1 for odd n and by = 0. For £ > 2, by = 1 if and only if n = 2°=j + j', where j, j' are integers such that
1<j <2071 1.

(b) Let n be an integer and (by,,...,b1) be the binary decomposition of n*. Then by = 0 for even n and 1 for odd
n and by = by = by = 0. For { # 2,3,4, by = 1 if and only if n = 272§ + j', where j, j' are integers such that
1<) <2072 1.

Proof. (a) The inference about by is easy to deduce. Next, we observe that for any integer n,
(2n)? = 4n?, and (2n+ 12 =4n’+4n+1=4dn(n+1)+ 1. (154)

From Lemma [24) we know that —1 occurs whenever j?2 is of the form 4k + 2 and 4k + 3 and there does not exist any
integer whose square can be expressed in this form, as evident from Equation
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Suppose n = 2¢=1j + j'. Then, squaring we have the following.
. N2 _9. .. .
n2 _ (2(71]_’_]/) :225 2J2+2ZJJ/+J/2
_ ot (22—2J-2 +jj') 447
If 1 < j/ <271 —1 then there exists at least one value of j’ such that j*2 mod 2¢ > 2¢~!. From Lemmait follows
that bg =1.

In the other direction, let by = 1. Then from Lemma ﬂ n? = 2% + t', where t is a non-negative integer and
201 < ¢ <2t _ 1. Let a1, as be positive integers such that n = a; + as. Then,

n?=2%+t = (ay+as)? = a? + a3 + 2a1a0

a
= 2a; (?1 +a2> —i—a%.
The above equality is satisfied if 2a; = 2%a}, for some integer a} and a3 = t’. This implies a; = 27 1@} and definitely
as < 271, Thus n is of the desired form as stated in the statement of the lemma. Even if we simply equate powers
of 2 i.e. 2a1a9 = 2457 then we arrive at similar conclusions.

(b) The inference about by is easy to deduce. Next, we observe that for any integer n,

(2n)* = 16n?,
and (2n+1)* = (dn(n+1)+1)=8n(n+1)2n(n+1)+1)+1
— 16 (”“‘;”) @n(n+1)+1)+ 1. (155)

From Lemma[24]and Equationwe observe that no integer of the form (2n)* or (2n+1)* can have 1 at bit positions
2, 3 and 4.
Suppose n = 2¢72j + j'. Taking the fourth power, we have the following.

nt — (25—2]- + j')4
— 24678j4 +4. 23876‘7‘3‘7‘/ +6- 22674j2j/2 +4. 2672]“743 + j/4
9l (930S 93 (g 92822 sy L
If 1 < j’ < 2°1 —1 then there exists at least one value of j/ such that 54 mod 2¢ > 2¢=1. From Lemma [24]it follows
that b[ =1.

In the other direction, let by = 1. Then from Lemma ﬂ n* = 2% + t', where t is a non-negative integer and
20-1 < ¢ <20 — 1. Let aq,as be positive integers such that n = a; 4+ as. Then,

nt =2+t = (a1 +a2)* = ai +4aay + 6aja3 + dara3 + aj
2 a% 2 cua% 3 4
= 2%°aq 2—2+a1a2—|—3 5 + a3 | + as.

The above equality is satisfied if 22a; = 2¢a}, for some integer a} and a3 = t’. This implies a; = 2°~2a} and definitely
as < 272, Thus n is of the desired form as stated in the statement of the lemma. Even if we simply equate sum of
terms that have powers of 2 we arrive at similar conclusions. O

We perform the following tests which verify the above result and also helps us conjecture certain circuit complexity
bounds, as explained later. First, we numerically calculate the squares and fourth powers of all integers till 27 = 128.
We compute their binary decomposition and list those with 1 at particular bit positions, as shown in Tables [[V] and
[Vl respectively. Next, we consider integers till 2* where = 2,...,12. For each such 2% we enumerate all integers
n < 2% such that n? and n* have a binary decomposition with 1 at a particular bit position, as shown in Tables
and [VII] respectively. For these tables we have not mentioned the integers explicitly, due to lack of space, but these
can be obtained from our code. The obtained data corroborates the conclusions drawn in the above lemma.

For convenience, we write

o = diag (k—1)% (k—2)%,...,1,0,1,...,(k— )" k7). [z € {2,4}] (156)

Let ¢/ =1+ 2logk and ¢ = 1+ 4logk be the maximum number of bits in the binary decomposition of k% and k%,
respectively. Using Lemma

CI C//
= cl+ ) U, and ' =cl+> U, (157)
=1 (=1
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where ¢y, ¢, ¢, and ¢ are real coefficients. Uy is a signature matrix obtained from the £t bit in the binary decompo-
sition of {0,1,...,k?} and then replacing the Os with 1 and 1s with -1, as discussed earlier. Similarly, U, is a signature
matrix obtained from the £** bit in the binary decomposition of {0,1,...,k*}.

If we index the rows as 0, 1,2, ...,2k — 1 then the integer j* (j # 0) appears at rows (k—1) —j and (k—1)+j of the
matrix ¢” (Eq. The binary decomposition of a row (equivalently, diagonal) index gives the state of the qubits for
which a certain phase is incurred on the quantum circuit. There are ¢ = log(2k) qubits and let j = (b¢, bec—1,b2,b1)
be the binary decomposition of the row indexed by integer j. Then if the j** diagonal entry is -1, it implies that
whenever the state of the qubits is (b¢,bc—1,...,b2,b1) a phase of -1 is incurred. A naive way of implementing a
circuit is to apply multi-controlled-Z, where the controls correspond to the state of the qubits for which a -1 phase is
applied. However, we can design much more compact and efficient circuits by exploiting patterns in the position of
41 in each signature matrix and this information can be obtained from Lemma For example, this lemma implies
that both U; and Uj cousist of alternate +1 and -1 and hence can be implemented with a single Z on qubit 1. Also,
Us, U}, Us, Uy are all 0 matrices. Now, let us consider Uy where ¢ > 2. From Lemma -1 appears at rows (k—1) £
where j = 2071 4+ ¢/, t,t' are integers and ¢’ < 2= — 1. If we consider the binary decomposition of any integer then
multiplying by 2¢~! shifts the bits £ — 1 positions to the left (more significant positions) and appends ¢ — 1 zeros
(the lesser significant positions). So binary representation of j can be obtained by shifting the bits in the binary
decomposition of ¢ by £ — 1 places to the left and then appending the (¢ — 1) bits in the binary decomposition of ¢'.
If we consider a Boolean table of ¢ bits, then the set of binary strings obtained from integers of the form 2¢~1¢ 4 ¢/
induce a “don’t care” logical condition on the most significant £ — 1 bits. We observe that adding or subtracting k& — 1
simply permutes the all possible strings on these “don’t care” bits. Thus to implement Uy it is sufficient to control on
the values of the last (significant) £ —1 qubits. Similar deductions can be drawn about U;. Here we keep in mind that
in this paper we focus on number of qubits and T-gates required, as already mentioned. In our circuits the T-gate
contribution increases as we increase the number of controls on Z gate.

Fact 26. Let us order the qubits q¢,...,q1 corresponding to the bit positions b¢,...,b1 in the binary decomposition
of an integer k, as defined in Eq. . The leftmost bit is the most significant one. Uy, U] can be implemented with
a single Z on qubit 1. Us,Uj, UL, Uy are all 0 matrices. Uy can be implemented with a circuit which has gates acting
on qubits qz,...,q1, where x = min(¢,¢ — 1). U; can be implemented with a circuit which has gates acting on qubits
G’y - - - q1, where 2’ = min(¢, £ — 2).

This also implies that the T-count of U, (¢ < 2logk) and U; (¢ < 4logk) is O(1) i.e. a constant independent of
k (but dependent on £). In other words the T-count of Uy and Uy is at most k¢ and k), respectively. The T-count of
Ui210g k. and U{+4logk is O(logk).

Now we want to bound «, and j, and for this we identify the possibility of another set of “don’t care” conditions
from our data. From the statements of Lemma [24] and their proof and previous explanations we can say that the
number of controls in multi-controlled-Z and hence the number of T-gates is determined by the number of j’ such
that 1 < j/ <21 —1 and j/2 mod 2¢ > 2/='. Similar conditions hold when considering the fourth power, as in part

(b) of Lemma

Lemma 27. (a) Let £ > 2 and S1p = {j' : 1 < j' <27 —1 and j? mod2* > 201}, If j/ € Sy then
20-1 —jl € S
(b) Let £ >4 and Sop = {j' : 1 <5/ <272 1 and 3§ mod 2¢ > 21}, If j/ € Say then 272 — j' € Syy.

Proof. (a) Suppose j' € Sy and z = 2°=! — j’. Then,
x? — 22f—2 _ 2f]/ +j/2 — 2[ (2@—2 _ ]/> +jl2, (158)

and if j° € S1, then clearly x € Sy,.
(a) Suppose j’ € So¢ and z = 22 — j'. Then,

:EQ — 24@—8 — 4. 23@—6j/ + 6 A 22[—4j/2 _ 4 . 2@—2]'/3 + jl4
_ ot (23278 _ 924l 4 3 gl=352 j’3) 4 (159)

and if 5/ € Sop then clearly x € So. O

From the data in Tables and we observe that for £ < x + 1, |S1¢| = 22 where the approximation
ratio tends to 1 as ¢ increases. When = + 2 < ¢ < 2z, then 0.5-2%71 < |S1e] < 0.94 - 22=1 Also, for ¢ < x + 2,
2674 < Sy < 2¢73 and for 2+ 3 < ¢ < 4z, we have 0.6-2772 < |Sy| < 1.05-2%~ 1. This also follows from Eq. and
when we consider all possible values of j’ such that the multiple of 2¢ is positive. We keep in mind that in Tables
and , the listed or enumerated integers are a subset of Si;, whenever k = 2% > 2¢*1 because the remaining
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integers aree bigger than 2%. For similar reasons, in Tables [V] and [VI]] the listed integers are a subset of So; whenever
k=2% > 2t+2,

Next, let us observe the following. Consider a circuit with = qubits and suppose a “don’t care” condition exists
involving y < x of them. This implies that for every possible combination of binary values on y qubits, there is a
certain state of the remaining x — y qubits when a -1 phase is implemented. The number of possible states is 2¥ and
to implement this logic in a quantum circuit we require a single Z gate controlled on the state of z — y qubits. Many
kinds of “don’t care” conditions exist, for example involving parity. Suppose for every possible binary combinations
on y qubits where there are odd number of 1s, there exists a certain state of the x —y qubits when -1 phase is incurred.
Here too, there are exponential number of such states and to implement this circuit we require a number of CNOTs
to check the parity and a Z-controlled on x — y + 1 qubits. In summary, as the number of “don’t care” conditions
increases, so the number of states that satisfy a certain value also increases, usually exponentially. But the increase
in the circuit complexity is less. This implies, if we consider Tables [VI] and [VII] then we can say that as the number
of integers in each cell increase with respect to k = 2* and ¢, the probability of the existence of more ”don’t care”
conditions becomes higher and hence k¢ and xj grow more slowly with respect to . We have already mentioned
that the number of integers in each cell increase exponentially with respect to £, but the cell at the intersection of
bit21ogk (OF bitaiogk) and k (i.e. 27) has value 1. That is why T-count of Ui1210gk and U{+4logk is O(log k). Thus
we conjecture the following.

Congecture 28. The T-count needed to exactly implement U, and Uj is at most O (min{¢,log k}).

In Appendix we have explicitly constructed some circuits of signature matrices arising in this compact decom-
position of ®* and ®*. Now, we discuss the cost of simulating Hgmp. The procedure is similar to the one described
in the previous section for Algorithm IIla. In this case we partition Hg,y), as follows.

1 1
Hysy = §H2(x)+§(M2+d+1)<I32(x)
Hyi = ®*(x)

H¢xx’ = (P(X)(I)(X/) = H3xx’

H3 = Z Hsyx

x,x'€Ep
, A
H, = ZH¢2X+ IH¢4X
xeQ)
Homp = HiQ + H3 (160)

We summarize the gate complexity for block-encoding H,,;, in the following theorem.

Theorem 29. Let Hyy,y, be the Hamiltonian defined in Eq. and | Hamp|| be the £1 norm of the coefficients defined
in its decomposition Eq. [160. Then it is possible to have a ([[Hampl|,-,0) block-encoding of Hamy with O (1Q]log k)
qubits, using the following number of rotation gates

N/ €O (log2 k) ,
and the following number of additional T gates (that are not in the decomposition of rotation gates)
N, € 0 (|9|log” k) .
The bound on N is obtained assuming Conjecture .

The recursive block encoding is done by repeatedly applying Theorem as explained before. We explain these in
detail in Appendix [C2D] In this case we have

0 A 3
| Hampl < % (k2A2(2 +M? +d) + 12/#&) + Z\ED|A21<:2. (161)

We again remember that this norm is sum of absolute value of the coefficients from the non-identity terms only. From
[21], we require

log(1/e)
R' € O [|Hompllt + ————~ 162
€ O (Mol + i L (162
calls to the block encoding of IIZZ::H in order to implement an e-precise block encoding of e~ *Hemr»?, Thus the total

gate complexity is obtained by multiplying R’ with the number of gates obtained in Theorem
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5. Phase estimation in the amplitude basis

As described earlier, we can perform phase estimation to compute scattering matrix elements. For simplicity, let us
first focus on the 2 — 2 particle scattering. In the center of mass frame, the two incoming momenta can be descibred
by p1 = p = —p2, while the Mandesltam variable is given by s = E% 1 = 2(m? + p?). The expression for the energy
in Eq. is given as E' = Ea particle state — L0, Where Ey is the ground state. Although not equal to the spectral
gap of the Hamiltonian, for values of the coupling away from the critical value, i.e. A # A, we can solve for E by
extracting the difference between the first excited state and the ground state in the even-particle sector of the model’s
Zo symmetry (¢ <> —¢). Similarly, the difference between the first excited state and the ground state in the odd
sector gives us the renormalized mass.

a. State preparation Although ground state preparation is in general a QMA-hard problem, it has been shown
that the ground states of free scalar fields, namely a Gaussian in the amplitude basis, is efficient to prepare [59] 83].
In the presence of interactions, the ground state can in principle be prepared adiabatically. Here, we assume that we
are provided with a state that has polynomial overlap with the two lowest interacting eigenstates. Provided such a
state, we seek to prepare the even and the odd sectors of the model. In the field amplitude basis, the even and odd
sectors are given by the states of the form

9) +1-¢)
V2
|bodd) = W (163)

|¢even> =

where given (for a single lattice site) [¢) = >, a;[j), we define |—¢) = >° a_;[j). Given our encoding, where
je{—k+1,...k} for some cutoff k, we only exchange the coefficients a_; <+ «; for j € {—=k+1,...,k+ 1}, and
assume that k is chosen large enough that ay ~ 0. Thus, the quantum circuit U we use to map |¢) to |—¢) leaves the
basis states carrying the coefficients for both oy and «aj unchanged.

The discretized field values j € {—k+1,...,k} map to binary numbers b = j+k— 1 in our encoding. For simplicity,
we assume that the number of basis status used is some power of 2, i.e. 2k = 2™ for some positive integer m, which
gives the number of qubits used in the encoding. The required transformation can then be implemented by flipping
a bit only if all the bits to the right of this bit form any bitstring except for the all 1’s bitstring. An example circuit
that achieves this transformation for £ = 4 is shown in Fig. [f|

To achieve the transformation U : |¢) — |—¢) more generally for some given k, setting m = log, (2k), requires
m — 2 many ancillary qubits. In addition, we need two each of C™ 11X, C™ 2X, ..., C2X operations, as well as
m—1 CNOT and X gates. In turn, each C™ X operations, with targets intialized to |0), can be constructed using n — 2
ancillas and n — 1 logical AND operations, each of which require 4 T gates. The even sector can then be prepared by
implementing the projector I + U, while the odd sector can similarly be prepared by applying the projector I — U.

These projectors can be realized using the Hadamard test. In the LCU picture, this is described simply as initializing
an ancillary qubit in the |4) state, and applying a controlled-U operation controlled on the ancilla, and targeted on
the field register. Upon measuring the ancilla in the X-basis, by applying a Hadamard gate before measurement, an
outcome of 0 would project the field register onto the even sector while an outcome of 1 would project it onto the
odd sector. This operation can be described as

1

(HI)(|0) (0| @I+ [1) (1| @ U) (H @ 1) [0) [¢) = 7

(|O> ‘¢even> + |1> |¢odd>) (164)

We must apply one such operation for each of the lattice sites. With these considerations, we can gate cost the
operation that produces an equal superposition of the even and odd sectors.

Lemma 30. The total number of T gates required to simulate a controlled-U operation where U : |¢) — |—¢) is
29| (logs k + 1) (logy k + 2) — 8 € O (|| log3 k) where k = $max/Ag and further obeys k > 3/2.

Proof. From the above considerations, taking m = log, 2k, we have that the total T gate count for implementing C-U
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for a single lattice site is given by

# T gates for C-U = z Cost(C"X) + (m — 1)Cost(logical AND)
n=3

- zm:(n — 1)Cost(logical AND) +4(m — 1)
n=3
= 4Zm:(n—1)+4(m— 1)
n=3
= 2m(m+1)—8 (165)

The total number of T gates is then simply the product of the number of lattice sites |{2| with the expression above. [

Similarly, we can cost the total number of ancillary qubits needed to implement such a controlled-U operation

Lemma 31. Under the assumptions of Lemma the total number of ancillary qubits required to implement a
controlled-U operation is

1
5 (log3 2k + log, 2k — 4) € O (log3 k)
if we reuse ancillae, and
19/
2

if we do not reuse ancillae and thereby allow the operations to be executed in parallel.

(log3 k +logy k — 6) + 1 € O (|2 log3 k)

Proof. In addition to a single ancilla serving as the control qubit, we also need m — 2 ancillary qubits to apply a
controlled version of U to an m-qubit register where m = log, 2k for a single lattice site. Moreover, each of the
{C™ X} . operations required to implement C-U require n — 2 ancillae each. This gives a total number of ancillary
qubits as

1+(m—2)+Z(n—2)=%(m2—m—4) (166)
n=3

If the ancillae are re-used across all the lattice sites, the total number of ancillary qubits is then simply given by
the above expression. If instead the C-U is performed in parallel across the entire lattice, then all except 1 of the
ancillae, the one used to control the entire operation, have to be associated with each of the lattice sites, giving a
total count of

Q Q
|Q|(m—2)+1+|2—|(m2—3m—2):|2—‘(m2—m—6)+1 (167)
Plugging in m = log, 2k into these expressions gives the statement of the lemma. O

b. Eigenvalue extraction for qubitization To extract the energy eigenvalues, we perform phase estimation on the
walk operator

W = (2PREP 10) (0| PREPT @ I — ]1) . SELECT (168)

which provides a qubitized block encoding of the Hamiltonian, and furnishes a direct sum of two-dimensional irre-
ducible representations, where each two-dimensional subspace is labelled by an eigenstate of the Hamiltonian.

By 1— (g)
W=, | [a] _ @keiarccos (Ex/la])Y (169)

1 (@)2 o
lot] ler]
with eigenvalues =+ arccos (Ey/|al), from which one may readily, with classical post-processing, obtain the desired
eigenvalues Ej. In practice, we would run I ® W on the input state given in Eq. (164), and keep measurements
whenever the ancilla measures out to be 0 (1) to infer eigenvalues in the even (odd) sector.

Due to compilation errors, the phase information we extract would be different from the ideal ones. In order to
bound this error in the phase, and consequently the energy eigenvalues, we first note a series of observations below.
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FIG. 5: Example circuit that maps |¢) to |—¢) for k = 4.

Lemma 32. Let PREP and SELECT denote the compiled versions of PREP and SELECT, such that they can be
written as

PREP'0)*"%™ = % " 5; )
j=1

SELECT = > |j){jl®U; (170)
j=1

where f; € C. Then, PREPTSELECT PREP provides a (Z] 13512, log, m,O)-block encoding of the operator H' =

>0ty |Bi12U;. Furthermore, H' is Hermitian.

Proof. The proof of the statement that
H' = ((0] ® ) PREP'TSELECT'PREP’ (|0) ® I) = Z 18 12U; (171)
j=1

directly follows from the LCU lemma of [3, 84]. To see that H’ is also Hermitian, we note that all the U;’s in the
LCU are Hermitian diagonal signature matrices, except those that come from the LCU of the momentum (squared)
term. The compilation errors do not affect the Hermiticity of the signature matrices, and only impact the Fourier
transforms acting on each of the lattice site to diagonalize the momentum (squared) term. If we denote the true
quantum Fourier transform circuit as F and its compiled version as F', then it is straightforward to see that F'V F’t
is also Hermitian, given the (Hermitian) signature matrix V. Since the sum of Hermitian operators is Hermitian, H’
is also Hermitian. O

The Hermiticity of the block-encoded operator is an important property to ensure that the walk operator we
construct using these (compiled) primitives provides a qubitized block-encoding of the same operator. Furthermore, we
note that the SELECT operation, as well as its compiled version SELECT’, squares to the identity. As a consequence,
it follows from Lemma 8 and Corollary 9 of [73] that the walk operator

W’ = (QPREP’ 10) (0| PREP"t @ T — ]1) - SELECT' (172)
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provides a qubitized block encoding of the perturbed Hamiltonian H’, and furnishes a direct sum of two-dimensional
irreducible representations, where each two-dimensional subspace is labelled by an eigenstate of H'.

E| A
! _ e le] _ iarccos (Ey, /|a|)Y

W' = @y — ) = @re k (173)

_ _(E E,

(Ial) o]
will yield eigenvalues + arccos (E},), where Ej, are the eigenvalues of H'. We can now bound the absolute difference
between the eigenvalues extracted from the compiled walk operator and the ideal walk operator. The various sources
of errors are the number of ancillary qubits used for phase estimation, the QFT part of the phase estimation circuit
(which is negligible in gate cost), the synthesis error of the rotation gates and the error in the approximate quantum

Fourier transforms (AQFTs) used. We bound these errors in terms of the target error in the estimate of energy
eigenstates below, in analogy with Lemma [T1]

Lemma 33. To obtain an estimate of an eigenvalue of a Hamiltonian within error eg, it suffices to perform phase
estimation of the compiled walk operator with the following bounds on the contributing errors

T
2m >
T V2
1 (2]
3v2 aN,
1 €g

3v2 alNy

where m is the number of ancillary qubits used for phase estimation, €, is the synthesis error per RZ gate, €y is the
approzimation error per individual approzimate quantum Fourier transform (AQFT), and N, and N; are respectively
the total number of rotation gates and AQFTs used in the circuit compiling the walk operator.

€ <

€ <

(174)

Proof. We can approximate, similarly as in Lemma the error in the phase estimate as

T N2 2
€9 ~ \/(2m+1) + (7T€2QFT + €synth + €2AQFT) (175)

where m is the number of ancillary qubits used for phase estimation, egpr is the error in the QFT part of the phase
estimation circuit, €syn¢n is the total synthesis error due to compiling single qubit RZ gates into T gates, and eagrr

is the total error due to the approximate quantum Fourier transforms. Distributing the errors roughly equally, we
bound

T \2_ € 1le
(W) < 597 TEQFT = €synth = CAQFT < g% (176)

Performing phase estimation of the walk operator with error €y induces an error eg in the estimate of the eigenvalue
of the Hamiltonian where the two are related by €y = eg/a where « is the (coefficient) 1-norm of the Hamiltonian.
Using this relation, we can readily solve the bounds for the synthesis error per rotation gate €, = €gynen /N, and the
error per approximate quantum Fourier transform (AQFT) €y = eagrr /Ny, where N, and Ny are respectively the
total number of rotation gates and AQFTs used in the circuit. These bounds are reported in the statement of the
lemma. O

We now use the above results to report the T gate count of performing phase estimation using the qubitization
based algorithms I, IIla and I1Ib as follows.

Theorem 34. The total cost of performing phase estimation to estimate an eigenvalue of the Hamiltonian to within
error €g s given by

2
Cost(QPE)) € O ('? [k2A + kM?] log? k)
E
2
Cost(QPE)UH) ¢ 0O ('? [k2A + kM?] log* k) (177)
E
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while the total number of logical qubits required, including those employed for phase estimation, are

Q| [k2A + EM?
Count(Qubit) ) e O<Q|10gk+log2k+log<| R4+ ]>>

> (178)

Proof. The total T gate cost for performing quantum phase esimation (QPE) using any of the qubitization algorithms
described above can be approximated as

Q] (K2A + kM?)

€E

Count(Qubit) M1 ¢ O <Q|10gk+log

where the superscript denotes the algorithm employed.

Cost(QPE) ~ 2™ [NT CNO(e,) + Ny - N (ep) + N+] (179)

where m is the total number of ancillary qubits used for QPE, INV,. and Ny are respectively the total number of rotation
gates and AQFTs used in the circuit compiling the walk operator, N, is the total number of other T gates used, and

NG (e,) = 3.067logy(2/e€,) — 4.327 (180)
is the T gate cost of compiling a single RZ gate from [32] to within synthesis error ¢,., and
(log, (2k))
log, (2k log, (2k log, ( 2 )
ND(ep) = 8(log, (2k)) log, ((OgZ())) + log, <(0g2())> log, [ —~— <%/ (181)
€f €f €f

is the cost of compiling a single AQFT to within error e obtained simply by plugging in n = log, (2k) in Eq. .
For Algorithm 1, we have

N, = 24
Ny = 2|0
N, = 72|Q|log3 k + 168|Q| log, k + 8D — 32|Q2| — 16 (182)

Using the above, as well as the expression for the coefficient 1-norm « of the Hamiltonian provided in Eq. (102)) for
Ay = /7 /k, and Eq. ([74) from Lemma |33 we find (for fixed spatial dimensionality)
Q
2™ € O (" [K*A + kMz])

€E

N, NO(e) € 0 (10g (;)) co <1Og (W))

log k- |Q[k(A + M?
Ny - ND(ep) € O(Q|logkz10g[og [20k(A + )D

€E
Ny € O(|Q]log®k) (183)
The dominant cost is that of 2™ N and so, in all,
QO 2
Cost(QPE)!) € O (" [K?A + kM?] log? k) (184)
€E
Meanwhile, adding the qubit count from Eq. (125) and m = log, \}2—‘:}3, we get
Q| [k*A + kM2
Count(Qubit)H € O <|Q| log k + log® k + log <| Il ] (185)
€B

Similarly, we recall these gate counts for Algorithm 3a, borrowing from Eqs. (C82)) and (C80)) here for convenience,
N, = 4(L1+ Ls) +2(Ls+ Ly) +2L5 — 4
Ny = 20|
Ny = |Q] [4 Ly + Ly (logy (L1 + L) — 2) + 12(Ly + Ly) + 4v/Ls + Ly (logy(Ls + La) — 2) + 12(Ls + L4)}

+Bp| (4v/T5 (logy Ls — 2) +8Ls ) +4/[0 (log, 9] — 2) + 4192 + 4y/[Fp] (g, | Ep| — 2) + 4| Ep| (186)
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and from Eq. (C92), we have that the coefficient 1-norm scales as a € O (|Q| (kQA + kMQ)), similarly as in Algorithm
1. Using the results of Lemma as before, we find

e 0 ('m [k2A+kM2]>

€R
19| log k (k2A+kM2)D

N, -NCO(¢) € O <log4k~log
€E

logk - |Q[k(A + M?
Ny -ND(ep) € O(|Q|logk‘log[0gk [21R(A + )D

€
Ny € O(|Qlog" k) (187)

The dominant cost is that of 2™ N, , and so we have

9) 2
Cost(QPE)1o) ¢ O (' [K2A + kM?] [log* k + Q|]> (188)
€E

We estimate the total number of logical qubits used in Algorithm IIIa as the sum total of || log, 2k many qubits used
to represent the field itself, log, || used to control the lattice site, log, log, k used to control the unitary in the LCU

iyes

expansion, and m = log, T3¢, Mmany ancillary qubits used for QPE. Thus, the total qubit count used in Algorithm
E
IITa is esimated as

Count(Qubit) 1 ~ |Q|log, 2k + log, | + log, log, k + log, e
V2ep
Q| (k*A + kM?
€ O<|Q|logk+log 21 ; )]> (189)
E
O

Proposition 35. Assuming Conjecture the T gate and qubit cost of the qubitization based algorithm IIIb in the
amplitude basis is given by

2
Cost(QPE)!Y ¢ O (IQI [K?A + kM?] log? k)

N Q| (k2A+kM2)D

(190)

Count(Qubit)H1®) ¢ O (|Q| log k + log
€E

Proof. As in Theorem the total T gate cost for performing QPE using this qubitization based algorithm can be
approximated as

Cost(QPE) ~ 2™ [Nr CNO(e,) + Ny - N (ef) + N+} (191)

where m is the total number of ancillary qubits used for QPE, N, and Ny are respectively the total number of rotation
gates and AQFTs used in the circuit compiling the walk operator, N is the total number of other T gates used, and
N (s)(er) and N(/ )(6 ¢) are respectively the T gate cost of compiling a single RZ gate within synthesis error €., and
the T gate cost of compiling a single AQFT within error €f.

For convenience, we recall the relevant number of gates from Appendix

N, = 12log, k + 2(logy, k + 1)* — 3

Ny = 2|9

Q| (4 2log, k(log,(2log, k) — 2) + 8log, k + 41/4logy k(logy(4log, k) — 2) + 16 log, k)

+4/19] (logy 2] — 2) + 49| + |Ep| (8(logy k + 1)(logy(logy k + 1) — 1) + 4(logy k + 1) + 4)
+4+/|Ep|(log, |Ep| — 2) + O (| log3 k) (192)

z
I
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Using the expression for the coefficient 1-norm given in Eq. (161)), we find
o= |Homp| € O (| (K*A+kM?))

Q| (KA + kM?
= 2™m eO( I ) (193)
€E
The dominant cost is now that of 2™ N, and so we have
() 2
Cost(QPE)!11Y ¢ O (" [K*A + kM?] log? k:) (194)
€E

For the qubit counts, we require a total of O (|Q2|logk) many qubits to hold the field values, and an additional
O (loglog k) qubits for the implementation of the signature matrices in the O(log k) LCU decomposition, a cost which
is sub-dominant. In addition, we would require an additional number of m € O(||Hampl||/€r) ancillary qubits used for

phase estimation, so that in all we have
Q| (k2A + kM?
| l ( ) (195)

Count(Qubit) 1% ¢ O <|Q| log k + log
€

O

In order to perform a similar analysis for Algorithm II in the amplitude basis, which is a Trotter based algorithm
that also employs the approximate QFT, which would incur its own error, we make use of the following lemma.

Lemma 36. To obtain an estimate of an eigenvalue of a Hamiltonian within error eg, in the presence of Trotter,
synthesis, and approximate QFT errors, it suffices to perform phase estimation on a single Trotter step with the
following bounds on the contributing errors

\Y
[N}
%o
=
Q
8
3
3

2m >

IN
[\)
'S
~
fiin
w
[a)
S|

€r

IA
N}
S
~
=
ot
)
=

€f (196)

Proof. The proof proceeds similarly to Lemmas and except that we now also account for both Trotter and
approximate QFT errors here. Specifically, we approximate the error in the phase as

T 2 2
€ ~ \/(Qerl) + <7T€2QFT + €Trotter 1+ €synth + 6AQFT) (197)

The error in the phase error ¢y is related to the error in the energy estimate eg as €9 = eg7, where 7 is the total
simulation time. Distributing the errors roughly equally, we bound

T 2 € 1 ¢
(W) < 597 TEQFT = E€Trotter = Esynth = EAQFT < 12 (198)
Using the Trotter error bound, we obtain
1
€Trotter Z% < O‘comwﬂ—3
3
=7 = 95724, (199)
Therefore,
(7o) < %
2m+1 - 2
/2
= 2" > gd/4emn (200)
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Similarly, we can derive

1 €y
synth — TN’I‘ < -——
€Esynth € 4\/5
3/2
=¢ < 94/15 E172 (201)
NTOécémm
and similarly,
1 €
€ =eNy < ——
AQFT Ny < 12
32
4/15 E
=€ < 2 Nfaiéfnm (202)

O

The total numnber of T gates for phase estimation using Algorithm II has already been detailed in Theorem [21]
The additional number of ancillary qubits required for phase estimation is described in the following lemma.

Lemma 37. The total number of qubits required for phase estimation using the amplitude basis Algorithm II is given

by
QAL (Ak + N?
Count(Qubit) ) ~ O <log2 <| [Ak (A + )>> (203)

€E

Proof. As already noted in Theorem the total number of qubits used for block-encoding sis O(|Q2|log k). A further
number of ancillary qubits used for phase estimation is given by Lemma [36{and Eq. (144)) as

olf2
m € O [ log, %
€E

co (10g2 <|Q|Ak (Ak + N?) >> (200

€E

where we have repeatedly used log (g—j) €0 (log (%)) for constant m,n > 0. O

6. Raw gate costs for phase estimation

We have reported the asymptotic T gate costs of all the algorithms discussed above in Table 1. Here, we numerically
compute the raw T gate costs, taking care of pre-factors and other factors missing from the asymptotic expressions.
We estimate the total cost of phase estimation as

Cost(QPE) ~ 2™ [NT CNO(e,) + Ny - N (ef) + N+] (205)

where m is the total number of ancillary qubits used for QPE, NV, and Ny are respectively the total number of rotation
gates and AQFTs used in the circuit compiling the walk operator, N, is the total number of other T gates used, and

N®)(e,.) = 3.067logy(2/e,) — 4.327 (206)

is the T gate cost of compiling a single RZ gate from [32] to within synthesis error ¢,., and

log, ( 4oz 2K)
f

ND(ey) = Sllog, (24) o, (L2220 ) -

+ log,

is the cost of compiling a single AQFT to within error ¢ obtained simply by plugging in n = log, (2k) in Eq. (60).

The bounds for the errors, and the expressions for IV, Ny and N, for the various algorithms have been recalled for
convenience in Lemma Theorem Theorem Lemma [33] Theorem Proposition [35] and Lemmas [36] and
[37 above.
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FIG. 6: a) The T gate count on a log axis as a function of the field amplitude cutoff k . Algorithm IIIb is plotted
with a dotted line as the precise scaling rests upon conjectured behaviour of the field operator binary decomposition
(Conjecture ) Unknown constant prefactors have been set to 1 here. b) The T gate count on a log axis. as a
function of the field occupation cutoff N. For both, we consider a strong-coupling regime A = M = 1, with |Q| = 10
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FIG. 7: The T gate count on a log axis as a function of the momentum volume cutoff |Q|. Here we consider a
strong-coupling regime A\ = M =1 and e = 1072, Here we have k = 20. By dimensional analysis we expect an
approximate scaling relation of N ~ v/k. In order to illustrate the proper scaling relations (and optimum nature of
the amplitude basis) with respect to ||, we select a larger (and therefore more accurate to the physics) value for
N = 9. Algorithm ITIb is again plotted with a dotted line as the precise scaling rests upon conjectured behaviour

(Conjecture .

F. Resource Estimates for Simulation Algorithms

We will now compare the T-count and logical qubit estimates for implementing the various algorithms described so
far. A summary of the cost analysis has been provided in Table [[] (Section I) and Fig. [6] [l

In Fig. @(a) we show the variation of T-gate count of the amplitude basis algorithms with respect to the field
amplitude cutoff k£ and in Fig. El(b) we show the variation of the T-gate count of the occupation basis algorithm with
respect to the field occupation cutoff N. We consider the strong coupling regime A = M = 1 with |Q| = 10%2. We



47

e
9 5 103} === Algorit hn 1 = Algorithm Occupation
Algorithm 11
— Algorithm IlTa
— Algorithm 1T
103K B
-
= g
E| 3 8
3L 4 S
g 10 =
= r Q0
5 =
& c
6 x 10%F
| x 102 , J
20 40 60 80 100
k

FIG. 8: a) The logical qubit count on a log axis as a function of the field amplitude cutoff k. b) The logical qubit
count on a log axis as a function of the field occupation cutoff N. For both, we consider a strong-coupling regime
A= M =1, with || = 10? and eg = 102

10°- 1
b=
=
=
Q
o
=
e}
=
C
s Algorithm Oce
102 r e Algorithm I
[ Algorithm IT |
s Algorithm I1Ta |
e Algorithm I1Th
1 L L L 1 L L L 1 L L L 1 L L L 1 1
20 40 60 80 100
Q

FIG. 9: The logical qubit count on a log axis as a function of the momentum volume cutoff |{2|. Here we consider a
strong-coupling regime A = M =1 and e = 1072, Here we have k = 20. By dimensional analysis we expect an
approximate scaling relation of N ~ v/k. In order to illustrate the proper scaling relations (and optimum nature of
the amplitude basis) with respect to ||, we select a larger (and therefore more accurate to the physics) value for
N =09.

observe that the Trotter based algorithms, both for the occupation basis and the amplitude basis (Algorithm II),
have higher T-count than the qubitization based algorithms (Algorithms I, IIla and IIIb). One reason for this is the
use of more number of rotation gates in Trotter-based algorithms. For a complete fault-tolerant implementation we
decompose each of them further into Clifford4+T. One solution to circumvent this problem can be the use of partial
fault-tolerant implementation where the rotations are implemented non-fault-tolerantly but the Clifford gates have a
fault-tolerant implementation [85]. Among the qubitization based algorithms, Algorithm IIIb has the minimum T-gate
count, but its estimates depend on Conjecture Algorithm IITa has the minimum rigorously proved T-gate-count

estimate.
In Fig. [7| we plot the T-gate-count as a function of the momentum volume cutoff |2] in the strong coupling regime
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A= M =1 and eg = 1072, We consider the field amplitude cutoff k& = 20 and an expected relation N ~ vk with
the field occupation cutoff. Here, we observe that the occupation basis Trotter algorithm performs better than all
the amplitude basis algorithms in a small range. It performs better than Algorithms I and II for a larger range. For
nearly the complete range of values considered, amplitude basis Algorithms IIIa and IIIb (with Conjecture has
the minimum T-gate-count.

In Fig. (a) we plot the logical qubit count of the amplitude basis algorithms as a function of the field amplitude
cutoff k£, while in Fig. b) we show the logical qubit count of the occupation basis algorithm with respect to the
occupation basis cutoff N. Again we consider the strong coupling regime A = M = 1 and |Q| = 102. We observe that
the qubit count of Algorithms II, ITTa and IIIb is much better than the others. This is due to the LCU decomposition
of ®, ®2 and ®* operators based on binary representation of integers. We remember that the qubit cost of Algorithm
IITb does not depend on any conjecture.

In Fig. [9] we show the variation of the logical qubit count of all the algorithms with respect to the momentum
volume cutoff |Q|. Again, as explained before we consider the strong coupling regime A = M = 1 and eg = 1072,
k =20, N ~ vk. Here we observe that the qubit count of the occupation basis Trotter algorithm is much less than
the amplitude basis LCU based algorithm I. However, again the qubit counts of the other amplitude basis algorithms -
both Trotter based Algorithm IT and LCU based Algorithms IITa and IIIb, are the minimum among all the algorithms
considered.

In summary, the amplitude basis qubitization based Algorithm IIla and its improved version Algorithm IIIb have
better cost estimates i.e. the minimum T-gate-count and logical qubit count compared to other algorithms. One
reason for this is the particular binary representation based LCU decomposition of the operators. The Trotterization
algorithm using this decomposition, though enjoys the benefit of lower qubit count, but has higher T-gate count
because of more rotation gates, as mentioned earlier. The other amplitude basis qubitization based Algorithm I has
much lower T-gate-count in most cases compared to the Trotter algorithms - both in the occupation basis as well as
Algorithm II. But it has much higher qubit count compared to all the algorithms, in nearly all the cases considered.
The qubit cost of the occupation basis Trotter algorithm is somewhat intermediate and its T-gate-count, though low
in a small regime, soon becomes higher than the others.

V. FAULT TOLERANT IMPLEMENTATION

To create fault-tolerant non-Clifford T" gates within the surface code, one needs to prepare highly accurate magic
states |Ar) which are then fed into the logical computation circuit to affect logical T' gates, |Ar) = THI0) [86].
Note that these states are prepared in an area of the surface code that is separate from the area where the logical
computation is taking place. The process of magic state distillation is resource intensive and is often responsible for
the highest footprint of surface code-based fault-tolerant computation.

In this section we provide an estimate for the resources required to generate sufficiently accurate T gates, following
Fowler’s treatment in [40]. Assuming N = 10'2 logical T gates and a physical gate measurement time of ¢,, = 10~°
seconds, the shortest possible time to compute the Ny consecutive gates is ¢, = t,, N7 = 10° seconds, or around 28
hours.

To calculate the physical qubit footprint, note that each logical T gate needs one highly distilled ancilla (magic)
state |Ap) injected into the logical circuit. The tolerable error rate per |Ar) state must then satisfy

Pa, <1/Np =10""2 (208)

Assuming an injection error rate of Py = 1073, and an error-free distillation circuit, the error rate associated with the
first layer of distillation will be,

P, =35P} ~ 3.5 x 1078, (209)

which is greater than the required P4, , thus a second layer of distillation will be required. The error probability in
this case will be,

Py =35P} ~ 1.5 x 10721, (210)

which is less than Py, , therefore two layers of distillation will be sufficient to purify an ancilla state with the desired
accuracy.

Using the 15-qubit Reed-Muller encoding for the distillation of |Ar), the first stage requires 15 sets of distillation
circuits, each acting on 16 logical qubits, for a total of 240 logical qubits, operating in 8 x 5d; /4 = 10 d; surface code
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cycles where d; is the distance associated with the first layer of distillation. To estimate dy, note that the error rate
for |Ap) after the first distillation is

Py, =1800d Pp,. (211)

Here the coefficient 1800 results from 240 logical qubits, two types of logical qubits, three types of error chains, and
5dy /4 surface code cycles. The logical error rate for the first layer Pr,, is related to the distance with the following
relation,

P 4
P ~3x1072(—)7, (212)
th
where Py, = 1072 is the threshold error and we assume the a physical error rate of P ~ 1073.
We need to find d; such that
35(Pa,,)* < Pa, <107'% (213)

We find that the shortest distance for which this requirement is satisfied is for d; = 15. Assuming the rate of
r1 = 5/2 x 5d? /4 physical qubits per logical qubit, we need n; = 1.7 x 10° physical qubits and t; = 10 d; = 150

surface code cycles.
The second stage of distillation requires another encoding with 16 logical qubits and t2 = 10 d3 surface code cycles,
where again ds is the corresponding code distance for the second distillation. To find this distance, we need to satisty,
Pa,, =120 dyPp, < Py, <1072, (214)

L

where the coefficient, 120, stems from 16 logical qubits, two types of logical qubits, three types of error chains and
5dy /4 surface code cycles and,

P 2
Pp, ~3x1072 () . (215)
Py,
We find that for dy = 29 this requirement is satisfied. Given the rate of 7y = 5/2 x 5d3/4 physical qubits per logical
qubit, we need a total of ny = 4.2 x 10* physical qubits and t, = 10dy = 290 surface code cycles for the second round
of distillation.

Note that the qubits used in the first round of distillation can be reused during the second round, thus total
resources required for two rounds of distillation will be n; = 1.7 x 10° physical qubits and ¢, + to = 440 surface code
cycles or t g4 = 4.4 x 107° seconds, assuming a surface code cycle time of 100 nanoseconds. Following the argument
in [40], this space-time footprint is enough to distill three ancilla states, or an AAA factory.

If we use only one AAA factory, the time to distill all 10*? |Ay) states will be t = 1.5 x 107 seconds or ~ 6 months.
To achieve the minimal computation time of t, = 10° seconds, we need to create parallel AAA factories. To calculate
this number, note that each AAA factory prepares 3 ancilla states in time t444 = 4.4 x 107° seconds. Therefore, in
time t. = 10° seconds we can create 3t./taaa = states. Thus to achieve the desired number of states Np = 10'2 in
t. = 105 seconds we need to create Naaa = N7 /(3t./ta44) or ~ 147 parallel AAA factories. This parallelization will
save us time but instead increases our space footprint to 147 x 1.7 x 10° ~ 2.5 x 107 physical qubits.

If we use the distance of the second layer of distillation for our logical computation, the cost of encoding a logical
qubit will be 5/2 x 5 x (16)2/4 = 2.6 x 105 physical qubits, which is ~ 10% of the number of physical qubits needed
for the distillation of all the required ancilla states in the desired time. Thus the total footprint for the computation
will be 2.8 x 107 physical qubits.

If we reduce the error per gate to P ~ 10~%, we can reduce the spacial footprint of the distillation circuit. Following
the same logic as before we find that we still need two layers of distillations, where for the first layer we need a code
with distance d; = 8, n; ~ 4.8 x 10* physical qubits and ¢; = 80 cycles. For the second round we need dy = 14,
ng ~ 9.8 x 103 physical qubits and t, = 140 cycles. As before the qubits in the first layer can be recycled in the
second layer so the total required resources per distilled state will be n = n; = 4.8 x 10* qubits and t = t; 4 t5 = 220
cycles or 2.2 x 107° seconds for an AAA factory. If we were to use only a single AAA factory, the time to prepare
Np = 10'? state would be 7.3 x 10° seconds or ~ 3 months. To keep pace with the computational time ¢, = 107°
seconds, we need to use 1012/(3 x 10%/(2.2 x 107°)) ~ 74 parallel AAA factories with the footprint of ~ 3.5 x 10°
physical qubits.

A logical computational qubit in this case will cost 3.125 x 142 = 612 physical qubits, hence for 1000 logical qubits
we need ~ 6.2 x 10° physical qubits, which is is ~ 17% of the distillation footprint, bringing the total number of
physical qubits to 4.2 x 10%. A summary of these results is given in table

The calculations in this section follow closely the arguments of [87]. Depending on the need to optimize either time
or space, the methods discussed in more recent references, e.g. [42], can be used to modify the estimates.
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p/Din [ 100" [ 1077
First distillation distance di 15 8
Second distillation distance da 29 14
Time per AAA (s) 4.4 x107°[2.2x 1077

Total time for 10 A states without parallelization (s) || 1.5 x 107 || 7.3 x 10°

Total time for 10’? A states with parallelization (s) 1.0 x 10° || 1.0 x 10°
Number of parallel AAA factories 147 74

Number of Physical qubits per AAA factory 1.7 x 10° || 4.8 x 10*

Total Physical qubits for distillation with parallelization|| 2.5 x 107 || 3.5 x 10°

Physical qubits for 1000 logical computational qubits || 2.6 x 10° || 7.4 x 10°

Total physical qubits including computational qubits 2.8 x 107 [ 4.2 x 10°

TABLE III: Summary of the estimated resources required for the fault-tolerant implementation of the algorithm
using the surface code. Note that the best possible logical computation time, which is limited by the gate time of
tm = 1077 seconds, is t. = 10° seconds or ~ 28 hours. This time can be achieved by parallelizing magic state
factories whose footprint is partially determined by the ratio p/psn

VI. CONCLUSION

A central challenge that has remained unanswered within the quantum simulation community involves deciding
whether simulation of scalar field theories can be practically done on a quantum computer. Here we have addressed
this by providing a new method that uses phase estimation to estimate elements of the S-matrix for elastic collisions
and designing optimized circuits for Qubitization and Trotter based simulation of scalar field theory in amplitude
or occupation basis. We find that simulation of scalar field theory in 1 + 1D with a occupation cutoff of 9 or field
cutoffs of 20 with a field volume € = 100 leads to a number of T gates that is on the order of 10'? and the number of
logical qubits that are on the order of 1000 for the occupation basis and in on the order of 500 logical qubits for the
qubitization based amplitude basis algorithm. We show that the calculation can be performed in just over a day.

These estimates are predicated on 5 new algorithms considered in this paper. In the occupation basis we describe
a Trotter-based simulation algorithm. Of the 4 algorithms described in the amplitude basis, the three qubitization
based ones perform better. Among these, the most efficient one in terms of T-gate-count and number of logical qubits,
is the one where the LCU decomposition of operators have been done using binary representation of integers. We can
prove that the number of T gates needed for the Trotter-based algorithm, for coupling strength A, occupation cutoff
N, mass M, and energy uncertainty eg, is

~ [ ANT|Q)?
NT,occ €O ( 2| 3|/2> . (216)
M>5/2€}]

We compute this by evaluating commutator bounds on the second-order Trotter formula. This algorithm performs best
in circumstances where the particle mass is large, when the number of particles in occupation basis is dramatically lower
than the maximum field or when the coupling strength is relatively weak. Higher order formulas can give better scaling,
but we focus on the low-order formulas because the tightest bounds available are for the second order formula [30, 67].
It is worth noting however, that even the tightest bounds on Trotter error are pessimistic [28] [30] [88, [89]. Nonetheless,
we note that, if one is interested in high energy scattering, this basis can be ideally suited for such problems. This
results from the fact at high energies the particles participating in scattering events can be thought as being nearly
free (i.e. weak coupling), as long as the occupation number is small, while a field based picture would fail to efficiently
describe such a scenario. Further, the occupation or particle based pictures have advantages in the extraction of
physical observables such as particle number, while in the field basis such quantities are harder to obtain. For further
discussion on these issues, see [22] [43] [90].

The most performant field amplitude basis algorithms are based on qubitization and for field cutoff £ require a
number of T-gates that scale as

~ /102
N7.gmp = O ('ql [K*A + kM2]> (217)

where A is a rescaled interaction strength. These bounds provide much better scaling with the error tolerance and
slightly better scaling with the volume of the simulation. It is worth noting that this scaling is likely to be close to
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the empirical performance of the algorithm because the error estimates for qubitization tend to be much tighter than
those of the Trotter formula [30].

This work opens up a number of additional questions. In particular the development of improved methods for
computation of the elements of the S-matrix in higher dimensions or for inelastic collisions. Further more detailed
estimates of the Trotter error may reveal that the cost of these methods are substantially lower than current estimates.
In a similar vein, identification of algorithms that may only require partial error correction can allow these applications
to become feasible in early fault-tolerant quantum computers. For example, one possible candidate may be the Trotter
based algorithm in the amplitude basis.

Perhaps the most important issue that needs to be addressed involves the theory itself. Scalar ¢* theory is often
used as a toy theory rather than one that accurately models realistic scattering events in colliders. Further studies
such as ours are needed to consider gate count estimates for more realistic field theories. The direct extension of this
work would be to consider complex scalar theories, or vector field theories. The next step towards realistic theories
would then be to develop algorithms for boson-fermion coupled theories. It is our hope that this will not only reveal
that field theory can be practically simulated on a quantum computer, but also help us understand the ultimate goal
of figuring out whether quantum computers can simulate all physically realistic processes in polynomial time.
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Appendix A: Quantum circuit for simulating in the Field Occupation Basis

In this section we derive the quantum circuits required to simulate the interacting Hamiltonian H, (Eq. . As
explained in Section M we divide the terms in the sum into 4 groups, i.e. H, := Hy, + Ha, + H3, + Hyp,. We map
the resulting bosonic expressions into qubit space. We use the following two lemmas repeatedly in order to derive the
Pauli expressions for the sum in each of these groups (Eq. [3)).

Lemma 38. If n, is the number operator on momentum mode p then for any integer r > 1 we have,

Proof. We prove the lemma by considering the action of the operators on the LHS and RHS in the Fock basis. The
action of the number operator on the LHS is given as

iy Z |p,n) = Zn |p,n), and so  (f,)" Z |p,n) = an Ip,n) .
n n n

n

Since (I — Z)|0) =0 and (I — Z) |1) = 2]1), so given our unary encoding in Eq. [37| we have

<Z %T(In - Zn)p) (Z |p7 n'>> = Z %T(In _ Z’n)p ‘p, TL> _ an |p, n> :

n

which proves the lemma. O
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Lemma 39. If m > 1 and r > 0 are integers then we have,

(ab)™(np)" + (ny)"( Z\/ ”+m (X Xntm + Yo Yot (A1)

Proof. First, let r = 0 and we prove the fact that,

(a;r))m + (ap)m = %Z \/ W(Xaner + YnYner)p' (AQ)

For m = 1 we can use the explicit qubit mapping in Eq[38] plug in the operators in Eq. to get the above equation.
For m > 1 we consider the action of the operators on the LHS and RHS in the Fock basis.

The nonzero matrix elements of a, a' in this basis are given by a,.,—1 = v/, (a")n 1 = v/n + 1. The corresponding
action is given as

(ap+a;)Z|p7n> :Z(\/n+1|p7n+1>+\/ﬁ|]9,n—l>)

The nonzero matrix elements of the ladder operators, raised to power m > 1, can be explicitly computed to be

n! (n+m)!

m —
(@™)n,n —m = "

o (@O =

This gives the action on the Fock basis as

()™ + (@)™ Yo ) = 3 ( E et ) 4 [ s m>> | (A3)

Also, the action of the Pauli operator on the RHS of Eq. is,

1 n+m)!
5 (Z \/7( X Xntm + YnYn+m)p> > lp.n
n n
1 n-+m)!
= O X Yo
1 n+m)!
=3 Z \/Tmmm + Y Yoem)(Ip.n) + |p,+ m))
n+m
= Z\/iwwmﬂ»,

The second last line is obtained from the fact that (X;, Xy4m + Y5 Ynim), [p,n) = 2|p,n +m),
(X0 Xpgm + YnYn+m)p lp,n+m) = 2|p,n) and (X, Xptm + YnYn+m)p Ip,n'y = 0if n’ # n,n + m. The last line

follows by relabeling the indices in the second summation. Thus when r = 0, we have p(p,n,m,r) = %\/ W
Now let us consider the case when r» > 0. We prove that

(a;)m(np)r + (np)"(ap)™ = % Z n’ \/ W(Xn)(nﬂn + Y Yoim)p- (A4)

Since i, [p,n) = n|p,n), so the action of the operator on the LHS of the above equation, in the Fock basis is as
follows.

n'

((G,p)m(f},p)r + (ﬁp)r(a;fj)m) Z ‘p7 n> — Z < % & |p’ n+ m> + (n_i

m)!

(n—m)"|p,n — m>>
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Similar to the analysis before, we can show that the action of the Pauli operator on the RHS of Eq. [A4] in the Fock

basis is as follows.
1 » [ (n+m)!
by Z n %(Xanﬂn + YnYn+m) Z |pa n>
n+m)!
= S T ) )
(n+m)! n! ,
zﬂ:\/ — lp,n+m) + (n_m)!(n m)" |p,n —m)

Thus in this case ¢(p,n,m,r) = %\/ @Tﬂ and this proves the lemma. O]

Now we explain how we derive quantum circuits to implement the exponentiated sum in each group i.e. e et
e~ 2ot e=iHaot and e~ H1et We follow the methods described in [26]. Very briefly, we first divide the Pauli terms into
mutually commuting sets. For each such set we derive an eigenbasis and from the diagonalized operator we calculate
the number of distinct non-zero eigenvalues (ignoring sign), which is equal to the number of (controlled)-rotations
we require. We apply some logical reasoning and optimizations to derive the remaining elements of circuits. The
resulting Trotter error due to such splitting, has been calculated in Appendix [B] We would like to emphasize that the
quantum circuits and hence resource estimates depend on the grouping into commuting Paulis and we do not claim
to give the optimal grouping in this paper.

Before we consider our 4 Hamiltonian groups, we derive quantum circuits for the exponential of some specific
summation of Paulis. We fix some convention and notation. We denote Py := X, P; := Y and for any binary variable
v we denote its complement by v := 1 ®wv. Consider the following two sums of Paulis that act on 2n and 2n + 1 qubits
respectively, which we index by 1,2,...,2n + 1. We denote Z;) to imply that the operator Z acts on qubit j. When
we denote a Pauli by P;, j € {0,1} then we do not mention explicitly in the subscript the qubit it acts on, in order to
avoid clutter. We assume that the left-most operator is applied on qubit 1, then next one on qubit 2 and so on and
this should be clear from the context.

Ty =6 Y PaPyPa,Pa,...Pa,Pa,
ai,...,an€{0,1}

T, = 6 > Pa,Po,Pu,Pa,... P, Pa, | (Ions1) = Zzns1)) (A5)
ai,...,an€{0,1}

It is quite clear that the above two terms are sum of mutually commuting Paulis belonging to the following two sets,
respectively.

G = {Pa1Pa1Pa2Pa2'~-PanPan: aj6{0,1}7 j:L"'vn}
Gy = {PalPGIPGZPaz...PanPanZ&nH): aj,be {0,1}, j:1,...,n} (A6)

Now we derive the eigenbasis for each of these terms.

Lemma 40 (Eigenbasis for G; and G3). Let w,va,...va, € {0,1}. Then the eigenvectors of the Paulis in Gy and
Go are of the following form, respectively.

1 1
|V1,:t> = ﬁ (|O’U2 e ’Ugn> + |11)2, e ’Ugn>) 3 |V2,:t> = ﬁ (|O’U2 e 1)2nw> + |1U2, e ’Ugnw>)

Specifically, if 81 = a1va +az(v3+v4) + -+ -+ ap(Van—1+van) and By = a1ve +az(v3+vg) + - -+ an(Von—1 +va2y) +wb,
then we have the following.

Py Py P, Poy... Py Py [Vis) =
PayPayPayPay - .. Pa, Pay, Z0s, 1y V2 1)

i(_1)01+a2+"'+an+51

[Vi+)

i(_l)a1+a2+~~+an+52 |V2 i>
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Proof. We have the following.

Pal-PalPagPag o PanPan |0’U2 . U2n> _ '2(a1+"'+an)(_1)(111)2"1‘(12(U3+U4)+'"+an('U2n71+'U2n) |17’U2 . 'U2n>
— (71)a1+'”+an+ﬁ1 |1m>

Py P, P,,P,,...P, P, 1T 02,) = i2(a1+---+an)(_1)a1+a1(v2+1)+a2(v3+1+v4+1)+---+an(vzn71+1+v2n+l) |00 .. . vay,)
_ (71)a1+"'+an+61 |O’U2.

.. ’Ugn>

Therefore,
Poy, Poy PoyPay - - Pa, o, [V1,2) = i(_l)a1+---+an+ﬁ1 Vi+),

making |vi 1) an eigenvector for the Paulis in Gy. Similarly we can prove that the eigenvectors of the Paulis in Go
are of the form |vo 1). O

It is easy to see that there are 22"~! .2 = 22" mutually orthogonal vectors of the form |v; 4) and 22" . 2 = 22n+1
mutually orthogonal vectors of the form |vs 1), and so we have complete eigenbases for the Paulis in G; and G,. Now,
we derive diagonalizing circuits for the set of Paulis in G; and Gs.

Theorem 41 (Diagonalizing circuit for G; and Ga ). Let W = (Hin CNOT(LJ-)) Hqy and

_ a a a QA QA _ a a a QA QAn b
Zy = Z0) 252378 Dy Dy Ze = D)2 23D - L1y Zisny Zlon 1) where ar, ... an,b € {0,1}.
Then,

(1)t toenwzo Wt = P, Py Py Py, ... Py P €6
(—1) 1t H W ZoWT = Py PayPayPay - . Pa, Pa, Z{y,11) € Go

Proof. We prove the theorem by showing that the operators on the LHS and RHS have equivalent actions on an
eigenbasis of the Paulis in G; and Gs, respectively. Let us first consider the operators in G;. We show the evolution of
the eigenvectors in Lemmawhen the operator on the LHS is applied. We first apply WT. Let 31 = ajvs + as(v3 +

1)4) —+ -+ an(’l)gn_l + UQn) and U, = HJ222 CNOT(17j).

Z

. |Ova ... vgy lvg ... vop) H
e, [0V o van) 4 [102 - Vzn) Hog oy By 00y )

v —
| 1,+> \/i

Hig (_1)ﬂ1 ‘0’02 . ..’Ugn> + |1U2 .. -U2n>
V2

U.
— |[vi,4)

Also,

&) |0U2-~~U2n> — ‘1’02...’02n> m
V2
Hi; (_1)131 ‘0U2...U2n> — |11}2...1}2n>
V2

Thus the Paulis in Gy and the operators on the LHS of the first equation in the statement of the theorem, have same
eigenvalues for the eigenvectors in Lemma [10]

Similarly, we can prove that the operators on the RHS of the second equation in the statement of the theorem have
similar action on an eigenbasis (shown in Lemma of the Paulis in Go. This proves the theorem. O

1vg ... van) 25 —(—1)% |1vg. .. vay)

[vi,-)

UC
— [v1,-)

Using the above theorem, we diagonalize the terms in 77 and 7, and re-write them as follows.

T = W0Z0 Y, ()etteziaze
az,...,an €{0,1} az,...,an€{0,1}

Dy =022y Y, (—l)ettegm ez

T2 = W 0Z(1) Z (—1)a2+.“+a” Z(CL;)Z(aZ) PN Z(a2nn) (I(2n+1) - Z(2n+1))
asz,...,an€{0,1}

—0ZnZzy Yy, (N 2 2 Ten) — Zearn) | W
asz,...,an€{0,1}

wt
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Then using Lemma 2.3 in [26], the eigenvalues of the sum of Z-operators can be expressed as functions of Boolean
variables x1, ..., Tan, Tan41, as follows.

an an

¢1 — 9(71)z1 Z (71)a2+...+an(71)I22+122+...+m2” . 9(71)x1+z2 Z (71)02+'“+an(71)z§2+122+“'+1’2n

1127--<7ane{071} ‘12:---7‘1716{0)1}
= 0D (A= (D) [ 3D (e
as,...,an€{0,1}
g2 = O(-1)" (L= (~)™) (L= (=p=) [ 37 (et (opetet e (A7)
az,...,an €{0,1}
Lemma 42. Let y1,¥o, - - ., Y2m are Boolean variables. Then
m
Z (_1)a1+‘~-+am(_1)y111+y;1+.--+y;77;b — H (1 — (_1)92_7‘—14-7;2]') .
ai,...,am€{0,1} j=1

Proof. We use induction to prove this lemma. The base case corresponds to the case when m = 1. Then, it is easy to
see that

(—1)O(=1)YIF¥2 4 (1) + (=1) (=1)¥1+¥ =1 — (—1)v1tv2,

Now we assume that the lemma is true when m = k — 1. That is

k—1
Z (_1)a1+...+ak71(_1)y‘111 +yst oyl — (1 _ (_1)y2j—1+y2j) )
ai,...,ax—1€{0,1} J=1
Then,
Z (71)a1+---+ak(71)y‘1’1+y§1+---+y§,’§
ai,...,ap€{0,1}
_ Z (_1)a1+'“+¢lk—1(_1)yil+"'+y;;§:21 _ Z (_1)a1+---+ak,1(_l)yfl+~~~+y§,’§:21+y2k,1+y2k
ay,...,ap—1€{0,1} ai,...,ap—1€{0,1}
k—1 k
— (1 _ (_1)y2k—1+y2k) (1 _ (_1)y2j71+y21) — H (1 _ (_1)y2;‘71+y2j) )
j=1 j=1
thus proving the lemma. O

Applying the above lemma in Eq. [A7] we obtain,

61 = (=1 (1= (=) ][ (1= (-pymrten)

Jj=2

n
b2 = O(=1)" (1= (=1)7) (1= (=172 ] (1 = (—1)z2-r+o20) (48)
j=2

Now, ¢y = (—1)*12"0 when x5 = z9j_1 P x9; = 1, where j = 2,...,n; else it is 0. Similarly, ¢ = (—1)"12""1§ when
Ty = Tops1 = Tj—1 P x2; = 1, where j = 2,...,n; else it is 0. Thus, using Lemma 2.4 in [26] we can implement
a circuit for et and e~*T2! using one controlled-R.. The complete circuits (for one time-step) have been shown
in Figure [10[ and respectively. In both these circuits we require 2n — 1 CNOT, controlled on qubit 1 and target
on qubit 2 < j < 2n, and 2 H gates to implement the diagonalizing circuit W. The we use n — 1 CNOT with
control on qubit 25 and target on qubit 25 — 1, where 2 < j < n, to test the parity constraints. Then we apply the
multi-controlled-R, to implement the rotation when the parity constraints are satisfied. Thus, the total number of
gates required for implementing these exponentials per time step, can be summarized in the following lemma.
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VaRY VanY
2n AN N\
2n—1 O—D S—D
2n -2 D S
2n—3 S—D O—D
2 °
1 — R.(2"0) —

FIG. 10: Circuit implementing the exponential of the sum T} (Eq. ie. et

Theorem 43. Suppose T and Ty are sum of Pauli terms, as defined in Eq. [A3 Then it is possible to implement
e ™t and e~ 2" using 6n —4 CNOT and 2 H gates per time step. Additionally, we require one C" R gate (per time
step) for e="11t and one C"t1R, gate for e~"T2,

Here C*R, refers to a R, gate controlled on k qubits. We can decompose C*R, into compute-uncompute C*X
pairs, cR, (single-qubit controlled R.) and a single ancilla. We can then further decompose C*X using 4k —4 T and
4k — 3 CNOT gates [75]. If we use the logical AND construction in [76] then we require similar number of T and
CNOT for both compute-uncompute pair, but at the cost of using measurement and additional classical resources.

2n+1
2n &% P
2n —1 P—D O—P
2n —2 D S5
2n -3 P—D O—P
2 Py
1 —— R-(2"+%6) —

FIG. 11: Circuit implementing the exponential of the sum 75 (Eq. ie. et

We consider another specific sum of Paulis and give the cost of implementing its exponential per time step.

Theorem 44. Let T3 is a sum of Paulis, as defined below.
T3 = 0 [Ty = Zn)
j=1

—iT3t

Then it is possible to implement e using one C" R, gate and an extra ancilla, per time step.

Proof. Using Lemma 2.3 in [26], the eigenvalues of T3 can be expressed as functions of Boolean variables 1, ..., Z,,
as follows.

6 = 0] (1= (1))

It is easy to see that ¢3 = 2" if and only if x; = 1 for j = 1,...,n; else it is zero. Thus using Lemma 2.4 in [26], we
can implement a circuit for e ~*73*, using one controlled-R,. Specifically, we require a C" R, gate and an extra ancilla,
initialized to |0). The controls select the proper state of the qubits. The target R, gate is applied on the ancilla. [
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Now, we consider the 4 Hamiltonian groups - Hi, (Eq. [49), Ha, (Eq. , Hs, (Eq. [52) and Hy, (Eq. ;
and estimate the number of gates and qubits required to implement their exponentials per time step, thus proving
Lemmdf|[8] As discussed, we have two sources of T-gates, one that comes from the approximately implementable
(controlled)-rotation gates and the other that comes from the other exactly implementable components, for example,
multi-controlled-X gates. When we report the number of T-gates we do not include the ones in the implementation of
the rotation gates. The overall T-count can be easily obtained by plugging in the T-count estimates of (controlled)-
rotation gates. More discussion on these bounds have been provided in Section [[A]

a. Group I : Hyp : We re-write Eq. for convenience. Siz = {p = (p1,p2,p3,p4) : pi € ;i =
1,...,4and 3k € Zs.t.ps = p1 + k,ps = p2 — k} and Syz = {1 = (n1,na,n3,n4) :n; = 1,..., M;i = 1,...,4}
are ordered 4-tuples of momentum modes and momentum states.

A [n; +1
Hip = m Z Z H 5 vaj (ijvanPjvnﬁl +ij,anpj,nj+1)

PESap NE€Sanm (pj,m;)E(P,

We see that for a given p, 7, the sum of the 16 terms in the innermost summation is of the form 77 (Eq. , with
n = 4. Thus we can apply Theorem and conclude that we require 20 CNOT, 2 H and one C*R, gate to implement
its exponential. The C*R, gate can be decomposed further into 1 c¢R,, 12 T and 13 additional CNOT. In this case

2
|Sap| < (‘2/) Vo= w and |Sy7| = M*. The 4! permutations of the elements in 7 lead to the same coefficient, and

hence can be summed together, resulting a form similar to T}, with n = 4. Hence, to implement e *H1#? we require

L M*VZ(v-1) 12M*V2(V-1) 33M*V3(V-1) 2MAV2(V-1)
at most s cR,, 18 T, s CNOT and =——3—

Lemma
b. Group II : Ha, : The sum of the terms in this group (Eq. is as follows.

H gates per time step. This proves

ZH24PZ

A 1
= 96|Q| Z Wp\/m ( Z C’Ell)(anXn1+2 + Yn1Yn1+2)p(anan+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Ynsynerl)pfk
p.k

ni,n2,n3

+ Z 07(12) (Inl - an )p(anXnaJrl + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1)pk>

ni,n2,n3

(1) _ VoD et e D ) _ my/Gat m)
8 J =

where ¢, = n 1 .

For every p, k,n1,n2,ng there are two sums, one of the form 77, with n = 3 and the other of the form T5, with
n = 2 (Eq. |A5). Using Theorem §3| we require 14+8=22 CNOT, 4 H gates and two C3R, gates to implement the
exponential of these sums. Each C°R, can be implemented with 1 ¢R,, 8 T and 9 additional CNOT. In this case,
|Sup] < V2, |S4z| < M? and there are 3! permutations of the momentum states i.e. ni,ng,n3 that can be summed
—iHy,t M33V2 R., 8M33V2

together, because they have the same coefficients. Hence, to implement e we require at most

T, M CNOT and 2M§V2 H gates, per time step ¢, thus proving Lemma@
c. Group III : Hz, : From Eq. @ we can re-write the following.

t H3y

A 1
= Z Z C$L3)(Xn1an+2 + Ya, Yn1+2)p1 (X’ﬂz Xnot2 + Yo, Yn2+2)172
96|Q‘ P1,p2 Wp1 Wps

ni,n2

+ Z 624) (Xn1Xn1+2 + Yn1Yn1+2)p1 (I’ﬂz — Zn, )Pz + Z CS)(anan-&-? + Yn2Yn2+2)pz (Im - an)Pl

ni,ne ni,n2

+ Z nin2(In = Zpi i = Zpains + Zpyny szmz))

_ V/(n1+2)(n14+1)(n2+2)(n2+1) W _ n2y/(n1+2)(n1+1) o) _ niy/(n2+2)(nz+1)

where 05{9’) 1 5 5

Here we see that for a given p1, p2, n1, 1o, there is one sum of the form 77 with n = 2 (Eq. , two sums of the form
Ty with n =1 (Eq. and one sum of the form T3 with n = 2 (Theorem . Using Theorem [43| we can implement
the exponential of the first sum using 8 CNOT, 2 H and one C?R, gates; each of the second type of exponentiated
sums (T3) using 2 CNOT, 2 H and one C%R, gates. Using Theorem [44| we can implement the exponential of the last
type of sum (T3) using one C2 R, gate per time step. We can decompose each of the C?R, using 4 T gates, 1 cR, and
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5 CNOT gates. In this case, |Syz| < @ and |Sy7| < M? and the 2! permutations of each (n1,n2) can be summed
together. Thus, overall we require 2M2V(V — 1) ¢R,, SM?*V(V —1) T, 16 M2V (V — 1) CNOT and 3M2V(V — 1) H
gates. This proves Lemma [7}

d. Group IV : Hy, :  We re-write the terms in Hy, from Eq.

tHyy

+2n/(n + 2)(n + 1)(XnXnso + YoViya)p + 3(n% — n)(I — Zn),,)

We see that for a given p,n there are two sums of the form 77 with n = 1 (Eq. and the exponentials of these
can be implemented with 2 ¢cR,, 4 H and 4 CNOT (Theorem . The exponential of each term of the form I,, — Z,
can be implemented with one R, gate. In this case |Syz| <V and |S4z| < M. Thus, overall we require 3MV (c)-R,
4MV H and 4MV CNOT gates, proving Lemma [8]

Appendix B: Trotter error when simulating in the Field Occupation Basis

We bound the Trotter error, resulting from approximating the exponentiated sum of Hamiltonian operators by
a product of exponentiated Hamiltonian operators. We use the bound given in [67], which shows the dependence
—iTH

on nested commutators. If a Hamiltonian H = 25:1 H, is a sum of I' fragment Hamiltonians, then e can be

approximated by product of exponentials, using the p'* order Trotter-Suzuki formula [68], .7, (7) = e ™# 4 o/ (1),

where || (7)|| € O (CQeomm7P ™) if each H, are Hermitian. Here Geomm = 251 ororpin =t Hoypirs -+ [Hag s Hyg ]|l
We use the following bound given in [27]. In this section, || - || refers to the spectral norm [67], which is defined as the

induced Euclidean norm on the Hamming-Weight 1 subspace S

Ol = max Olz)||2. B1
0] =, max [0l (B1)

This definition corresponds with the Schatten infinity-norm which yields the maximum singular value of a matrix.
We also need the following result to simplify the calculation of our norms.
We also make use of the bound.

Geomm < 207D N [ o L [Ho [Hog, By ) (Z le|> l<p'<p (B2
y=1

YiqsVig ey FYip’«#l

In this paper we derive expressions and rigorous bounds for the first order or innermost commutators, i.e. we take
p’ = 1. In Section we have expressed the occupation basis Hamiltonian as the sum of 5 other Hamiltonians (Eq.

15 9 B B2 3.
Hocc = H(] +H1Lp —|—H2¢ + HSLp +H4<p

Each of these Hamiltonians has been expressed as sum of Pauli operators. First, we re-group these summands into
sets of mutually commuting Paulis. Then we derive bounds on the norm of the Hamiltonians. Next, we derive bounds
on the pair-wise commutators. Finally, we combine these to derive bound on @com:m and hence the pth order Trotter
error, thus formally proving Lemma

We make the following observations. Let P € {X,Y, Z} is a Pauli operator. Then,

(PonPpntis Porw Porrsr]) =0 if p#p' or p=p" but n' #n,n+jn—kn+j—k. (B3)
Let Z be the set of integers, including 0. We define the following sets.

S10 = 2%; S11 =22+ 1;
Sa0 = {1+ 4Z} | {2+ 4Z}; Sor = {3+ 42} | J{4z};
Sao = {1+ 8Z} | {2+ 8z} | {3 + 82} {4 + 8Z}; Su = {5+ 8z} | J{6 + 8z} | {7 + 8z} | J{sz};
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We sum Hy and Hy, into one Hamiltonian Hﬁllw‘
:H:W =t Hy, : +: Hp:
B AZ Vin+4)n+3)(n+2)(n+1)
96

2
pr

(Xan+4 + YnYn+4)p

+ </\> o (DAL oo YVoia),

48 o w2
2
nwp A(n® —n) _ :
+ Z < wp)2> (In — Zn), = Hu + Hao + Haz + Hag + Has; (B4)
where,
A (n+4)(n+3)(n+2)(n+1) 4
Hy = = Y v 5 (X Xoa + YaYara), = o LS oaw
p,mES40 P p,mESao0
A Vin+4)n+3)(n+2)(n+1) 4
Hyp = — Z 202 (XnXnta +Y, Y”+4 96 Z Agp)n
p,nESa1 p p,nES41
A ny/(n+2)(n+1) A (4)
H43 = (48) Z 2 (Xan+2 +YnYn+2)p = @ Z A2pn
p,nES20 p p,nESa0
A ny/(n+2)(n+1) A 4
= () 3 I v, - (4) 8 A0
p,nE€Sa1 p p,nES21
H :Z %+M (I, — Zy,) .:20(4) (B5)
4 1\ 2 82(wp)? )\ e T 2T
It is possible to check that each Hy;, where j =1,...,5, consists of sum of mutually commuting Pauli operators.
Si?l) = {fl = (n1,n9,n3,n4) : Any 2,4 or 0 of the n; are in Sy and the remaining are in S11;j =1,...,4}
and Sgl = {il = (n1,n2,n3,n4) : Any 1 or 3 of the n; are in Sy and the remaining are in S11;j =1,...,4}.
Given a certain p € 5’4;9 and 7 € Sy7, let
1 n: + ].
A;,)ﬁ = H : (ij,nj ijv”j-i-l + Y;?jv"j YP;’»”J'+1) ’ (BG)

(pj.m;)E(P7) Pi

then from Eq. we have that we can express the first term from the ¢* term that arises in Hye. as the following.

Hl‘:15322A

pE S4p neESyn

— (1) (1)
~ 1536 > >4 +@ > X Api

PESup g () PESap feg(l)
= Hyi + Hyp (B7)

Again, both Hy; and Hio consists of sum of mutually commuting Pauli operators. Let,

Sé%) = {(n1,n2,n3) : n1 € Sa1,n2,n3 € S10; or Ny € S0, n2 € S10,n3 € S11; (B8)
or ny € Sy, M2 € S11,n3 € S10; or ny € So1,n2,n3 € S11} (B9)
S5 = {(n1,n2,1m3) : 1 € Sa,m2,m3 € S11; Or Ny € Sa1,mz € Si1, 13 € Sio; (B10)
or ny € Sa1,n9 € Sjp,n3 € S11; or ny € Sog, na,n3 € S} (B11)
S;Om) = {(n2,n3) : n2 € Si0,n3 € S11; or ny € S11,n3 € Sio} (B12)
S5 = {(n2,13) : na,n3 € S11; or nay,ns € Sio} (B13)
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Given p, k,n1,ns,ns3, let

(1)

Agm . Wﬁ (Xny X2+ Yo, Yoy h2)y (Kiny X1 + Yoo Yoo 1) g (X X1 4 Yoy Yo ),y (B14)
and
B<2>ﬂ;_i(1 — Zn)) (Xna Xnas1 + Yog Yogs1) o e (Xna Xa b1 + Yina Vi 1) (B15)
PR @k @p—k n1)p \AnoAnatl T Tno Tnot1)p 1 (AngAng+1 T Ing Ing+1)p g

n n mn n. niy/ (N n. .
where c(l) = V2 A D) (a4 (n+1) and cg) = %. Then, from Eq. , we have the following.

A
tHyp : = Z > A pk:n %Z > Bz(jc)ﬁ

p,k ni,n2,n3 p,k ni,n2,n3
— A® A2 (2)
-Gl ¥ ALigy ¥ o4 ~+*Z 2 By
Pk (n1,nz,m3) p.k (n1,n2,n3) p.k ©
ESS?L ESSL (nz, n3)€S 2n

35 2 X By

(nz,nz) esgy)

= Hoy + Hoo + Hoz + Hay (B16)

where each Haj, for j =1,...,4, consists of sum of mutually commuting Pauli operators.
Let, Sgi) = {(nl,ng) NS 520,712 S 821; or ny € Sgl,ng S Szo};
3
and Sén) = {(nhng) N1, N9 € SQO; or ni,ng € 521}.

(3)

Given Pl,Pz,nl,nz» let A(g')‘ T Wpy Wpy wm (Xn1Xn1+2 + Yn1Yn1+2) (anXn2+2 + YnQYn2+2)

p2’

Bips = 5ot (Xnu Xnsz + Yo Yarr2),, s = Zn) i Bigs = 55— (Xna Xuat2 + Yoo Yasi2)y, (Iny = Zny),,; and
CS = 8 (T, = Za)y, (s = Zo)y where ) = Y0 il (0 o/l 0000 ()
m—v(mz?)(nﬁl) From Eq. we get the following.

: H3

_ Z Z( A®) 4 BE ﬁ+33l+o<3) (B17)

Pl P2 ni,n2

=5622)Az S DD DIV ICHIE S SR REES DU DI s

P1,P2 (n1,n2 Pl P2 (n1,n2) Pl ;P2 n 6520 pl P2 n 6521
es? es{®

A 5O 5O 3)

DD DRCUEED SED DIV IRTD i) PEci
P1,P2 nzgszo P1,P2 7L2€S21 P1,P2 N1,N2
1
:= Hs1 + H3o + H3s + H3g + H3s + H3e + Hsr (B18)
Again, each Hsj, where j =1,...,7, consists of sum of mutually commuting Pauli operators.

1. Norm of Hamiltonians

In this subsection we derive bounds on the norm of the operators that appear in the decomposition of H,... Since
we use the triangle inequality it is sufficient to derive bounds on the norm of each Hj,, where j = 0,1,...,4. Let
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miny, Wy = Wign and Max, w, = Wmez- Due to truncation we have 1 <n < N. We first bound the norm of Hy (Eq.

16).

1 nwp nwp
IFoll < gy 32 55" (0 = Zu)ol < mas =52 = Zuy |

N
1Qwmas max = .9 — Ymaz¥
n 2 2

IN

(B19)

Next, we bound the norm of Hy, from Eq. We recall that Sup = {(p1,p2,p1 +k,p2 — k) : p1,p2,k € Z} and
Sai = {(n1,n2,n3,n4) :n; =0,...,N;i=1,...,4} are 4-tuples of momentum modes and states. Also,

[Sap| < = (B20)

and |S;5| < N4, as discussed in Appendix

A n;+1
el < ”m Z Z H ZJ (Xpyin; Xpyms41 + Yo, m, Yo, ms+1) |
PESap ME€ESsn (pjnj;)€(P,7) Pi
A n; +1
< 24 - 64 pnel%i, ﬁnel.%f- | H ’ ) (ijvanpj»nj+1 + Yy, YP]'JLJ-H)H
" (pymg)E(p.A) i
Al Sup] (N +1)2
< ——-16
= 2464 peSip Ai€say W2
A (N+1)2
< : 1
T 2464 2wZ,. 0
AN +1)2
_ A+ 1) (B21)
192w

min

Now, we bound the norm of Hs, (Eq. . In Appendixwe have shown that the number of possible pairs (p, k),
where 1 < p,k < |Q] are integers, is at most |©2|?; while the number of tuples (n1,n2,n3), where 1 < n; < N are
integers, is at most V3.

A 1 ni+2)(ny +1)(ne +1)(ns+1
1Bagll < 2 mas Vi 2 4 D £ 00 2Dy x4 Vo),
96 p.k nin2,ns Wy O kWp—k 8
ny (ng + 1)(713 + ].)

(anXn2+1 + Yn2Yn2+1)p+k(Xn3Xn3+1 + Yn3Yn3+1>pka + 4 H(Im - an)p
(XHQXH2+1 + YnQYn2+1)P+k(Xn3Xn3+1 + Yn3Yn3+1)p*kH]
A 1 N +1)3/2(N +2)1/2 N(N +1

< —max max —; (N + 1)V +2) -84 (N + )~8
96 p,k ni,n2,n3 Winin 8 4
AN +1) (\/(N+ (N +2) +2N)

< (B22)

96w2

min

Next, we bound the norm of Hs, (Eq. p2). In Appendix [A] we have shown that the number of possible pairs (p1,p2),
where 1 < pq,p2 < |Q] are unequal integers, is at most |Q|(|Q2] — 1); while the number of tuples (n1,ns), where
1 <n; < N are integers, is at most NZ,
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A 1 V(g + 1) (1 +2)(n2 + 1)(ng + 2)
6] Q2 pi.pa mr 2 Wpy Wpy 4 1(Xons X424 Yo Yo 42,

||H3s0||

IN

2

2
(Xn2Xn2+2 + YTIQYTI2+2)Z72|| + ||(Xn1Xn1+2 + Yn1Yn1+2)p1 (ITLQ - Zn2)p2||

ny (ng + 2)(”2 + 1)
+ H(anXn2+2 + Yn2Yn2+2)P2 (ITH - Zﬂ1)171 H + nln?”(I’fh - Z’ﬂl)Pl (Inz - Zn2)p2||

2
<A
N/ (N+1)(N+2 N/ (N+1)(N+2
JIGESILER BN LES CED P MO EDGE: >.4+N2.4]

< %w% (\/(N+1)(N+2)+2N)2 (B23)

min

Finally, we bound the norm of Hy, given in Eq. First note that as we are summing over p distinct momentum
modes the norm can be bounded above by

Vin+4)n+3)(n+2)(n+1)
2

+2n4/(n +2)(n+ 1)[[(XnXnt2 + Yo Yai2)pl + 3(n* — )| (I — Zn)pl\}
A ! lV(N+4)<N+3)(N+2)(NH) ~2+2N\/(N+2)(N+1)~2+3N2~2]

[Hagll <

A
|
=
&
5
|

H (Xan+4 + YnYn+4)p”

IA
|
=
Qo
"

96 p.n w%@in 2
< oo (VIVF DN 3+ 2N+ 1) + 4NV + D 1) + 632 (B24)

min

2. First level commutators

In this sub-section we compute the first-level or innermost commutators between pairs of Hamiltonians Hy,, Hay, Hs3,, H. fw,
including the commutator between the non-commutator terms of each, using Eq. We use the following results
repeatedly. Let us define the adjoint operator ad, : y — [z, y].

Lemma 45 (Decomposition of Commutators [27]). Let X; = ZZLJ:l Ag), forj=1,... p, where Agj) are elements
from the same ring. Then,

mMp—1 ma

lp mi ( )
1
adx,adx,_, ... adx,adx, X1 = E E e g E adA(_p) adA<p_1) o adA@ adA(_z)Ai1 .
p ‘p—1 *3 ]

ip=lip_1=1  ig=1i;=1

a. Commutators within Hy, :  The sum of the commutators within the terms of Hi, (Eq. is as follows.

In order to have two terms that do not commute, we need to ensure that at least one of the indices match for the
momentum modes. The first such terms involve the commutator of terms of the form [AE){)ﬁ’AE,{%ﬁ] where Al(ol,zﬂl
is defined in Eq. We can see that unless at least one component of p and p’ overlap then the commutator
of [XpnXpnt1,YpmYpm+1] is zero. Similarly, if there exists j, k such that none of the conditions n; = nj,n; =
Nyy15M5Mg_,- Thus for each (p,7) there exists at most 3% AS}L terms that do not commute with it in the

commutator expansion. This is due to the fact that there are still two momentum modes to sum over other than the
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overlapped mode. This observation leads to the following commutator bound.

=L AW A
[[H11, Hialll = o Z Z Z (1536) p,n,Ap,’T;,]H

PP €54p 75D nregil)

Sipl” . 1) 40
A B25
e (53 i max mae (14, A I (B25)
|pﬂpl ’65(1)

Now, A(l)ﬁ and A(l)ﬁ, are each sum of 16 Pauli operators and each of the Pauli operator ASi7 can anti-commute

with 8 Pauli operators from A( ) . S0 if wimin = miny, wy, then

4 /
n; + 1)(n; +1 N +1)4
A AD < 16-8-2- max T (R RE) B P (B26)
' pon 7,p, AP’ j=1 Wp; Wy min
Hence, we have from the fact that |Ssp| < 1/2,
A 2 A\ /(N +1)*
\[Hy, Ho)|| < (16962) 3.9T(N +1)* = (w2. ) ( R ) . (B27)
man min

b. Commutators within Hay, :  Let Ssp = {(p1,p2,ps3) : Ik € Z s.t. py =p1+k,p3s = p1 —k}. From Eq.
norm of the sum of commutators within Hs,, is.

4 4
I [Haj, Hapll| < Y [|[Hay, Hokl|
Jok=1 Gok=1
Jj#k J#k
We now bound each of the summands in the above equation. In this case, each p is in S3p and thus is of the
form (p,p + k,p — k), where p,k € Z. Two of the coordinates uniquely determines the third. So, two tuples
p=pp+k,p—k),p =@ ,p+k,p —k') can have either 1 or 3 equal components. ¢ = |[pNp’| = 1 if either p = p’
or k =k’. Thus we can have at most 2 - [Q| - |Q|> = 2 such pairs of (p,p’). £ =3 if p=p’ and k = k' and thus we
can have at most || such pairs. There is a normalization factor of +|{2|? for if there are 1 or 2 overlap § functions,
so these factors reduce to factor of 3.
Also, each A(2)ﬁ is sum of 8 Pauli operators and each of these operators can anti-commute with at most 4 Pauli

B®

operators in AC s Similarly, B ki is sum of 8 Pauli operators and each can anti-commute with at most 4 Pauli

k/ /
operators of Ap,k,n/. Each of the 8 Pauli operators of B;()k)ﬁ can anti-commute with at most 4 Pauli operators of
B(2/3€/ e SO’

A2 AD, | < 8eac2 e VOO0 00 T 00 ¥ 1) /T 2065 D0 T 6% D
pi gl = it 8up /Dy kp—k B /By

(N +1)3(N +2)

4

wmzn

2 1 1 1) n L+ 1)(nkh+1

[AZ B | < 8-402 max Y20t D0t ¥ Ding ¥ 1) niv(n £ D% 4 1)

P kin ,n’\p,p’ k. k' 8wp\/WpkWp—k A\ Wy 11 Wy — k!
2N(N + 1)°/2(N +2)1/2

— 4
Win

IN

1 1) n L+1)(ns+1)  4N?(N +1)2
B2 B® | < 8.4-2 max my/(n2 +1)(ns + 1) ni/(ny + Dng +1) _ (4 + )7 (B28)

Pk’ Ity ! . >~
p'kin i, kk! AWp/WprkWp—k A\ fpr i Wy Winin

where wp,;n = min, w,. In each of the cases below, if £ = 1 then there can be overlap of Pauli terms on any one of

IN

the 3 coordinates of 7 and n’ ; and if £ = 3 then also there can be overlap on any one of the 3 coordinates or on all
the 3 coordinates.
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In each of these cases we first apply triangle inequality to expand the sum and then count the number of pairs
(17,n’) that satisfy the constraints below the sum. We have already enumerated the number of pairs (p,p’) when
e =

1, 3; and bounded the norm of the innermost commutator. We first consider the following commutator.

A\ 2 2
lall < (5) 5 X | X 1Al
£e{1,3} p,p’ || 7esi?
\pgg’l wesh)

Using the previous bounds on the number of non-zero commutators

(| [Ha1, Haol || < <9A6> 41 (N +1)2[(N +1)(N +2)].

min

Next, consider the following commutator.

A\ @) p@)
|| [Ha1, Has] || < (96) g ma ﬁfggg) IlApris Byl
n
POl (g ) €534

Using Eq. [B28] we have

A
96w?

min

| o, Hosl || < ( ) AN(N + 1)P2(N +2)V/2,

It is not hard to see that we can bound each of the terms below with arguments similar to ||[Ha1, Has]||. ad

A 2
|| [Hai, Hojl || < ( ) 3 max max  max [[[AZ B® || [ie{1,2}:j€{3.4}]

Y . kit Py
96 (={1,3} pp  jes{iV p p'k'n
il SCTRIALC

n

And hence,
| [Hao1, Hos] || + || [Ha1, Haa] || + || [Ha2, Has] || + || [Haz2, Haa] |

2
(9632) 8N -3(N +1)°2(N +2)1/2,

min

Now we bound the following.

A\ @) p2)
I THas, ] | < (96) 3, mexx max max (B, B ol
\pgg'\

A
96w?2

min

| [Haz, Haa] || < ( ) 34N%(N +1)2.

Hence we get the following bound on the sum of the commutators within Ho,.

4 2
A
I [Haj, Hail|| < (%WQ) 3[4N2(N+1)2+8N(N+1)5/2<N+2)1/2}
Jik=1

min
J#k

(B29)

(B30)

(B31)

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)
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c. Commutators within Hsy, :  Let Sop = {(p1,p2) : p1 # p2}. From Eq. sum of commutators within Hs,
are as follows.

7
I [Hsy, Hal| < max [Hs;, Hsil| (B38)
jjl;kl #k

Now, AS’% is sum of 4 Pauli operators and each of these can anti-commute with at most 2 Pauli operators in AS:)E'

Each of B(‘:’))ﬁ and B(3)ﬁ is sum of 4 Pauli operators, each of which anti-commutes with at most 2 Pauli operators in

A(?’) Also, each Pauli operator in B( )ﬁ anti-commutes with at most 2 Pauli operators in B( - and B . Each

n/
of the 3 non-identity Pauli operators in C( can anit-commute with at most 4 Pauli operators in Ap Two of the

Pauli operators in CI() can anti-commute with at most 4 Pauli operators in each of Bi3)/ -, Béi),7;, , while the third

commutes with all. There are || overlaps. So, we have the following.

||[A(3) 46 )*]H < 4.2.2 max \/(nl—i—l)(nl+2)(n2—|—1)(n2+2) \/(nll+1)(n/1+2)(”/2+1)(”/2+2)

pn’ p'n’ ﬁ,ﬁ",p,p’ 4wp1 sz 4wp/1wp/2
(N +1)2(N +2)?
= w4 ]
|HA(3) (3)4]” < 4.9.9 max V(1 +1)(n1 +2)(na + 1)(na + 2) nh/(nh + 1)(nh + 2) e {12}
pit? Jp'n’ = Ao’ 4wy, Wy, 2w Wy ’
2N (N +1)3/2(N +2)3/2
B wfnin
1 2) nf L4+ 1)(nh +2
”[Bj(f))ﬁ?B(B)/ q/]” S 4.2.2 max nQ\/(nl + )(77,1 + ) ny \/(nQ + )(’I’L2 + )
kpn #i,n’,p,p’ 2wp, W, 2wy wy,
4N?(N +1)(N +2) . .
S UJ4- [Jake{lvz}m]?ék}
- q ]_ 2 1 2 1o/
JASLCP.]| < 3-4-2 max V(4 D +2)(ns + D(n2 +2) ning
pn ,n',p,p’ 4wp1 Wp, Wyt Wyt
6N%(N 4+ 1)(N +2)
<
B wilnin
1 2 ! on/
I ]?n’c Ll < 2-4-2 max (ng +1)(n2 +2) nin
A ,p,p’ 2wp, Wy, Wy, W,
SN3(N +1)V/2(N +2)1/2 ,
< L w)4 w2 € {1,2}] (B39)

min

Now we bound each of the summands on the RHS of Inequality First we consider the following.

96 pii’

A\ o
| [Hs31, Hz2] || < () max max max ||[A(3) A(?j)*,]”
=1 pp eS pn

using Eq. [B39]

A

2
) (N +1)2%N +2)?
96wmm)< 12N 1 2)

| [Har, Hao] | = <

Now we consider the following.

A\ 2 (3) @3)
< [ = ) .
I [Hz1, Has] || < (96) max max nrgﬁg) 1Az By ]l

|pﬂp | "1 eS20,7l2
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Using Eq. we have

A
96w2

min

I [Ha1, Hss] || = ( ) 2(N +1)*2(N +2)°2.

We can also check that the following terms can be bound with arguments similar to ||[Hz1, Has)||-

A\ 2 3) p® ) .
CHs < [ = - :
Il [H3:, Hsjl || < <96> o mex M IlAps: Byl lie {1,285 € {3, 4]
\pﬁp ‘nleSQ(J 3)ins
A\ 2 3) p®)
. . < - . . L
| [H3i, Ha;] || < <96> o mex M IlAps: By ol lie {1,285 € {5,63]

\pﬁp ‘”2652(1 5)in
Hence we have,

_ A
96w?

min

2
et [ Harl || < (g ) 1608 + DY+ 2)°%
j: =

Now we consider the following two commutators that can be bound with similar arguments.

/\ 2
I [Hsi, Har) | < (22 ) max max max [[ASLCEL)I fi € {1,2)
96 =1 pp n/ pn
\pﬁp | neséljn
=/
2 )\ 2
Z [Hs;, Hs7) ||_( > ) 24N?(N +1)(N +2). (B40)
j=1 96w mzn

Next, we consider the following commutators that can be bound with similar arguments.

A\’ (3) pRG)
Has, Hadl | < (= B®_ BB _
I ]| < (35 Iufmax max (555 B I
[pNp’| 71 €S21,n5
A\’ () p®)
Has, Hasl || < (= B®_ BB |
H[ 33, 35] || = (96) |Y?:?11X IE?)X mggiiw[ 1pn’ zp/n/]
[pnp’| 75 €S20,m
A\’ (3) pRG)
Has, Hagl | < (= B®._ BB _
I ]| < () Iufmax max (355 B I
[pnp’| 75 €S21,m
A\’ (3) pRG)
I ]| < (g5) I max (B35 55 I
|pNp’| P2 € S20,m)
A\’ () p®)
| [Haa, H3g] || < (96) |T?jf{ max mgjffm[Blpﬁaszw]
|pNp’| P € S21,m)
2
| [Hss, H3g] || < A |max max max ||[B(3)ﬂ7B(3)ﬂ}H
— \96 ¢=1 p,;p’ nz€Sz0,m 2P op/n’

IpNp’| n5 € S21,n]
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Again, the number of pairs (ﬁ,ﬁ" ) intersecting one one given coordinate is at most N3 and these are the cases that
give a non-zero commutator. Thus, using Eq. we get the following.

A\ 2
m%bx max | [Hs;, Hse] || < (96w2 ) 48N?(N +1)(N +2) (B41)

J=3 =5+ min

Finally, we consider the following group of commutators, which also can be bound with similar arguments.

A’ @ O
< . — -
I ]| < (55 ) I max a5 COL I
\pﬁp\ n
3 ~G)
< ~ -
I Hl | < (35 ) ufi max | max B, OO |
\pﬂp\ n
| [H35, Har] || < i \max max  max IBE., B
7 — \96 £=1 p,p’ n2€S20,m 2p7i’ T prnt
\pﬂp\ n
| [H36, H37] || < i \max max — max ||[B(3)a 0(31]”
se: Harl |l = | g¢ o, 1 Bapn: O

\pﬂp \ n’

As before, the number of pairs (ﬁ,ﬁ’ ) that give non-zero commutator are the ones that have overlap on a single
coordinate and the number of such pairs that intersect on a given coordinate is at most N3. Hence, using Eq. [B39
we have,

962

min

2
m%§< | [Hs;, Ha7] || < ( ) 6AN3(N + 2)V/2(N +1)1/2 (B42)
j:

Therefore, we get the following bound on the sum of the commutators within Hs,.

7 2
A
Hs;, H. < [ —5%—1) [2N3(N +1)(N +2
||j§k:jl[ o Hai | < (%wmm) 2N (N + (N +2)

Jj#k
FI6N3(N + 1)M/2(N + 2)1/2] (B43)

d.  Commutators within Hy, :  From Eq. sum of commutators within Hy, is as follows.

5

I Z [Haj Hail || < maX||[H4J7H4Z]H (B44)
= il

Here, each of A(4) and A2 ., are sum of 2 Pauli operators and each can anti-commute with at most 1 Pauli operator of

A( )n, and Agl),n, C’Z(,i has a single non-identity Z operator and it can anti-commute with at most 2 Pauli operators
(4)

in Ay

v and A2p’n’ Hence, we have the following. The Trotter error also requires p = p’ which occurs || times.
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\/(n+4)(n+3)(n+ 2)(n+1) \/(n’ +4)(n +3)(n' +2)(n' +1)

I [Afp AR I < 2:1-2 max |

n,n’,p,p’ ng 20)12)/
(N H4AYN +3)(N +2)(N +1)
B 2w;4n7,n
4 3 2 1) n’ '+ 2)(n +1
A9, AL, 1 < 212w (YOEDE SO E B0 2 D oy + 20 1)
n,n’,p,p’ 2w? Wp
. NN+ (N +2)(N + 3)V/2(N + 4)1/2
N wfnin
2 1) n "+ 2)(n' +1
1[AS0, A0, 1 < 212 max ot )(n + )y + 9+ 1)
n,n’,p,p’ wp (JJp/
4N?(N +1)(N +2)
= e (B45)
Also,
2 / / / /
1) 4@ 9. nwp | A0 —n)] V(0 + 40 +3)( +2) (W +1)
I [Cp”)’Alp/”’} =12 2n,r7?%)),(p’ Op.p' 2 32w12) 2w}2)/
2(N + D)Y2(N +2)Y2(N + 3)V/2(N +4)1/2 nw, = An(n—1)
= W2 T | 2 3202
Let max,, , {m;” A’;g;%l)} occurs when n = NJ for some fraction 0 < 8 < 1, that is a function of p,w,, A, L, d.
That is,
s | P An(n —1) _ N Bwmaz )\Nﬂ(Nf -1 (B46)
np | 2 32202 2 3202,

In the rest of this section, unless stated we assume this fact for simplicity and convenience. We will discuss about our
choice of 3 later, at appropriate place. So,

@) A4 NN +1)(N +2)(N +3)(N +4) AB(NB —1)
[ {Cpn 7A1p’n’} | < 2 Bwmaz + Tl6wZ,
2 / ! /
(1) 4(4) } < 1.9 nwp  A(n? —n)\ n'y/(n' +2)(n" +1)
” [Cpn >A2p’n/ ” <1-2 QnE}%i(p’ 2 + 32&112) W;2>'
2N?/(N +1)(N +2) AB(NB —1)
< _ B4
B w'r2nin |:me0@ * 16w1271in :| ( 7)
Now we bound the following commutator, using the above inequalities.
A 1) 4()
o Hal| < (3 ) max max 1A, A,
n'=n+4
A\ 2
<96w2> (N+1)(N+2)(N+3)(N+4) (B48)
We consider the following commutators, which can be bounded with similar arguments, using Inequalities
A\ H ‘ .
Il < 2 (50 ) max o ADAD e (125 € (3.4)
n'€8s(;-3)

In each of the above cases, for a given n there can be only one n’ for which there is an overlap between the Pauli
terms and so,

A 2
j= ) —

min
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Next, we consider the following and bound the commutators using inequalities [B47}

A\ () A\ @ @)
IFus, His) + a, Fol | < (g ) Imase e 0455, OS2+ (55 ) T s 10487, €0
n'=n ,n+1 n’:n,n+1
A AB(N 1
< 2 N\/(N+1)(N+2)(N+3)(N+4) ﬂwmaﬁM (B49)
96wmm 16w mzn

Now, we consider the following commutators.

A 4) A\’ (4
s Hos)+ (s, o] | < (5 ) Ima e 1450, ORI+ () s s 480, CE201
n'=n n+1 n/:n,n+1
A AB(NP —1
< (48 5 )2N2 (N+1)(N +2) [ﬁw’m“LBfG E )

Finally, we bound the following commutator using Inequality

| [Has, Haal || < ( ) Z Z Aé‘;)mAéi)n/]”

nGSzo
n'=n+2

)\ 2
< 16 ——) N2](N+1)(N+2

Therefore, we get the following bound on the sum of commutators within H, é’w.

IS [Hyy Hal || < <A> (N +1)(N +2) {(N+3)(N+4) +16N /(N +3)(N +4) + 16N2}

96w?
ji=1 min
J#i

+ <48 Afm) VN 1D)(N +2) {\/(N+3)(N+4)+4N}
WNM}

B50
16wmm ( )

' |:ﬁwmaz +

a. Intergroup Commutators

Now we bound the commutators between H;, and Hj,, where i # j. We keep in mind that when referring to
Hamiltonians in Hy,, Hay, H3,, then p, it are 4-tuples, 3-tuples and 2-tuples, respectively. This should be clear from
the context.

a. [Hip,Haz,] : Using Lemma in Eq. and we have the following.

2 4
| [Hi1g, Hap] || < ZZ | [H1i, Ha] || (B51)

We now bound each of the summands in the above equation. We first bound the commutators between the terms
A(lq in Eq . and Ap,m7 B}gi)ﬁ in Eq. ASL is a sum of 16 Pauli operators and each of these can anti-commute

with at most 4 of the 8 Pauli operators in ASL,J, and B' ,L, -. We also require the overlap of at least one momentum
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mode p; = p’ & k. This occurs 2 times. So, we have the following.

1 P, +2)(nh+1)(nk+1
IAD,A® ]| < 16-4-2- max H it v ( + Dloh + 2 + D + 1)
p, p'k/n ﬁ,Tp SUJP/ /Wp’ +k'Wp’ —k’

16(N +1)7/2(N 4 2)1/2

— 4
Wnin

nj+ 1\ ni\/(nh+1)(ns +1)

A(ll,B(Q) S £ 16-4-2- max
A7 B Il < e 11;[1 W, Ao\ [T R
P)7;,/,1{/
3
o BNV 4 (B52)
wi
We can bound ||[H1i, Ha,l||, 4,j € {1,2} in a similar fashion where,
1 A 2 3 (1) . .
”[HliaH?jm < E % I%l_alX IE%X Igale) ||ApnaA || [Z € {172}5.7 € {172}]
— ne
POl 50D
We have
A\ 2
[H11, Ha1]|| < <W> 8(N +1)"/2(N +2)1/? (B53)
mn
and thus,
2
S it Hll = () 2+ )7 2 (B34)
i=1 j=1 Winin

We can also bound ||[Hq;, Hojlll, ¢ € {1,2},7 € {3,4} with similar arguments where,

2 3
IHs, Hogl|) < (QAG) S Y ARBEL fe{2ye 3.4y

=1 pp’  fesli-b
’ n
|pﬂp |(1’L n )ES(J 3)
ny

Let us consider ||[H11, Has]||. The conditions for the overlaps on the momentum modes and states that give non-zero
commutators are similar to that of ||[H11, Ha1]||- So,

ZZHHM,HQ]H < ( ) 32N (N +1)3 (B55)

=1 j=3
and thus plugging in these bounds in Eq. we obtain the following.

A
[Hrg, Ho]l| < (W) 16N (N + 1) [\/ (N +1)(N +2) +2N} (B56)

min

b. [Hip,Hs,] :  We use Lemma {45[ to obtain the commutator between Hi, (Eq. and Hs, (Eq. [B18).

2 7
I[Hip, Haglll < D> lI[Hui, Hajll (B57)
i=1j=1
We first bound the commutators between A(l) (Eq. and Aj 3) Bg)n, Béi)n, C(g) (Eq. A(lrz is a sum of 16

6 g®

Pauli operators, each of which can anti-commute with at most 2 of the 4 Pauli operators in A ,) o Bl Bogry
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Also, each of them anti-commutes with at most 3 of the non-identity Pauli operators in Cl(j’zlﬂ,. There are 2 momentum
overlaps. So we have the following.

14D, A < 16-2.2 max [ ] nj+ 1) V0 +1)(n) +2)(ny + 1)(n) +2)
PN’ " Tpin! — 8711: i ij 4wp/1wp/2
16(N + 1)3(N +2)
B w'ilnin
1AL B® || < 1622 max 1) may(m £ D +2)
pii’ " jprnr !l = r_’jRi e Wy, 2wy wpy,
32N (N +1)5/2(N + 2)1/? ,
< T i e{1,2}]
4
1 I N +1)?
140 COL | < 1632 max [ [[ /Rt - Larme o 2V ED) (B58)
P pvl:ll =1 Wp; Wp) W), Winin

n,n’

We can bound the following commutators in a similar way.

A\ 2 (1) 43) . .
i I < = —= ) . .
I1H:, Hsg]ll < 2 (96> Tiax max ﬁé??}fw ITAps Ayl e {12355 € {1, 23]
IPQ?\ T;,GS§+1>

Let us consider ||[H11, H31]||. Again we recap that p is of the form (p1, pa,p1 + k,p2 — k), where p1,p2, k € Z and p’

is of the form (p1,p2), where p1,ps € Z. Let £ = [pNp’| = 1 i.e. the momentum modes overlap on 1 index. Then

a non-zero commutator can occur if there is intersection among the momentum states 77, n’ on that particular index.
So
9

2 2
2
SN IHu, Hy| < (W) 32N+ 1)3(N+2)  [ie{1,2};j€{1,2}]
i=1 j=1 e
We consider the following commutators, which have similar bound, using similar arguments.

A\ o 1) BB ’ :
. ) < 4 - ;
ITH, Hyglll < g <96> o max max IAps By Gl lie {12355 € {3, 43
“’2}?" n1 €S2 (j_3)inh
A\ 2 1) BB
. ) < R ) = ; .
ITH, Hyglll < g <96> o max | max IAps By ol li€ {1,235 € {5,6}]

’
‘pg’ | ng€Sa(j—sym4

In each of the above sums, the conditions for overlap of momentum modes and states in order to give a non-zero
commutator is similar to that of ||[H11, Hs1]||- So,

2 6 \

i=1j=3 min

)22(N+1)5/2(N+2)1/2 (B59)

Next, we consider the following commutators with similar arguments on their bounds.

A\ 2 1 3 .
et ] < g (5 ) o me wax JAQLCEMIN lie 1,2}
=1 b esl
|PD§/| o

Again, the conditions for overlap of momentum modes and states in order to give a non-zero commutator is similar
to that of ||[H11, Hs1]||- So,

> i Haall < 5 (=) v+ 02 (B60)

i=1
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Plugging these bounds in Eq[B57] we obtain,

2
|[Hip, H3p)|| < <96 Az ) 6401 (N +1)%. [(N+1)(N+2)+4N\/(N+1)(N+2)+3N2] (B61)

mzn

c. [Hip,Hj,] :  Using the definitions of Hy,, Hy, from Eq. respectively and Lemma we obtain,

I[Hig, Higlll < >0 [I[Hus, Hajll- (B62)
i=1 j=1

We first bound the commutators between A(l) (Eq. and Alpn, Ag;m, C’](,i) (Eq. AS% is a sum of 16 Pauli

operators, each of which can anti-commute with at most 1 of the 2 Pauli operators in Al A(4) /v and the only

1p n’’
non-identity Pauli operator in C’l(,,n/. Thus, we have the following.

nj+1Y) V(' +4)(n +3)(n +2)(n + 1)

1AL, A )| < 16-1-2 - max H

7 )
’ gz Jj=1 ij 2wp/
< 16(N + 1)%/2(N + 2)V/2(N + 3)1/2(N + 4)1/2
< .
iAoy ni+ 1) 'V +2)(n' +1)
“[A;Tz,Aér,),n,]|| < 16-1-2- max H y . =
n,n/ p’
< 32N(N +1)5/2(N +2)1/2
- wilnin
+1 nwy  An'? —n)
A(Q’C(’)’ <16-1-2- max 1) . LS
Il pi pn]” S pp/ Jl_[l 5 = SQ(WE)/)
,n
16N(N + 1) SN B —1
< SNEED [au,,, + 22001 "

We consider the following commutators which can be bound with similar arguments.

2 2 1 A 2 2 2 4
SoS il < 5 (5) S0 muxmhcmax x40 AL,
Pt v 16 \ 96 S peSip (=1 P eV pii’

P =pe n'ES4<j,1)

In this case, an overlap in the momentum modes can occur if p’ is equal to any of the 3 unique coordinates of p.
There can be at most 4|2|? such pairs (p,p’).

A non-zero commutator can occur if there is intersection among the momentum states 7, n’ on the index where the
modes intersect. Number of such pairs (77, n’) with overlap on one given coordinate is at most 2N - N® = 2N*. Thus

using Eq. [B63] we get

SO ) ||<< "y ) 32(N + 1) (N T 2)(N + 3)(N + 4) (B64)

i=1 j=1 wm

Now we consider the following commutators that can also be bound with similar arguments. The conditions for
overlap of momentum modes and states, in order to have a non-zero commutator, is same as before. Thus, bounding
the innermost commutators using Eq. we get,

2 4 2 2
1) 4(4)
S Yt Hull < 5 () 3y b max A AL,

. (i—1
i=1 j=3 i=1j=3 Piooaes,,
P =Pt n/€Ss(j-3)

IN

( A )2 128(N +1)°/2(N +2)'/2,
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Next, we consider the following commutators with similar arguments for bounding the norm. As before, the conditions
for overlap of momentum modes and states, in order to have a non-zero commutator, remains the same. So, using

Eq. B63] we get,

Sl el < 55 3 Y X 4%, o8|

=1 =1 p€S4 ﬁ€S£i71>
/ n

/

n

P =pe

A 16N (N + 1)? AB(NB -1
(R) R o 2

min Winin

Finally, plugging the above bounds in Eq. we obtain the following.

A\ 2
I[Hip, Ha,l|| < (962) 32(N + 1)%/2(N 4 2)1/2 [«/(N T3)(N +4) + 4N}
A 2 AB(NB —1)
+ <96 727”n) 16N(N +1) [meax + 1602 (B65)
d. [Hyy,Hs,) :  Applying Lemma [45] to the sum in Eq. (Hzy) and Eq. (Hs,) we have,
I[Hag, Hsoll| < ZZ (I[Hzq, Hs; ]| (B66)

=1 j=1

As before, we first bound the following commutators between the following operators, obtained from Eq. [BI6] and
Eq. E We observe that Ap,m, B(i)ﬁ is a sum of 8 Pauli operators, each of which anti-commutes with at most 2 of

the 4 Pauli operators in A® et ﬁ?’ﬁ" B;i,),,;,- Also, each of them anti-commutes with at most 3 of the non-identity



74

Pauli operators in C’(‘?)ﬂ, .
Ppn

||[A(2)~ A(3)~]H < 8.9.9. max \/(nl +2)(n1 +1)(ne + 1)(ng + 1) . \/(n’l +2)(ny + 1) (nh+2)(ny +1)
pkn? p/n/ — pi‘k:P, SUJP /wp+kwp—k 4(’01)/1 wp,Q
. (V+ 1)5/2(N +2)3/2
N w:lnin
L p.k.p’ 8wy /Wpt kWp—k 2wy Wy ’
2N (N +1)3(N +2)
<
B wfnin
2 1 1 1 "nt
AR CO < 832 max Y+ 2Dt Dot Dlns+1) _ning
p p'n pokop’ 8wy \/Wp-+kWp—Fk Wpy Wpy
T,n’
6N2(N + 1)%/2(N +2)1/2
< A
@ 4G niy/(n2 +1)(ns +1) /(ng +2)(ny +1)(nh +2)(ny + 1)
B~ S € 8-2-2- max :
pkn? p'n’ — plk_’?/ 4Wp /7wpfktwp+k: 4Wp’1wp’2
- 2N (N +1)3(N + 2)
B wfnin
I / !/
p ip'n ka,P' 4wy \ [k Wpik 2wy Wy,
4N2(N +1)%/2(N 4 2)'/?
< o
. 1 1 ! oo
B2 €| < 852 max "0V £ D0 2 1) wih
P p'n pokp’ AW Wk Wy Wpy Wy
f,n’
12N3(N +1
< 27“ (B67)
Wiin

In this case we recall that the momentum modes of the operators in Hy, are 3-tuples of the form p = (p,p+k,p— k)
and can be denoted by two integers p, k. The momentum modes of the operators in Hs, are 2-tuples of the form
p’ = (p1,p2), where p; # py, and can also be represented by two integers. So p and p’ can intersect non-trivially or
have common values in 1 or 2 coordinates. We consider the following sum. With one momentum overlap, there are
still |©2|? possibilities for the two free momentums, giving possibilities.

2 2 2 2 A 2 )
2) 43
S Sl tll < 33 (5 ) e 10452 A0
i=1 j=1 i=1 j=1 =1 pp’ desi P
\pfg’lr;,esénl)

min

2 2 2

A
S it il < (gl ) A8V + D 4 22
i=1j—1

Next, we consider the following sum of commutators, which be bound in a similar fashion. The conditions of overlap
of the momentum modes and states, in order to have a non-zero commutator is same as before. So, using Eq. [B67] to
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bound the innermost commutators, we have,

2 4 2 6
DO I Hai, Hagl| +> > [I[Hai, Hajl|

i=1j=3 i=1 j=5

A2 S 2) g® 2 p®)
< (&) 2.2 Zmax o, WA Bl +momax - max A, Bl
n
Ipﬂglnlesz(] 3yi70h |pmp|n2652<a 5)in

(96 AQ ) 192N(N + 1)3(N +2)

mzn

Now we consider the following commutators, which again can be bound with similar arguments and we use Eq. [B67]
to bound the innermost commutators.

2 2 2 2
A
>l < () szax masx (A2, 0|

p n/
A\ 2
— =) 144N(N +1)3/3(N 42)'/2 (B68)
96wmm
Till now, we count the commutators between Ha;, Hoo and Hsj, where j = 1,...,7. Now, we consider the commutators

between Hj3, Ha4 and each Hsz;. We observe that the grouping of commutators that can be bound with similar
arguments are same as before. Also, the conditions for overlap of momentum modes and momentum states, in order
to have a non-zero overlap, are also similar. The innermost commutators change and they can be bound using Eq.
[B67 Thus we have,

4 2 4 2
A 2 @ 43)
Hsyi, Hsjl|| < |2 — | max max max B2 AT
S5 it < | @Z(%) phmes e 1A
\pQE ny e SGHY
1/ a ) )
< o5 oz ) 1INV + )V + 2); (B69)
and
4
ZZIHsz,Hsj [ +ZZII Ha;, Hsj||
=3 j=3 =3 j=5
Mo | v ) @ RB)
2 3
SEEYD331) 35 YD SRR RCBTED 9B SIS SN C R ]
i=34=1 |7=3 p.p’ (nyng)es{ ? 7 ny =5 pp, (n2,ms)€SS ¥ ina
‘pgg| Ny €So(j_3);ny |p2§\ ny €S8 (j—5)iny
)\ 2
<96w2_ > 384N2(N +1)%/2(N +2)1/2; (B70)
and finally
- A\ - 2 2) ~3)
Hyy Hyfll| < (= BY® c®
;II[ 20, Hytl| < <96) DI IBga € 5l
Dp nl,n’
A\ 288N3(N +1)
= \ 96 wh
Therefore, plugging in Eq. we have the following.
2
Hoy,, Hsl| < A A8N?(N + 1)%/2(N + 2)/2 + 288N3(N + 1 B71
» ® 96w oG 2
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e. [Hzyp,Hj,]: We consider the definitions of Ha, and Hyy, as given in Eq. and respectively. Applying
Lemma (5] we obtain

4 5
[ Hap, Hagll < > |I[Hoai, Hal|- (B72)

i=1 j=1

pkﬁ and

(4)

1p’ n'>

We first bound the commutators between the following operators in the definition of Hs, and Hy,. Both AC
Bz(jc)ﬁ are sum of 8 Pauli operators, each of which anti-commute with at most 1 of the 2 Pauli operators in A

Agg,n, and the single non-identity Pauli operator in C’S}L,. Hence, we have the following, where we leave the factors
of w till the final max expression for simplicity.

||[A(2 ne A< 8:1-2 ma \/(nl +2)(m +1)(n2 +1)(ng +1) V' +4) (0 +3)(n +2)(n + 1)
pkni? = 1p'n! - p,kp 8wp./wp+kwp,k 2&)12)/
(N +1)? (N+2) (N +3)(N+4)
> 1
wmin
2 1 1 1 ! '+ 2)(n +1
AL, A1 < 812 ma Y2000 D £ Dl 1) B )
kP Swp \/Wp+kWp—k W
2N (N +1)%(N +2)
= w4 ]
2 1 1 1 R i
IAD D)) < 812 may YT Dt D2t s +1) (o | Aln® — ')
pkp’ 8wy /WPpkWp—k 2 32w,
N(N +1)3/2(N 4+ 2)1/2 MB(NB —1
SRCED b L L PR LR
Winin 16w min
1 1 "+4)(n +3)(n +2)(n +1
[BE. AD, ]| < 8-1-2- ma MY (2 ¥ Dla + D) (0 + D' + 3w + 2 + 1)
P php AWy /0y kWp ik 2wz,
(B73)
2N (N +1)3/2/(N +2)(N + 3)(N + 4)
S wﬁlin
1 1 1
By, AL < 812 may, v 2 £ D0 £ 1) oy 97 +1)
ka,[,) 4wy /Wy Wp ik wp,
- AN?(N 4 1)3/2(N +2)1/2
N wfnin
1 1 A=
B2 Ol < 812 ma My 22 D0 21) (il AW 1)
p;k,g’ 4wy [Op— Wtk 2 32wy,
2N?(N +1 )\ NB -1
S % |:ﬂ Wmazx [31(6(,05):| (B74)
We first bound the following commutators between Haq, Hoo and Hyj, where j = 1,...,5. Here there are || overlaps

and |Q| possible options with one free variable. Using Eq. we have

2 2 2 2
3 (2) 44
) Il < ,
>3l Hull < ZZ(%) masgymy e J1AG AL |
-7 O P'=pencsy s,
A 2
< <96w24 ) 24(N + 1)*(N + 2)1/(N + 3)(N + 4);
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and
2 4 2 4 2 5 @ W
2
VY el < Y (5) e, 145 A
i=1 j=3 i=1 j=3 ’ 3n
P =Pt n'eSy;_3)
< L (2N Nv s ey 2
96 w72nin ’
and finally
2 2
Z [Hai, Hisll| < Z (96) mgxr?_af( II:)E}:X en;aqx1 ||[A£)273, 01(34’)1IH|
- - p=pe
A . AB(NB —1
5— | 12N2(N +1)32(N +2)'? | Bumas + M
96 mzn 16 mzn
Now, we consider the commutators between Haz, Ho4 and each Hy;, where j = 1,...,5. We observe that the grouping

of commutators that can be bound with similar arguments are same as before. Also, the conditions for overlap of
momentum modes and momentum states, in order to have a non-zero overlap, are also similar. The innermost
commutators change and they can be bound using Eq. Hence we have

4 2

4 2 2
3 2) 44
ZZ||[H2¢,H4J'H| < ZZ(%> max max max max 3) 1[Bpsis At

/.
i=3 j=1 b (n27n3)65
P =Pt nin 654(J 1)

IN

( A )248N(N 122 (N 1 2) (N + 3)(N +4);

96w?, ..
and
4 4 4 4 A 2 3
2 4
SN Ha:, Hylll < ZZ(%) 223 X B Al
=3 j=3 1=3 j=3 p (=1 p': (na,ng)esgl 3)
P'=Pt ny 0/ €Sy, a
A 2
< (=5 ) 19200 (N + 1P + 22
96 min
and finally

4 4
A 3
Sl sl < 3 (155 ) @l monbxmax max 114304011

i=3 i 1 op's jes(s P’
p'=pe¢ n'
A 24N3(N +1) B )\B(NB -1)
n 96 wmzn maw 16 'I%L'Ln .
Thus, plugging in Eq. we have the following.
A 2
[Hap, Ha,)l| < (962) 24N (N + 1)3/2(N + 2)1/2 [\/(N TN +2)+ 2N] [\/(N T3)(N +4) + 4N}
A AB(NB -1
+ (96 : ) 12N?(N +1) [\/(N TN +2) + 2N] [mmax n 51(%5)} : (B75)

f- [Hsp, Hj,] : Using Lemma {45 along with the definition of Hz, and Hy, in Eq. and respectively,

we have

7 5
1[H3e, Hap]|| < ZZ |[Hsi, Haj| (B76)
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We first bound the following commutators between the operators in Eq B18 and B5 Each of A(d) B(S)ﬂ and B(?’)
are sum of 4 Pauli operators. Each of these Pauli operators can anti-commu Wlth most 1 of the 2 Pauh operators

in Aﬁ) e Ag;),n, and the single non-identity Pauli operator in CSL, Cpgﬁ is a sum of 3 non-identity Pauli operators,
A(4)/

each of which can anti-commute with both the Pauli operators in each of AW

ip'nrs Aoprys and the single non-identity

Pauli operator in CS}ZL,. So, we have the commutators for the inner terms, again we leave the factors of w till the final



max expression for simplicity.

2 1 2 1
HACLAD, I < 412 max YD+ Dl + 22+ D)
pn pn p,p/ 4wg

IN

VI + 90 +3) (0 +2) (0 +1)
(N + 1)32(N +2)3/2

2w12),
(N +3)(N +4)
w4 .
3 4
1B, AL,

IN

4-1-2- -max

’
pP,p

ng\/(nl + 2)(TL1 + 1) . \/(n/ + 4)(n’ + 3)(77/ + 2)(n’ + 1)
ng
ON(N + 1)(N +2)/(N + 3)(N + 4)
wk
e, Al < 3-2-2-

ax

ning V' +4) (0 +3)(n +2)(n + 1)
pp/ Wy

IN

2wf,,

i e{1,2}]

IN

2w§,

IN

6N2\/(N +1)(N +2)(N + 3)(N +4)
w? .
3 4
IAS), AS) I < 412

IN

-max

Vi ) D + Dz + 1) '/ D0 +2)

4wg WE,/
2N(N +1)3/2(N 4 2)3/2
w:lnin
3 4
1B, A ]I < 4-1-2- max

ng\/(n1+2)(n1+1) n'\/(n’+1)(n’+2) )
, o ~ ” e {1,2)]
P, “p “pr
AN?(N +1)(N +2)

wh

man

4
IS, ALl

IA

IN

IN

IN

/ / 1 / 2
3.2.2 max 2.1 (' + D' +2)
pp. W

il p
n,n

N+ (N 12
wilnin
AL, CEL < 4-1-2- max

V(n1 4 2)(n1 4+ 1)(ng 4 2)(n2 + 1)

w2,

12N3

IN

IN

=
n,n

[ nwp N A(n'? —n')
4w? 2 3202,
N(N +1)(N +2 AB(NB -1

( w2)( ha ) [meaw+ 6( 6 ):|
”[3(3) 0(4)

IN

16w’?nin
Jjpm’ p’n’] ”

IA

2 1
4~1-2-ma>/(n2 (n1+2)(n1 +1)
p.p

nwp  A(n?—n') ,

207 ' ( 2 T ang e (1,2}
2N2/(N + 1)(N +2)
w

AN~ 1)

2 Boman + i
I

IC2, O < 812 max ™02 (nwp

A(n"2 —n')
2 2 + 32w?
PP Y Wpr

3N3 MNP —1

|:/meaw n M)]

IA

IN

IN

(B77)

79
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We first bound the commutators between Hsq, H3o and Hy;, where 7 = 1,...,5. We consider the following sum,
where each commutator has the same bound. There are |2|?> commutators as before. Using Eq. we have

2 2 2

2 4)
ZZH[HS“HMM < ( ) ZZI?alxmax max ||[A;32,A§pn]||
i=1 j=1

(i+1)
=1 j=1 €Sy,
p'=pe n 654(]~,1)

A 2 3/2 3/2
= () 16(N +1)%2(N +2)%2\/(N + 3)(N + 4);

96w,2nm
and
~y AV 52 ) 4@
Hs;, Hyll| < 2- () max max max Agn,A4 "
;;II[ il 9% ;; e 8 I[Ap7> Azprn ]l
P =Ptn' €S53
A\ 2
= 64N (N +1)%/2(N +2)3/%
o) AN+ 1P + 2%
and finally
2 A\ X o
Hs;, Hy < < max max max Sn,C4n,
Sl il < () b mae e 1A Cr
P =pe n’
)\ Aﬁ(NB—l)
= 8N(N +1)(N +2 maz + ——t =
Now we have
4 2 6 2
DO M Hzs Haglll + YD I[Hsi, Hal|
i=3 j=1 i=5 j=1
ANZ 2L 4 o @ 4@
3 4) 3 4)
< () Le D e B Al 4 ma g (B A
j=1 =3 ,
p'=p; "654<J 1) p'=ps n'€S4;_1)
A\ 2
< (96w2 ) GAN(N + 1)(N +2)V/(N + 3)(N +4); (B78)
and
4
Z ||[H31’H4] | +ZZ|| H31’H4J |
1=3 j=3 1=5 j=3
A\ & 2 4 (3) (3) 414
< 2= B , JAS
= <g6|> ;?&X g e pedmax  NBrps AL, ||+Z;r;12xn2€sr2?§5>ml 11 Bogias Asprar ]l
= P'=p; n€Sy(;_3 p'=p: n'ESy;_s
A 2
<96w4 ) 256N*(N + 1)(N + 2);
again
4 6
> W Hsi, Has)l| + > [|[Hsi, Has]|
i=3 i=5
2
A 3 4 3 4
< (9&)2 Z > > Bk G 1y D X B Gyl
=1 |i=3 pp mESQ(l 3)in2 i=5 ' m2€Sy(i_5)in1
p’'=pe n’ p'—pg n’
A AB(NP —1
< (o ) N VIS D ) | + 55— .
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We now consider the commutators between Hzz, Hsy4, Hszs, H3s and each Hy;, where j = 1,...,5. We observe
that the conditions for overlap of the momentum modes and momentum states, in order to have a non-zero overlap,
are also similar. The innermost commutators change and they can be bound using Eq. [B77} Next, we consider
the commutators between Hj; and each Hyj;, where j = 1,...,5. We observe that the conditions for overlap of
the momentum modes and momentum states, in order to have a non-zero overlap, are also similar. The innermost
commutators change and they can be bound using Eq. [B77] Thus we have

A

2 2 2

A 2
Z||[H37’H4j]” < (96) Zmaxma/x max ||[C§;§,A§2n,]||
j=1

=1 pp" ;
p'=p¢n €S4(a 1)

:( A )24N2\/(N—|—1)(N+2)(N+3)(N+4);

96w? .

and

4 A\2 A2

3)
Sl ) < 2 (55) 23 PO
Jj=3 Jj=3 £=1 ;
p:pe"€52<a 3)
\ \2
- 6(w2 ) N3/ (N +1)(N +2);

and finally

|(Har. Husl| < <96)Z > Y leg.cbl

(=1 pp n,n’
p:pé

< 12N3)\> {MW L AB(NB - 1)] .

96wt 1602

m7,n

Therefore, plugging in Eq. [B76] we have

s, H 1l < (g ) 16V + DOV 7 [+ DV +2) + 1]

: _\/ (N+1)(N +2) +3N] [\/(N+ (N +2) +4N}

+ <96A2 )4N [2(V + 1)(N +2) + 8NN + 1)(N +2) +3N?|

) mzn)\ NG 1
: 6wmax+ﬂ1(662):|~

L min

(B79)

3. Bounding @comm and hence the Trotter error

Now we are in a position to bound @comm according to Eq. First we sum Eq. to get a bound on the
sum of norms, which is

mazIN (N +1 A N +1)?
C maNINHD) (A [V
2 96w 2

mzn

+ (N +2)2+ (N +2)+ (N +4)?|. (B80)

Next, we bound the sum of first-level commutators by adding Eq. [B27], [B37] [B43], [B50], [B56}, [B61], [B65] [B71], [B75| and
B79 and it is as follows.

A2N*  AN*
eo( 4 AV

min min

(BwimasWinin + /\62]\7)>
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Since 8 < 1, Wimin = M and wpae = /M? + P2, ~ M, so we have since these commutators only fire when there is

a momentum overlap, we have

)\3N6 /\2 ma:cNG )\2N6 o
+ - 6 6 (ﬂwmafwrznin + )‘62N) (1 + @ ))

Winin min A

N2NC(M +N)
e o).

W,

A2N©
€ O ( e ) , assuming A < N|Q|; (B81)

and hence the Trotter error is in O (’\21\]\4’?3).

Appendix C: Field Amplitude Basis Algorithms
1. Equal weight LCU

Here, we provide proofs of Lemmas and Theorems stated in Section

Proof of Lemma[19 For integers i, j and k, we note the following identities:

O—j—1) = (j<i)
O(-k—1) = 1—O(k)
Z k) = (1-2k)k) (C1)

We then have

cmpf
= CMP'
= cMpP'
= cMpf

I®I® Z)CMP|i)|j) |0)

1®1® Z)|i)|j)|j < i)

I®I® 2)]i)|j) |06 —j—1))

1-200 —j—=1)[i)|5) 103G -7 1))

= oMP' (1 —2(1—O(j —14))) i) 5} [©G — j — 1))

= Pt (20(j — i) — 1) ]d) |j) |5 < 4)

= (20(j — i) — 1) |i) [5) |0) (C2)

A~ N N S /S

Proof of Corollary[20. Given some state on a single lattice site |¢) = Zfigl ¢;lj) € Hg, an ancillary register |0) =



|0)®™ € Hp where m = [log, k + 1], and a single additional ancillary qubit |0)

UsuB-preP,|0)|?)

(USUB—SE‘LECT(pmhm) 10} anc

Note that

(m I ) cMP Z,,,,.CMP|

and so we have

(O™ OHPT 7, CHPH™) [0)[16) 0)anc = <o>

where (|0)(0] ® I) |®*) = 0, and we obtain the state ¢|¢) with probability mﬂ

a. Addition:
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anc € Hscratc}u we have

(HE™(0)*™) [} = [+)|)

CMPTP¢ meancCMPPQS anc + |O anc
2k—1 2k—1
¥ .
CMPY, ) oneZancCMPP g anc i 13) 110) yne
CMPTP¢ an(‘ ! kal Cj |t | |] |®(Z 7] - 1)>
\/71] 0
2k—1
CUP 4 une 757 f > e (1200 —j = 1) i) 1) 166 =5 = 1)) 4
1,7=0
1 2k—1
== 2 ¢ (200 = 1) = 1) [i) [7) 10) e
mi,j:o
1 2k—1 2k—1 2k—1
—= > e Y @0(m—i)=1)|m)(m| | Y ¢li) | 004
Vak o m=0 7=0
1 2k—1
—= iy @ U® |¢>> 10)anc (C3)
V2k (io
O
1 2k—1 ‘
)0} ane = <% > U“>|w>> [0)anc
=0
_ ¢
= g O)ane
= 0 anc C4
o)) e
3 ) + I‘PL>> 10)anc (C5)

azlz.

a. Arithmetic primitives

Our first result provides the resources needed to implement a generic addition circuit in the Clifford

+ T gate set. Our construction can be thought of as an elaboration on top of the Gidney adder given in [76].

Lemma 46 (Addition Circuit). Let U € C
adder meaning that for any x,y € Zan, Ulz)|y)|0) =

ginmbantt forn € Z, be a unitary matriz such that U acts as a reversible

|z +y mod 2™) |y)|0) can be constructed using the following
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resources
T-count = 4n
Ancilla count = n
Measurement depth = n
CNOT count = 12n—3
CZ count = n
S count = n
H count = 2n (C6)

Proof. Let us consider addition of two n-bit binary numbers a and b using the classical full-adder, which takes two
single-bit inputs a; and b; and c¢;;ip, the carry-in bit from the previous bit addition, and outputs the sum s; and the
carry-out C;out- In Reed-Muller form, these are given by

si = a; ®b; ® ciin
Cirout = Gib; ® a;Cizin D biCisin (C7)
Let us assume that we are allowed to over-write one of the registers storing the binary representations of a and b
with that of (a + b). Let us also assume that we can selectively measure out and reset a subset of the total qubits
available to us. Then, we carry out this primitive using n ancillas, n — 1 to store the values of the carry bits, and 1

to hold the value of the left-most (most significant) digit of (a + b), if we can selectively reset the ancillas to perform
a similar subsequent computation. A bit more explicitly,

co=0, sg=ag®by
Ci+1:aibi@ai6i@bi6i s SZ:aZEDbZ@CZ VOS’LSTL—].
Sn = Cp (C8)

For actually carrying out the binary addition, we follow the method described in [76]. The first step is to note a
construction of the logical AND gate that transforms |z) |y) |0) — |z) |y) |zy), and that uses only 4 T gates, as shown

in Fig.

|z)

a4
A%
A
A

= 3] [3

oD
3

ly)

T) ——

o

FIG. 12: Logical AND gate construction using 4 T gates.

Step by step, we can prove that this construction computes |zy) given input bits |x) and |y) as follows

D) IT) = 12)ly) = (o) + ™z @ 1))

% (12
7 (|x€9y> remt iz oy 1>)

(W) yes)+e yancol)zeyo))

%

) y)

7
— % (700 ) 2) o @ ) + S FEOOITBIVOD |y 1) |2 0 1) 2 Dy @ 1))
5 55 (T ) ) o oy) + ST ) ) oy 6 1))
= [2) [y) (L= 2y) [0) —i(zy) [1))
= [} |y) (1 = zy) [0) + (zy) [1))

|z) [y

) lzy) (C9)
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where we have used CNOT |a) |b) = |a) |a ® b), T'|a) = ¢'*™/*|a), T |a) = e=""/*|a), H |a) = w, in the third
last step used the truth tables

z|lylrPy—x—ylrPydl—aczdl—-—ydl
00 0 0
0|1 0 0
1[0 0 0
1|1 -2 2
and
zly| () + (o) [(EEETE) F (o y @ 1)
01(0 0 1
01 1 0
1(0 1 0
11 -1/2 3/2
so that

1 , .
5 7)) [0) (e7/Heev=am) g in/a@@L—2O1E L) — (1 — ) [2) |y} |0)

1 i (2Bu—z—y i 2QuOL—a®l-yP1 .
Sla) Iy 1) (mCHTT) o | n(RERERE o))~ i(ay) ja) |y) |0) (C10)

While this allows us to compute the carry-out bit using 4 T gates, we must also uncompute this operation if we are
to leave the sum register unentangled with all the ancillae at the end of the computation. To this end, [76] constructs
the (irreversible) uncomputation step depicted in Fig. |13|that notably uses no T gates.

FIG. 13: Uncomputing the logical AND gate with no T gates.

To see that this works, let us start with some arbitrary 2-qubit superposition |¢) = Zzl =0 Qij |i) |7) and suppose

that we have applied the Toffoli gate above in the first step. Following this, we have the series of transformations

[¥) 10) — ago [00) [0) 4 a1 [01) [0) + 10 [10) [0) + a1 [11) [1)
@fl—) (0400 |00> -+ ap1 ‘01> + 10 |10>) <|0>\—/i_§|1>) + a1 (|0>\;§|1>)

1
= ﬁ (O‘OO |00> + o1 |01> + a9 |10> + a1 |11>) |0>

1
+— (o |00) + a1 |01) + av1g |10) — 771 |11)) |1
\/5( 00 00) + ap1 |01) + a1g [10) — a1 [11)) [1)

Measure and correct (0400 |00> T agr ‘01> + a0 |10> + (CZ)I(f].)szll |11>) |l‘>
= (0500 |OO> + a1 ‘01> + a1o |10> + a1 |11>) |1‘> = |’l/)> |J?> (Cll)

We can use this in an adder by first computing a carry-out bit given a carry-in, and the two bits to be added as
depicted in Fig. [T4]

Note that this uses a single AND gate (and therefore 4 T gates), and we have used the identity (ix ® cx)(tx D cr) =
Ity Digcr Btrcer Beg. We can then use the carry-out bit for later computation. After it is used, we need to uncompute
it and over-write one of the bits to hold the addition computation. This is performed by first carrying out a single
CNOT between the carry-in qubit and the carry-out qubit as depicted in Fig. [T5}

The bottom-most qubit now holds the logical AND of the two qubits above it, so that we can now measure and
discard this qubit while keeping the above qubits in the state shown in Fig. using the uncomputation technique
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k) |cx)

lir) —€D lix © cx)

179) © |tk @ ck)

|0) O—D lck+1) = lintr @ incr © crly)

FIG. 14: Computing the carry-out bit in the first part of the adder primitive.

lek) —e—  lek)
lix ® ck) ——  |ix ©cx)
|tk@ck> _ |tk @Ck>
lekt1) —@— (k@ ck) (tr ® k)

FIG. 15: The first stage in the uncomputation part of the adder.

lex) —4———— &)

lir © cr) —D |ix)

tk @ ck) ————D— | @t Dck) = [(i +t)k)

FIG. 16: The last stage in the uncomputation part of the adder, completing the addition computation.

described above. After this measure and fix part, we simply carry out two CNOTSs as depicted in Fig.[16] to complete
the addition. Note that the Gidney adder is reversible.

To make everything a bit more explicit, this method of addition performs the following series of transformations

Ua+gla)|b) [scratch) : (|0) |an—1)-..l|ao)) (|bn—1)---|bo)) (|O>®"—1)
= (len) |an—1® cn_1) ... la1 @ c1) ao)) (|bno1 ® cn1) ... b1 @ c1) |bo)) (Jen_1) ... |e1))
= (len) |8n=1)---150)) (|br=1) - - - |bo)) ( ®n71)
|a + b) |b) |scratch) -

Only the first arrow above requires any AND operations. In all, we require 4n T gates, as well as n ancillary qubits. We
also have 6 CNOTs per AND gate, 3(n—1) CNOTSs during the computation part, and an additional 3n CNOTs during
the uncomputation part. Lastly, we have 1 S gate, 1 CZ gate and 2 H gates for every AND compute/uncompute
pair. These results are summarized in the statement of the lemma and thus this concludes our proof. O

b. Substraction:  Given a modular adder it is often straight forward to construct a modular subtraction circuit.
Such subtraction circuits are extremely helpful for LCU decompositions because performing a subtraction between two
numbers and examining the sign allows us to find the maximum of two numbers. Below we outline a ones compliment
approach for constructing such a subtractor / comparator.

23n—l><3n—1

Corollary 47 (Subtraction Circuit). Let U € C for n € Z, be a unitary matriz such that U acts as a
reversible subtractor meaning that for any x,y € Zaon, U |x) |y) |0) = |z —y mod 2™) |y) |0) can be constructed using
the following resources
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T-count = 4n
Ancilla count = n
Measurement depth = n

CNOT count = 12n—3

CZ count = n

S count = n
H count = 2n (C13)
Pauli-X count = 2n (C14)

(C15)

Using that the ones’ complement, i.e. bitwise complementation, of a is given by @ = 2" — 1 — a, we arrive at the
identity

a—b=2"-1-(2"-1—a+b)=(@+b (C16)

which allows us to implement subtraction in essentially the same way as addition, plus some single qubit X gates.
For ease of notation, let us define

=0, s=aDb®1

C;H_l:akbk@bkck@akck@bk@cz , Szzak@bk@c;CEBl
/

s =d, (C17)

Explicitly, we run the following series of transformations

Ua-p la}|b) |scrateh) (0} lan-1) - |a0)) (Iba—1) - [b0)) (10)°" ")

(10) lan—1 @ 1) ... lag @ 1) ([bu—1) - - 100)) (10)*" )

(e, ’an,l BL1DC,_q)...lag ®1LD ) |ag 1)) (’bn,l DCh_q)...|b1 ®ch)|bo)) (‘0;71> ..
(1640 |81} - 16)) (b=} - 1b0)) (10)°" )

(I @ 1) [shy @ 1)1y © 1)) (b1} - [b0)) (100" ")
= |a — b)|b) |scratch)

|e

Ll

Only the second arrow above (computing the carry-bits) requires any ANDs. The resource counts are the same as in
Eq. (C6)), and also additionally 2n X gates.

c. Incrementer:  In the special case where we want to add only 1 to some other number, we have the much
simpler case

=0, so=ap®1

ct=ap , s1=a1Dag (C19)
and for n > 2,

Cp — QAp—_10p—92...040

Sp = an D ey (C20)

In the worst case, to add 1 to an n-bit number, we need n+ 1 bits to express the answer. This requires first computing
n — 2 many logical ANDs to compute all the necessary carry bits ca, ..., Cyq1 With ¢y41 = $p11. We then perform
CNOTs controlled on the carry bits, targeted on the input register to over-write it with the value of the sum, i.e.
a; — ¢; @ a; for every ¢ > 2. To handle the least significant two bits, we first simply perform a CNOT controlled
on ag and targeted on aj, and then perform a NOT operation on ag. After this, we uncompute all the logical
ANDs expressing the carry bits except the very high bit ¢,41. Thus, to add 1 to an n-qubit register, we need n — 1

led))

(C18)
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ancillas, and n — 1 ANDs. Each of these AND operations requires 4 T gates, 6 CNOTs, 1 S gate, 1 CZ gate and 2
H gates. There are also an additional n—1 CNOTs and a single X gate. The total resource count is then given below.

T-count = 4(n —1)
Ancilla count = n—1
Measurement depth = n —1
CNOT count = 7(n —1)
CZ count = n—1

Scount = n
H count = 2(n—1)
X count = 1 (C21)

d. Comparator: In order to implement the comparator, i.e.
CMP 4 p.c |i) |7} 10) = [d) |5) 7 < 7) (C22)

we can compute the high-bit of j — ¢, which is 1 if and only if 7 < ¢. Essentially, we can run the same circuit as
subtraction, use a CNOT to write out the value of ¢}, ® 1 onto an ancillary qubit, and then reversibly undo the entire
subtraction circuit.

QP 450 1i) [7)10) < 1) 15)10) |serateh)
— |é) | — @) |0) |scratch)
= Jinr) - i) G — D)) - -1(G — 1)o) [0) |serateh)
S linea) e bio) G = ) - 16 = )0 |GG — i) scrateh)
= [i)[7 =) |(J — )n) |scratch)
= [i) [7)1(G — )n) |scratch)
= i) |§) |7 < i) |scratch) (C23)

However, this scheme would require running the subtraction circuit twice, once in the forward direction, and once in
the reverse direction. This would result in a gate count of 2n ANDs, and therefore 8n T gates.

We can do better, by simply running the circuit until computing the carry-bits, running a CNOT to write out
the high-bit onto an ancillary (scratch) qubit, and then undoing the carry-bit computations. This way, the entire
operation requires n ANDs, and therefore 4n T gates. It is this operation that is referred to as CMP’ in the main text.
The main use of this operation is in applying CMP’f Z,,,.CMP. Apart from the Z,,., the cost of this composite operation
is the same as that of CMP. Equivalently, the cost of this is the same as that of the subtraction circuit, which in turn
is the same as that of the addition circuit Eq. (C6), plus an additional 2n X gates.

e. Multiplication: ~ To perform binary multiplication, we can use bitwise shift operations (by simply adding
ancilla qubits), as well as the addition technique described above. As an example, consider adding two 3-bit numbers

as aj agp
by by bo

0 0 (boaz) (boa1) (boao) (C24)

0 (blag) (blal) (blao) O
(b2a2) (bgal) (bgao) 0 O

Each of the products in parantheses above can be computed using a total of n? AND gates. In general, we need
n+ (n — 1) many additional qubits to hold the values of each of the binary numbers in each of the lines above. We
then need to add all these numbers together. Since some of the bits in these numbers are 0, the circuits for as well
as the numbber of ancillary qubits required for addition can be simplified. However, we simply report the upper
bound, where we assume that we require n registers of 2n — 1 many qubits, contributing to an ancillary qubit count
of n(2n —1). These registers must be added in a sequence of n additions. We also require 1 additional ancilla to hold
the value of the highest bit for the very last addition.
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Each of the n additions require 2n — 1 ancillary qubits for the computation. Since these additions must be carried
out sequentially, these 2n — 1 ancillae can be recycled. Apart from this ancilla count, the cost associated will be n
times the resources reported in Eq. . In all, we require 2n? — 1 ANDs. Putting everything together, we find the
following resource counts for performing multiplication of two n-qubit registers.

T-count = 8n? —4
Ancilla count (n+1)2n—-1)+1
Measurement depth 2n? —1
CNOT count = 12n°% — 6
CZ count 2n? —1
S count 2n? —1
H count = 4n? — 2 (C25)

b. Sub-SELECT circuits

a. Sub-PREPARE and SELECT circuits for ¢ (toy example) Then, given some state [¢)) = Z?igl ¢jlj) € Hg, an

ancillary register |0) =
we have

UsuB-preP,|0)|%)

|0)®™ € Hp where m = [log, k + 1], and a single additional ancillary qubit |0)

(HE™[0)2™) [4)

(USUB—SELECT¢m|¢>) |O>anc = CMPTpd, ancZancCMPP,¢,anc +

S Hscratchv

anc

=)

|O anc

2k—1 2k—1
= CMPTP¢anCZancCMPP,¢,anc <\/7 Z | > Z Cj |J> |0>anc
§=0
1 2k—1
= CMPTp¢anC ancr Z Cj| |j |®(Zf‘7 )>anc
4,5=0
2k—1
= CMPh g ane e f Y e (1=200 = j = 1)) [i) [7) 106 = 5 = 1) e
1,j=0

N
x>

-1

¢j (205 — 1) — 1) 13) [5) 10) ge

i

9

1
2k
1 2k—1 2k—1 2k—1
= — ) 20(m —1) —1 g 0
m ; |7’> ® mZZO ( (m 7’) ) |m> <m‘ 7:20 CJ |j> | >anc
1 2k—1
- - ; (1)
Ton <i_0 li) @ U |¢>> 0)ane (C26)
Note that
1 2kl
yam T 1) R (1)
(1@ 1) CHP! Zunc CHPTH]45)]0)ane. = <2k > U |w>> 0)an
_ 6
= g O)ane
= anc C 7
2 fu)l) (c2n)
and so we have
(HE™CMPT Zoy CHPH®™ ) [0)[49)(0) ane = <0>¢ ) + I‘I’L>) 10)anc (C28)
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where (|0)(0] ® I) [®+) = 0, and we obtain the state d|y) with probability &Lﬁllz Moreover, instead of using the

CMP primitive, we are also free to use any other primitive CMP’ that instead applies any unitary transformation of the
form

CMP' |3) |j) |scratch) |0) = |U; j seraten) |7 < @) (C29)

which may significantly reduce the gate cost. An example of such an operation would be to compute the high carry bit

of j+1i=j —i, which is 1 iff j < i, but leaves the state of the |i), |j) and other ancillary qubits |scratch) entangled.
Once the appropriate phase has been extracted from the |j < i) qubit, we simply run the inverse of this operation.
Noting also that

) (7 @ (UTVU) +|75) (F 01 = IeUY) (1) (@ eV + |[#h) (7] 1) Ie U) (C30)

this means that the controlled version of the entire operation H®™CMP'T Z,,,.CMP’ H®™ simply needs to control the

Zanc operation. We use log, 2k ancillary qubits to compare against, an additional log, 2k ancillary qubits to compute
1
a0.a1,a2=0 Ca2,a1,a0 |az, a1, ap). In general,

this circuit involves log, 2k logical ANDs (and just as many uncomputations of those ANDs), 6(log, 2k — 1) many
CNOTs, 2log, 2k many X gates and a single Z gate. The controlled version of this circuit only requires a control on

the carry bits, with an arbitrary state at a single site on the lattice |¢;) = >

the single Z gate. The circuit for f& is essentially the same, except that we replace Z with X ZX.

At this point, we can use these primitives to use the Taylor series method to construct an approximation to eid;t, but
this approach does not yield optimal scaling, so we instead adopt the QSVT approach.

Note that in order to apply all (ﬁz where 7 denotes the lattice site, we would need to run something like the circuit on
top part of Fig. [3] where we control on the family of terms in the Hamiltonian, the lattice site as well as the particular
unitary on that lattice site. With this construction however, we can simply control on the family and site indices, as
shown in Fig. [3] While in principle we might need to control on the state of some ancillary qubit register to apply each
unitary in the LCU for the entire family of (ig operators, this becomes unnecessary with the use of the comparator.
We now apply much fewer controlled operations, controlled on the state of much fewer qubits. In the above, we have
used different ancillary registers for the field registers at sites 0 and || — 1 (in which case the computation can be
trivially parallelized) though in principle we could use the same ancillary registers again. This is just a toy demo for
a fictitious Hamiltonian H = )., ¢(Z) + ..., but similar constructions, and consequent simplifications, hold for the
actual ¢* Hamiltonian we consider.

To compute the LCU for —&, we simply run XZX on the ancillary qubit instead of Z to extract the phase (see

next section). We can run this circuit in parallel to the one for &, for the same gate depth but twice the gate count,

to run the sub-select circuit for a single —éaéb term in the Hamiltonian. A single such term requires 4 log, 2k ancillary
qubits, 2log, 2k logical AND computations, 2log, 2k logical AND uncomputations (along with any additional ancillas
these require), 12(log, 2k — 1) CNOTS, 41log, 2k X gates and 2 Z gates. All such terms in the Hamiltonian will require
D|Q| times this number many gates.

The circuit depth is the circuit depth of log, 2k logical ANDs + circuit depth of log, 2k logical AND uncomputations
+ 8logy 2k — 5. The circuit depth for the entire group of such terms is at least 2D, since the same site has to couple
to all its spatial neighbors (in the positive direction for each of the D directions), and any site is also the neighbor of

1]

some other site (and hence the factor of 2), but this parallelization requires = (4log, 2k) ancillary qubits.

b.  Sub-SELECT circuit for —(Z)p(&) In order to keep the coefficients of the (families of) terms in the Hamilto-
nian positive, we simply absorb the negative sign of the nearest-neighbor coupling site into the LCUs themselves. This
means the action of such a term on sites @ and b is given on some general state [¢) = >, cji.jy [J1) @@ [jN)
(where 1... N denote the lattice sites) as

o AQS 2 2k—1 2k—1
ddnlo) = (1) XX 26U m) -1l - 200, )
m,m’=0j1...ja.--Jb---JN=0
Chvduvinni 1)) L) i)
(C31)



We assume we are given some arbitrary field state |¢)

Thus, we have

2k—1 )
= Zjl in=0Ci1-in lj1) -

.....
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lin), with ancillary registers

1) = [H)®%2% e yp ) = [9)2°%2%F € 2 p  |0) € Hanea and |0) € Hanes. Then, using
CMPA p.c 1) [7)10) = [)[7) |G -7 1))
1-20(x—1) = 20(—x) —1
Z10(i—j—1)) = [26(j —1) —1]|6(i —j - 1))
XZX8(i—j-1)) = [1-20( =90 —j - 1)) (C32)
we have
CMP’;D ¢a’ancaCMPpr’(lgb,ancbZancaXancbZancbXa7zchMPPb,¢b,ancbCMPPa,dm,ancamm|¢> |O>anca ‘O>ancb
= CMPTP ba, ancaCMPJIr:b’¢b)ancbZancaXancbZancbXanchMPPb,¢b,ancbCMPPQ,(ba,ancamm
2k—1
Z Cjy...gn |]1> s |jN> |0>anca |O>ancb
Tlseees jn=0
= CMPT P, ba,ancy CMPI?ngb’ancb ZancaXancb ZancbXancl,
2k—1 2k—1
Z S opCideiiin 2000 = ma) = 111~ 200i — m)]
. JN=0mg,mp=0
Ima> Ima) g1 - N [©(ma = ja — 1)) [©(mp — jiy — 1))
2k—1 2k—1
= Z > 2,ﬂch i 12000 = ma) = 1] [1 = 200y — my)] Ima) [my) 171 - 5) 0) e 10 aness
JiseiN=0mg,mp=0
2k—1 2k—1 2k—1 2k—1
= Y Y e ] 220G ma) ULy 4 D 112600 - m)] )
J1s--JN=0ma,mp=0 74,=0 jéZO
|ma> |mb> |jl . ]N> |00>anc
21 2k—1
— < Z 2k |ma> |mb> Ué}Ta)Ué)T“) Z Cji..jn |]1 . ]N> |00>anc
Mea,Mp= 0 jl ..... jNZO
2k—1 1
=Y g Ima) ) (USUS 16)) 100),,
me,mp=0
= |¢) (C33)
Note that
- 1 2k—1 2k—1
(Men)) = ~Gp ( 2 “”‘”) ( > U““’) 19) 100) 1
Ma= mp=0
é n
mr |2 16)100) 4 (C34)

21 2k 2
(H®2 o8 szMP}a,¢a,ancaCMP1I-3b-,¢b,ancb ZancaXaan ZaTLCbXaanCMPPb,dﬁb’aanCMPP y¢asancq H®210g2 Qk) |0>® " |¢> |0>®

éaéb

<|0>®2 log, 2k (_

|¢ma17 |2

;
UprepUsvb-seLEct,,,, Uprep |0)

) |6) + |<I>l>> 100) e

®X2 10g2 2k |¢> |O>®2

(C35)
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The entire sub-select unitary for this family of terms is then given by

D
UsuB-SELECT,, = H HCMPQ‘“%,MCG (1) (Z ® [0} (i| ® Zanc,a + |25) (@] @ 1) CUPp, 4. anc,
Feqi=1

.cMp’}

Py, bz162,,anch

XanC,b (|f> <f| Y |Z> <Z| ® Zancvb + |(I)J_> <(I)J_| ® ]I) Xa"vaCMP/PbmﬁfMi,aan
(C36)

Thus, we require 2|Q2|D many controlled Z gates (here, the factor of 2 comes from the fact that we have to apply gbf
at each of the neighboring sites), each controlled on the state of log, [2]D + 2 = log, 4|Q2|D many qubits (here, the
factor of 2 comes from the fact that there are 4 groups of families in the Hamiltonian). Each of these can in turn be
performed using [76], [80] log, 4|2| D — 1 = log, 2|Q2| D many logical AND computations (and as many uncomputations)
using log, 4|Q|D — 2 = log, |Q|D ancillary qubits initialized in the |0) state. Thus, these controlled operations con-
tribute a total T gate count of 4 x 2|Q2| D x log, (2|2 D) = 8|Q| D log, (2|2| D), independent of k (or equivalently, ¢maz)-

In addition, each CMP’ operation requires log, 2k many logical ANDs (and just as many uncomputations of these
ANDs via the CMP'T operations). There are 2|Q|D such operations (here, the factor of 2 comes from the 2 sites).
These contribute a total T gate count of 4 x 2|Q|D x log, 2k = 8|Q|D log, (2k).

The total T gate count for the ¢¢ part of the Hamiltonian is therefore

Count(T) 4 8|92 D

8D

8D (1og2 W + 2) (C37)

log, (2/2[D) + log, (2k))
log, | Dk + 2)

—~~

c. SELECTg: term For L = 2k, Nyer = k* and n; = (k —i — 1) in Eq. , we get

é 2 R
- i (%) h
<A¢)) 5 Z U, where

=0

2k—1
U0 = 3 [20( + (k=i —1)* —i=1) 1] )i (C38)
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Then, we run the following series of operations

|+>® log, 2k? |¢> |k> ‘0>® log, 2k |0>®10g2 k |0>®2 log, 2k—1 |O>®2 log, k—1 |SCT'atCh>

2k%2—1 2k—1

1 . ) ) .
NoTE Z |2) Z Cji.da-dia ’]1~'-]a~-~]|9\> |k)
=0

Ji---Ja---Jjo=0

|0>®10g2 2k |O>® log, k |O>®2 logy 2k—1 |0>®21°g2 k=1 |scratch)

2k%—1 2k—1

1 . . . .
% Z |'L+1> Z Ci1..Ja-Jio ‘]1'~']a-~-]\52|> |k>

i=0 J1--Ja---3jo=0

Upi1
/=

|0)® 1082 2k )@ losz b gy ©2logz 2k =1y @2 oo k=L 0oy )

2k%—1 2k—1

\/ﬁ Z |i+1> Z Cj1.Ja- G ‘j1‘~‘ja+1‘-~jlﬂ\> |k>
=0

Ji---Ja---Jjo|=0

—_

Ugpq+1

|0)® 1082 2k )@ losz k gy ©2logz 2k =1 (@2 oo k=1 iy o)

" 1 2k%—1 2k—1

¢k ; ' ' ‘

o LS [ X bk

i=0 Ji---Ja---Jjo=0

|0>®10g2 2k |0>®log2 k |0>®2 logy 2k—1 |0>®210g2 k-1 |scratch)
( 2k2 -1 2k—1

1 . . . .
\/ﬁ Z |Z+1> Z le"'ja”'jlﬂ\ |j1]a+1—k]|g‘>“€>
=0

Ji---Ja---Jj=0

CNOT4, 640, ®CNOTK Ky

lja + 1 — k) |k)) [0)®2 1082 21 gy @2 loga F=l g gt en)
2k%—1 2k—1

1 . . . .
\/ﬁ Z |Z+1> Z le"'j"r”'jlﬂ\ |]1«~']a+1_k~~~.7|9\>‘k>

i=0 Ji---Ja---3jo=0

Upxpanc:2,e OV x Kane, K2

anc

ljo +1—K) k) ’(ja +1-— k)2> ‘k2>) |scratch)
2k -1 2k—1

1 . . . .
\/ﬁ ZO |Z+1> Z Cj1.fa-dla) |]1...‘]a+].7k...j|m>‘k>

Ji---Ja---Jjo=0

G2 et Koo

lja +1—k) k) |K* + (ju + 1 —k)*) |k*)) |scratch)
(C39)

Let us denote this entire sequence of operations as Up;tiq for succinctness. The point of these operations is to bring
the registers to a form where a comparison of values can be made followed by an extraction of a phase, similar to the
toy example of the ® operator discussed previously. Let n = log, 2k. The two incrementers above require 2n — 3 and
n—2 ANDs respectively[91], the subtraction n ANDs, the CNOTSs none, the multiplications (2n? — 1)+ (2(n—1)% —1)
ANDs[92], and the addition 2n — 1 ANDs. Adding all these, the cost of Uspitiar is 4n% +2n — 6 ANDs. Since the cost

of Ul ... is the same, these operations cost a total of 2|(| (4n? + 2n — 6) ANDs, which equals 8|2| (4n® +2n —6) T

initia
gates.

The ancilla count for U;p;iziq is given by the number of ancillae used to store values, as well as those used in the
|scratch) register actually used to compute the values. Those used to store values are given by

e log, (2k?) (for the comparison)

e log, (k) (store |k))

o log, (2k) (copy [#),)

e log, (k) (copy |k))

e 2log, (2k) (product of two log, (2k) numbers)
e 2log, (k) (product of two log, (k) numbers)
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In addition, the number of ancillae used in |scratch) to actually carry out the various computations in Ujpitia; is given
by

o log, (2k%) — 1 (Up+1)
o logy (2k) =1 (Ug,+1)
o log, (2k) (Us-r)
o [logy (2k) + 1] [21ogy (2k) — 1] + 1 (Upxgane,02,.)
o [logy (k) + 1] [21ogy (k) = 1] + 1 (Ukx K., Kc2)
o 2log, (2k) ($7n. + Kine)

Once we have run Uy;tiqar, we then run the following series of operations.

2k -1 2k—1
e S 0] X e et L ko)
1=0 Ji---Ja---Jjo=0

lja +1— k) k) |k* + (jo + 1 —k)?) |k*)) |0) |scratch)

. ( k%1 k-1
P Z‘Z‘Fl Z Cj1.da-..g |_]1_] +1*]€] >‘k’>
/7 1---Ja---J|Q| a ‘Ql
2k Ji---Ja---Jjo|=0
lja +1— k) |k) [* + (o + 1 = k)?) [K?) |©( — k* — (k — j —1)*))_ ) |scratch)
. 2k -1 2k—1
ancy 2k- Z ‘Z—|—1> Z Cj1.cfa-dla) [1—2@(i—/{32—(k—j—1 ] |]1 ]a+1_k]|9\>‘k>
Ji---Ja---Jjo=0
lja +1— k) |k) [E* + (o + 1 — k)) [K?) |©( — k* — (k — j —1)*))_ ) |scratch)
2k%—1 2k—1
= Z i + 1) Z Crovdandio 2O+ (k—j — 1)) —i—1] |j1...ja+1—k...jjq) k)
( 2k Ji---Ja---Jjo|=0
lja + 1= k) [k) |k* 4+ (jo + 1 — k)?) |k*) |00 — k* — (k —j — 1)%)), ) |scratch)
apt 2k%2—1 2k—1
o Z i +1) > Chduii 207+ (k== 1)) —i— 1] j1.. Ja+ 1= k.. o) k)
Ji---Ja---Jjo)=0
|.7a + 1 - |k> |k2 (]a + 1 - k)2> ‘k2>) 0>anc |Scra‘t0h>
; 2k>—1 2k—1
initial Ciroiaiiar [20(K% 4+ (k—j—1)%) —i—1 k
(mz X s O (e = =i 1] o) |

® log, 2k |O>® log, k |O>®2 log, 2k—1 |0>®2 logy k—1 |SCTa/tCh>
(C40)

With a similar analysis as before, we see that with the identifications

Uprpp = H®NT2leekl g
Userecr = Ult”thICMPTZancCMPUinitial (C41)

we have

(P ol C42
UbpupUssrecrUprepl|0) [9)10)4,. = | 10) o E |t [25) 110) e (C42)

where (|0)(0| ® I) |®+) = 0, and we obtain the state $%|¢) with probability iiili)}z upon post-selection.
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The CMP’ operation (and its inverse), replacing the CMP operation as before, compares two log, 2k2-qubit numbers
and costs logy 2k many logical ANDs. Thus, the comparisons require |Q|log, 2k? many logical ANDs across the

entire lattice, contributing to a T gate count of 4|2| log, 2k2.

In addition, we have |Q2| many multi-controlled Z gates to apply across the entire lattice, which incurs a cost of

4|9 — 4 T gates using the unary iteration method of [70].

In all, the total T gate count for this family of terms is given by the following, as also noted in the main text in

Eq.

Count(T)y> = 8|9 (4logsk + 11logy k + 1) — 4

d. SELECTgs term In much the same way as for the ¢ term, we can construct an LCU for (/34 as

A(’b 1=0
2k—1
Ui — 200k + (k —j —1)* =i —1) — 1] |5) (J|
j=0

with essentially the same method for gZ;Q as described above, except that U,iria is modified as follows.

4
|+>®10g2 2k |¢> |k> ‘O>®10g2 2k |0>®10g2 k ‘O>®210g2 2k—1 |0>®210g2 2k—1 |O>®21Og2 k—1 |0>®210g2 k—1

|0>®4 log, 2k—3 |O>®4 log, k—2 |SC7’atCh>

1 2k%—1 2k—1

R U 1 (D SE S A

2k =0 Ji---Ja---Jjo=0

|0>®10g2 2k |O>®10g2 k |O>®2 log, 2k—1 |O>®2 log, 2k—1 |0>®2 log, k—1 |O>®2 log, k—1

|0>®4 log, 2k—3 |O>®4 logy, k—2 |sc7’atch>
U 1 2k*—1 2k—1
P+1 . . . .
. /214 Z i+ 1) Z Cjr.Ja-d)0) |Jl~-~Ja-~-]\Q|> k)
i=0 J1e-da -G =0
|O>®10g2 2k |O>®10g2 k |O>®2 log, 2k—1 |O>®210g2 2k—1 |0>®210g2 k—1 |O>®210g2 k—1
|0>®4 log, 2k—3 |O>®4 logy k—2 |SCTCLtCh>
U 1 2k*—1 2k—1
ba+1 . . . .
’ ot Z i +1) Z Chrovdardion |91+ Ja+ 1. g | 1R
i=0 J1e-da -G =0

|0>®10g2 2k |O>®10g2 k |O>®2 log, 2k—1 |O>®210g2 2k—1 |O>®210g2 k—1 |O>®210g2 k—1

|O>®4 10g2 2k—3 |0>®4 10g2 k—2 |SC'ra/tCh,>
U 1 2k* -1 2k—1
Pp—k . . . .
Jam 2 i D a1 dat 1=k e R)
=0 J1---Ja---Jjo=0

|0>®10g2 2k |O>® log, k |0>®2 logy 2k—1 |O>®2 log, 2k—1 |O>®2 logy k—1 |O>®2 log, k—1

(C43)

(C44)

(C45)
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|O>®410g2 2k—3 |0>®410g2 k—2 |SCTa/tCh>
CNOT ®CNOT iy 2kl
»Panc KvKanc . . .
i Qk Z ‘Z"‘l Z cjlmjamj\m |j1]a+1—kj‘g|>|k‘>
1=0 Ji---Ja---Jj2)=0

|ja + 1— k> |k>) |0>®210g2 2k—1 |0>®2 logy 2k—1 |0>®210g2 k—1 |0>®2 logy k—1

|0y ®4lo8z 2h=3 gy @408 k=2 g pc)
2k*—1 2k—1
Usxdanc62n. OUKx Kane, K2, 1 ; j ] ]
V2Kt 2o li+n D Ciredodor [t Jat 1=k jap) [K)
i=0 Ji--Ja---Jj =0
|ja + 1_— k’) |k> ‘(ja + 1— k)2> |O>®210g2 2k—1 ’k2> ‘0>®210g2 k_l)
|0) 1082 23 1) SHlo8 K2 it )
4_ _
CNOT ladder@ CNOT ladder 1K Sy ; ' j
2k4 Z ‘Z+1> Z leja]‘g| |Jl']a+1_k'j‘ﬂl>|k>
v i=0 Ji---Ja---Jjo =0
o+ 1= k) [B) [(Ga + 1= £)2) (o + 1 — B)2) |K2) [£2))
|O>®410g2 2k—3 |0)®4 log, k=2 |scratch)
2k*—1 2k—1
U2 292 640 BUR2 K2 ke 1 , i '
Z ‘Z+1> Z c]l]a]\(ﬂ |.]1.7a+1_k']‘9|>|k>

V2Kt i=0 1eeda-rdia|=0
o + 1= k) k) |Ga + 1= k)?) [GGa + 1 — k)2) |K2) |&2))
|(ja +1- k)4> |k4> |scratch)

2k —1 2k—1

4 4 1 . . .
M) m Z ‘Z—i—l Z Cj1..a i) |]1.--]a+1—]<i...jm|>|k>

Ji---Ja---Jj =0
o+ 1= k) k) [Ga + 1= B)) [(a + 1= K)%) [K2) &%)
|k* + (jo + 1 —k)*) |k*) |scratch)

(C46)

As before, the ancilla count for Uy, 1S given by the number of ancillae used to store values, as well as those used
in the |scratch) register actually used to compute the values. Those used to store values are now given by

log, (2k*) (for the comparison)
log, (k) (store |k))
log (2K) (copy 4),)
log, (k) (copy |k))
21log, (2k) (product of two log, (2k) numbers)
2log, (k) (product of two log, (k) numbers)
2log, (2k) (copy (ja + 1 —k)?)
2logy (k) (copy k?)
4log, (2k) (product of two 2log, (2k) numbers)
(

4log, (k) (product of two 2log, (k) numbers)

In addition, the number of ancillae used in |scratch) to actually carry out the various computations in Ujpitia; is given

by

log, (2k%) =1 (Up41)
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° 10g2 (2]{/’) -1 (U¢a+1)
o log, (2k) (Up-r)
2k) + 1] [21og, (2k) — 1] + 1 (Upxpanc.62,.)

e [log,

o [logy (k) + 1] [2log, (k) = 1] + 1 (Ukxk,,..,K2)
[
[

(
(
o [2logy (2k) + 1] [4logy (2k) — 1] 4+ 1 (Upzxg2,¢1, )

o [2logy (k) + 1] [4logy (k) = 1] +1 (Uk2xk2,k2,.)

e 4logy (2k) (Ugs, +ks )
With this redefinition of Ujpstiq; and the resultant definitions using Eq. , we obtain

U}TDREPUSELECTUPREP@|¢> |O>anc = <|O>|¢¢ |4 |¢ ‘q)l>> |0>anc (047)

where (|0)(0] ® I) |®+) = 0, and we obtain the state $*|¢) with probability }i:fz}z upon post-selection.

Just as before, let us denote this entire sequence as Ujpitiai- Let n = log,2k. The two incrementers cost
(n — 2) + (4n — 3) ANDs, the subtraction n, the (first round of) multiplications (2n? — 1) + (2(n — 1)? — 1), the
(first round of) CNOTSs none, the (second round of) multiplications (8n% — 1) + (8(n — 1)? — 1), and the addition 4n
ANDs. Adding all these, the cost of Ujpiiqs is now 20n? — 10n 4+ 1 ANDs. Since the cost of U”mwl is the same, these
operations cost a total of 2|Q| (20n? — 10n + 1) ANDs, or 8|Q2| (20n? — 10n + 1) T gates.

Just as before, we follow this with a CMP" operation, followed by a (multi)-controlled Z, then the CMP'" operation.
The CMP’ operation (and its inverse) compares two log, 2k*-qubit numbers and costs log, 2k* many ANDs. Thus,
the comparisons require |Q|log, 2k* many logical ANDs across the entire lattice, contributing to a T gate count of
4|Q|log, 2k*.

In addition, each Z gate must be controlled on the state of 2 + log, || = log, 4|Q2] many qubits. Each of
these can be performed using log, 4|Q2] — 1 = log, 2|2| many logical ANDs (and as many uncomputations). Thus,
these controlled gates contribute a total of |Q2] log, 2|€2| many logical ANDs, and therefore 4|2 log, 2|Q2| many T gates.

In all, the total T gate count for this family of terms is given by
Count(T) g = 2|Q| (201og3 k + 38log, k + 2log, Q] + 15) (C48)

2. Block encoding of H,n, using binary decompositions

In this section first we describe in detail Algorithm IITa, outlined in Section [IV E 3| m that simulates Hypmp (Eq. (11 .
using an LCU decomposition of @, obtained from the binary decomposition of integers. This helps in expressing ® as
sum of Z operators and hence we obtain LCU decompoition of ®? and ®* as sum of Z operators. The ¢; norm of the
coefficients of an LCU is referred to as the £; norm of the decomposition or operator. We recall that Hg,,p, = cl+H, [lmp,
~iHompT because it is equal to e up to some global
phase. We describe a block-encoding of H,,,, by first block encoding each of its partitions and then combining them
using Theorem [I3] We 1mplement the circuits using Clifford+T and rotation gates and apply optimization techniques
(for example Theorem [14). Thus we prove Theorem [22] E in Section [V E 3| m Next, we prove a bound on the ¢; norm of
the Hamiltonian in Section Finally, we provide a more detailed explanation about Algorithm IIIb outlined in
Section where we obtain LCU decomposition of ®2 and ®* from binary representation of integers.

for some constant c¢. Thus it is sufficient to implement e —iHampT

a. Decomposition of & :  We decompose % as follows, as done in [I5].
g*d' (—k -1,0,1 k—l)*ld' (-2k+1 -1,1 Qk—l)—l]l
rg = das(—k,...,-1,0.1,..., = diag R T PO 5
10g2

- Z V7, — 711 (C49)

Number of non-identity unitaries in the above LCU is (logy k 4 1) and the ¢; norm is 3 |1+ E;CES k QJ} =k.
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b. Decomposition of ®*> :  From Eq. (C49), we have

2N (e TV R
AD AD 2 AD 4

1 log2 k—1log, k 10%2
7=0 k>j
1 logy k—1log, k 1 10g2 k
= @RI B Y 2z o Y 277 (C50)
j=0  k>j j=0

Number of non-identity unitaries in this expansion is

log, k(logy k4 1)
2

(logy k + 1)(logy k + 2)

1
+ 2

+ (logek+1) =1+ (C51)

If logy k = (, then the ¢; norm is

226+ 4 1) + ZQJZJr Z2JZ2’“

7=0 k>j

[

1 1 ¢~ —(G+1)
(2k* +1) + 3 (2¢Ft - +3 Z 27+J+1 Z 2k
j=0 k=0

| =

C
k2 1 1 92
_ _ § j+1 2( J_1

3+6+ = )

k? 1 ,
- 7_|_k_§ ZQC+J 243
=0

k2 1 46 -1
= — +k— - +22-1)—

g TRy 2 ) 3

k2 1 k21
= — k- +E k-~ 4=

3 RT3 3737

k2. (C52)

. . 4 2\ 2 . .
c. Decomposition of ®* :  Since (%) = ((%) ) , S0 we can express it as sum of terms with 1, 2, 3 and up

to 4 Z gates. So number of unitaries in the decomposition can be at most

¢ ¢ ¢ ¢
b (5) () () ()
i4 (¢* —2¢% + 11¢% + 14¢ + 24) [¢ = log, K]
€ 0" or O(logyk). (C53)

To derive the ¢; norm of this decomposition we first observe that

4 2 2 2 2 2 2 2 2
g _ g _Qk: +1H +22k +1 g _2k +1H n 2k +1 L
A Ad 6 6 AD 6 6

From Eq. [C52| we know that that the ¢; norm of ((%)2 — &6*1]1) is k2 — % = % — %. Thus the ¢; norm of

(%)4 is at most

22 1\ 22+ 1 (2k2 1 22 +1\°
oz 2. = =k 4



Proof of Theorem[23 We re-collect that we have partitioned the Hamiltonian

as follows.

99

(i.e. Hgmp without the I part)

Hlf = ZO[]Z +ZOLJkZ Zk‘i’f Z"Y]Z +Z’ng2 Zk JT-.T (055)
J J.k J Jk
Hyz = ZajkleZkZl+ Z kim 2 Lk Z1Zm (C56)
.k, 7,k,lm
Hyy = ZH15+H25 (C57)
7eQ
Hyzy = ZBN )z (Zj)z (C58)
Hy = Z Hy.- (C59)
(#,2")€ED
H,., = Hi»+ Hs (C60)

Let L]_ _ (10g21k+1)7 L2 _ (log22k+1)’ LS — (10g23k+1)7 L4 — (log24k+1) and L5 — (10g2 k, + 1)2
d. Block encoding of Hiz :  The ancilla preparation sub-routine is as follows. We assume a bijective map between
j" = (j,k) to some integer in [Li + 1, L1 + Lo].

L,y Li+Ls
o 1 .
PREP - |0>1+1 go(L1+L2) _ /\? Z fa; |j, Z \/@U 0 Jr Z\/,TJU,
1\ j=1 J'=L1+1
Li+L,
+ Z Vil 0) [NViz is normalization constant.] (C61)
j'=Li+1

The last qubit is used to select the QFT. We require 1 + log,(L1 + L2) qubits. For the state preparation we require
1+1logy(Ly 4+ Lo) H, 4(Ly + Ly) — 2 rotation gates and 4(Ly + Lo) + 3logy (L1 + Lo) — 4 CNOT.
The select sub-routine does the following.

SELECT1z(5,0) [¢) — 4,0) Z; |4)

SELECT1z[j,1) [v) — 1j,1) FZ;F'|v) (C62)
If j > L1 + 1 then we applly two Z gates depending on the mapping. The last qubit is used to selectively apply the
pairs of (log, k + 1)-qubit QFT. We require L; + Ly compute-uncompute pairs of C'°82(F1+L2) X gates, which can be

synthesized efficiently using Theorem [27]. If we divide the control qubits into M; groups such that the j* group
has % fraction of the qubits, then we require
J

M 1 log(Ly+Lg) M
Y (Li+ Ly + (L + Ly) - CMr X
=1

(compute-uncompute) pairs of gates. We assume equal partitioning into 2 groups i.e. M; = 2 and r = % Then,
using the constructions in [75] [76] , i.e. from Eq. 85| we require

L1 —+ LQ (IOgQ(Ll + LQ) — 2) —+ 4(L1 + LQ)
T gates and
L1+ Lo (4 IOgQ(Ll + LQ) — 6) + 5(L1 + L2)

CNOT gates. Additionally we require (logy k + 1) + 282 k(log2 ktl) — (og, k+1)(10g2 *2) number of CZ gates and two
(logy k + 1)-qubit QFT. To implement the QFTs we requ1re approxunately [71]

log, 2k log, 2k log, (%224
8(log, 2k) log, < Ogi ) + log, ( Ogi > log, | ——=~2

€

T gates and almost an equal number of CNOT gates.
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e. Block encoding of Hoz :  The ancilla preparation sub-routine is as follows.

L3+Ly

= 2 il (Co3)

PREP,; |0)'82(Fs ) —

where a;’ are the weights obtained while expressing Hoz as sum of Z operators (Eq. |[C56)). For the state preparation
we require log,(Ls + L4) H, 2(Ls + L4) + 3log,y(Ls + La) — 7 CNOT and 2(Ls + L4) — 2 rotation gates.
The select sub-routines does the following :

SELECT2z |j) [4) = [7) U; [4) , (C64)

where Uj is the 4t unitary in the LCU decomposition of Hyz in Eq. |C56, To selectively implement the unitaries we
require L3 + L, compute-uncompute pairs of C1082(Ls+L4) X gates. Using Theorem [14f and assuming that the control
qubits have been divided into two equal groups, we require

log(L3+Ly)

2Ls+ Ly)2C~ = "X + (Ls + Ly) - C*°X (C65)

(compute-uncompute) pairs. These in turn can be decomposed into

4v/L3 + Ly (logy (L3 + L) — 2) + 4(Ls + La) (C66)
T gates and
V/Ls + Ly (41ogy (L3 + Ly) — 6) + 5(Ls + Ly) (C67)
CNOT gates. Additionally, we require
<log2§: + 1) N (logQZlf + 1) _ (logQZf + 2) (C68)
CZ gates.
f. Block encoding of H,.~ :  The ancilla preparation sub-routine is as follows.
1 &
PREP,_ [0)°% " = N 2 B 1) (C69)
-

where ,8;- are the weights given in Eq. |Ch8l For state preparation we require log, Ly H gates, 2Ls + 3logy Ls — 7
CNOT and 2Ls5 — 2 rotation gates.
The selection sub-routine is as follows.

SELECT, . [j) [) = |j) U [¢) (C70)

where U; is the corresponding unitary. We require Ls compute-uncompute pairs of Co82 s X gates. Again we apply
Theorem [T4] and assume that the control qubits have been divided into two equal groups. Then we require

log

X 4 Ly - 02X (CT71)

2L2C

(compute-uncompute) pairs of gates. These can be further decomposed [75] [76] into

4\/ L5 (10g2 L5 - 2) + 4L5 (072)
T gates and
v/ L5 (41ogy Ls — 6) + 5L5 (C73)

CNOT gates. Additionally we require (logs, k + 1)2 CZ gates.
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g. Block encoding of Hio :  We use the recursive block encoding Theorem ‘We can block encode Hiz + Hoz
using ancilla preparation sub-routine that has 1 H and 2 rotation gates. The unitary selection sub-routine adds an
extra control to each unitary. For His we prepare an equal superposition of log, || qubits, using log, |Q2| H gates
and use these to select an ancilla of each subspace. The rest of the operations are controlled on this. Thus this adds
another control. We require |Q| number of C'#2 21X compute-uncompute pairs of gates. Using Theorem and
assuming an equal partitioning of the control qubits into two equal groups, we can implement the multi-controlled-X
gates using

QFCTET 4]0 CMix (C74)
(compute-uncompute) pairs, that can be further decomposed [75], [76] into
4./19| (log, |Q| — 2) + 4|Q| (CT75)

T gates and

V10 (410g, |2] — 6) + 5/ (C76)

CNOT gates.

h. Block encoding of Hs :  We use Theorem We prepare log, |Fp| qubits in equal superposition, using
log, |Ep| H gates. We use these to select two sub-spaces. Specifically, each superimposed state selects an ancilla.
From this ancilla we use two CNOTs to select an ancilla in each of the two corresponding sub-spaces. The rest of
the operations are controlled on these ancillae. So, each unitary of H,.~ has 1 extra control. Using Theorem [14] and
assuming an equal partitioning into two groups, for the selection we require

log |Ep|

2Ep|2C~ 25 X +|Ep|-CMs X (C77)

(compute-uncompute) pairs. These, in turn can be decomposed [75] [76] into

13/TEp] (logy | Ep| - 2) + 4|Ep| (C78)
T gates and

V|Ep|(4log, |[Ep| — 6) + 5| Ep| (C79)
CNOT gates.

i. Block encoding of H : ~ We prepare 1 qubit in equal superposition using 1 H. The rest of the operations are
controlled on this. So it adds an extra control. Thus overall, unitaries in Hyz, Hoz have 3 extra controls and unitaries
in H,_~ have 2 extra controls. Thus for each unitary in Hyz, Haz we require a (compute-uncompute) pair of C3X,
that can be implemented with 8 T and 9 CNOT gates. Each unitary in H,_- require a (compute-uncompute) pair
of C?X, that can be implemented with 4 T and 5 CNOT gates.

Overall, we require following numbers of T gates,

N, < 19| [4 L1 + Ly (logy(Ly + Lo) — 2) + 12(Ly + L) + 4v/Ls + Ly (logy (L3 + Ly) — 2) + 12(Ls + L)

+Ep| (4v/Ls (1ogy Ls — 2) +8Ls ) + 41/I] (log, 9] — 2) + 42| + 4/|Ep| (logy | Ep| — 2) + 4/ Ep|

lo log, 2k:>

log, 2k log, 2k 82 (7

+2|Q| | 8(log, 2k) log, ( 082 > + log, (0g2> log, | ———= 2 (C80)
EQFT EQFT €EQFT

following number of CNOT gates,

Ne € 19 [\/L1 ¥ Ly (41ogy(Ly + Lo) — 6) + 14(L1 + Lo) + /I3 + La (4logy(Ly + La) — 6) + 14(Ls + La)

+Ep| (V/Is (410gy Ly — 6) + 10Ls ) + /9] (410g, |2] — 6) + 5[0 + v/[Ep] (410g, |[Ep| — 6) + 5| Ep|

lo log, Zk)

log, 2k log, 2k 82 ( e

+2|Q] | 8(log, 2k) log, ( 2 ) + log, <0g2> log, | ——= 2
€EQFT €EQFT €EQFT

+2(2(L1 + L2) + Ls+ Ly+ L5) + 3(10g2(L1 + LQ) + 1Og2(L3 + L4) + log, L5) —21 (081)



102
following number of rotation gates,
N, <4(Ly + L2) +2(L3 + Ly) +2L5 — 4 (C82)
following number of CZ gates
Ne. < Q| (L1 + Ly 4+ L3 + L4) + | Ep|Ls, (C83)
and the following number of H gates,
Ny, <3 +1logy(L1 + La) 4 logy(Ls + Ly) + log, Ls + logs, |Ep| + log, |2, (C84)
where Ly = logo k + 1, Ly = (10g22k+1), Ly = (101%23]“"'1)7 Ly = (1°g24k+1) and Ls = (logy k + 1)2. Hence we prove

Theorem 22
O

a. 41 norm of Hypmyp

In this section we prove a bound on the ¢; norm of the implemented Hamiltonian i.e. Hgy,yr, as decomposed in Eq
[C55HCG0

Proof of Lemma[23 We try to shave off most of the identity factors, as these contribute to a global phase only. Let
|A®| := A and log, k := (.

M~

B1 = 2ij
Jj=0
¢-1 ¢
By = Z 2tk 7.7,
k>j
4 (cb) 2k2+1 _Bi+B,
—\A 2

Each one of the above matrices is a sum of non-identity operators. Now we express each summand as a function of
the above operators and identity.

~ 2

) 2k2 +1
<A> — A+ 6+ I (C85)
~ 4

d 2k2 + 1 2%2 +1\2 2k + 1
<A> = A’ 4+ 3 A1+< 6+ ) 11+< 3 >A1 (C86)
2 b\’ 22 4 1

il _ il T t

<A> (A) Fl=FAF + =1 (C87)

2

4k —1_ 1 1 1
(Bf + B3 +2B1By) = ———1+ -Bs + ZBg + 5 BB (C89)

r
¢ S
B2 = (Z 2z, | =2 - 1+ 15, (C88)
1
1 12 8
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Now consider the following term.

> Y e@e)

TEQ FIeN,
A 2 ¢ . ¢ . ¢ Y

B <2> Z H+22]Zm+ DY Lyt Y VN 2o Ty

7 =0 §'=0 3,3'=0
<

= ( H+le+Blz+22j+Z Zjt
f :?:GN 3:3'=0

- <2> > Y (@+Bie+Bie+Bsew) (090)
z 176/\/’:

Plugging Eq. in the expression for Hy,y,, we obtain the following.

A M2 +1)A?  AA*(2K%2 +1
ZCHH+Z<A2+JTAJT+<( Z) 128X +>>Bl

Hamp 144

(M? +d)A%  AA*(2K% +1) A?
( 4 * 144 Bz ) = 2. 2 Bisw

T "/EN
M2+1A AA%(2k2 + 1)
_ i A7
= ZCHH+Z ]-"Al]-" 233”/+2( + i >B1
AA* M2+d)A2 AAY(2K2 +1)  AA? AA* B2
~— BB B 1
+%: =B ﬁ%j( 7 + = +192> 2+Z (C91)
Now we compute the norms of the following.
2k% 1
A £ ——=
3 6
IBswarll < (2k—1)°
[Bil] < 2k—1
2k2 1
By < 2% —k+=
B2l < 2 (% -k )
4k*  4K3 13K% 2k 1
B2 < 4 — - — - 4=
”2”—<9 3 "7 3+9)

4k3 8k2 5k 1
BiBo|| < 2 -2 208 -
BB < 2 (-S4 T -3)

Substituting the above inequalities in Eq. we have the following, thus proving Lemma

4 2
| Hompll <12 (mk“ + ((W) A?- 0.048611)\A4> + k (—3dA2 + 0.03125)A%)

+A2<—M2+8d—4

G ) — 0.0081019>\A4> (C92)

b. Block encoding using binary decomposition for all operators

In this section we first prove Theorem [29]in detail and then we explicitly construct some circuits for the signature
matrices arising in the decomposition of ®2 and ®*.
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Proof of Theorem[29 In this case we partition Hgy,, as follows.

Hyoz = II2(%) + (M? + d + 1)®*(%)
Hyy = ®4(7)

Hy.o = ®@)0(a!) = Hy
Hy = Hyzp
f,z_‘/EED
1 A
Hi, = §ZH¢25+EH¢4£
TeQ )
Hamp = Hyy + Hs (C93)

The recursive block encoding is done in a similar fashion as before. We give brief descriptions with gate complexity.

a. Block encoding of Hy2z :  Let o2 = Z?ioég? k U;, where U; is a signature matrix. These can be obtained using

Lemma [T6] as described in Section [VE4] The ancilla preparation sub-routine is,

1 2log, k 2log, k
PREPg2; = 37— S ovailio+ Y VB |, (C94)
T\ j=0 1=0

where the weights ; and ; include the coefficients from LCU decomposition of operators ®2 and II? = FO2FT, as
well as the coefficients of ®2 and II? in the definition of the Hamiltonian. The last qubit is used to select the QFT.
We require 1+ log,(2log, k) qubits. For the state preparation we require 1+ log,(2log, k) H, 4log, (k) — 2 rotations,
4log, (k) + 3log,(2logy k) — 7 CNOT gates.

The SELECT sub-routine does the following.

SELECT 2z 5,0} [¢) > 14,0) Uj |v)
SELECT g2z (5, 1) [¢)  + |1,0) FU;F' [4) (C95)
As explained, we require 2log, k number of C'°8(21°8%) X gates to select the unitaries. Using Theorem if we divide

the control qubits into 2 equal groups then we require the following number of T gates to implement the control that
selects the signature matrices

44/2log, k(log(2logy k) — 2) + 8log, k, (C96)
and the following number of CNOT gates
v/ 2log, k(41og(2log, k) — 6) + 101log, k. (C97)

Additionally, assuming Conjecture We require O(log2 k) number of T-gates for the implementation of the signature
matrices. We also requrie two log, k + 1-qubit QFT.

b. Block encoding of Hysz :  Let ®* = Z;ioogZ b U;, where Uj is a signature matrix obtained using Lemma
as described in Section The ancilla preparation sub-routine is as follows.

4log, k
PREP 4~ = |7
REP 44z Nz jgo NI (C98)

where the weights a; include the coefficients from LCU decomposition of operators ®*. We require 1 + log, (4 log, k)
qubits. For the state preparation we require 1+ log,(4log, k) H, 8log, (k) — 2 rotations, 8log, (k) 4 3logy(4logy k) — 7
CNOT gates.

The SELECT sub-routine does the following.

SELECT 41z 4,0) [¢0)  — |5) U; |¢)
(C99)

As explained, we require 4 log, k number of C'°8(41°8¥) X gates to select the unitaries. Using Theorem if we divide
the control qubits into 2 equal groups then we require the following number of T gates

44/410g, k(log(4log, k) — 2) + 16 log, k, (C100)
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and the following number of CNOT gates

V4log, k(4log(4log, k) — 6) + 201log, k. (C101)

Assuming Conjecture |28 we require O(log2 k) T-gates to implement the signature matrices.

c.  Block encoding of Hi5 :  We use the recursive block encoding Theorem We can block encode H 257+ 2Af4H ey
using ancilla preparation sub-routine that has 1 H and 2 rotation gates. For Hj, we prepare an equal superposition
of log, |€2| qubits, using log, |©2| H gates and use these to select an ancilla of each subspace. The rest of the operations
are controlled on this. Thus this adds another control. We require |Q| number of C"8: 12 X compute-uncompute pairs
of gates. Using Theorem [I4] and assuming an equal partitioning of the control qubits into two equal groups, we can
implement the multi-controlled-X gates using

1 log|Q| 9
QzC 2 X +|Q|-C°X (C102)
(compute-uncompute) pairs, that can be further decomposed [75], [76] into
44/19| (log, |22 — 2) + 4|9 (C103)
T gates and
V9| (41og, |92] — 6) + 5|9 (C104)
CNOT gates.
d. Block encoding of H,.~ and Hs :  The block encoding of ®(Z)®(z') = H,. is provided earlier. For the

preparation sub-routine we require log, |Ep| + logy(logy k + 1)2 H, 2(logs k + 1)? — 2 rotation gates, 2(logy k + 1)% +
3log,(logy k +1)2 — 7 CNOT gates. For the selection sub-routine we require

|Ep| (8(logy k + 1)(log,(logy k + 1) — 1) + 4(log, k + 1))

+4v/|Ep|(log, | Ep| — 2) + 4| Ep| (C105)
T gates and

|Ep| ((logy k + 1)(8logy(logy k + 1) — 6) + 5(logy k + 1))

+V/|Epl|(4log, |Ep| — 6) + 5| Ep| (C106)

CNOT gates and (logy k + 1)? CZ gates.

e. Block encoding of Hymp : Using Theorem we can block encode H,,, using a PREP sub-routine with
1 H and 2 rotation gates and a SELECT sub-routine that adds an extra control. Thus under the assumptions of
Conjecture 28 we require

N{ < |9] (4 2log, k(logy(2logy k) — 2) + 8logy k + 44/410g, k(logy(41og, k) — 2) + 161og, k:)
+41/19 (log, [ — 2) + 4]Q| + |Ep| (8(logy k + 1) (logy (logy k + 1) — 1) + 4(logy k + 1) + 4)
+4+/|Ep|(logy |[Ep| — 2)

log, 2k log, 2k log,
+2Q|<8(log22k>log2(°g2 >+log2 ("g?)logQ —~ e/
€EQFT €EQFT F

) ) + O (|9 log3 k) (C107)

T gates,

N < |9 (\/2 Tog, k(41ogy(2log, k) — 6) + 101og, k + /4 log, k(4logy(41ogy k) — 6) + 20 log, k + 5)
+/1Q] (41log, |Q| — 6) + |Ep] ((log2 k4 1)(8logy(logy k + 1) — 6) + 5(logy k 4+ 1)% + 5) + /|Ep|(4log, |Ep| — 6)

log, 2k
log, 2k log, 2k log, <7 )
+219] [ 8(log, 2k) log, < 082 ) +log, <°g2) logy | ——~<er / (C108)
€EQFT €EQFT €EQFT
CNOT gates,
N, <12logy k + 2(logy k +1)% — 3 (C109)

rotation gates. This proves Theorem O
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FIG. 17: Quantum circuits for (a) Us, (b) Uy, (¢) Us, (d) Us, (e) U7 and (f) Uy4. Qubits not affected by gate
operations have not been shown.

c.  Quantum circuits for signature matrices in the decomposition of &>

In this section we describe the explicit constructions of signature matrices appearing in the LCU decomposition of
®2, as discussed in Section [[VE 4]l We recall that

CI
®* = diag (k—1)% (k—2)%,...,1,0,1,..., (k= 1)%,k*) = +el + Y _ Uy, (C110)
/=1

where cq, ¢, are real coefficients and Uy is a signature matrix obtained from the ¢* bit in the binary decomposition
of 0,1,...,k% and then replacing the 0 with 1 and 1 with -1, as explained earlier. ¢’ = 1 + 2logk is the maximum
number of bits in the binary expansion of k2. We assume k = 2K for some integer k' since we have a unitary. As
mentioned earlier, in Table We have listed all integers n such that n < 27 = 128 and the bﬁh (1 < ¢ < 15) bit in
the binary decomposition of n* has 1. In Table [VI| we enumerate all integers n < 2* (where x = 2,...,12) such that
n? has a binary decomposition with 1 at a particular bit position.

We consider the case where k = 27. So our circuits consist of 8 qubits and we label them as gg, . .., q1, corresponding
to the 8 bits - bg,...,b;, in the binary decomposition of any number with value at most 27. bg and b; are the most
and the least significant bits, respectively. In Fact 26| we have mentioned that U; can be implemented with a single
Z gate on qubit ¢; and U, is an all 0 matrix.

¢ =3:From Lemmawe know that —1 occurs whenever n € {8k + 4,8k + 5,8k + 6,8k + 7} and it can be square
of an integer if it is of the form 8k + 4 (Eq. . Now, 8k + 4 = 4(2k + 1) = 2%(2k + 1) and so it is a square of the
form (2(2k” + 1))2, where k" is an integer. If (2(2k” + 1))? = j2 then it can occur at row (k—1) — j and k — 1 + j.
If we expand all integers of the form 2(2k” + 1) we observe that they have a trailing 10. Adding or subtracting k& — 1
changes these two bits to 01. Thus all such integers appear in those rows whose index has a trailing 01. This implies
whenever the state of the first qubit is 1 and second qubit is 0, a -1 phase is incurred. Thus we can implement Us
with a (compute-uncompute) pair of Toffoli, X, and a Z on an extra ancilla, as shown in Fig. To implement
controlled-Us we add one control to Z, which does not contribute to additional T gates.

¢ =4:From Lemmawe know that —1 occurs whenever n € {16k + 8,16k +9,...16k + 15} and it can be square
of an integer if it is of the form 16k + 9 (Equation . The integers whose squares are of this form have trailing 011
or 101, for example 33, 52,112,132, etc. So they occur at positions with trailing 100 or 010. U, can be implemented
with 4 CNOT and 1 CZ, as shown in Fig. [[7b] To implement controlled-U; we add an extra control to CZ, that
contributes to T gates.

¢ = 5 : Integers, the binary decomposition of whose squares have 1 in the 5" position are of the form 16n+m, where n
is a non-negative integer and m € {4,5,7,9,11,12} (Table and in binary m € {0100,0101,0111, 1001, 1100, 1011}.
The trailing bits in the binary decomposition of integers of the form 16n+m are in {0100,0101,0111,1001, 1100, 1011}
and so in Us they appear at positions whose binary decomposition have the following trailing bits
- 1011,1010,1000,0110,0011,0100. So we can implement Us with the circuit shown in Fig. [I7d consisting of 3
double-controlled-Z and 4 pairs of CNOT. To implement controlled-Us we add extra controls to the CZs.
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¢ =6 : In Table [[V] we have listed the integers such that the binary decomposition of their squares have 1 in the
6" position. These are of the form 32n + m where n is a non-negative integer and

m € S, ={6,7,10,11,13,15,17,19, 21, 22, 25, 26}
In binary the integers in .S, are as follows.
Sm € {00110,00111,01010,01011,01101,01111, 10001, 10011, 10101, 10110, 11001, 11010}

We obtain the row positions by adding and subtracting 11...111, which implies that the trailing 5 bits get comple-
mented. Thus Uy can be implemented with the circuit shown in Fig. consisting of 6 (compute-uncompute) pairs
of CNOT and 3 2-qubit-controlled-Z. To implement controlled-Ug we need to add one control to each multi-controlled
7.

¢ =7 : In Table [V] we have listed the integers such that the binary decomposition of their squares have 1 in the
7t position. These are of the form 64n + m where n is a non-negative integer and m € S,,, a set specified in Table
[[V] As explained, the gates in this unitary act on 6 qubits, corresponding to the last significant 6 bits in the binary
representation of an integer. We calculate the binary representation of integers in S,,. We obtain the row positions
with —1 by adding and subtracting 11...111. We group appropriate binary strings in order to induce "Don’t care”
conditions, in order to optimize the circuit. Thus we obtain the circuit in Fig. that implements Us.

¢ =14 : From Table we observe that squares of integers from 91 (01011011) to 127 (01111111) are such that
their binary expansions have 1 in the 14*" bit position. These integers appear at rows 0-36 and 218-254. The binary
encoding of these rows range from 00000000 (0) - 00100100 (36) and 11011010 (218) - 11111110 (254). Thus when the
state of the qubits are within the stated range the circuit incurs a phase of -1. So Uy4 can be implemented with the
circuit shown in Fig. Again, we have optimized the circuit by identifying ”"Don’t care” conditions among groups
of binary strings.

d. Quantum circuits for signature matrices in the decomposition of ¢*

In this section we describe the explicit constructions of signature matrices appearing in the LCU decomposition of
®*, as discussed in Section [[VE 4] We recall that

C”
o = diag (k- 1)* (k—2)*...,1,0,1,..., (k= D" k) = +¢)T+ > Uy, (C111)
(=1

where ¢, ¢, are real coefficients and U is a signature matrix obtained from the (" bit in the binary decomposition
of 0,1,...,k* and then replacing the 0 with 1 and 1 with -1, as explained earlier. ¢’/ = 1 + 4logk is the maximum
number of bits in the binary expansion of k*. As mentioned earlier, in Table [V| we have listed all integers n such that
n < 27 = 128 and the bzh (1 < ¢ < 29) bit in the binary decomposition of n* has 1. In Table we enumerate all
integers n < 2% (where x = 2,...,12) such that n* has a binary decomposition with 1 at a particular bit position.
As in previous section, we consider the case where k = 27. So our circuits consist of 8 qubits and we label them
as ¢s, - - - ,q1, corresponding to the 8 bits - bg, ..., b1, in the binary decomposition of any number with value at most
27. bg and by are the most and the least significant bits, respectively. In Fact [26] we have mentioned that U; can be
implemented with a single Z gate on qubit ¢; and Us, Us, Uy are all 0 matrix.

¢ =5 :In Table[V]we have enlisted all the integers such that the binary decomposition of their fourth power has 1 in
the 5" bit position. These are of the form 8n +2,8n+3,8n+ 5,8n + 6, where n is a non-negative integer. The binary
decomposition of 2, 3, 5 and 6 are 010, 011, 101 and 110, respectively. So the trailing bits in the binary decomposition
of integers of the above form are either 010, 011, 101 or 110. These appear in rows whose binary decomposition has
any of the four trailing bits - 101, 100, 010, 001. Therefore, U. can be implemented with the circuit shown in Figure
18al consisting of 4 (compute-uncompute) pairs of CNOT and 2 CZ. Controlled-U! can be implemented by adding
extra controls to each CZ.

¢ = 6 : Consider integers of the form 16n + m, where n is a non-negative integer and

m € S, = {5(0101),7(0111),9(1001), 11(1011)}.

From Table we observe that the binary decomposition of the fourth power of these integers has 1 in the 6" bit
position. In ®* these integers appear at rows such that the binary decomposition of their index has trailing 4 bits
which are complements of those in S,,. Thus, U} can be implemented with the circuit in Figure consisting of 2
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FIG. 18: Quantum circuits for (a) U, (b) U{, (¢) Uf, (d) U, and (f) Ujg. Qubits not affected by gate operations
have not been shown.

(compute-uncompute) pairs of CNOTs, and 1 CZ. Controlled-U};, can be implemented by adding an extra control to
CZ.
¢ =17 : Consider integers of the form 32n + m, where n is a non-negative integer and

m € Sy, = {3(00011),5(00101), 7(00111), 15(01111), 17(10001), 25(11001), 27(11011), 29(11101)}.

From Table E we can say that the binary decomposition of the fourth power of these integers has 1 in the 7! bit
position. These integers appear at rows whose binary decomposition has the last 5 bits that are complements of the
ones in Sy,. So, U can be implemented with the circuit in Figure consisting of 6 (compute-uncompute) pairs of
CNOT and two double-controlled-Z. Controlled- U} can be implemented by adding extra control to the controlled-Z.

¢ =8 : In Table [V] we have listed the integers such that the binary decomposition of their fourth power have 1 in
the 8" position. These are of the form 64n+m where n is a non-negative integer and m € S,,, a set specified in Table
[Vl As explained, the gates in this unitary act on 6 qubits, corresponding to the last significant 6 bits in the binary
representation of an integer. We calculate the binary representation of integers in S,,. We obtain the row positions
with —1 by adding and subtracting 11...111. We group appropriate binary strings in order to induce ”Don’t care”
conditions, in order to optimize the circuit. Thus we obtain the circuit in Fig. that implements Uy.

¢ =28 : From Table [V] we observe that the fourth power of integers from 108 to 127 are such that their binary
expansions have 1 in the 14" bit position. These integers appear at rows 0-19 and 235-254. The binary encoding of
these rows range from 00000000 (0) - 00010011 (19) and 11101011 (218) - 11111110 (254). Thus when the state of the
qubits are within the stated range the circuit incurs a phase of -1. So Ujg can be implemented with the circuit shown
in Figure Again, we have optimized the circuit significantly by identifying appropriate ”Don’t care” conditions.
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Bit |Integers #Integers
by 2n+1:0<n <63 64
by [0 0
bs [2(2n+1):0< 31 32
bs |8n+3,8n+5:0<15 32
bs [16n+m:0<n <7 me{4,5,7,9,11,12} 48
bs [32n+m:0<n <3, me{6,7,10,11,13,15,17,19,21,22,25,26} 48
b7 |64n+m :n=0,1,m € {8,9,10,11, 14, 15, 18,19, 22, 24, 25, 27,29, 31, 33, 35, 37, 39, 40, 42, 45, 46, 49, 50, 53, 54, 55,56 }
bs (12, 13, 14, 15, 20, 21, 22, 26, 27, 30, 31, 34, 35, 38, 39, 41, 42, 44, 45, 47, 50, 52, 53, 55, 57, 59, 61, 63, 65, 56
67, 69, 71, 73, 75, 76, 78, 81, 83, 84, 86, 87, 89, 90, 93, 94, 97, 98, 101, 102, 106, 107, 108, 113, 114, 115,
116
be |16, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 36, 37, 38, 39, 43, 44, 45, 48, 49, 50, 54, 55, 58, 59, 62, 63, 66, 67, 60

70, 71, 74, 75, 77, 78, 80, 81, 84, 87, 90, 92, 93, 95, 98, 100, 101, 103, 105, 106, 108, 110, 112, 113, 115,
117, 119, 121, 123, 125, 127

bro |23, 24, 25, 26, 27, 28, 29, 30, 31, 40, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, 60, 61, 62, 63, 68, 69, 70, 71, 55
76, 77, 78, 82, 83, 84, 88, 89, 90, 94, 95, 99, 100, 101, 104, 105, 106, 109, 110, 114, 115, 118, 119, 122, 123
126, 127

b1 |32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 74, 75, 76, 77, 78, 53
85, 86, 87, 88, 89, 90, 96, 97, 98, 99, 100, 101, 107, 108, 109, 110, 116, 117, 118, 119, 124, 125, 126, 127

b2 |46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, a7
90, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 121, 122, 123, 124, 125, 126, 127

bis |64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 111, 14
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127

bia |91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 37
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127

b |128 i

TABLE IV: The leftmost column stores bit positions, indicated by b;. The second column stores integers such that
the binary decomposition of their square has 1 in the b‘" bit position. The third column stores the number of
integers whose square has 1 in the bi" bit position. We have listed integers until 128.
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Bit |Integers #Integers
by 2n+1:0<n <63 64
by |0 0
bs |0 0
by |0 0
bs |8n+2,8n+3,8n+5,8n+6:0<n<15 64
bs [16n+m:0<n<7 me{57911} 32
by [32n+m : 0<n<3,me{3,5,7,15,17,25,27,29} 32
bs [64n+m : n=0,1, m € {9,13,15,21,25,27,29, 31, 33, 35, 37, 39, 43,49, 51, 55} 32
by 4,6, 7,9, 10, 11, 12, 13, 15, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 35, 36, 38, 42, 44, 47, 52, 54, 58, 59, 60, 64

61, 63, 65, 67, 68, 69, 70, 74, 76, 81, 84, 86, 90, 92, 93, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 113
115, 116, 117, 118, 119, 121, 122, 124

bio |5, 10, 13, 14, 17, 18, 21, 22, 27, 29, 31, 41, 42, 43, 45, 46, 49, 50, 51, 53, 54, 57, 63, 67, 69, 73, 74, 78, 81, 413
82, 86, 89, 91, 93, 95, 103, 105, 106, 109, 110, 113, 114, 117, 118, 119, 121, 125, 127

b1 |6, 10, 13, 14, 15, 17, 19, 21, 23, 25, 30, 31, 34, 35, 39, 41, 47, 49, 50, 53, 54, 58, 59, 61, 63, 69, 70, 74, 75, 53
77, 78, 79, 81, 85, 87, 89, 91, 93, 94, 95, 98, 101, 105, 107, 109, 111, 113, 114, 115, 118, 119, 122, 127

biz |7, 9, 11, 13, 18, 19, 26, 27, 29, 30, 33, 37, 39, 41, 42, 43, 50, 51, b4, 58, 62, 63, 66, 67, 69, 70, 74, 75, 78, 14
83, 86, 87, 89, 91, 93, 97, 98, 102, 107, 110, 121, 123, 125, 127

bis |8, 9, 11, 12, 14, 18, 19, 20, 21, 22, 24, 25, 26, 27, 30, 31, 33, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 63

52, 54, 56, 57, 62, 63, 67, 69, 70, 72, 73, 76, 79, 81, 84, 88, 89, 91, 94, 95, 97, 101, 104, 105, 107, 108, 116
117, 118, 120, 121, 122, 126, 127

bis |10, 11, 13, 19, 20, 21, 25, 26, 28, 34, 35, 36, 42, 43, 44, 47, 49, 51, 53, 54, 55, 58, 59, 62, 65, 67, 77, 82, 83, 19
84, 86, 87, 90, 92, 93, 98, 100, 102, 103, 105, 106, 108, 109, 111, 113, 114, 119, 126, 127
bis |12, 13, 15, 17, 19, 20, 21, 23, 25, 26, 28, 29, 30, 34, 35, 38, 39, 42, 46, 47, 49, 50, 53, 59, 60, 61, 62, 63, 65, 67

67, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103, 106, 108, 109, 111,
113, 115, 116, 117, 118, 119, 121, 122, 125, 126, 127

bis |14, 15, 18, 19, 21, 22, 25, 26, 29, 35, 36, 37, 38, 45, 49, 52, 54, 55, 58, 59, 60, 66, 69, 71, 74, 75, 78, 81, 82, 19
84, 85, 86, 95, 97, 99, 100, 101, 102, 105, 108, 109, 113, 115, 116, 119, 121, 123, 124, 126
bir |16, 17, 18, 19, 22, 24, 25, 28, 36, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 52, 54, 55, 57, 60, 61, 62, 66, 67, 69, 60

71, 73, 74, 76, 80, 82, 84, 88, 89, 90, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 108, 109, 112, 113, 114,
117, 119, 124, 125, 126, 127

bis |20, 21, 22, 26, 29, 31, 33, 35, 38, 39, 40, 41, 42, 45, 47, 49, 50, 51, 52, 55, 56, 61, 67, 68, 70, 71, 72, 75, 79, 51
84, 86, 87, 88, 91, 94, 95, 97, 98, 101, 102, 105, 106, 108, 110, 113, 116, 117, 118, 119, 121, 124

bo |23, 24, 25, 26, 30, 31, 34, 35, 37, 38, 40, 42, 43, 45, 46, 49, 50, 51, 52, 56, 58, 60, 63, 70, 76, 78, 83, 84, 85, 51
89, 91, 92, 93, 94, 97, 98, 100, 103, 105, 106, 111, 113, 115, 118, 120, 121, 122, 123, 124, 125, 126

bao |27, 28, 29, 30, 31, 36, 37, 38, 41, 42, 44, 45, 47, 50, 52, 53, 55, 58, 59, 69, 70, 72, 74, 76, 77, 85, 87, 89, 90, 44
95, 98, 99, 104, 105, 108, 109, 110, 111, 115, 116, 117, 118, 120, 125

b1 |32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 48, 49, 50, 53, 56, 59, 61, 63, 65, 67, 69, 72, 73, 76, 77, 78, 79, 80, 81, 56
82, 83, 84, 85, 88, 89, 91, 93, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 110, 113, 114, 119, 120
122, 124

baz |39, 40, 41, 42, 43, 44, 45, 51, 52, 53, 57, 58, 59, 62, 63, 66, 67, 70, 73, 75, 76, 78, 80, 82, 84, 87, 89, 90, 93, a7
94, 98, 99, 100, 101, 102, 103, 104, 105, 109, 110, 112, 113, 115, 117, 119, 122, 123

bas |46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 68, 69, 70, 74, 75, 76, 79, 80, 83, 84, 86, 87, 90, 92, 93, 95, 97, 41
98, 100, 102, 104, 107, 109, 112, 115, 116, 119, 120, 121

bas |54, 55, 56, 57, B8, 59, 60, 61, 62, 63, 71, 72, 73, 74, 75, 76, 81, 82, 83, 84, 88, 89, 90, 94, 95, 99, 100, 103, 40
104, 106, 107, 110, 113, 116, 118, 119, 121, 123, 125, 127

bas |64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89, 90, 96, 97, 98, 99, 100, 105, 106, 107, 37
111, 112, 113, 117, 118, 119, 122, 123, 126, 127

bas |77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107, 114, 115, 116, 117, 31
118, 119, 124, 125, 126, 127

bar |91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 120, 121, 122, 123, 124, 125, 126, 25
127

bos | 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127 20

baoo | 128 1

TABLE V: The leftmost column stores bit positions, indicated by b;. The second column stores integers such that
the binary decomposition of their fourth power has 1 in the bt" bit position. The third column stores the number of
integers whose fourth power has 1 in the bfh bit position. We have listed integers until 128.
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b1 16]32]64|128|256|512|1024 |2048
bo 0j0j0|O|O0]|O 0 0

bs 8 116(32| 64 |128(256| 512 [1024
ba 8 116(32| 64 |128|256| 512 (1024
bs 12]24]48| 96 |192|384| 768 |1536
be 12(24 48| 96 |192|384| 768 | 1536
b~ 1428156 |112|224|448| 896 [1792
bs 11]28]56|112|224|448| 896 (1792
bo 11]27]60|120|240(480| 960 [1920
bio 9 124(55|120|240(480| 960 [1920
b1 22153|121|248(496| 992 |1984
b1z 18]47(108(233|496| 992 {1984

441106|236|493|1008|2016

big 37|97 [221]478| 995 |2016
bis 88 [212]469| 983 {2017
bie 74 1195|446 | 957 |1990
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01]0
b~ 00| 1 |175{422| 932 |1952
bis 00| 0 |149|389| 891 {1915
big 0|0 0| 1 |350| 847 |1864
b2o 0|0 0] 0 [299]| 779 |1786
bo1 0|00 1] 0] 1699|1692
boo 0]0[ 0] 0] 0 |599|1560
bas 0|0 0|01 O 1 1397
b24 0j0j 0|01 O 0 [1199
bas 000|010 0 1

TABLE VI: Number of integers less than 2%, z = 2,3, ...,12, such that the binary decomposition of their square has
1 at a certain bit position. That is, the cell at the intersection of row labeled by bit b; and column labeled by integer
27 stores the number of integers n < 2% such that the binary decomposition of n? has 1 at bit position b;.
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[24] Mason Rhodes, Michael Kreshchuk, and Shivesh Pathak. Exponential improvements in the simulation of lattice gauge
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[25] Siddharth Hariprakash, Neel S. Modi, Michael Kreshchuk, Christopher F. Kane, and Christian W Bauer. Strategies for
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Science and Technology, 7(1):015003, 2021.
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by | 2|4 |8]16(32|64|128|256|512|1024|2048
b2 [{0|0[(0]0|0O|0O| 0] 0] O 0 0

bs|[0|0(0|0|0O|0O| O] 0] O 0 0

bs|0|{0]0|0|0O]O]O|O0]|O 0 0

bs | 2|4 |8]16(32|64|128|256|512|1024|2048
be | 0|2 |4]8]|16|32| 64 |128|256| 512 |1024
b7 | 1|3 |4]8]|16(32| 64 |128|256| 512 |1024
bs |0|0]|3|8|16]32| 64 |128(256| 512 [1024
bo | 1|3 |9]19]32|64|128|256|512|1024|2048
bio| O | 1|4 |11|23]48] 96 |192|384| 768 |1536
bi1| 0| 1|5 [12|25[53] 96 [192]|384| 768 |1536
bi2| 0| 1|4 (10|22(44| 91 |192|384| 768 |1536
biz| 0| 1|5 [16|35|63]135|263|512|1024|2048
b14| 0|0 |3]9|24]49]102|213|439| 896 |1792
bis| 0| 0|3 |13|28]67]122|226|451| 905 |1792
bis| 0| 0] 2|9|21(49|102]217|447| 886 |1763
bi7| 0|0 | 1]8|26/60]116|261|507|1029|2073
big| 0| 0| 0|6 |22]51]106(216|458| 935 |1915
bi1g| 0| 0| 0| 6 |22]51]123|248|487| 987 |1970
b2o| 0| 0|0 |5|19(44|105]222|465| 935 |1876
b21|0|0]0|1|18]56]118|235|503|1023|2080
b22| 0| 0] 0|0 |15[47]108|226|458| 961 |1941
b23| 0| 0| 0|0 |12]41]103|241|494| 995 |2026
b24| 0| 0|0 |0|10({40| 96 |225|465| 958 {1928
b2s|0|0]0|0|1|37[104|231|478|1019|2038
b2g| 0| 0|0 | 0|0 |31]93|208|447| 927 |1936
b27| 0|0 0|0|0|25]89 |211|475| 990 |2020
bag| 0| 0|0 |0]|0|20|83 (202|448 963 |1965
b2g| 0|00 |0|0|1]73|194|448| 943 |1993
b3o| 0|0 [0|0|0|0|63|190|440| 942 |1926
b31|0|0[0|0|0|0]51|178|435| 952 |2008
bz2(0|0|0|0|0]|0|40 162|411 918 |1911
bzz|0|0[0|0|0|0]| 1 |146|393| 904 |1922
b34|[0|0][0|0|0|0]| 0 |125|377| 878 |1870
bss|0|0[0|0|0]0]| 0 [103|352| 856 |1854
b3s| 00|00 |0|0| O |81|323| 828 |1875
bzz|0|0[0|0|0|0] 0 | 1 |291| 793 |1821
b3g|0|0[0|0|0|0| 0| 0 |251]| 756 |1755
b3g|0|0[0|0|0|0| O | O |208| 707 |1737
bao|0|0|0|0|0|O0| O | O |162| 645 |1665
bs1{0|0]0|0O|0O|0] 0| 0| 1]|579]|1592
bsz{0|0[0|0|0O|0] O | 0| O |503]|1515
bsz|0|0[0[0|0O|0] O | 0| O |416|1412
bssa|0O|0[0O|0O|0O[0] O | 0| O |325]|1294
bss|0|0]0|0|0O|0] 0| 0] O 1 |1159
bsg| 0|0 ]0|0|0O|0] 0| 0] O 0 [1004
bsz|0O|0]0|0O|O0O[O0] O | O] O 0 | 832
bsg|0|0[0|0O|0O[O0O] O | 0] O 0 | 651
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