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Recent work [1] found that an analysis formalism based on the Lanczos algorithm allows energy
levels to be extracted from Euclidean correlation functions with faster convergence than existing
methods, two-sided error bounds, and no apparent signal-to-noise problems. We extend this formal-
ism to the determination of matrix elements from three-point correlation functions. We demonstrate
similar advantages over previously available methods in both signal-to-noise and control of excited-
state contamination through example applications to noiseless mock-data as well as calculations of
(bare) forward matrix elements of the strange scalar current between both ground and excited states
with the quantum numbers of the nucleon.

I. INTRODUCTION

By stochastically evaluating discretized path inte-
grals, numerical lattice QCD calculations provide a first-
principles approach to studying the dynamics of the
strong force [2–5], including hadron spectroscopy and
scattering amplitudes [6–8] and various aspects of hadron
structure [9–12]. Due to the stochastic nature of these
calculations, statistical analysis of noisy Monte Carlo
“data” is necessary. Although there are well-established
analysis methods, developing improved techniques is still
an active topic of research [13–19]. Better analysis
tools can improve both statistical precision by alleviat-
ing signal-to-noise issues, as well as accuracy by providing
more robust control of systematic uncertainties.

Lattice QCD calculations often involve the extraction
of hadronic matrix elements from simultaneous analy-
sis of hadronic two- and three-point correlation func-
tions (correlators). This analysis task underlies the cal-
culation of many different quantities of physical inter-
est including form factors, parton distribution functions
(PDFs), and generalizations thereof like generalized par-
ton distributions (GPDs) and transverse-momentum dis-
tribution PDFs (TMDs) [9–12]. However, presently
standard methods may produce unreliable results [20–
22] due to a combination of excited-state contamination
(ESC) [23–27] and exponentially decaying signal-to-noise
ratios (SNR) [28, 29]. Analysis techniques which address
these issues are a topic of active research [20–22], but ob-
taining full control over all sources of uncertainty remains
challenging for many quantities of physical interest.

Spectroscopy—the extraction of finite-volume energy
levels from analysis of hadronic two-point correlation
functions—is hindered by the same issues as matrix-
element extractions, i.e. ESC and decaying SNR, and
methods to improve these issues can be useful in both
contexts. There has been extensive work to develop
improved spectroscopy methods less susceptible to ESC
and which offer bounds on systematic uncertainties—
notably approaches based on generalized eigenvalue prob-
lems (GEVP) that provide one-sided variational bounds
on energy level systematic uncertainties [30–34], which
have already been adapted to matrix-element calcula-

tions [27, 33, 35–45]. Recent work has shown that a novel
formalism based on the Lanczos algorithm [46] can pro-
vide qualitative and quantitative improvements for spec-
troscopy including two-sided bounds on systematic er-
rors, as well as a potential resolution to SNR problems [1].

In this work, we present a new approach to matrix
element analyses using a simple extension of this Lanc-
zos formalism. The new method allows direct, explicit
computation of matrix elements between any eigenstates
resolved by the Lanczos algorithm, with only a few analy-
sis hyperparameters associated with eigenstate identifica-
tion. As explored below, this provides several important
advantages over the previous state of the art, namely sim-
plicity, direct and explicit computation of excited-state
and transition matrix elements, and avoidance of induc-
tive biases unavoidably introduced by implicit methods
involving statistical modeling and fits of correlation func-
tions. Furthermore, we find that the new method is
dramatically less susceptible to yielding deceptive results
when applied to three-point correlators with large ESC.
The data required is the same as for presently standard
analyses, with the important caveat that the three-point
correlator must be evaluated for all Euclidean sink and
operator times (up to some cut).

The remainder of this paper proceeds as follows. Sec. II
defines the analysis task, and reviews both the transfer
matrix formalism necessary to understand the Lanczos
approach as well as previously available methods used
for comparison. Sec. III derives the method. Sec. IV
applies the method to a noiseless mock-data example and
compares with previous approaches, demonstrating its
improved convergence properties. Sec. V discusses how
the method must be adapted in the presence of statistical
noise and presents a calculation of matrix elements of
the strange scalar current for the low-lying states in the
nucleon spectrum using lattice data. Sec. VI subjects
both the summation method and Lanczos to adversarial
attacks, the results of which experiments suggest that
Lanczos estimates are qualitatively more robust against
excited-state contamination. Finally, Sec. VII concludes
and discusses opportunities for future work.

We use lattice units to simplify the notation, setting
the lattice spacing a = 1 throughout. In these units,
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physical quantities like energies and matrix elements are
dimensionless, and Euclidean times t take on integer val-
ues such that they may be used interchangeably as argu-
ments and indices.

II. BACKGROUND

We are interested in computing hadronic matrix ele-
ments of some operator J , i.e.,

Jfi = ⟨f ′|J |i⟩ (1)

where |i⟩ and |f ′⟩ are energy eigenstates with the quan-
tum numbers of the initial (unprimed) and final (primed)
state, which may in general be different. For example,
their momenta will differ for off-forward matrix elements,
i.e. when J carries some nonzero momentum. Hadronic
matrix elements are not directly calculable using numer-
ical lattice methods, and instead are typically extracted
from simultaneous analysis of two- and three-point cor-
relators.1 The ones relevant to the calculation are, in
Heisenberg picture,2

C(t) = ⟨ψ(t)ψ(0)⟩ ,
C ′(t) = ⟨ψ′(t)ψ′(0)⟩ ,

C3pt(σ, τ) = ⟨ψ′(τ + σ) J(τ)ψ(0)⟩
(2)

where ψ and ψ′ are interpolating operators (interpola-
tors) with initial- and final-state quantum numbers. Note
that the arguments of C3pt are more often defined with
a different convention, with the sink time tf = σ + τ as
the first argument. These expectations may be evaluated
stochastically by lattice Monte Carlo methods.

A. Transfer matrices & spectral expansions

To see how these data constrain the matrix element of
interest, we use the Schrodinger-picture transfer-matrix
formalism [51] to derive their spectral expansions. This
exercise also serves to establish notation and as a review
of this formalism, used throughout this work.

We begin with the assumption3 that Euclidean time
evolution can be described by iterative application of the
transfer matrix T = e−H , such that

T |n⟩ = λn |n⟩ ≡ e−En |n⟩ (3)

1 The Feynman-Hellmann theorem and generalizations thereof
provides a distinct approach; see [47–50] for examples.

2 Suppressed lattice spatial indices on each operator are assumed
to be absorbed into these quantum numbers, e.g. by projection
to a definite momentum.

3 This holds only approximately for many lattice actions in stan-
dard use [52, 53].

where |n⟩ are unit-normalized energy eigenstates such
that ⟨n|m⟩ = δnm, λn are transfer-matrix eigenvalues,
and En = − log λn are the energies. Note that states |·⟩
and operators including J and T are not directly acces-
sible, but rather formal objects that live in the infinite-
dimensional Hilbert space of states. Applied to the vac-
uum state |Ω⟩, the adjoint interpolating operator ψ ex-
cites the state |ψ⟩, which may be decomposed as

ψ |Ω⟩ ≡ |ψ⟩ =
∑
n

⟨n|ψ⟩ |n⟩ ≡
∑
n

Zn |n⟩ (4)

where Zn = ⟨n|ψ⟩ are the overlap factors. The sum may
be assumed to be restricted to eigenstates with the quan-
tum numbers of ψ, as Zn = 0 otherwise. The transfer
matrix acts nontrivially on |ψ⟩, as

T t |ψ⟩ =
∑
n

Zne
−Ent |n⟩ . (5)

Under such Euclidean time evolution, the amplitudes of
higher-energy eigenstates decay more quickly. Taking
t → ∞, the ground eigenstate |0⟩ dominates. Impor-
tantly, this amounts to application of the power-iteration
algorithm [54], as discussed further below.
For the initial-state correlator C(t) from Eq. (2), trans-

lating to Schrodinger picture using O(t) = T−tOT t gives

C(t) = ⟨Ω|T−tψT tT 0ψT 0|Ω⟩
= ⟨ψ|T t|ψ⟩

=
∑
i

|Zi|2e−Eit
(6)

using ⟨Ω|T = ⟨Ω| in the second equality. An analogous
expression holds for the final-state correlator,

C ′(t) =
∑
f

|Z ′
f |2e−E′

f t (7)

where Z ′
f = ⟨f ′|ψ′⟩. Similar manipulations produce the

spectral expansion of the three-point correlator,

C3pt(σ, τ) = ⟨ψ′|T σJT τ |ψ⟩

=
∑
fi

Z ′∗
f ZiJfi e

−E′
fσ−Eiτ . (8)

Note that these definitions assume zero temperature.4

Comparing Eqs. (6) to (8), we see that C and C ′ carry
the necessary information to isolate Jfi in C

3pt.
A standard approach to extracting Jfi is to use statis-

tical inference, i.e. simultaneously fitting the parameters

4 Thermal effects are handled automatically in applications of
Lanczos to two-point correlators as discussed in Sec. A of
Ref. [1]’s Supplementary Material. The resulting isolation of
thermal states automatically removes their effects from all ma-
trix element results.
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Zi, Z
′
f , Ei, E

′
f , and Jfi of a truncated spectral expan-

sion to Eq. (6), (7), and (8). The resulting estimates
converge to the underlying values given sufficiently high
statistics, large Euclidean times, and states included in
the models. This has been used to much success, but has
certain serious disadvantages. Specifically, the black-box
nature of statistical inference and large number of hyper-
parameters to vary (e.g. number of states modeled, data
subset included, choice of selection/averaging scheme) in-
duce systematic uncertainties which can only be assessed
with caution, experience, and the application of signifi-
cant computation.

B. Power iteration & other explicit methods

In this work, we restrict our consideration to explicit
methods which do not involve statistical modeling. Fa-
miliar examples include effective masses5 and ratios of
correlation functions. Here, we present these as examples
of the power iteration algorithm, thereby motivating the
use of Lanczos in Sec. III. We also review the summa-
tion method [55–57], for later comparison with Lanczos
results.

As already noted, using Euclidean time evolution to
remove excited states may be thought of as applying
the power iteration algorithm [54] to extract the ground
eigenstate of the transfer matrix [1]. With power it-
eration, increasingly high-quality approximations of the
ground eigenstate, |b(m)⟩ ≈ |0⟩, are obtained using the
recursion

|b(m)⟩ = T |b(m−1)⟩
||T |b(m−1)⟩ ||

=
T |b(m−1)⟩√

⟨b(m−1)|T 2|b(m−1)⟩
(9)

starting from

|b(0)⟩ ≡ |ψ⟩
|ψ|

≡ |ψ⟩√
⟨ψ|ψ⟩

=
|ψ⟩√
C(0)

. (10)

The resulting approximate eigenstates |b(m)⟩ can be used
to compute ground-state matrix elements of different op-
erators. For example, using them to extract the ground-
state eigenvalue of T yields the usual effective energy

Eeff.(2m) = − log ⟨b(m)|T |b(m)⟩

= − log
⟨ψ|T 2m+1|ψ⟩
⟨ψ|T 2m|ψ⟩

= − log
C(2m+ 1)

C(2m)

(11)

where the second equality fully evaluates the recursion
Eq. (9). Note that while this power-iteration version of

5 And generalizations thereof including GEVPs [30–34] and
Prony’s method [13, 14, 18].

Eeff. is defined for only even arguments 2m, we generalize
and evaluate it for all t = 2m as usual.

More relevantly to this work, power-iteration states
may also be used to compute ground-state matrix ele-
ments of some operator J as

⟨b′(m)|J |b(m)⟩ = ⟨ψ′|TmJTm|ψ⟩√
⟨ψ′|T 2m|ψ′⟩ ⟨ψ|T 2m|ψ⟩

=
C3pt(m,m)√
C ′(2m)C(2m)

(12)

where |b′(m)⟩ are from |ψ′⟩. We thus arrive at the usual
approach of constructing ratios of three-point and two-
point functions to isolate the desired matrix element. It is
straightforward to insert the spectral expansions Eqs. (6)

to (8) and verify that ⟨b′(m)|J |b(m)⟩ = J00 up to excited-
state effects. Thus, in analogy to the effective energy

Eq. (11), ⟨b′(m)|J |b(m)⟩may be thought of as an “effective
matrix element” expected to plateau at J00 as m → ∞.
The new method presented in Sec. III simply applies this
same idea with the improved approximations of the eigen-
states afforded by the Lanczos algorithm, with the key
difference that approximate eigenstates are available for
excited states as well.

The ratio Eq. (12) derived by power iteration is not the
one in standard use. For easier comparison with other
works, we instead employ the standard ratio

R(σ, τ) =
C3pt(σ, τ)

C ′(σ + τ)

√
C(σ)

C ′(σ)

C ′(σ + τ)

C(σ + τ)

C ′(τ)

C(τ)

= J00 + (excited states) .

(13)

When ψ = ψ′, this reduces to ⟨b(σ)|J |b(τ)⟩; additionally
taking τ = σ = m reproduces Eq. (12) exactly. However,
when ψ ̸= ψ′ the two expressions are inequivalent. We
use this standard ratio to define a power-iteration-like
effective matrix element for sink time t as

JPI(t) =

{
R( t2 ,

t
2 ), t even

1
2

[
R( t+1

2 , t−1
2 ) +R( t−1

2 , t+1
2 )

]
, t odd

(14)
similar to Eq. (12) for even t and averaging the two equiv-
alently contaminated points for odd t. This quantity is
what is referred to as “Power iteration” in all plots below.

Further manipulation leads to the summation
method [55–57], presently in common use, which provides



4

an effective matrix element6 for sink time tf as

Σ∆τ
(tf ) =

tf−∆τ∑
τ=∆τ

R(tf − τ, τ),

Jeff.
00,∆τ

(tf ) = Σ∆τ
(tf + 1)− Σ∆τ

(tf )

= J00 + (excited states)

(15)

for each choice of summation cut ∆τ . J
eff. is expected

to plateau to J00 as tf increases and excited states decay
away. Increasing ∆τ further removes contamination, and
curve collapse is expected as ∆τ increases.

III. LANCZOS METHOD

The previous section discussed how standard lattice
analysis methods may be thought of as implementing the
power iteration algorithm to resolve the ground eigen-
state of the transfer matrix T . The Lanczos algorithm
improves upon power iteration [58–64] by making use of
the full set of Krylov vectors ∝ T t |ψ⟩ obtained by itera-
tive application of T , rather than discarding all but the
last. As explored in Ref. [1], Lanczos defines a procedure
to manipulate two-point correlators to extract eigenval-
ues of T . Here, we extend that formalism to evaluate ma-
trix elements in the basis of transfer-matrix eigenstates.

Specifically, the method proposed here is to evaluate

J
(m)
fi = ⟨y′f

(m)|J |y(m)
i ⟩ (16)

where |y′f
(m)⟩ ≈ |f ′⟩ and |y(m)

i ⟩ ≈ |i⟩ are the initial-
and final-state Ritz vectors after m Lanczos iterations,
the Lanczos algorithm’s best approximation of the cor-
responding eigenstates. The steps to do so, as worked
through in the subsections below, are as follows:

1. Apply an oblique Lanczos recursion to compute the
transfer matrix in bases of Lanczos vectors with ap-
propriate quantum numbers. Diagonalize to obtain
Ritz values and the change of basis between Ritz
and Lanczos vectors. (Sec. III A)

2. Compute the coefficients relating Lanczos and
Krylov vectors. (Sec. III B)

3. Compute the coefficients relating Ritz and Krylov
vectors. (Sec. III B)

4. Compute overlap factors to normalize the Ritz vec-
tors and to bound contributions from unresolved
states. (Sec. IIID)

5. Repeat the above steps on initial- and final-state
two-point functions to obtain Ritz vectors with
initial- and final-state quantum numbers.

6 This differs superficially from the typical presentation of the sum-
mation method, which prescribes fitting Σ(tf ) to extract the part
linear in tf . Linear fits to Σ(tf ) are identical to constant fits to

Jeff.(tf ) if their covariance matrices are computed consistently.

6. Project the three-point function onto the Ritz vec-
tors to obtain matrix elements. (Sec. III E)

7. Identify and discard spurious states. (Sec. V)

Statistical noise introduces additional complications—
especially, the final step above—as discussed in Sec. V.
We note immediately that the oblique formalism used

here formally constructs an approximation of the transfer
matrix of the form

T ≈
∑
k

|k̃R⟩ λ̃k ⟨k̃L| (17)

with generally complex eigenvalues and distinct left and
right eigenvectors. Meanwhile, the true underlying trans-
fer matrix is Hermitian, i.e.,

T =
∑
k

|k⟩λk ⟨k| (18)

with real eigenvalues λk and degenerate left and right
eigenvectors. Critically, physically sensible results must
respect this underlying Hermiticity. As discussed in
Sec. IV, when the Hermiticity of the underlying transfer
matrix is manifest in the data, the Lanczos approxima-
tion of T is Hermitian as well. However, statistical fluctu-
ations obscure this underlying Hermiticity in noisy data.
As explored in Sec. V, this results in a Hermitian sub-
space and a set of unphysical noise-artifact states which
must be discarded.

A. The oblique Lanczos algorithm

This section serves primarily as a review of Ref. [1], es-
pecially Sec. D of its Supplementary Material. However,
the notation and some of the definitions—notably, of the
Ritz vectors—have been altered here to better accommo-
date the matrix element problem.
Oblique Lanczos is a generalization of the standard

Lanczos algorithm which uses distinct bases of right and
left Lanczos vectors, |vRi ⟩ and ⟨vLi | [65–67]. This gener-
alization allows application to non-Hermitian operators
and, in the lattice context, off-diagonal correlators with
different initial and final interpolators. As discussed in
Ref. [1], oblique Lanczos is also formally necessary to
treat noisy correlator data even with diagonal correlators,
but naive complexification of standard Lanczos provides
an identical procedure when applied only to extracting
the spectrum. However, the matrix element problem re-
quires treatment with the full oblique formalism.
We caution that the left and right vectors treated by

oblique Lanczos should not be confused with initial and
final states. These are distinct labels, and left and right
spaces must be constructed for each of the initial and
final state eigensystems.
We first present oblique Lanczos in full generality, then

discuss the specific cases used in this work at the end of
the subsection. In this spirit, consider different right and
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left starting states, |ψ⟩ and ⟨χ|, and a non-Hermitian
transfer matrix T ̸= T †. The oblique Lanczos process
begins from the states

|vR1 ⟩ =
|ψ⟩√
⟨χ|ψ⟩

and ⟨vL1 | =
⟨χ|√
⟨χ|ψ⟩

(19)

defined such that ⟨vL1 |vR1 ⟩ = 1, and after m iterations
constructs the right and left bases of Lanczos vectors,
|vRj ⟩ and ⟨vLj | with j = 1, . . . ,m. The resulting right and
left bases are mutually orthonormal by construction, i.e.,

⟨vLi |vRj ⟩ = δij , (20)

but ⟨vRi |vRj ⟩ ̸= ⟨vLi |vLj ⟩ ̸= δij in general. In the process,
oblique Lanczos necessary also computes the elements αj ,
βj , and γj of the tridiagonal matrix

T
(m)
ij = ⟨vLi |T |vRj ⟩ =


α1 β2 0
γ2 α2 β3

γ3 α3
. . .

. . .
. . . βm

0 γm αm


ij

. (21)

Beginning with α1 = ⟨vL1 |T |vR1 ⟩ and defining β1 = γ1 =
0 for notational convenience, the iteration proceeds via
three steps:

Step 1

|rRi+1⟩ = (T − αi) |vRi ⟩ − βi |vRi−1⟩ ,
|rLi+1⟩ = (T † − α∗

i ) |vLi ⟩ − γ∗i |vLi−1⟩ ,

Step 2

βi+1γi+1 = ⟨rLi+1|rRi+1⟩ ,

Step 3

|vRi+1⟩ =
1

γi+1
|rRi+1⟩ ,

|vLi+1⟩ =
1

β∗
i+1

|rLi+1⟩ ,

αi+1 = ⟨vLi+1|T |vRi+1⟩ .

(22)

How precisely βj and γj are determined from the product
βjγj computed in step two is a matter of convention; any
choice satisfying

γj =
⟨rLj |rRj ⟩
βj

(23)

is correct. It will be helpful to consider the symmetric

convention βj ≡ γj ≡
√

⟨rLj |rRj ⟩ corresponding to naive

complexification of the standard Lanczos algorithm. We
have in some cases observed improved numerical behav-

ior with a different convention, βj =
∣∣∣√⟨rLj |rRj ⟩

∣∣∣ [1]. All

physical quantities computed with this formalism are in-
variant to the choice of oblique convention, although the
Lanczos vectors are not.
The Lanczos approximation of the transfer matrix is

T (m) ≡
m∑

i,j=1

|vRi ⟩ ⟨vLi |T |vRj ⟩ ⟨vLj | =
m∑

i,j=1

|vRi ⟩T
(m)
ij ⟨vLj | .

(24)
For any t ≤ 2m− 1 it exactly replicates the action of the
transfer matrix on the starting vectors (see App. B):

T t |vR1 ⟩ = [T (m)]t |vR1 ⟩ , ⟨vL1 |T t = ⟨vL1 | [T (m)]t . (25)

When applied to T of rank d, Lanczos recovers the orig-
inal operator exactly after d iterations: T (d) = T . This
motivates the identification of the physical eigenvalues
and eigenvectors of T with those of

T (m) =
m−1∑
k=0

|yR(m)
k ⟩λ(m)

k ⟨yL(m)
k | , (26)

where λ
(m)
k are the Ritz values and |yR(m)

k ⟩ and |yL(m)
k ⟩

are the right and left Ritz vectors, already mentioned
above.
We may relate the Ritz and Lanczos vectors by consid-

ering the eigendecomposition of the tridiagonal matrix

T
(m)
ij =

m−1∑
k=0

ω
(m)
ik λ

(m)
k (ω−1)

(m)
kj (27)

where ω
(m)
ik is the ith component of the kth right eigen-

vector of T
(m)
ij and (ω−1)

(m)
kj is the jth component of the

kth left eigenvector. Comparing Eqs. (27) and (26), we
obtain

|yR(m)
k ⟩ = N (m)

k

m∑
i=1

|vRi ⟩ω
(m)
ik ,

⟨yL(m)
k | = 1

N (m)
k

m∑
j=1

(ω−1)
(m)
kj ⟨vLj | .

(28)

where N (m)
k is an arbitrary constant included to set

the normalization. The Ritz values and right/left Ritz
vectors are the best Lanczos approximation to the true
eigenvalues and right/left eigenvectors, and recover them
exactly in the limit m = d. By construction,

⟨yL(m)
k |yR(m)

l ⟩ = δkl (29)

but ⟨yL(m)
k |yL(m)

l ⟩ ̸= ⟨yR(m)
k |yR(m)

l ⟩ ̸= δkl in general.
Eigenvectors are defined only up to an overall (com-

plex) constant, which must be set by convention. We use
unit-normalized right eigenvectors such that

∑
i |ωik|2 =

1 and set the phase by ω1k = |ω1k|. The left eigenvector
matrix ω−1 is fully defined by this convention via matrix
inversion of ω. The left eigenvectors are not, in general,
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unit-normalized if the right eigenvectors are. This same
observation applies for the Ritz vectors and in Sec. V is
used to identify and understand unphysical states which
arise due to violations of Hermiticity by statistical noise.

The Lanczos formalism allows computation of a rigor-
ous two-sided bound on the distance between a given Ritz

value λ
(m)
k and the nearest true eigenvalue λ [61, 68, 69].

Specifically, as derived for the oblique formalism in
Ref. [1]7, in the special case of Hermitian T = T †,

min
λ

∣∣∣λ(m)
k − λ

∣∣∣2 ≤ B
R/L(m)
k (30)

holds simultaneously for both

B
R(m)
k ≡ RR(m)

⟨yR(m)
k |yR(m)

k ⟩
, B

L(m)
k ≡ RL(m)

⟨yL(m)
k |yL(m)

k ⟩
,

(31)
defined in terms of the residuals8

R
R(m)
k = |γm+1|2|ω(m)

mk |
2|N (m)

k |2 ⟨vRm+1|vRm+1⟩ ,

R
L(m)
k = |βm+1|2|(ω−1)

(m)
km |2 1

|N (m)
k |2

⟨vLm+1|vLm+1⟩ .

(32)
Regrouping terms admits a convenient simplification,

B
R(m)
k = |γm+1|2|ω(m)

mk |
2V

R(m)
k ,

B
L(m)
k = |βm+1|2|(ω−1)

(m)
km |2V L(m)

k ,
(33)

where

V
R(m)
k ≡ ⟨vRm+1|vRm+1⟩

|N (m)
k |2

⟨yR(m)
k |yR(m)

k ⟩

=
⟨vRm+1|vRm+1⟩∑

ij ω
(m)∗
ik ⟨vRi |vRj ⟩ω

(m)
jk

,

V
L(m)
k ≡ ⟨vLm+1|vLm+1⟩

1/|N (m)
k |2

⟨yL(m)
k |yL(m)

k ⟩

=
⟨vLm+1|vLm+1⟩∑

ij(ω
−1)(m)ki ⟨vLi |vLj ⟩ (ω−1)

(m)∗
kj

.

(34)

The second equation in each of the above inserts the
Ritz vector definition Eq. (28). The cancellation of fac-

tors of N (m)
k reflect independence of Ritz vector nor-

malization convention. The ⟨vRi |vRj ⟩ and ⟨vLi |vLj ⟩ fac-
tors may be computed as discussed in Sec. III B, and

factors of ⟨yR/L(m)
k |yR/L(m)

k ⟩ and N (m)
k as in Sec. III C

and Sec. IIID. These bounds are directly computable

7 Note that versus Ref. [1], the definitions here have been adapted

to include factors of N (m)
k and accommodate complex γj and βj .

8 Recall that the first index of ω
(m)
ik and second index of (ω−1)

(m)
ki

correspond to Lanczos vectors and run from 1 to m.

whenever Lanczos is applied and can therefore be used
to monitor convergence in practice.
Ritz values and vectors converge to true eigenvalues

and eigenvectors with a rate governed by Kaniel-Paige-
Saad (KPS) convergence theory [68, 70, 71] even for
infinite-dimensional systems. In the infinite-statistics
limit, differences between Ritz values and transfer-matrix
eigenvalues satisfy the KPS bound9

0 ≤ λ(m)
n − λn ≤ (λn − λ∞)

[
K

(m)
n tanϕn

Tm−n−1(Γn)

]2

, (35)

where the Tk(x) are Chebyshev polynomials of the first
kind defined by Tk(cosx) = cos(kx),

Γn ≡ 1 +
2(λn − λn+1)

λn+1 − λ∞
= 2eEn+1−En − 1, (36)

and

K(m)
n ≡

n−1∏
l=1

λ
(m)
l − λ∞

λ
(m)
l − λl

, n > 0, (37)

with K
(m)
0 ≡ 1 and λ∞ = 0 for infinite-dimensional T .

For the ground state this simplifies to

λ
(m)
0 − λ0
λ0

≤
[
tan arccosZ0

Tm−1(2eδ − 1)

]2
. (38)

For large k, Tk(x) ≈ 1
2 (x +

√
x2 − 1)k, and this further

simplifies to

λ
(m)
0 − λ0
λ0

≲
4(1− Z2

0 )

Z2
0

×

{
e−2(m−1)δ δ ≫ 1

e−4(m−1)
√
δ δ ≪ 1

, (39)

where δ ≡ E1−E0. As discussed in Ref. [1], near the con-

tinuum limit where δ ≪
√
δ ≪ 1 the e−4m

√
δ ∼ e−2t

√
δ

convegence of Lanczos is exponentially faster than the
e−tδ convergence of the power-iteration method and stan-
dard effective mass.
An analogous KPS bound applies to the overlaps

Y
(m)
n ≡

〈
n|y(m)

n

〉
between Ritz vectors and transfer-

matrix eigenvectors. Defining the angle ϕ
(m)
n ≡

arccosY
(m)
n between these vectors, the KPS bound on

tanϕ
(m)
n = tan arccosY

(m)
n is given by [68, 70, 71]

tanϕ(m)
n ≤ K

(m)
n

Tm−n−1(Γn)
tan arccosZn. (40)

For the ground state this simplifies to

tan arccosY (m)
n ≤ 1

Tm−1(2eδ − 1)
tan arccosZ0, (41)

9 Note that Tm−n−1(Γn) appears here and below in place of
Tm−n(γ̂n) in Ref. [71]; the Chebyshev arguments are identical
while the order differs by 1 because the largest eigenvalue is la-
beled λ0 here as opposed to λ1 in Ref. [71].
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which can be expanded similarly as

tan arccosY (m)
n ≲

2
√

1− Z2
0

Z0
×

{
e−(m−1)δ δ ≫ 1

e−2(m−1)
√
δ δ ≪ 1

.

(42)

This demonstrates that |Y (m)
n |2 converges to 1, indicating

|y(m)
n ⟩ is identical to |n⟩, with the same exponential rate

that the Ritz values converge to transfer-matrix eigen-
values.

In lattice applications, we do not have direct access to
vectors and operators in the Hilbert space of states, only
correlator data of the form

F1(t) ≡ ⟨vL1 |T t|vR1 ⟩ =
⟨χ|T t|ψ⟩
⟨χ|ψ⟩

=
C(t)

C(0)
. (43)

where here C(t) is off-diagonal for the general case. How-

ever, as shown in Ref. [1], T
(m)
ij may be computed only in

terms of these quantities using recursion relations, which
iteratively construct generalized correlators evaluated be-
tween higher-order Lanczos vectors,

Fj(t) = ⟨vLj |T t|vRj ⟩ ,
Gj(t) = ⟨vLj |T t|vRj−1⟩ ,
Hj(t) = ⟨vLj−1|T t|vRj ⟩ .

(44)

These recursions may be derived by inserting Eq. (22)
into the above expression, which gives

Fj+1(t) = ⟨vLj+1|T t|vRj+1⟩ =
1

βj+1γj+1

[
⟨vLj |T t+2 − 2αjT

t+1 + α2
jT

t|vRj ⟩+ βjγj ⟨vLj−1|T t|vRj−1⟩

− γj ⟨vLj−1|T t+1 − αjT
t|vRj ⟩ − βj ⟨vLj |T t+1 − αjT

t|vRj−1⟩
]

=
1

βj+1γj+1

[
Fj(t+ 2)− 2αjFj(t+ 1) + α2

jFj(t) + βjγjFj−1(t)

− γjHj(t+ 1) + αjγjHj(t)− βjGj(t+ 1) + αjβjGj(t)

]
,

(45)

Gj+1(t) = ⟨vLj+1|T t |vRj ⟩ =
1

βj+1

[
⟨vLj |T t+1 − αjT

t|vRj ⟩ − γj ⟨vLj−1|T t|vRj ⟩
]
=

1

βj+1

[
Fj(t+ 1)− αjFj(t)− γjHj(t)

]
,

(46)

Hj+1(t) = ⟨vLj |T t |vRj+1⟩ =
1

γj+1

[
⟨vLj |T t+1 − αjT

t|vRj ⟩ − βj ⟨vLj |T t|vRj−1⟩
]
=

1

γj+1

[
Fj(t+ 1)− αjFj(t)− βjGj(t)

]
,

(47)
with G1(t) = H1(t) = 0 defined for notational convenience. Similarly, one may derive

βj+1γj+1 = ⟨rLj+1|rRj+1⟩ = ⟨vLj |T 2|vRj ⟩ − α2
j − βjγj = Fj(2)− α2

j − βjγj . (48)

Using these expressions, starting from the (normalized)
correlator data F1(t), each iteration proceeds by comput-
ing first γj+1 and βj+1, then Gj+1(t) and Hj+1(t), then
Fj+1(t), and finally

αj+1 = ⟨vLj+1|T |vRj+1⟩ = Fj+1(t) . (49)

Each step incorporates two more elements of the original
correlator, i.e., the αj , βj , and γj are functions of F1(t)
from t = 0, . . . , 2j − 1. Thus, the generalized correlators
grow shorter with each iteration: Fj(t), Gj(t), and Hj(t)
are defined for t = 0, . . . , Nt − 2(j − 1). The recursion
must terminate after all Nt elements of the original cor-
relator have been incorporated, producing αj , βj , and γj
for j = 1 . . . Nt/2 after m = Nt/2 steps.

The matrix element problem requires only a subcase
of this formalism. In particular, we use only diagonal

two-point correlators with χ = ψ and hereafter formally
assume

|vR1 ⟩ = |vL1 ⟩ =
|ψ⟩√
⟨ψ|ψ⟩

, (50)

such that

⟨vL1 |T t|vR1 ⟩ = ⟨vR1 |T t|vR1 ⟩ = ⟨vL1 |T t|vL1 ⟩ =
⟨ψ|T t|ψ⟩
⟨ψ|ψ⟩

.

(51)
As already discussed at the top of this section, the un-
derlying transfer matrix is Hermitian, i.e. T = T †. For
any symmetric convention |βj | ≡ |γj |, applying this to
the formalism gives |vRj ⟩ = |vLj ⟩ for all j, and the oblique
Lanczos process reduces to standard Lanczos (identically,
if βj ≡ γj). In this case, all left (L) and right (R)
quantities become identical and the distinction may be
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dropped.10 However, when statistical noise obscures the
Hermiticity of T , the distinction |vRj ⟩ ̸= |vLj ⟩ for j > 1
remains important as discussed in Sec. V.

B. Krylov polynomials

The right and left Lanczos vectors |vRj ⟩ and |vLj ⟩ are
related to the right and left Krylov vectors

|kRt ⟩ ≡ T t |vR1 ⟩ |kLt ⟩ ≡ (T †)t |vL1 ⟩ (52)

by the Krylov coefficients KR
jt and K

L
jt as

|vRj ⟩ =
j−1∑
t=0

KR
jt |kRt ⟩ |vLj ⟩ =

j−1∑
t=0

KL∗
jt |kLt ⟩ . (53)

Equivalently, these coefficients may be thought of as the
coefficients of polynomials in T . These polynomials are
Hilbert-space operators KR/L which excite the Lanczos
vectors from the starting vectors |vR1 ⟩ and |vL1 ⟩ as

|vRj ⟩ = KR
j |vR1 ⟩ =

j−1∑
t=0

KR
jtT

t |vR1 ⟩

|vLj ⟩ = KL†
j |vL1 ⟩ =

j−1∑
t=0

KL∗
jt (T

†)t |vL1 ⟩ .

(54)

It is convenient to consider these objects when relating
quantities defined in terms of Lanczos vectors to correla-
tion functions, including especially Ritz vectors.

The Krylov coefficients can be computed using a simple
recursion. Beginning with

KR
1t = KL

1t = [1, 0 · · · ]t

KR
2t =

[
−α1

γ2
,

1

γ2
, 0 · · ·

]
t

KL
2t =

[
−α1

β2
,

1

β2
, 0 · · ·

]
t

(55)

the coefficients are obtained for each subsequent j from

KR
j+1,t =

1

γj+1

[
KR

j,t−1 − αjK
R
jt − βjK

R
j−1,t

]
KL

j+1,t =
1

βj+1

[
KL

j,t−1 − αjK
L
jt − γjK

L
j−1,t

] (56)

using KR
j,−1 = KL

j,−1 = 0 for notational convenience.

Note that K
R/L
jt = 0 for all t > j − 1.

10 If |βj | ̸= |γj |, then |vRj ⟩ ̸= |vLj ⟩ even when T = T † and |vR1 ⟩ =

|vL1 ⟩. However, the L and R versions of any physical quantity will
still coincide, as they are necessarily convention-independent.

Once computed, KR
jt and KL

jt provide a convenient
means to compute the Lanczos-vector matrix elements
that appear in the eigenvalue bound Eq. (34):

⟨vRi |vRj ⟩ =
i−1∑
s=0

j−1∑
t=0

⟨vR1 |(T †)sKR∗
is K

R
jtT

t|vR1 ⟩

=
∑
st

KR∗
is K

R
jt

C(s+ t)√
C(0)

⟨vLi |vLj ⟩ =
i−1∑
s=0

j−1∑
t=0

⟨vL1 |T sKL
isK

L∗
jt (T

†)t|vL1 ⟩

=
∑
st

KL
isK

L∗
jt

C(s+ t)√
C(0)

(57)

restricting to Hermitian T = T † in the second line of each
equation.
With the symmetric convention βj ≡ γj the defini-

tions Eqs. (55) and (56) are identical and KR
jt = KL

jt

always.11 In this case, ⟨vRi |vRj ⟩ = ⟨vLi |vLj ⟩
∗
as computed

by Eq. (57), given real C(t). For other conventions, these
quantities may differ nontrivially.

C. Ritz rotators

The tridiagonal matrix eigenvectors ω(m) and

right/left Krylov coefficients K
R/L
jt may be combined to

compute the Ritz coefficients

P
R(m)
kt ≡ N (m)

k

m∑
i=1

ω
(m)
ik KR

it

P
L(m)
kt ≡ 1

N (m)
k

m∑
i=1

(ω−1)
(m)
ki KL

it

(58)

which directly relate the Ritz and Krylov vectors as

|yR(m)
k ⟩ =

∑
t

P
R(m)
kt |kRt ⟩

|yL(m)
k ⟩ =

∑
t

P
L(m)∗
kt |kLt ⟩ .

(59)

The Ritz coefficients are independent of oblique β, γ con-
vention. They may equivalently be thought of as the co-
efficients of a polynomial in the transfer matrix T . These
operators are the right/left Ritz rotators PR/L(m), which
excite the Ritz vectors from the starting ones as

|yR(m)
k ⟩ = P

R(m)
k |vR1 ⟩ ≡

∑
t

P
R(m)
kt T t |vR1 ⟩

|yL(m)
k ⟩ = P

L(m)†
k |vL1 ⟩ ≡

∑
t

P
L(m)∗
kt [T †]t |vL1 ⟩ .

(60)

11 The right and left Lanczos vectors |vRj ⟩ and |kLj ⟩ are then excited

by Kj =
∑

t KjtT
t and its conjugate K†

j , respectively.
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These objects allow straightforward relation of quanti-
ties defined in terms of Ritz vectors with expressions in
terms of correlation functions. Note that the Ritz rota-
tors P

R/L(m)
k are not proper projection operators. How-

ever, true Ritz projectors may be constructed using T (m)

in place of T with the same coefficients; see App. B.
The normalization and phase of the Ritz vectors—as

encoded by N (m)
k —is in principle a matter of convention,

but in this application unit normalization

⟨yR(m)
k |yR(m)

k ⟩ = 1 (61)

is required so that |yR(m)
k ⟩ = |yL(m)

k ⟩ may hold for physi-
cal states; this cannot occur if their normalizations differ.
Furthermore, as discussed further in Sec. III E, extrac-
tions of matrix elements from off-diagonal three-point
functions depend on this convention; a physical choice is

necessary. Determining N (m)
k is most straightforwardly

accomplished by computing the overlap factors, as shown
in the next section.

The Ritz coefficients P
R/L(m)
kt afford an alternative

means of computing the ⟨yR(m)
k |yR(m)

k ⟩ and ⟨yL(m)
k |yL(m)

k ⟩
factors in Eq. (34). Inserting Eq. (60) gives

⟨yR(m)
k |yR(m)

l ⟩ = |N (m)
k |2

∑
st

⟨vR1 |(T †)sP
R(m)∗
ks P

R(m)
lt T t|vR1 ⟩

= |N (m)
k |2

∑
st

P
R(m)∗
ks

C(s+ t)

C(0)
P

R(m)
lt

⟨yL(m)
k |yL(m)

l ⟩ = 1

|N (m)
k |2

∑
st

⟨vL1 |T sP
L(m)∗
ks P

L(m)
lt (T †)t|vL1 ⟩

=
1

|N (m)
k |2

∑
st

P
L(m)∗
ks

C(s+ t)

C(0)
P

L(m)
lt

(62)
invoking T = T † in the second equality of each. This
expression provides a useful consistency check. In the

noiseless case, when P
R/L(m)
kt are properly normalized,

Eq. (62) should yield ⟨yR(m)
k |yR(m)

l ⟩ = ⟨yL(m)
k |yL(m)

l ⟩ =
δkl. In the noisy case of Sec. V, similar holds for the
subset of physical states.

D. Overlap factors

The overlap factors may be obtained directly from the

eigenvectors ω
(m)
ik of the tridiagonal matrix as

[Z
R(m)
k ]∗ = ⟨ψ|yR(m)

k ⟩ = N (m)
k

m∑
i=1

|ψ| ⟨vL1 |vRi ⟩ω
(m)
ik

= N (m)
k |ψ|ω(m)

1k

Z
L(m)
k = ⟨yL(m)

k |ψ⟩ = 1

N (m)
k

m∑
j=1

(ω−1)
(m)
kj ⟨vLj |vR1 ⟩ |ψ|

=
|ψ|

N (m)
k

(ω−1)
(m)
k1

(63)

using the definition Eq. (28). The specific choices of L
versus R in these definitions are motivated further in
Sec. V, where in the noisy case they provide useful intu-
ition. However, the two definitions coincide for all physi-
cal states with degenerate left and right eigenvectors, and
other equally correct ones are possible.
The overlap factors provide a convenient means of de-

terminingN (m)
k to enforce unit normalization for the Ritz

vectors. Specifically, note that Z
L(m)
k = Z

R(m)
k only if

|yR(m)
k ⟩ = |yL(m)

k ⟩, which in turn requires compatible nor-
malizations. Demanding that this holds gives

|N (m)
k |2 =

(ω−1)
(m)∗
k1

ω
(m)
1k

. (64)

When T (m) is Hermitian as in the noiseless case,

(ω−1)
(m)
ki = ω

(m)∗
ik so that |N (m)

k |2 = 1 automatically.
However, in the noisy case explored in Sec. V, it must
be set manually; for unphysical noise-artifact states this

will not be possible, as (ω−1)
(m)∗
k1 /ω

(m)
1k will be complex

in general when |yR(m)
k ⟩✚∝ |yL(m)

k ⟩.
As mentioned previously, some convention is also re-

quired to set the phase of the Ritz vectors (and thus of

N (m)
k ). The standard convention for the phase of the true

eigenstates is typically set to give real overlap factors, so
we adopt this for the Ritz vectors as well. From Eq. (63)

we see that the convention ω
(m)
1k = |ω(m)

1k | is equivalent

to choosing Z
R(m)
k real if N (m)

k is. In the noiseless case

where ω(m) is unitary, this convention is inherited by

Z
L(m)
k . However, in the noisy case, unphysical states

with complex Z
L(m)
k arise as discussed in Sec. V.

Properly normalized Ritz coefficients allow a different
but equivalent computation,

Z
L(m)
k =

m−1∑
t=0

P
L(m)
kt ⟨vL1 |T t|vR1 ⟩ |ψ| =

∑
t

P
L(m)
kt

C(t)

|ψ|

[Z
R(m)
k ]∗ =

m−1∑
t=0

|ψ| ⟨vL1 |T t|vR1 ⟩P
R(m)
kt =

∑
t

P
R(m)
kt

C(t)

|ψ|
(65)

inserting the Ritz rotators Eq. (60) into the definitions
of Eq. (63). This allows derivation of several nontriv-
ial identities and can be useful for cross-checks. For
example, in the noiseless case, complex values indicate

ω
(m)
1k = |ω(m)

1k | has not been enforced correctly; in the
noisy case, this may signal to appearance of unphysical
states as discussed below in Sec. V.

E. Matrix elements

With the right/left Ritz coefficients P
R/L(m)
kt computed

and normalized, we can derive an expression to directly
compute matrix elements from three-point functions. Us-
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ing Eq. (60), the derivation proceeds as

J
(m)
fi = ⟨y′L(m)

f |J |yR(m)
i ⟩

=
m−1∑
σ,τ=0

P ′L(m)∗
fσ ⟨v′L1 |T σJT τ |vR1 ⟩P

R(m)
iτ

=
∑
στ

P ′L(m)∗
fσ

⟨ψ′|T σJT τ |ψ⟩
|ψ′||ψ|

P
R(m)
iτ

=
∑
στ

P ′L(m)∗
fσ

C3pt(σ, τ)√
C ′(0)C(0)

P
R(m)
iτ

(66)

where the primed P ′L(m)
fσ are computed from the final-

state two-point function C ′(t), and the unprimed P
R(m)
iτ

from the initial-state C(t). This expression is the main
result of this work. The generalization to matrix elements
of products of currents or other temporally nonlocal op-
erators follows immediately by replacing J in Eq. (66)
with the corresponding composite or nonlocal operator.

The extracted value is in general sensitive to the choice

of Ritz vector normalization as J
(m)
fi ∼ N (m)

i /N
′(m)
f .

∝ ? In the special case of diagonal three-point cor-
relators where ψ′ = ψ, these factors cancel and the
value is convention-independent. However, convention
dependence remains in the off-diagonal case, emphasizing
the importance of enforcing unit normalization as noted
above to obtain physically interpretable results.

It is natural to ask why Eq. (66) should be preferred

over ⟨y′R(m)
f |J |yR(m)

i ⟩ or ⟨y′L(m)
f |J |yR(m)

i ⟩. The defini-
tion employed is privileged in that, for the other two
options, the equivalents of the last equality in Eq. (66)
must invoke T = T †. However, the distinction is irrele-
vant in practice: for physical states the right and left Ritz
vectors are degenerate, in which case all three definitions
produce identical results.

The Lanczos matrix-element extraction has stricter
data requirements than standard analysis methods.

Specifically, evaluating J
(m)
fi requires C3pt(σ, τ) for all

0 ≤ σ ≤ m − 1 and 0 ≤ τ ≤ m − 1, which includes data
for all sink times 0 ≤ tf ≤ 2(m − 1) for m Lanczos it-
erations. This is no concern for quark-line disconnected
operators, where three-point data is naturally available
for all 0 ≤ τ < Nt and 0 ≤ tf < Nt, or wherever C(tf )
is available. However, this clashes with the typical strat-
egy used when computing connected contributions with
sequential source methods. The typical mode of invert-
ing through the sink requires a separate calculation for
each tf desired, each obtaining all τ at fixed tf . Thus,
to avoid computation, C3pt is often computed sparsely
in tf , typically avoiding small tf and skipping points in
the evaluated range. For standard analysis methods, this
strategy gives better confidence in control over excited-
state effects given a fixed budget. However, it is incom-
patible with a Lanczos analysis, which is thus unlikely to
be applicable to existing connected three-point datasets.
While inconvenient, these data requirements are not nec-
essarily a disadvantage. The small-tf points typically

discarded have good SNR, and Lanczos may usefully in-
corporate them without the same ESC concerns.
At most, the estimate Eq. (66) incorporates only 1/4 of

the computable lattice three-point function, correspond-
ing to slightly less than half of the useful data where
operator ordering ∼ ψ′Jψ is satisfied. The useful data
correspond to all tf , τ in 0 . . . Nt−1 satisfying tf ≥ τ , but
the sums in Eq. (66) over τ and σ = tf − τ run only to
Nt/2−1 at maximalm = Nt/2, excluding all σ, τ ≥ Nt/2.
While it would be desirable to incorporate all data avail-
able in the noisy case, the formalism does not allow it;
however, we note that all excluded points lie in the re-
gion tf ≥ Nt/2, where thermal effects are significant or
dominant. Remarkably, as seen in the Nt/2-dimensional
example of Sec. IV, the subset of three-point data in-
corporated is sufficient to solve for all matrix elements
exactly in a finite-dimensional setting.

IV. MANIFEST HERMITICITY & NOISELESS
EXAMPLE

For our problems of interest, the transfer matrix T is
Hermitian, with real eigenvalues and degenerate left and
right eigenvectors. As emphasized throughout Sec. III,
physical interpretability requires that this also holds for
the Lanczos approximation of the transfer matrix, at
least for states of physical interest. As explored in this
section, in the absence of statistical noise Lanczos pro-
duces a fully Hermitian eigensystem. We demonstrate
that not only do Lanczos matrix-element estimates con-
verge, they do so much more rapidly than estimates with
previously available approaches.
It is straightforward to see that Lanczos respects Her-

miticity when it is manifest in the correlator data. In
this case, T = T † may be applied in the formalism of
Sec. III without introducing any inconsistencies. Taking
the symmetric convention12 βj ≡ γj , oblique Lanczos re-
duces identically to standard Lanczos, which produces
degenerate right/left Lanczos vectors |vRj ⟩ = |vLj ⟩ = |vj⟩
by construction. It follows immediately that

T
(m)
ij =

∑
ij

|vi⟩ ⟨vi|T |vj⟩ ⟨vj | (67)

is Hermitian, thus the Ritz values λ
(m)
k are real and

the right/left Ritz vectors are degenerate |yR(m)
k ⟩ =

|yL(m)
k ⟩ ≡ |y(m)

k ⟩. All left and right quantities coincide,
and the L/R distinction may be dropped.
To verify these statements and demonstrate the Lanc-

zos method, we apply it to a finite-dimensional, exactly

12 As discussed in Sec. III, all physical quantities are independent
of the choice of oblique convention. The reductions discussed in
this paragraph apply for any symmetric convention |βj | ≡ |γj |,
which produce identical results with manifestly Hermitian data.
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FIG. 1. Noiseless mock-data example as defined in Eq. (69).
At top, the effective energies (Eq. (11)) for the initial- and
final-state two-point correlators, C(t) and C′(t). Severe
excited-state contamination is visible in the slow decay to-
wards the ground-state energies. At bottom, the standard
ratio (Eq. (13)) of three- and two-point functions to isolate
the ground-state matrix element, shown for 1 ≤ τ ≤ tf − 1
for each tf (different colors). Excited-state contamination
decreases in tf , as seen in the approach of the value towards
the true ground-state matrix element J00 (black line), and in-
creases in |τ − tf/2|, as seen in the curvature at fixed tf . The
curl upwards at right is an indication of severe excited-state
contamination.

Hermitian mock-data example. The simulated problem
is the most general one that can be treated with the
procedure defined in Sec. III: an off-diagonal three-point
function and corresponding pair of diagonal initial- and
final-state two-point functions. The two-point functions
are defined as

Ei = 0.1(i+ 1), E′
f =

[
E2

f + 0.12
]1/2

,

Zi =
1√
2Ei

, Z ′
f =

1√
2Ef

,

C(t) =

Nt/2−1∑
i=0

Z2
i e

−Eit, C ′(t) =

Nt/2−1∑
f=0

Z ′2
f e

−E′
f t,

(68)

while the three-point function is defined as

Jfi =

√
4E′

0E0

4E′
fEi

J̃fi,

J̃00 = J00 = 1,

J̃fi ∼ N (0, 1), (f + i) > 0,

C3pt(σ, τ) =

Nt/2−1∑
i,f=0

Z ′
fZiJfie

−E′
fσ−Eiτ ,

(69)

where M̃fi ∼ N (0, 1) indicates that those values have
been drawn from a unit-width normal distribution cen-
tered at zero.13 Initial- and final-state effective energies
and the standard ratio Eq. (13) are shown in Fig. 1.
The energies Ei and E′

f are chosen to resemble an off-
forward two-point function, with the final-state spectrum
a boosted version of the initial one. The overlap factors
are flat up to the single-particle relativistic normalization
of states, simulating the case of severe excited-state con-
tamination. The excited-state and transition matrix ele-
ments have mixed signs, with the only structure in their
magnitudes from the imposed single-particle relativistic
normalization. The value of the ground-state matrix el-
ement is fixed to 1; this is much larger than the typical
magnitude of Mfi with f + i > 0, so that C3pt is ground-
state dominated.
We proceed following the steps laid out at the top of

Sec. III separately to each of the initial- and final-state
correlators, C(t) and C ′(t). It is straightforward to nu-
merically verify the claims above. Note that all state-
ments made in this section should be taken to apply for
exact arithmetic.14 With any |βj | = |γj |, the tridiag-

onal matrices T
(m)
ij are real and symmetric, and thus

have real Ritz values λ
(m)
k and unitary eigenvector matri-

ces ω(m). The left/right Krylov coefficients are real and
identical, KL

jt = KR
jt, such that KR

j = KL†, implying

|vRj ⟩ = |vLj ⟩. Consistently, evaluating Eq. (57) confirms

⟨vRi |vRj ⟩ = ⟨vLi |vLj ⟩ = δij . The right and left Ritz coeffi-

cients PR/L(m) are also identical, such that the Ritz ro-

tators are Hermitian as necessary for |yR(m)
j ⟩ = |yL(m)

j ⟩.
Similar statements apply for primed final-state quanti-
ties. The L/R distinction is thus dropped in the discus-
sion of results that follows.
Fig. 2 shows the spectra of Ritz values extracted for

different numbers of Lanczos iterations m. One addi-
tional Ritz value is produced after each iteration, and
the spectra are recovered increasingly accurately as m in-
creases. This accuracy is reflected in the decreasing size

13 The precise values of Mfi used are provided in a supplemental
data file.

14 The Lanczos algorithm is notoriously susceptible to numerical
instabilities due to round-off error at finite precision. App. A
discusses where precisely high-precision arithmetic is required.
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FIG. 2. Independent Lanczos extractions of the initial-
(blue, at left) and final-state (orange, at right) spectra from
C(t) and C′(t), respectively, for the noiseless mock-data ex-
ample Eq. (69). Each point corresponds to a Ritz value
(i.e. an approximate transfer-matrix eigenvalue). The associ-
ated uncertainties are not statistical, and instead correspond
to the (asymmetric, after mapping to E) extent of the win-

dow of values of λ(m) allowed by the bound Eq. (30). Bolded
points correspond to the largest eigenvalues at each number
of Lanczos steps m, identified as the ground state. Points
are offset slightly in t so that their uncertainties may be dis-
tinguished. The solid gray lines correspond to the effective
ground-state energies Eq. (11), reproduced from Fig. 1. The
x-axis t = 2m − 1 corresponds to the maximum t included
in the analysis after m steps. Black horizontal lines cor-
respond to the true energies Ei and E′

f . At the final step
m = Nt/2 = 12, the Nt/2-state spectra are solved exactly.

of the eigenvalue bounds Eq. (30), represented by the er-
ror bars in Fig. 2; Eq. (34) simplifies when |vRj ⟩ = |vLj ⟩, so
these may be computed without further effort. Because
each spectrum has only Nt/2 states, Lanczos recovers all
energies exactly at the maximal m = Nt/2 iterations.
After obtaining the initial- and final-state Ritz coeffi-

cients P ′(m)
ft and P

(m)
it , the matrix elements may be com-

puted using Eq. (66), which reduces to

J
(m)
fi =

∑
στ

(P ′)
(m)∗
fσ

C3pt(σ, τ)

C(0)
P

(m)
iτ (70)

in the noiseless case. The resulting estimates of
the ground-state matrix element J00 are shown in

0.0
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FIG. 3. Ground-state matrix element M00 extracted us-
ing various methods (top) and their deviations from the true
value (bottom), for the noiseless mock-data example Eq. (69).
The curves for Power iteration and Summation are effective
matrix elements as defined in Eq. (14) and Eq. (15); no fits

are involved. The Lanczos estimate J
(m)
00 is computed as de-

fined in Eq. (66) using Ritz rotators constructed from the
initial- and final-state two-point correlators, C(t) and C′(t).
At the final step m = Nt/2 = 12, Lanczos recovers the true
ground state-matrix element exactly for this 12-state exam-

ple, i.e. J
(12)
00 = J00, hence the error for this point is not shown

in the log-scaled bottom panel.

Fig. 3, alongside effective matrix elements computed with
power iteration (Eq. (14)) and the summation method
(Eq. (15)). The Lanczos estimate converges rapidly
to the true value, reproducing it exactly at maximal
m = Nt/2 where Lanczos solves the system. The advan-
tages in comparison to the other methods are apparent,
neither of which converge near to the true value before
the full Euclidean time range available is exhausted. As
a more qualitative advantage, the Lanczos estimate does
not approach the true value smoothly, advertising that
results are unstable until convergence is achieved. The
benefit is made apparent by considering the summation
curve, which appears to be asymptoting—but to an in-
correct value. This disceptiblity is investigated more di-
rectly in Sec. VI.

At maximal m = Nt/2, applied to this Nt/2-
dimensional example, Lanczos extracts not only the true

J00 exactly but all (Nt/2)
2 matrix elements: J

(Nt/2)
fi =

Jfi. As illustrated in Fig. 4, the convergence is more
rapid for lower-lying states. Comparing with Fig. 2, this
may be associated to a combination of misidentification
of states with the true values and the faster convergence
of lower-lying eigenvalues, as expected given the relation-
ship between eigenvalue and eigenvector convergence dis-
cussed in Sec. IIIA.
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FIG. 4. For the noiseless example Eq. (69), absolute frac-

tional deviations of Lanczos matrix element estimates J
(m)
fi

from the true values Jfi for the two lowest-lying states (blue)
and increasingly high-energy diagonal states (red). Higher
states not included in this plot have more severe deviations.
At the final step m = Nt/2 = 12 (dashed vertical line), Lanc-
zos recovers the full set of matrix elements exactly for this

12-state example, i.e. J
(12)
fi = Jfi, which cannot be shown.

Finally, Fig. 5 shows the initial- and final-state overlap
factors computed using Eq. (63). As with the other quan-

tities estimated, the Z
(m)
k rapidly converge to their true

values, with lower-lying states converging more quickly,
and recovers the true Zk exactly at m = Nt/2 = 12.

V. NOISE & THE STRANGE SCALAR
CURRENT

The previous sections explore applications of the Lanc-
zos matrix-element procedure to noiseless examples.
However, as emphasized throughout the preceding dis-
cussion, important differences arise when introducing sta-
tistical noise. Without noise, the underlying Hermitic-
ity of the transfer matrix is manifest in the correlator
data. However, statistical noise obscures this underlying
Hermiticity, introducing unphysical states which must be
identified and removed. This section explores these issues
and techniques to treat them in an application to noisy
lattice data.

A. Problem statement & data

Specifically, we apply the Lanczos method to extract
forward matrix elements of the strange scalar current

J(τ) =
∑
y

s(y, τ) s(y, τ) (71)

0 8 16
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FIG. 5. Independent Lanczos extractions of the initial- (blue,

at left) and final-state (orange, at right) overlap factors Z
(m)
k

using ???? from C(t) and C′(t), respectively, for the noise-
less mock-data example Eq. (69). For this noiseless example,

Z
R(m)
k = Z

L(m)
k ≡ Z

(m)
k . Bolded points correspond to the

ground state, identified as the state with the largest eigen-
value. Black horizontal lines correspond to the true overlaps
Zi and Z′

f . The x-axis t = 2m − 1 corresponds to the max-
imum t included in the analysis after m steps. At the final
step m = Nt/2 = 12, Lanczos recovers the true overlap fac-

tors exactly for these 12-state examples, i.e. Z
(12)
k = Zk and

Z
′(12)
k = Z′

k.

in the nucleon and its first few excited states. We employ
a single ensemble of Ncfg = 1381 configurations gener-
ated by the JLab/LANL/MIT/WM groups [72], using
the tadpole-improved Lüscher-Weisz gauge action [73]
and Nf = 2 + 1 flavors of clover fermions [74] defined
with stout smeared [75] links on a 483×96 lattice volume.
Action parameters are tuned such that a ≈ 0.091 fm and
Mπ ≈ 170 MeV [76–78]. The data for the example are
a diagonal three-point function with zero external mo-
mentum (i.e. p = p′ = 0) and the single corresponding
nucleon two-point function projected to zero momentum,
all generated in the course of the studies published in
Refs. [79, 80]. Details are largely as in those references,
but reproduced here for completeness. Ref. [1] used data
generated independently on configurations from the same
ensemble.
Each nucleon two-point function measurement is com-

puted as

C(t;x0) =
∑
x

Tr [Γ ⟨χ(x, t+ t0)χ(x0)⟩] (72)

where x0 = (x0, t0) is the source position and with the
trace over implicit Dirac indices, including those of the
spin projector

Γ = P+(1 + γxγy) with P+ =
1

2
(1 + γt) . (73)

The interpolator employed is

χ(x) = ϵabc[uSb (x)
TCγ5d

S
c (x)]u

S
a (x) (74)
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where C is the charge conjugation matrix, and uS(x)
and dS(x) are up- and down-quark fields smeared us-
ing gauge-invariant Gaussian smearing to radius 4.5 with
the smearing kernel defined using spatially stout-smeared
link fields [75]. This is evaluated at 1024 different source
positions x0 on each configuration, arranged in two inter-
leaved 43×8 grids with an overall random offset. Averag-
ing over all source positions yields the per-configuration
measurements of C(t) used in this analysis. Fig. 6 shows
the effective mass computed from it.

Crucially, we invoke the underlying Hermiticity of T
to discard the measured imaginary part of the two-point
correlator C(t), which is real in expectation. While the
procedure is well-defined for complex correlators, the
clear separability of physical from noise-artifact states
discussed below appears to arise as a result of manually
enforcing Hermiticity at this level.

The three-point function is computed as

C3pt(σ, τ ;x0) =
∑
x

Tr [Γ ⟨χ(x, tf + t0)J(τ + t0)χ(x0)⟩]

(75)
where tf = σ+ τ . Integrating over quark fields results in
a quark-line disconnected diagram. The strange quark
loops are evaluated stochastically [81] using two shots
of Z4 noise per configuration, computing the spin-color
trace exactly and diluting in spacetime using hierarchi-
cal probing [82? ] with a basis of 512 Hadamard vectors.
These are convolved with the grids of two-point func-
tions to produce the three-point function. As with the
two-point correlator, we discard the measured imaginary
part. Fig. 6 shows the standard ratio computed from
these data.

Note that the methodology assumes unit-normalized
eigenvectors and the corresponding definitions

C(t) =
∑
k

|Zk|2e−Ekt

C3pt(σ, τ) =
∑
fi

Z ′∗
f ZiJfie

−E′
fσ−Eiτ .

(76)

This absorbs kinematic factors and relativistic normal-
izations into the definitions of Z and J . In general, the
matrix elements and overlaps extracted must be rescaled
by appropriate factors to isolate the quantities of inter-
est; this is no different than when using methods based
on correlator ratios. However, in this example, all such
normalization and kinematic factors cancel other than a
factor of

√
2 absorbed into the overlap factors (for single-

particle states). The matrix elements extracted here thus
correspond directly to the physically normalized ones, up
to adjustments required if any of the resolved states is
a multi-particle one. However, we emphasize that the
quantities extracted are bare. Accounting for renormal-
ization and operator mixing to obtain a physical quan-
tity would requires secondary calculations unrelated to
the subject of this work. In this case, treating mixing is
particularly important: the strange scalar current mixes
with the light one, whose matrix element is much larger.
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FIG. 6. Data for the nucleon strange scalar current exam-
ple. At top, the effective energies (Eq. (11)) for the zero-
momentum (p = 0) nucleon two-point correlator. The hor-
izontal line is the fitted value MN = 0.4169(18) taken from
the analysis of a superset of this data in Refs. [79, 80]; its
uncertainties are not visible on the scale of the plot. At bot-
tom, the standard ratio (Eq. (13)) constructed from the same
two-point function and the forward three-point function with
zero external momenta (i.e. p = p′ = q = 0) for the s̄s
operator insertion. Data are available up to tf = 96, but
signal-to-noise rapidly degrades for tf > 15. The blue band
is the fit to Lanczos estimates from Fig. 8, discussed below.
Uncertainties are propagated by bootstrapping and using the
outlier-robust estimators discussed in the text. Uncertainties
on Eeff.(t) are computed for λeff.

0 (t) = C(t + 1)/C(t) then
propagated linearly to avoid missingness induced by negative
logarithm arguments on noisier points.

B. Lanczos with noise

Applying Lanczos to noisy correlator data yields spuri-
ous noise-artifact states which must be discarded to ob-
tain physically meaningful results. Ref. [1] introduced
one strategy to identify them based on the Cullum-
Willoughby (CW) test [83, 84]; we employ it here as well.
In addition, consideration of the Lanczos approximation
of the transfer matrix eigensystem provides a different
and complementary view of this issue.

After m iterations, it can be shown from Eq. (25) that
Lanczos reproduces the incorporated correlator data (i.e.,
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for t ≤ 2m− 1) exactly:15

C(t) = ⟨ψ|[T (m)]t|ψ⟩

=
∑
k

⟨ψ|yR(m)
k ⟩ (λ(m)

k )t ⟨yR(m)
k |ψ⟩

=
∑
k

Z
R(m)∗
k Z

L(m)
k e−E

(m)
k t

(77)

where E
(m)
k = − log λ

(m)
k . For noisy C(t), this requires

contributions from states with complex eigenvalues that
oscillate in t, as well as generally complex overlap prod-

ucts Z
R(m)∗
k Z

L(m)
k , which may only occur with distinct

left and right Ritz vectors. Due to the enforced real-
ity of C(t), these states necessarily contribute in pairs
with complex-conjugate Ritz values and overlap prod-
ucts. However, we find that we are able to identify a
Hermitian subspace of states H with real Ritz values and
degenerate left and right Ritz vectors

|yR(m)
k ⟩ = |yL(m)

k ⟩ = |y(m)
k ⟩ ∀ k ∈ H (78)

such that, for that part of the approximation of T ,

T
(m)
H ≡

∑
k∈H

|y(m)
k ⟩λ(m)

k ⟨y(m)
k | (79)

is manifestly Hermitian. These states are physically in-
terpretable, while the others are clearly associated with
(or at least contaminated by) noise. This separation may
provide a mechanistic explanation for how Lanczos avoids
exponential SNR degradation, as discussed in the con-
clusion. Besides insight, this observation in practice also
provides a hyperparameter-free prescription for state fil-
tering as detailed below. While additional filtering with
the CW test remains necessary, the requirement for tun-
ing is reduced.

The remainder of this subsection presents this filtering
prescription as we proceed through the analysis, as well
as general observations. We employ bootstrap resam-
pling to study the effects of statistical fluctuations and
to estimate uncertainties in the next subsection. Each
bootstrap ensemble is constructed by randomly drawing
Ncfg = 1381 configurations with replacement from the
original ensemble. On the correlator for each bootstrap
ensemble, we independently apply the steps laid out in
Sec. III to compute all the various quantities therein. Un-
like in the noiseless example, high-precision arithmetic is
necessary in only a few places, none of which are compu-
tationally expensive; see App. A for details.
Running the oblique Lanczos recursion of Sec. IIIA

produces in Nt/2 = 48 iterations the elements αj , βj ,

γj of the tridiagonal matrices T (m). All αj and products
βjγj are real because C(t) is, but may be negative; which

15 We thank Anthony Grebe for this important insight.

βjγj < 0 varies per bootstrap. With the symmetric con-

vention βj ≡ γj ≡
√
βjγj , negative fluctuations produce

pure imaginary βj and γj .

Diagonalizing T (m) for each m yields Ritz values λ
(m)
k

and eigenvector matrices ω(m). The majority of Ritz val-
ues extracted are complex.16 The corresponding states
may be excluded from the Hermitian subset H immedi-
ately. The number of real and complex Ritz values at
fixed m varies per bootstrap draw; for all m ≥ 3 Lanczos
iterations, there are a minimum of 3 real Ritz values in
each.
Unit normalization cannot be simultaneously enforced

for states outside the Hermitian subspace while main-
taining our definitions, providing a useful means of iden-
tifying them. Defined as they appear in the eigendecom-
position, the conventions of the left eigenvectors are fully
determined by those of the right. Attempting to com-

pute |N (m)
k |2 using Eq. (64) for such states thus yields

complex-valued (ω−1)
(m)∗
k1 /ω

(m)
1k , with the apparent con-

tradiction because ⟨ψ|yR⟩ and ⟨ψ|yL⟩ cannot be made
equal if |yL⟩ ̸= |yR⟩. We thus identify the Hermitian

subspace H as those states k for which (ω−1)
(m)∗
k1 /ω

(m)
1k

is real and positive (and with real λ
(m)
k ). For states in

H, |N (m)
k |2 ̸= 1 after the first m where βjδj < 0.17

We diagnose the remaining spurious states using the
CW test [83, 84] as in Ref. [1]. To do so, we define T̃ (m)

as T (m) with the first row and first column removed and
diagonalize it to obtain the m− 1 CW values λ̃

(m)
l . Ritz

values of spurious states will have a matching CW value

λ̃
(m)
l ; non-spurious states will not. Thus, we keep all

states in H which satisfy

∆
CW(m)
k > ϵCW(m) (80)

where ϵCW(m) is some threshold value, and

∆
CW(m)
k = min

λ̃∈{λ̃(m)
l }R

|λ(m)
k − λ̃| (81)

restricting the minimum only the real CW values; when
there are none, we accept all states. As noted in Ref. [1],
results are sensitive to the cut ϵCW(m) and thus the proce-
dure to choose it introduces the primary source of hyper-
parameter dependence in these methods. In this work,
we use a simple heuristic choice versus the more extensive
analysis employed in Ref. [1], taking

ϵCW(m) =
maxk[∆

CW(m)
k ]−mink[∆

CW(m)
k ]

a|H ′|+ b
(82)

16 Diagnosed as Imλ/|λ| > 10−8 numerically. This convention is
used for all similar statements in this section.

17 This corresponds to the iteration where the standard Lanczos
process would terminate or refresh, and oblique Lanczos is re-
quired to proceed. Before this, oblique and standard Lanczos
coincide.
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where |H| is the number of states in H. We adopt the rel-
atively permissive a = 10 and b = 1 and rely on outlier-
robust estimators to compensate for mistuning, as dis-
cussed below. The surviving subset are identified as the
physical ones.

Without restricting to the Hermitian subspace, the
CW test alone admits 100% of complex-eigenvalue states.
After restricting to real-eigenvalue states, the normaliz-
ability condition and CW test are highly redundant. Of
the real eigenvalues, normalizability removes O(1%) of
states admitted by CW alone, while CW removes O(10%)
of states admitted by normalizability alone. Of the sur-

viving states, none have λ
(m)
k > 1 (corresponding to neg-

ative E
(m)
k , which may be a thermal state). Due to sta-

tistical fluctuations, O(2%) have λ
(m)
k < 0 (correspond-

ing to imaginary E
(m)
k ); notably, the CW test removes

O(75%) of such states admitted by normalizability. Note
that these statistics depend on the choice of CW cut.

C. Results

With state filtering complete, we may proceed to com-
puting observables and estimating their statistical uncer-
tainties. We note that for all states that survive filtering,
the left and right Ritz projector coefficients are equal up
to round-off error, as expected for states from the Hermi-
tian subspace. It follows that the L and R definitions of
all observables will coincide for these states, so we may
drop the distinction for the results in this section.

Different numbers of states survive filtering in each dif-
ferent bootstrap ensemble. To avoid dealing with the
complications of error quantification with data missing-
ness, we present results for only three states, the max-
imum number that survives in every ensemble. How-
ever, we note that ≈ 85% of ensembles have at least four
states,18 and ≈ 7% have at least five, with the precise
fraction depending on m.

Uncertainty quantification requires associating states
between different bootstrap ensembles. There is no
unique or correct prescription for doing so, so this repre-
sents another primary source of hyperparameter depen-
dence. In this analysis, we make the simple choice of asso-

ciating the states by sorting on their Ritz values λ
(m)
k and

taking the ground state as the one with the largest λ
(m)
k ,

the first excited state the one with the second largest

λ
(m)
k , etc.
Inspection of bootstrap distributions indicates frequent

misassociations by this procedure. Rather than tuning
our filtering and association schemes, we compensate us-
ing outlier-robust estimators to compute central values
and uncertainties from the bootstrap samples. We use

18 This is sufficient to calculate some quantities for this state with
some reasonable but ad-hoc definitions; see App. C.

the by-now de-facto community standard as implemented
in the gvar software package [85]: we take the median
rather than the mean, an estimator based on the width
of the 1σ confidence interval rather than the standard
deviation,19 and the usual Pearson correlation matrix
to construct covariance matrices. We note immediately
that, across all results presented here, this gives central
values that fluctuate less than their errors and measured
correlations would suggest. Separately, we observe that
the median over bootstraps appears to have a regulat-
ing effect versus simply carrying out the analysis on the
central value (i.e. mean C(t) over bootstraps). It will be
important to build up a statistical toolkit better suited
for treating Lanczos results sensitive to the appearance
of spurious eigenvalues.
We now present the results of this analysis, beginning

with quantities computed from C(t) only. Fig. 7 shows
the energies of the three lowest-lying states as extracted
by Lanczos. The results are similar to those seen in
Ref. [1]: Lanczos energy estimates exhibit no exponential
decay in SNR, in contrast to the effective energy, where
useful signal is available only up to t ≈ 30. The ground
state is resolved with excellent signal. Noise increases
moving up the spectrum. App. C shows results for the
nearly-resolved third excited state.
With the precision available, Lanczos does not resolve

several known intermediate states in the spectrum. With
Mπ ≈ 0.078 and MN ≈ 0.42, the N(1)π(−1) and Nππ
multi-particle states both lie near E ≈ 0.6, between the
ground and first excited state found by Lanzcos. This is
to be expected: at finite precision, Lanczos is known to
miss eigenvectors (here, states) with small overlap with
the initial vector (here, |ψ⟩) [86, 87], and these states
are known to have very small overlaps with the single-
hadron interpolating operators used here [20–27, 88, 89].
Their absence in the results points immediately to sev-
eral topics requiring further study: the dynamics that
determine which states are extracted by Lanczos, and
how badly such missed intermediate states contaminate
Lanczos matrix-element estimates.
As with effective energies and matrix elements, Lanc-

zos estimates at different m carry independent informa-
tion that can be combined to obtain a more precise esti-
mate. To demonstrate, for all estimates in this section,
we fit a constant to all m ≥ 8 to exclude the less-noisy
points at earlym. This simple but arbitrary choice serves
the point of demonstrating that estimates at different m
carry independent information, but it will be important

19 Specifically, we use σ = max(∆+,∆−) where

ŷ = Medianb[yb]

∆− = ŷ − Percentileb[yb, 100s]

∆+ = Percentileb[yb, 100(1− s)]− ŷ

(83)

with b indexing bootstrap samples and s =
∫−1
−∞

1√
2π

e−x2/2 ≈
0.16 is the CDF of the unit normal distribution evaluated at −1.
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FIG. 7. Spectrum extracted by Lanczos from the zero-momentum nucleon two-point correlator (top) and noisy estimates of

the bounding values B
(m)
k (Eq. (31)). Blue, orange, and green markers correspond to the ground, first excited, and second

excited state respectively. The blue, orange, and green bands indicate fits of a constant to the values they cover, finding
Ek = [0.4175(17), 0.736(34), 1.296(83)] for k = [0, 1, 2]. An analysis of a superset of this data using standard methods in
Refs. [79, 80] found E0 = 0.4169(18). The gray band reproduces the effective energy from Fig. 6. The central values and
uncertainties on the Ritz values are computed by bootstrapping and using the outlier-robust estimators discussed in the text,
while the uncertainties on the fitted values are linearly propagated from the covariance matrix of the λ(m). The fact that the
central values fluctuate less than their error bars arises from the use of outlier-robust estimators. Uncertainties on energies

are propagated linearly through E
(m)
k = − log λ

(m)
k to avoid issues with artificial missingness due to negative arguments of

logarithms for noisier points.

to find more principled convergence diagnostics for real
applications. Uncertainties on fitted values are estimated
by linear propagation from the data covariance matrix to
avoid the complications of nested bootstrapping or un-
derestimation from sharing a covariance matrix between
different bootstraps. The reduction in uncertainty ver-
sus the average uncertainty of the data gives a notion
of the amount of independent measurements in the 41
points included in each fit. For the energies Ek, the fitted
values are ≈ 9, 4, 4 times more precise than the data for
k = 0, 1, 2, respectively. Reduction by a factor

√
41 ≈ 6.4

corresponds to the expected reduction for 41 statistically
independent points, but fluctuations about this value are
expected due to noise. Systematic deviations from this
value arising from correlations between data points are
not observed.

With the analysis of the two-point correlator data un-
derstood, we move on to matrix-element estimates in-
corporating the three-point correlator. Fig. 8 shows the

Lanczos estimate J
(m)
00 of ⟨0|s̄s|0⟩, the forward matrix el-

ement of the strange scalar current in the nucleon, as
compared to effective matrix elements defined with sum-
mation and power iteration. As immediately apparent,
Lanczos provides a clear signal across the full range of
m, with no exponential SNR decay. The summation and
power-iteration estimates are less noisy than Lanczos for

small t but break down after t ≳ 20. The fit of the Lanc-
zos estimate is ≈ 7 times more precise than the estimates
with particular m (on average).

Fig. 8 shows several indications that Lanczos provides
better control over excited-state effects than either other
method, as expected from the analyses of Sec. IV and
Sec. VI. The value of Lanczos estimates stabilizes after
m ≈ 5, corresponding to t ≈ 9, where both the other
estimators still show clear indications of large excited-
state effects. Before losing signal, the cleaner power iter-
ation estimator suggests an asymptote at an incompati-
ble value with the one found by Lanczos. The analyses
in the noiseless case suggest that this behavior is most
likely deceptive and that power iteration remains contam-
inated by excited states. The summation estimator loses
signal before achieving any convincing plateau, but sug-
gests a value compatible with Lanczos or slightly more
negative. It is interesting to note that this ordering of
values—power iteration, Lanczos, then summmation—is
the same as observed in the example of Sec. IV. The fit to
Lancos data is shown in the ratio plot of Fig. 6; the sub-
stantial extrapolation from the data is another indication
of large excited-state effects.

Unlike summation and power iteration, Lanzcos allows
direct and explicit computation of estimates for transi-
tion and excited-state matrix elements. Fig. 9 shows the
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FIG. 8. Ground-state nucleon matrix element of the strange scalar current with zero momentum transfer estimated using
various methods. The curves for power iteration and summation are effective matrix elements as defined in Eq. (14) and
Eq. (15); no fits are involved. The summation curve is computed with ∆τ = 1, corresponding to the ratio data shown in Fig. 6.
The blue band corresponds to a fit of a constant to the Lanczos estimates it covers, finding J00 = 3.03(24). Uncertainties are
computed by bootstrapping and using the outlier-robust estimators discussed in the text, except for the uncertainties on the

fit to Lanczos values, which are linearly propagated from the covariance matrix of the J
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FIG. 9. Lanczos extractions of forward matrix elements of the strange scalar current for three low-lying states in the nucleon
spectrum. Note that eigenvectors are unit-normalized, not relativistically normalized. Rows are indexed as the final state,
while columns are indexed as the initial state. ⟨0|s̄s|0⟩ is reproduced from Fig. 8. The bands corresponds to fits of a constant to

the J
(m)
fi that they cover, with values listed in Tab. I. Uncertainties on the data are computed by bootstrapping and using the

outlier-robust estimators discussed in the text, while fit uncertainties are linearly propagated from the data covariance matrix.

results for all combinations of the three states fully re-
solved; Tab. I lists values fit to these data. While nois-
ier than the ground-state matrix element, useful signal
is available at all m for all excited-state and transition
matrix elements. Matrix elements involving the ground
state are less noisy, and those involving the first excited
state appear noisier than for the second. The data in
Fig. 9 and fits thereof listed in Tab. I all satisfy the ex-

pected symmetry ⟨f |s̄s|i⟩ = ⟨i|s̄s|f⟩ within error. The fit
of the Lanczos estimate is ≈ 4-5 times more precise than
the data for all excited matrix elements.

Finally, Fig. 10 shows the overlap factors for the three
states fully resolved. Fits to the overlap factors Zk are
≈ 2, 8, 3 times more precise than the data for k = 0, 1, 2,
respectively. Fits of a three-state model to the same
correlator data find compatible values. These are not
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f ⟨f |s̄s|0⟩ ⟨f |s̄s|1⟩ ⟨f |s̄s|2⟩
0 3.03(24) −3.51(84) 2.06(81)
1 −2.93(72) 2.7(2.0) −1.8(2.0)
2 1.34(67) −1.2(2.0) 1.1(1.7)

TABLE I. Results of fits of a constant to Lanczos matrix ele-
ment estimates J

(m)
fi of matrix elements ⟨f |s̄s|i⟩ of the strange

scalar current. Values are as shown in corresponding panels
of Fig. 9 and computed as described there.
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FIG. 10. Overlap factors Z(m) extracted by Lanc-
zos from the zero-momentum nucleon two-point correla-
tor. Blue, orange, and green markers correspond to the
ground, first excited, and second excited state respectively.
Note that eigenvectors are unit-normalized, not relativisti-
cally normalized. The blue, orange, and green bands in-
dicate fits of a constant to the values they cover, finding
Zk = [2.360(41), 3.03(18), 3.670(66)] × 10−4 for k = [0, 1, 2].

For comparison,
√

C(0) =
√∑

k |Zk|2 = 6.2802(13) × 10−4.

Uncertainties on estimates of Z(m) are propagated by boot-
strapping and using the outlier-robust estimators discussed
in the text, while the uncertainties on the fitted values are
linearly propagated from the covariance matrix of the Z(m).

required for the matrix element calculation and do not
correspond to any quantity of physical interest in this cal-
culation. However, in other settings, overlap factors are
extracted to determine quantities like decay constants
and quark masses. These results suggest that Lanczos
can provide an advantage in these calculations as well.

VI. ADVERSARIAL TESTING

Absent a framework of rigorous bounds as is available
for energy levels, it is worthwhile to develop more qual-
itative intuition about the practical reliability of Lanc-
zos extractions. In this section, we construct adversar-
ial attacks to test both Lanczos and previous methods
for ground-state matrix element estimation. Specifically,
in a noiseless finite-dimensional setting, we attempt to
construct pathological examples which lead the differ-

ent methods to report deceptive results which confidently
suggest an incorrect answer. We find that Lanczos ap-
pears to be qualitatively more robust than the other
methods considered.
To construct the attacks, we fix the value of the ground

state matrix element to the “true” value J00 = J̃00 = 1
and attempt to construct examples where the methods
report the “fake” value J̆00 = 0.5, and restrict all pa-
rameters varied to physically reasonable values to avoid
unrealistic fine-tuning. For simplicity, we consider a di-
agonal example where ψ = ψ′. We take Nt = 32 and
Nt/2 = 16 states with energies and overlaps fixed to

Ek = 0.1(k + 1) Zk =
1√
2Ek

(84)

for both the initial- and final-state spectrum. These
choices are as employed for the initial-state spectrum in
the example of Sec. IV; as observed there, this provides
an example with severe excited state contamination.20

In the attacks, we vary only the matrix elements, ad-
versarially optimizing them based on criteria described
below. For this diagonal example, we enforce a symmet-
ric matrix element Jij = Jji. This also serves to make
the attack more difficult by preventing fine-tuned near-
cancellations between contributions with similar energies
and opposite signs. We also put in that Jij scales with
energy as the single-particle normalization of states by
defining

Jij =
2E0√
4EiEj

J̃ij (85)

as in Sec. IV and optimizing the variables J̃ij (up to
symmetrization and fixing Jij = 1). For all of the meth-
ods considered, matrix-element estimates are linear in
the three-point function and thus linear in J̃ij . Fixing
Zk and Ek and using the χ2 functions defined in the sub-
sections below provides a quadratic optimization problem
that may be minimized analytically.

A. Attack on the summation method

As defined in Sec. II, the summation method may
be used to define an effective matrix element Jeff.

00,∆τ
(t).

Their interpretation is similar to effective energies: we
expect Jeff.

00,∆τ
(t) to asymptote to the true value J00 = 1

as t increases and excited states decay away. Increasing
the summation cut ∆τ is also expected to reduce con-
tamination. With this usage in mind, we construct the
minimization objective χ2 = χ2

SM + χ2
σ. The first term

χ2
SM =

Nt/2−1∑
∆τ=2

Nt−1∑
t=2∆τ+2

[
Jeff.
00,∆τ

(t)− J̆00

]2
, (86)

20 In fact, if left untruncated, this choice of overlaps is unphysically
severe: the infinite sum C(0) =

∑
k |Zk|2 ∼

∑
k

1
k

does not
converge, whereas C(0) is always finite in practice.
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FIG. 12. Ground-state matrix element J00 extracted using
various methods for the example constructed to deceive the
summation method. The curves for Power iteration and Sum-
mation are effective matrix elements as defined in Eq. (14) and
Eq. (15); no fits are involved. Different summation curves cor-
respond to different choices of the summation cut ∆τ . The
black horizontal line indicates the true ground-state matrix
element J00 = 1. The dashed red line indicates the faked
value. The Lanczos estimate J

(m)
00 is computed as defined in

Eq. (66). At the final step m = Nt/2 = 16, Lanczos recovers
the true ground state-matrix element exactly for this 16-state

example, i.e. J
(12)
00 = J00.

where Jeff.
00,∆τ

(t) is a function of the optimized J̃ij , at-

tempts to induce a deceptive “pseudo-plateau” at J̆00 =
0.5, with estimates for early t and small ∆τ uncon-
strained. Note that Jeff.

00,∆τ
(t) is only defined for t ≥ 2∆τ

and the maximal ∆τ = Nt/2− 1. The second term

χ2
σ =

∑
i≤j

(J̃ij)
2

σ2
(87)

serves to keep the values of J̃ij reasonably physical; we
take σ = 10 to enforce ∼ O(1) matrix elements, up to
scaling with energy. This term is also necessary to regu-
late the otherwise underconstrained fit.

Optimizing yields the example shown in Figs. 11
and 12. While we have directly attacked the summation
method, we also examine the ratio Eq. (13) and the power
iteration effective matrix element defined in Sec. II, as
might be done for cross-checks in an analysis. The ratio,
Fig. 11, is exactly as expected if the ground state matrix
element were J̆00 = 0.5; its behavior is visually indistin-
guishable from a well-behaved decay of excited states as
tf increases. Fig. 12 shows effective matrix elements for
both power iteration and summation for all possible ∆τ ;
all appear to asymptote near J̆00. While some noticeable
curvature remains for the summation curves, it is sub-
tle enough to be concealed by even a small amount of
noise. Taking these points together, a naive analysis of
this example with these methods would likely conclude
with high confidence that J00 = 0.5, a factor of 2 off from
the true value.

Analyzing the examples found by an adversarial attack
can provide insight into what mechanisms may cause a
method to fail. Inspection of the fitted matrix

J
(∗)
fi =



1. −2.925 5.223 −2.49 −1.551
−2.925 8.672 −4.021 −2.17 −0.596
5.223 −4.021 −1.212 −0.374 0.176 . . .
−2.49 −2.17 −0.374 0.137 0.294
−1.551 −0.596 0.176 0.294 0.104

...
. . .


reveals the pathological behavior may be attributed to
a small cluster of low-lying states with larger-magnitude
matrix elements than the ground state. Such a scenario
may easily arise in nature if the ground-state matrix el-
ement happens to be small. This situation resembles
closely the situation with Nπ and Nππ contamination
speculated to cause problems in lattice calculations of
axial form factors [23, 25–27].

Also shown in Fig. 12 is the Lanczos estimate J
(m)
00

for the same example. After an initial period of vio-
lent reconfiguration with no pseudo-plateau, the estimate
quickly converges to the true value. This convergence
occurs long before the maximal m = Nt/2 where the
system is solved exactly. This represents a qualitative
improvement in treatment of this example, and suggests
immediately that Lanczos is more robust against such
pathological scenarios.

B. Attack on Lanczos

Applying the same adversarial strategy against the
Lanczos method allows its improved robustness to be as-
sessed more directly. We use the optimization objective
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00 extracted using
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(different color curves). The black horizontal line indicates

the true J00 = 1. Each example attempts to shift J
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the fake value 0.5 (dashed red line) at only a single point
(indicated by the same-color marker), with regulator σ = 10.
The dashed black line through the targeted points suggests
the increasingly difficulty of shifting points at greater m.

χ2 = χ2
LM + χ2

σ where χ2
σ is as in Eq. (87) and

χ2
LM =

∑
m∈M

[
J
(m)
00 − J̆00

]2
(88)

withM some set ofm to target. Note that high-precision
arithmetic is especially important in the inversion in-
volved in computing the solution to the optimization.

We were unable to produce a similarly pathological
example as in the previous subsection. Minimal attacks

on J
(m)
00 for single values of m provide a clear picture of

the difficulty. Note this is less difficult than attempting
to shift multiple points. Fig. 13 shows the results of a
set of experiments with the regulator σ = 10 as in the
previous example. In Fig. 13, each curve corresponds to

a different example, each attempting to shift J
(m)
00 to the

fake value J̆00 = 0.5 at the indicated value of m. Attacks
on single estimates at small m are successful. However,
starting at m ∼ 5, the values begin visibly drifting from
J̆00. By m ∼ 10, Lanczos converges to the true value and
the attacks fail completely.

Increasing σ allows more extreme values of Jji and thus
greater freedom for fine-tuning. Fig. 14 shows the results
of further experiments varying σ. The data shown are
now only the attacked values of m; the curve for σ = 10
corresponds to the dashed black line in Fig. 13. As ex-
pected, we find that allowing more unnatural values al-
lows deception of Lanczos at later m. Increasing σ to 104

is sufficient to push convergence to nearly the maximal
m where Lanczos solves the finite-dimensional system ex-
actly. However, large hierarchies are unlikely to arise in
QCD matrix elements.
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FIG. 14. Efficacy of attacking the Lanczos estimate of

the ground-state matrix element J
(m)
00 at different values of

m, given different regulators σ. Larger values of σ allow in-
creasingly large and unnatural values of the true matrix ele-
ments. The black horizontal line indicates the true J00 = 1;
the dashed red line indicates the fake value 0.5. The orange
σ = 101 curve corresponds to the dashed black line in Fig. 13.

This increased robustness provides a compounding
benefit with the improved SNR properties of Lanczos
methods. In the presence of noise, standard methods
give estimates with SNR that decays in Euclidean time,
making them especially vulnerable to pseudo-plateau be-
havior. In contrast, as seen in the application to noisy

lattice data in Sec. V, the Lanczos estimate J
(m)
k has

roughly constant signal for all m after the initial few.
We conclude this exercise by noting that it is neither

robust nor exhaustive, and it is important not to over-
interpret its specific results, which depend on the pre-
cise details of our problem setup and strategy. These
results should not, for example, be taken to mean that a
Lanczos matrix-element extraction will always converge
within 10 iterations so long as QCD matrix elements have
natural values. However, they provide strong suggestive
evidence that the Lanczos method is qualitatively more
robust than the methods presently in common use.

VII. CONCLUSIONS

The Lanczos formalism is a promising new approach to
analyzing lattice correlation functions. This work demon-
strates that the successes of Ref. [1] in spectroscopy ex-
tend to the task of extracting matrix elements as well.
Lanczos matrix element extractions provide useful sig-
nals for not only ground-state matrix elements but low-
lying excited states as well, with no apparent exponential
SNR decay in Euclidean time. Testing in the noiseless
case provides strong suggestive evidence that Lanczos es-
timates provide qualitatively better treatment of excited-
state contamination than presently preferred methods.
In practice, the method is simpler to apply than presently
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preferred methods: matrix elements are obtained from
three-point functions by simply applying change-of-basis
matrices computed from two-point functions. This re-
quires no statistical modeling or numerical optimization
and has few analysis hyperparameters to vary. Lanczos
methods may therefore permit more reliable determina-
tions of observables whose uncertainties are dominated
by excited-state systematics as well as enable applica-
tions previously out of reach of the lattice toolkit; it is
imperative to deploy them immediately so that their full
capabilities may be assessed.

Importantly, many possibilities remain for improve-
ments and extensions. As noted in Sec. V, the primary
sources of analysis hyperparameter dependence in the
Lanczos-based method are involved in filtering spurious
states and associating states between bootstrap ensem-
bles. Better approaches to these tasks will help improve
both the reliability and precision of Lanczos spectroscopy
and matrix element results.

The methodology presented here applies straightfor-
wardly to lattice four-point functions or higher-point
functions. Such cases may be treated simply by consider-
ing the higher-point functions as three-point functions of
a composite operator involving powers of transfer matri-
ces, e.g. J1T

δJ2 with δ the operator-operator separation.

As discussed in Sec. III E, the Lanczos method requires
three-point functions evaluated at every sink time up
to whatever desired stopping point. This means that
while existing disconnected three-point function datasets
can be analyzed with Lanczos immediately, the stan-
dard strategy of generating data at only some sink times
when using sequential source methods is incompatible
with Lanczos. All sink times required for Lanczos pro-
vide useful signal—small ones to control excited states
and large ones because there is no SNR degradation—and
the additional computation is not wasted. If the method
proves as effective as our results suggest, data generation
strategies should be adjusted to take advantage.

As noted in Sec. V, the approximate eigenstates re-
solved by Lanczos can be separated into states admit-
ting a physical interpretation and states which are clearly
noise artifacts. The Lanczos transfer matrix approxima-
tion acts as a Hermitian operator on the physical sub-
space but acts with complex eigenvalues and distinct
left- and right-eigenvectors on the noise artifact sub-
space. This provides an exact representation of a noisy
correlation function as a sum of purely decaying expo-
nentials plus terms which oscillate to capture the ef-
fects of noise. The ability to distinguish spurious and
non-spurious states—through identification of the Her-
mitian subspace and the Cullum-Willoughby test—then
provides a mechanism for isolating and removing unphys-
ical noise effects. This provides a mechanistic explana-
tion, complementary to the formal projection operation
description discussed in Ref. [1], for how Lanczos avoids
SNR degradation. The accurate convergence of Lanczos
results for physical states even in the presence of statisti-
cal noise may be a manifestation of the so-called “Lanczos

phenomenon” [61, 83, 84, 90]: the accurate convergence
of an identifiable subset of Lanczos results in the face
of numerical errors that might be expected to spoil the
results entirely.
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Appendix A: Where to use high-precision arithmetic

Applying the Lanczos methods described here some-
times requires high-precision arithmetic to avoid numer-
ical instabilities. This Appendix discusses where this is
necessary to obtain the results presented above. We
implement this using the mpmath Python library for
multiple-precision arithmetic [103]. We find 100 deci-
mal digits of precision is sufficient to produce the results
of this paper, but have made no effort to determine the
minimum required. We otherwise work in double preci-
sion.
In practice, higher-than-double precision is required

primarily for the noiseless examples in Sec. IV and VI.
In particular, it is necessary in:

• The sums over states when constructing the exam-
ple two- and three-point functions;

• The recursions to construct the tridiagonal matrix
coefficents αj , βj , γj from the two-point correlator;
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• The recursions to compute the Krylov coefficients
KR/L;

• Computing the eigenvalues and eigenvectors of
T (m);

• Matrix multiplications to construct the Ritz coef-
ficients P (m), compute observables like Z(m) and
J (m).

This amounts to everything except for the inversion of
the eigenvector matrix ω(m), which may be carried out
in double precision.

In the lattice example of Sec. V, we find that high-
precision arithmetic is only important for the initial re-
cursion to construct αj , βj , γj , which is relatively inex-
pensive. Crucially, the tasks which dominate the com-
putationally cost may be carried out in only double pre-
cision: computing the eigenvalues/vectors of T (m), in-
verting the eigenvector matrix ω(m), and the various ma-
trix multiplications. As implemented for this work, run-
ning the full procedure 200 times for each bootstrap en-
semble to produce the results of Sec. V takes ≈ 2 min-
utes on a c. 2019 Intel MacBook Pro. We caution that
high-precision arithmetic may become more necessary for
larger lattices and/or different parameters.

Appendix B: Ritz projectors

Although the right Ritz rotator

P
R(m)
k =

m−1∑
t=0

P
(m)
kt T t (B1)

allows construction of the right Ritz vectors as

P
R(m)
k |vR1 ⟩ = |yR(m)

k ⟩ , (B2)

it is not a projection operator of the form |yR(m)
k ⟩ ⟨yL(m)

k |.
This is straightforward to see: it is a finite polynomial
in T , which has support outside the Krylov subspace
spanned by the Ritz. However, as we show in this ap-
pendix, the equivalent operator constructed with

T (m) =
m∑

i,j=1

|vRi ⟩T
(m)
ij ⟨vLj | (B3)

in place of T is an unnormalized projector, i.e.,

PR(m)
k =

m−1∑
t=0

P
R(m)
kt [T (m)]t =

|yR(m)
k ⟩ ⟨yL(m)

k |
⟨yL(m)

k |vR1 ⟩
. (B4)

Although not worked through here, similar arguments

apply for the left Ritz rotator P
L(m)
k .

To see this, first note that by the definition of matrix
exponentiation,

PR(m)
k =

∑
t

P
(m)
kt [T (m)]t

=
∑
l

|yR(m)
l ⟩

∑
t

P
R(m)
kt [λ

(m)
l ]t ⟨yL(m)

l |

≡
∑
l

|yR(m)
l ⟩ q(m)

kl ⟨yL(m)
l | .

(B5)

What remains is to show that the symbol q
(m)
kl defined in

the last line is diagonal in k, l and normalized as claimed.
To proceed, note that by construction,

[T − T (m)] |vRj ⟩ = δjmγm+1 |vRm+1⟩ (B6)

for all j ≤ m, from which follows

T t |vR1 ⟩ = [T (m)]t |vR1 ⟩ (B7)

for all t < m, because

T t |vR1 ⟩ =
t+1∑
j=1

ctj |vRj ⟩ (B8)

for some (in principle computable) coefficients ctj ,
i.e. each hit of T populates one higher Lanczos vector

in the sum. It follows that P
R(m)
k and PR(m)

k have iden-
tical action on |vR1 ⟩, i.e.,

PR(m)
k |vR1 ⟩ =

m−1∑
t=0

P
R(m)
kt [T (m)]t |vR1 ⟩

=
m−1∑
t=0

P
R(m)
kt T t |vR1 ⟩

= P
R(m)
k |vR1 ⟩ = |yR(m)

k ⟩

(B9)

because the sum over t runs only to m − 1. Inserting
Eq. (B5), we see that

PR(m)
k |vR1 ⟩ =

∑
l

|yR(m)
l ⟩ q(m)

kl ⟨yL(m)
l |vR1 ⟩ = |yR(m)

k ⟩

≡
∑
l

αkl |yR(m)
l ⟩ = |yR(m)

k ⟩ .

(B10)
Because the right Ritz vectors are linearly independent,
it must be that

αkl ≡ q
(m)
kl ⟨yL(m)

l |vR1 ⟩ = δkl ; (B11)

no superposition of |yR(m)
l ⟩ with l ̸= k has extent along

|yR(m)
k ⟩, so the term with l = k must saturate the sum.

Because the factor ⟨yL(m)
l |vR1 ⟩ has no dependence on

k, it must be that q
(m)
kl ∝ δkl. Separately, the factor
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⟨yL(m)
l |vR1 ⟩ = Z

L(m)
l /|ψ| (see Sec. IIID) and is generi-

cally nonzero for all l. Given these constraints, it can
only be that

q
(m)
kl =

∑
t

P
R(m)
kt [λ

(m)
l ]t =

δkl
⟨yL(m)|vR1 ⟩

(B12)

and Eq. (B4) holds as claimed.

Appendix C: Results for third excited state

The analysis presented in the main text fully resolves
three states, meaning specifically that at least three
states survive filtering in each bootstrap ensembles. How-
ever, values are available for a fourth state in ≈ 85% of
bootstraps. While insufficient to compute like-in-kind es-
timates to compare with those for the other three states,
it is interesting to look at the results using some rea-
sonable assumptions. Note that the number of states
resolved and present in each bootstrap will vary for dif-
ferent schemes to filter states and associate them between
bootstraps.

It is not generally possible to do rigorous statistics with

missing data if the mechanism which causes missingness
is not understood. This is the case here. However, we
may make a reasonable choice: we assume all missing
data are outliers and also equally likely to be high- or
low-valued. In this case, the median and 1σ confidence
interval definitions employed here remain well-defined, as
long as measurements are available for at least ≳ 68% of
bootstraps. Note that the Pearson correlation matrix
is not computable under these assumptions, so we can-
not perform fits to the data without adopting a different
definition than used in the main text. Note also that
these assumptions are inequivalent to and more conser-
vative than the assumption that missingness is uncorre-
lated with value. This prescribes computing whatever
estimators only on the non-missing subset of data, which
will compress the width of the uncertainties.
Under these assumptions, we may compute various ob-

servables involving the third excited state as well. Fig. 15
shows the spectrum including its energy. It is not clear
that this state is physical, as its mass is near the expected
second layer of doublers [106, Ch. 5]. Fig. 16 shows ma-
trix elements involving the third excited state. These are
not substantially noisier than those for the lower three
states in Fig. 9, but we emphasize that this comparison
is not between quantities defined equivalently.
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FIG. 15. Spectrum extracted by Lanczos from the zero-momentum nucleon two-point correlator including the partially-
resolved third excited state (cf. Fig. 7). Blue, orange, green, and pale purple markers correspond to the ground state and first
three excited states. For the third excited state, values are not available for ≈ 20% of bootstraps. Its uncertainties correspond
to ≈ 68% confidence intervals computed after symmetrically setting missing values to ±∞. Uncertainties are computed as in
Fig. 7 otherwise.
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For the third excited state, values are not available for ≈ 20% of bootstraps. Its uncertainties correspond to ≈ 68% confidence
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tacharya, B. Joó, and F. Winter (Nucleon Matrix Ele-
ments (NME)), JHEP 21, 004 (2020), arXiv:2011.12787
[hep-lat].

[79] D. C. Hackett, P. R. Oare, D. A. Pefkou, and
P. E. Shanahan, Phys. Rev. D 108, 114504 (2023),
arXiv:2307.11707 [hep-lat].

[80] D. C. Hackett, D. A. Pefkou, and P. E. Shanahan, Phys.
Rev. Lett. 132, 251904 (2024), arXiv:2310.08484 [hep-
lat].

[81] M. Hutchinson, Communications in Statistics -
Simulation and Computation 19, 433 (1990),
https://doi.org/10.1080/03610919008812866.

[82] A. Stathopoulos, J. Laeuchli, and K. Orginos, SIAM
J. Sci. Comput. 35, S299–S322 (2013), arXiv:1302.4018
[hep-lat].

[83] J. Cullum and R. A. Willoughby, Journal of Computa-
tional Physics 44, 329 (1981).

[84] J. K. Cullum and R. A. Willoughby, “Lanczos pro-
cedures,” in Lanczos Algorithms for Large Symmetric
Eigenvalue Computations Vol. I Theory (Birkhäuser
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