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Abstract.

High-coherence cavity resonators are excellent resources for encoding quantum

information in higher-dimensional Hilbert spaces, moving beyond traditional qubit-

based platforms. A natural strategy is to use the Fock basis to encode information in

qudits. One can perform quantum operations on the cavity mode qudit by coupling

the system to a non-linear ancillary transmon qubit. However, the performance of the

cavity-transmon device is limited by the noisy transmons. It is, therefore, important to

develop practical benchmarking tools for these qudit systems in an algorithm-agnostic

manner. We gauge the performance of these qudit platforms using sampling tests

such as the Heavy Output Generation (HOG) test as well as the linear Cross-Entropy

Benchmark (XEB), by way of simulations of such a system subject to realistic dominant

noise channels. We use selective number-dependent arbitrary phase and unconditional

displacement gates as our universal gateset. Our results show that contemporary

transmons comfortably enable controlling a few tens of Fock levels of a cavity mode.

This framework allows benchmarking even higher dimensional qudits as those become

accessible with improved transmons.

1. Introduction and Motivation

Quantum computers may offer significant advantages over classical machines for certain

classes of problems. Although theoretical work has shown computational complexity

advantages for quantum algorithms in specific cases, significant work remains in order to

realize these advantages on hardware. Given the nascent nature of such hardware, many

potential and vastly different platforms relying on a variety of physical implementations

such as superconducting qubits [1, 2], neutral atoms [3], trapped ions [4] and photonic

circuits [5, 6] are being investigated. It is not yet clear which, or even if, a particular

platform will possess the correct mix of noise resilience, error correction success rate, and

number of logical information carriers to efficiently execute useful quantum computing

algorithms. Indeed, different hardware platforms may be matched to different problems.

Error correction and mitigation performance also varies across hardware platforms. Just

as various metrics are available to gauge classical computers’ capabilities (such as CPU

clock speed, I/O-bound throughput, disk storage space and monitor resolution), it is

important to formulate benchmarks and metrics to gauge the performance of quantum

computers so that we may better understand progress on, and differences between,

various hardware implementations.

However, it is nontrivial to design a single metric that accurately captures the

nebulous notion of “performance” across different hardware platforms. A class of

prominent tests which aims to quantify a quantum device’s utility, or “algorithmic

reach”, are the volumetric benchmarks of [7] (see also, the associated notions of

algorithmic speedup [8] and algorithmic error tomography [9]). On the one hand, a

reasonable definition of algorithmic reach might be to quantify the largest instance of a

specific agreed-upon algorithm that can be executed successfully on a quantum device

and whose solution can be verified (likely via classical simulation). For example, what is

the largest instance of a Grover search problem that one can implement on a quantum
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computer with a success probability greater than 2/3? Such a definition of algorithmic

reach would clearly be an algorithm dependent metric, as opposed to other typical

quantum hardware benchmarks such as the average gate fidelities that are measured via

randomized benchmarking [10–15]. On the other hand, we would like to assess how well

the device would perform in an algorithm agnostic manner. This idea can be captured

by benchmarking how well the device can compile and execute random unitaries, as this

would be agnostic to any particular algorithm (which is typically represented, in the

noiseless limit, by a single unitary).

For this purpose, we capture the notion of algorithmic reach using sampling

tests such as the Heavy Output Generation (HOG) test [16] and linear Cross-Entropy

Benchmark (XEB) [17], applied in our case in particular to a novel quantum computing

platform comprising a superconducting transmon qubit dispersively coupled to a cavity

resonator mode [18–21]. While the inherent infinite-dimensional Hilbert space of

the cavity mode allows different bases and schemes in which to encode quantum

information, a simple choice is to utilize its individual energy eigenstates, such that it

naturally forms a higher-dimensional qudit. High energy physics theorists have explored

algorithms for such devices [22–28]. On its own, the cavity mode would function as a

harmonic oscillator with equally spaced energy levels. This makes it impossible to

address its individual energy levels, rendering the cavity incapable of universal quantum

computation. However, by coupling it to a non-linear anharmonic oscillator in the form

of a transmon, one can overcome this limitation. Indeed, a similar architecture based

on a hybrid oscillator-qubit system was recently studied in Ref. [29].

We constrain our study to a full realistic simulation of a single cavity mode [30].

While the development of a multi-mode system is an active field of research in the

community [31–34], the optimal configuration for, and operation of, a multi-qudit

computer is not yet fully clear, in contrast to qubit based platforms which have been

more widely studied.

However, much can still be gleaned from such a single-mode system and applied

to future versions. In the current NISQ-era of quantum computing, real hardware is

subject to uncontrollable noise sources of various physical origins, which have deleterious

effects. Understanding how such a device performs under benchmarking tests for both

various noise strengths as well as different theoretically-desired parameters, such as the

qudit’s dimension (which encapsulates its quantum information storage and processing

potential), allows for the identification of bottlenecks and serves to guide future research

and engineering efforts. In particular, such tests are easily repeatable as the dimension

of the qudit is scaled, and could be seen as an indication of how easy it is to control such

a device. Furthermore, powerful quantum computing devices will inexorably depend on

highly performant classical computational efforts. This is so, given the necessity of

classical optimizers and compilers to efficiently translate higher-level algorithms down

to hardware-level instructions, as well as the need for fast classical decoding algorithms

for quantum error correction.

Our goal in this work is to study algorithmic-complexity-inspired benchmarks with
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which to evaluate the progress in both hardware and software development for single-

qudit devices at present, in order to lay the foundation for benchmarking multi-qudit

devices in the future. The two aforementioned metrics, namely the HOG test (developed

initially for studying the performance of qubit-based quantum computers [35]) and XEB

(which was initially developed as a potential demonstrator calculation for quantum

advantage and is now understood to have certain drawbacks [36], but which still serves

as a general metric for quantum computational performance) will be applied to such a

system.

The rest of the paper is organized as follows. In Sec. 2 we describe, in detail, the

physical cavity-qubit system, its universal control down to the pulse level for our chosen

gateset, as well as its dynamics under a realistic noise model. Sec. 3 discusses the two

useful metrics we use to benchmark this system. The numerical results of this full-stack

simulation are then presented and discussed in Sec. 4, and we finally conclude with the

future outlook in Sec. 5.

2. Physical System

2.1. Theory

The areas of cavity and circuit quantum electrodynamics are extremely rich fields in their

own rights, and we direct the interested reader to [37] for a comprehensive introduction

to the topics. The model under consideration consists of a transmon qubit dispersively

coupled to a single resonator mode, each with independent drives, in the laboratory

frame

Ĥ = Ĥdisp + Ĥd, (1)

where

Ĥdisp = ωaa
†a+ ωq |e⟩⟨e|+ χa†a |e⟩⟨e| ,

Ĥd = ϵ1(t)
[
e−i(ω1t+ϕ1)a† + ei(ω1t+ϕ1)a

]
+ ϵ2(t)

[
e−i(ω2t+ϕ2)σ+ + ei(ω2t+ϕ2)σ−] . (2)

Here, ωa and ωq are the dressed frequencies of the resonator mode with annihilation

operator a and of the qubit with excited state |e⟩. The dispersive shift is denoted by

χ. Furthermore, ϵ1(2) is the real time-dependent amplitude, and ϕ1(2) a time-dependent

phase, of the cavity(qubit) drive with frequency ω1(2)§. This Hamiltonian is only valid

in the dispersive regime whereby the qubit-cavity detuning, ∆ = ωq − ωa, is large with

respect to the resonator-qubit coupling g, i.e. g ≪ |∆|. See Fig. 1 for a schematic

cartoon of the setup.

§ A general drive, in terms of its in-phase I and out-of-phase Q quadratures, can be expressed as

I(t) cos(ωdt) + Q(t) sin(ωdt). This is equivalent to the expression ϵd(t) cos(ωdt+ ϕd), with ϵd(t) the

drive amplitude, ϕd the drive phase and ωd the carrier frequency.
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Figure 1: A single linear oscillator cavity mode coupled to a non-linear transmon qubit

(with ωge = ωq) in the dispersive regime.

Moving into a frame rotating at both the cavity and qubit frequencies (using the

time-dependent unitary transformation Û = eiωaa†ateiωq |e⟩⟨e|t), the Hamiltonian becomes

Ĥ
′
= ÛĤÛ † + i

˙̂
UÛ † = Ĥint + Ĥ1(t) + Ĥ2(t)

= χa†a |e⟩⟨e|+ ϵ1(t)
[
e−i(δ1at+ϕ1)a† + h.c.

]
+ ϵ2(t)

[
e−i(δ2qt+ϕ2)σ+ + h.c.

]
. (3)

Here δ1a = ω1 − ωa and δ2q = ω2 − ωq are the detunings of the drive tones from

the resonator and qubit frequencies, respectively. Next, notice that, for the usual

displacement operator D̂(α) given by

D̂(α) = eαa
†−α∗a, (4)

the cavity drive Hamiltonian Ĥ1(t) is D̂’s Lie algebra generator. Furthermore, the qubit

drive Ĥ2(t) effects a transition between its ground and excited states, with the particular

dynamics controlled by tuning both ϕ2 and ϵ2(t).

The computational subspace of the qudit is hosted in the lowest d energy

eigenstates, known as the Fock states, of the resonator. Even though D̂(α) acts on

an infinite dimensional Hilbert space, it is possible to capture its effect using a carefully

chosen resonator dimension with minimal error as discussed later. As we shall see,

the qubit intermediary is important for creating Selective Number-dependent Arbitrary

Phase (SNAP) pulses [38, 39], which allow one to selectively add arbitrary phases to

specific Fock states of the cavity. A successful SNAP pulse is parameterised by the

angles θ⃗ = (θ0, θ1, · · · , θd−1) and operates, with a high fidelity, on the first d Fock states

of the cavity via Ŝ(θ⃗), where

Ŝ(θ⃗) =


eiθ0 0 · · · 0

0 eiθ1 . . . 0
...

...
. . .

...

0 0 . . . eiθd−1

 . (5)
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A general closed quantum system’s evolution Û(t, t0), from an initial time t0 to

some later time t, is given by

Û(t, t0) = T e−i
∫ t
t0

Ĥ
′
(τ)dτ

=
∞∑
n=0

Ûn(t, t0)

=
∞∑
n=0

(−i)n
n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT
[
Ĥ

′
(t1) · · · Ĥ

′
(tn)

]
, (6)

with T the time-ordering operator. The time dependence of the drives complicates

finding a general closed-form expression for Û explicitly. However, it has been shown

that a combination of displacement and SNAP pulses provides universal control over the

resonator cavity [38, 39]. As such, we use the following ansatz for the unitary evolution

of our system

Û ≈ D̂(αk+1)Ŝ(θk)D̂(αk) · · · Ŝ(θ1)D̂(α1), (7)

where k is the number of “SNAP-displacement” layers in the ansatz (note that there are

k+1 displacements). As a rough guess of the requisite number of layers, first note that

for a qudit computational subspace of dimension d, each SNAP+displacement layer in

Eq. (7) has d + 1 real parameters. Next, although any arbitrary SU(d) unitary can be

expressed exactly with an ansatz comprised of O(d2) many SNAP+displacement layers,

a dimensional counting argument [40] implies that it may also be possible to make use

of an O(d) length ansatz. In particular, the argument is that since the SU(d) real Lie

group has dimension d2 − 1 (i.e. any SU(d) matrix has d2 − 1 real parameters), and

each SNAP+displacement layer possesses d + 1 = O(d) independent real parameters,

an ansatz comprised of an O(d) number of layers possesses sufficient real parameters to

fit those of the SU(d) matrix being compiled. Such an ansatz is therefore expressive

enough for one to be able to compile arbitrary unitaries, given a sufficiently large depth

or number of layers [38]. However, it suffers from a barren plateau problem in terms of

its trainability [41]. Note that compiling an arbitrary SU(d) unitary onto qubit based

platforms also generically requires O(d2) 2-qubit gates [42, 43], and that variational

ansatzes designed to compile Haar random unitaries also suffer from barren plateau

problems [44].

In practice, we limit the number of layers in the ansatz to as small a number

as possible, in order to avoid barren plateaus and maintain trainability. A similar

counting argument suggests that since an arbitrary d-dimensional pure state possesses

2d − 1 = O(d) real parameters, it may be possible to prepare such a state (i.e. given

some d-dimensional target state |ψ⟩, find U such that |ψ⟩ = U |0⟩), using a constant,

i.e. O(1), number of SNAP+displacement layers. As we’ll see below, our metrics rely

on sampling from certain probability distributions, which in turn reduce to the problem

of state preparation, which is simpler than unitary compilation.

We next describe the displacement and SNAP pulses in detail to make the mapping

from the gate-level parameters to physical pulse profiles clearer.
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2.2. Displacement pulse

The displacement operator D̂(α) in Eq. 4 describes the displacement of an arbitrary state

in phase space by an amount α, and creates coherent states |α⟩ by displacing the vacuum

state from the origin, i.e. |α⟩ = D̂(α) |0⟩. To map this operator to the pulse level,

first assume that the resonator and qubit drive pulses are never applied simultaneously

(ϵ1(t) ̸= 0 =⇒ ϵ2(t) ≡ 0, and vice-versa). To create a cavity displacement pulse

during t1 to t2, we need to ensure that whenever the cavity is driven, the qubit is in its

ground state. In this case, only the Ĥ1(t) term in Eq. 3 survives. Driving the cavity

on resonance (δ1a = 0) and setting ϕ1 to be constant throughout the duration of the

displacement pulse, Ĥ1(t) commutes with itself for all times. In this case, we can drop

T in Eq. 6 so that

Û(t2, t1) = e−i
∫ t2
t1

ϵ1(τ)(e−iϕ1a†+eiϕ1a)dτ ≡ D̂(α), (8)

where α = −i
∫ t2
t1
ϵ1(τ)e

−iϕ1dτ . Choosing the pulse envelope ϵ1(t) with compact support

on the domain [t1, t2] and constant phase ϕ1 allows us to tailor an arbitrary phase space

cavity displacement pulse. Note that although the number operator a†a has countably

infinite eigenvalues in the cavity Fock basis, in numerical simulations we truncate the

cavity Hilbert space at some finite cutoff Ncavity that is chosen to be much larger than

the qudit dimension d, such that it is near, but conservatively above, the minimum value

at which the computation is sensitive to the cutoff level.

2.3. SNAP pulse

The SNAP [39] unitary in Eq. 5 is realized through a phase kick-back on the cavity

mode coupled to the qubit. First, at the beginning of a SNAP gate, we ensure that

the qubit is in its ground state. At this stage, we assume a generic superposition

state |ψ⟩c =
∑∞

n=0 cn |n⟩ for the cavity, and an initial separable composite state of the

system, i.e. |ψ⟩c |g⟩. Next, recall that a rotation of the qubit state about an arbitrary

axis m̂ = (mx,my,mz) by angle θ on the Bloch sphere is described by

Rm̂(θ) = e−iθm̂·σ⃗/2

= cos

(
θ

2

)
I − i sin

(
θ

2

)
(mxσx +myσy +mzσz) . (9)

To add a geometric phase eiθn to Fock state |n⟩ using an ideal SNAP sequence, we

apply two θ = π pulses to the qubit (setting mz = 0 from here onward), conditioned on

the cavity state |n⟩, with the horizontal rotation axis of the second π pulse advanced by

an angle θ′n = π − θn. This is depicted in Fig. 2, with the two operators given by
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|ψ⟩c
|0⟩ Rŷ|n(π) Rθ̂′n|n

(π)

Figure 2: SNAP gate realization through the application of two π pulses on a

qubit, conditioned on the cavity |n⟩ state, about axes ŷ = (0, 1, 0) and θ̂′n =

(− sin(θ′n), cos(θ
′
n), 0) with θ

′
n the anti-clockwise angle between the Bloch sphere ŷ and

θ̂n axes.

Rŷ|n(π) = |n⟩⟨n| ⊗ Rŷ(π) +
∑
n′ ̸=n

|n′⟩⟨n′| ⊗ I, (10)

Rθ̂′n|n
(π) = |n⟩⟨n| ⊗ Rθ̂′n

(π) +
∑
n′ ̸=n

|n′⟩⟨n′| ⊗ I. (11)

It can be shown that these two operators create the desired cavity-qubit state

∞∑
n=0

cn |n⟩ |g⟩ → (eiθncn |n⟩+
∑
n′ ̸=n

cn′ |n′⟩) |g⟩ , (12)

thereby realising a single SNAP angle Sn(θn) = exp(iθn |n⟩⟨n|).
To compute the pulse level representation of a SNAP gate, we first assume that the

cavity drive is turned off. In this case the system Hamiltonian becomes Ĥ
′
= Ĥint+Ĥ2(t).

In the current cavity-qubit co-rotating frame, all basis states with the qubit in the ground

state, {|n, g⟩}∞n=0, have resonance frequencies of 0. The frequencies of the {|n, e⟩}∞n=0

states, however, are all respectively nχ. To add an arbitrary relative phase θn to a

single chosen Fock state |n⟩ of the resonator, we tailor the first π pulse to have a carrier

frequency of δ2q = nχ and hence drive the transition |n, g⟩ ↔ |n, e⟩. Calibrating the

pulse entails choosing ϵ2(t) between times t1 and t2 (usually a flat-top or truncated

Gaussian envelope) such that
∫ t2
t1
ϵ2(t)dt = π. For this first pulse we set ϕ2 = 0 without

loss of generality, which amounts to fixing the horizontal Bloch sphere axis about which

we rotate the qubit (arbitrarily chosen to be the ŷ axis in Fig. 2). We then apply a

second π pulse with identical envelope and drive frequency, but with a drive phase of

ϕ2 = π − θn. This rotates the state |n, e⟩ back to the qubit ground state |n, g⟩, but
now about an axis that is offset by π − θn with respect to the first (see Figs. 1 in both

Refs. [38] and [39] for intuitive illustrations of this). The net effect is that the qubit

trajectory causes the state |n, g⟩ to acquire a geometric phase eiθn , as desired, while

leaving the qubit and cavity disentangled.

We have yet to consider the effect of this single SNAP operation on the other

basis states in |ψ⟩c |g⟩. The energy of |n, e⟩, namely nχ, is separated from that of its

neighboring states in the co-rotating frame by χ. While driving |n, g⟩ ↔ |n, e⟩, we wish
to minimize other transitions |m, g⟩ ↔ |m, e⟩ for m ̸= n. This is done by ensuring that
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the spectral linewidth of ϵ2, which is roughly proportional to its peak height |ϵ2| in the

time domain profile, is much smaller than the spacing between adjacent transitions, i.e.

|ϵ2| ≪ |χ|. This condition imposes a fundamental trade-off in SNAP pulses: to ensure

this weak drive condition while maintaining a pulse area of π, drive ϵ2 must be longer in

time. This is the reason why SNAP pulses are relatively long in practice. For a single

SNAP pulse conditioned on a single n, we choose |ϵ2| = χ/10. Consequently, a longer π

pulse causes the qubit to spend more time in the excited state, making the SNAP gate

more susceptible to qubit decay and dephasing noise.

A generic multi-component SNAP gate Ŝ(θ⃗) ≡ Πd−1
j=0Sj(θj) in Eq. (5) can be

realized by applying multiple such conditional qubit rotations either sequentially or

simultaneously, where the latter is preferred to reduce gate time. One can add arbitrary

phases to the first d Fock levels of the cavity by multiplexing the qubit drive signal

such that the first pulse of the SNAP sequence is the sum of d waveforms each with

the same amplitude ϵ2(t) and drive phases of ϕ2 = 0, but each with a respective carrier

frequency of jχ for all j = 0, · · · , d − 1. As such, each component drives a transition

|j, g⟩ → |j, e⟩. The second pulse is identical except with the phases set to the respective

desired values θ′j. Ideally, this would allow us to create the unitary in Eq. (5) with high

fidelity. However, there may be practical limitations to this scheme as discussed below.

In the best case scenario, as d increases, the SNAP gate length (which is twice

the length of each ϵ2(t)) can be kept independent of d. Let Ps be the microwave

power delivered to the system while implementing a constituent Sj(θj), taking time

ts = 2(t2− t1) (with Ps ∝ p =
∫ t2
t1

|ϵ2(t)|2dt). The total power delivered for a SNAP gate

would hence be Psd, which for large d would heat the system and cause noise and other

unwanted effects, e.g. AC-Stark shifts [45]. One could apply the Sj(θj)s sequentially

to avoid any heating, but at the expense of increasing the total gate time to tsd. This

in turn would result in reduced system performance due to decoherence. We employ

a trade-off via the simultaneous application of Sj(θj)s with longer gate times, while

limiting the total delivered power.

To understand the scaling with d, let Pmax = Ps be the maximum power we

allow to be delivered to the system, and let P ′
s be the new modified power for each

constituent Sj(θj) with P
′
s = Ps/d. Since the Rabi rate is proportional to

√
P ′
s , in order

to compensate for the lower rate, the gate time of the d-dimensional SNAP gate needs

to be ts
√
d. Therefore, we scale the length of a d-dimensional SNAP pulse with the

square root of d in our simulations.

2.4. Noise model

We consider various benchmarking metrics for our resonator-transmon system in the

presence of noise [30]. While Ĥ
′
generates the unitary dynamics, common incoherent

sources of noise are generally described by non-unitary operators and the dynamics

consequently described by a more general master equation. For resonator cavities, the

dominant noise channel is generally photon loss. Contemporary 3D cavities typically
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have very high Q values (a measure of energy loss) exceeding 109 [20, 46]. On the other

hand, superconducting transmon qubits typically show Q values around 106 [47–49], but

are nevertheless necessary to couple to the cavity in order to drive certain gates such as

the SNAP gate. Hence we can safely ignore losses intrinsic to the cavity and assume that

errors on the gates are primarily caused by the losses in the transmon. The coupling

of transmons to the noisy environment, either represented as a bath and/or two-level

systems [50, 51], once the environment is traced out, is best modeled as non-unitary

qubit decay and dephasing channels.

Under the Born-Markov approximation [52], assuming that our system and

environment are initially uncorrelated, the master equation describing the cavity-qubit

dynamics takes the Lindblad form

ρ̇ = −i
[
Ĥ

′
, ρ
]
+ γ1D[σ−]ρ+ 2γϕD[σz]ρ, (13)

where the collapse operators are
√
γ1σ

− and
√
γϕσz. In this expression, γ1 = 1/T1 is

the qubit decay rate, γϕ = 1/T2 − 1/ (2T1) is the pure dephasing rate, and σ− and

σz are the system-environment coupling operators. The superoperator D is defined as

D[b]· = b · b† − 1
2
{b†b, ·}. We used QuTiP [53, 54] to simulate the system dynamics.

3. Metrics

Currently, there is no universally agreed upon standard test suite to benchmark the

algorithmic performance of quantum computers using different hardware paradigms.

Moreover, existing metrics are often difficult to compute in practice, due to the

exponential scaling of the Hilbert space dimension with the number of qubit/qudit

information carriers.

An example of an ideal metric would be to measure a device’s fidelity, i.e.

F = ⟨ψ| ρ |ψ⟩, with ρ being the noisy implementation of an ideal error-free state |ψ⟩ that
one may be interested in preparing. However, this technique generally requires some

form of quantum tomography, which is prohibitively expensive for large Hilbert space

sizes. Although recently developed shadow tomography techniques [55, 56] can bring

this cost lower, it is not clear how to adapt these techniques to qudit based platforms

such as the one we consider here. Part of this difficulty lies in the nonexistence of unitary

2-groups (unitary 2-designs with an additional group structure) in arbitrary dimensions

[57], as well as in generalizing Gottesman-Knill type results to arbitrary d that is not

prime or power of a prime [58].

Moreover, we are primarily interested in the performance of the device as we use it

for increasingly complex unitary operations. Most benchmarking efforts in qubit-based

platforms have focused on sampling problems. The chosen metrics allow a relatively

small number of measurements on a quantum device prepared in a state representing

a specific probability distribution to be taken while still providing some approximation

of a robust underlying “quantum” metric. Two such empirical metrics are quantum

volume [35, 59] and the cross-entropy benchmark [17, 60].
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The quantum volume of a quantum processor unit (QPU) is a performance metric

that quantifies the maximum size of a “square” quantum circuit that can be successfully

run on a QPU. It is a “full stack” metric, in that it is a single number that captures many

real-world features and imperfections of a QPU. It takes into account the qubit/qudit

and gate quality, qubit/qudit connectivity, classical compiler performance, and coherent

and incoherent noise in the electronics and devices themselves, among other potential

sources of imperfections.

When benchmarking a single qudit, the quantum volume ansatz circuit reduces to

applying a Haar random unitary on that qudit; there is no need for the SWAP operations

since there is only one information carrier. This is analogous to choosing random SU(2)

unitaries on individual qubits in the qubit-based quantum volume setting. In part due to

this reason, it is difficult to define the notion of the quantum volume of a single qudit.

However, in this case employing sampling tests such as the heavy output generation

(HOG) test [16] or the linear cross-entropy benchmark (XEB) [17, 61], described in

greater detail in the following sub-sections, still makes sense. Note that in the case

of multiple qudits, with the addition of multi-qudit gates including possibly SWAP

operations, a straightforward modification of quantum volume may again become a

good benchmark [7].

In the quantum setting, given that we typically perform repeated single-shot

measurements in a single basis (usually the σz basis for qubits and the Fock basis in the

current cavity QED context), we are in fact measuring a classical distribution derived

from a quantum state. As such, focusing on the cross-entropy between Q (derived from

the noiseless state |ψ⟩) and P (derived from the noisy state ρ) makes intuitive sense.

However, two points are worth mentioning. First, studies typically consider a linear

version of H, namely XEB, to better minimize fluctuations when empirically measuring

entropy [17, 36]. The XEB of a device is typically taken over an ensemble of random

circuit implementations, in order to gauge the performance of a QPU itself rather than

for a single unitary. And second, the XEB is meant to serve as a stand-in for the circuit

fidelity of the QPU [17, 60, 62]. Below, we outline the details of each metric.

3.1. Heavy output generation test

Within the context of qubit-based systems, the most common quantum volume scheme

[35] entails first choosing a small subset of m of the available qubits. The action of a

large 2m × 2m Haar random unitary U acting on the subset is to be approximated by

performing Haar random two-qubit unitary operations between randomly selected pairs

of qubits from the subset. This creates a single “layer”; such layers are concatenated

together until the number of layers, dℓ equals the number of qubits (m). This defines

a “square” ansatz circuit. The choice of a square circuit — namely settings dℓ = m

— was motivated by the difficulty of simulating random circuits of equal width and

depth using tensor network arguments [35], although relaxing this restriction gives rise

to other volumetric benchmarks [7].
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Measurements of the state of each qubit are then performed, with each measurement

producing a bitstring x ∈ {0, 1}m. For an ideal QPU and a single unitary U , the ideal

output bitstring distribution is defined by

qU (x) = |⟨x|U |0⟩|2. (14)

From this ideal distribution, the so-called heavy output set corresponding to U is

computed, as

HU = {x ∈ {0, 1}m such that qU (x) > qmed}, (15)

where qmed is the median bitstring probability from the set {qU (x)}.
In reality, qU is not the distribution that is sampled from. The unitary U is

classically compiled into the square ansatz circuit discussed above, implemented on

real hardware, and the state of each qubit read out. Various sources of noise and

imperfections compound in such a chain such that the actual distribution that is sampled

from is not that implied by U , but rather a noisy U ′ (U ′ is almost always in fact a non-

unitary noisy quantum channel).

This leads us to the heavy output generation (HOG) test [16], an important

subroutine in quantum volume benchmarking. For the single U , the multiple noisy

quantum bitstring measurements are classified as lying in their corresponding classically-

computed heavy set HU or not. This entire chain - from generating a random U , to

computing the heavy set, compiling the physical implementation of U according to the

square ansatz and collecting bitstring statistics from multiple physical measurements -

is repeated for a large ensemble of Haar random unitaries. The HOG test finally entails

examining all of the output bitstring measurements from the ensemble of unitaries and,

for the circuit size m, defining “success” as the case where more than two-thirds of the

bitstring measurements lie in their respective heavy set∥.
The HOG subroutine test is mapped to a single numeric metric for the system: if

we relax the condition that the circuit ansatz be square, i.e. not require that the depth

dℓ(m) equal the width m, the quantum volume of a qubit-based system, VQ is

log2 VQ = argmaxmmin (m, dℓ(m)) , (16)

where argmaxm here denotes the largest value of m for which the system passed the

HOG test. In practice, one chooses a small initial value for m and increments it (by

adding both a single qubit and a single layer to the circuit ansatz in the case of dℓ ≡ m)

until the test fails.

It is unclear how to map the HOG test to a single number representative of the qudit

device under consideration in direct analogy to quantum volume because we are not

entangling multiple qudits. As such, for our single qudit of dimension d, the bitstrings

∥ It is known that this HOG fraction metric falls to 0.5 for a completely depolarized QPU (which would

be akin to sampling from uniformly random noise) and asymptotically approaches (1 + ln 2) /2 ≃ 0.85

for a perfect QPU [35].
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x will now lie in the set {0, 1, · · · , d−1}, U denotes a set of d×d Haar random unitaries

acting on said qudit, and the HOG test itself still requires a two-third threshold.

3.2. Linear cross-entropy benchmarking

Cross-entropy benchmarking is a protocol that relies on running random quantum

circuits on a quantum device, which is assumed to be noisy, obtaining samples, and

classically computing the ideal sampling probabilities of the outcomes. Ordinary cross-

entropy, a concept fundamental to information theory [63], is a way of quantifying the

similarity or difference between two classical distributions. It is defined as H(P,Q) =

−∑x P (x) logQ(x) for distributions P and Q. One way of intuitively understanding

cross-entropy is, if one optimizes a code scheme for a model distribution Q, but the true

underlying distribution is in fact P , the cross-entropy quantifies the average amount

of information needed to describe an element x, sampled from P , using Q’s encoding

scheme. While XEB has been used in the past as a protocol to demonstrate quantum

supremacy [17, 64], here we employ it to assess how well we are able to control and

manipulate the Hilbert space of a single qudit of some given dimension.

The linear cross-entropy benchmark (XEB) involves computing the linear version

of H from Sec. 3, which, for the case of a qudit of dimension d, is

XEB = dEU [pU(x) · qU(x)]− 1, (17)

where qU(x) denotes the ideal classical bitstring distribution (derived from the pure

target state |ψ⟩), pU(x) the noisy classical distribution (derived from ρ with x ∈
{0, 1, · · · , d−1}), and the center dot denotes the inner product. In a typical experiment,

the expected value EU [pU(x) · qU(x)] is estimated by sampling finitely many bitstrings

for each random circuit U to construct an estimator of pU(x) (using, for example,

Bayesian inference, since we do not have full knowledge of pU in a lab - see Appendix

Sec. Appendix A) and computing the sample mean over many U ’s.

In our numerical simulation, where we are interested in benchmarking the

“controllability” of a single qudit of increasing dimension using the SNAP+displacement

gateset in the presence of noise, we can easily compute the exact dot product of the

probability vectors. Moreover, whereas the ensemble of unitaries is typically taken to

be random quantum circuits built out of primitive one- and two-qubit gates on qubits,

here we explicitly sample d×d Haar random unitaries and compile them into the native

gateset. Since the XEB metric relies on the ideal classical probability vector qU and

since we assume that our qudit is always initialized in the ground state |0⟩, we compile

instead the shortest SNAP+displacement sequence that could create the state U |0⟩
with high fidelity. As discussed previously in Sec. 2.1, Since we are concerned with

state preparation here, we can limit ourselves to an O(1) ansatz length. Concretely, we

utilize two SNAP gates interspersed with three displacements as the ansatz, so k = 2.

For an ideal device where pU = qU , EU [pU(x) · qU(x)] = 2
d+1

≈ 2
d
for a Haar

random ensemble [17], with pU and qU functions of the sampled U . If p and q are
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Figure 3: Fraction of bitstrings lying in their corresponding heavy set for various T1

times and dimensions d. The bootstrapped error bars are negligibly small.

instead uniformly distributed, whereby each outcome x is equally likely, the average

EU [pU(x) · qU(x)] ≈ 1
d
instead [17]. This produces the two limits of XEB ≈ 1 for an

ideal quantum device with very large d, and XEB ≈ 0 for a uniform sampler. This latter

case is easy to simulate classically by uniformly sampling random bitstrings.

There is complexity-theoretic evidence that exactly sampling from the output of

random quantum circuits is classically difficult and remains so even in the presence of

a small amount of noise [65]. This implies that achieving XEB ≈ 1 is likely infeasible

for any classical algorithm. For our purposes however, we employ the XEB score to

benchmark how reliably we are able to compile and affect Haar random unitaries on

our cavity mode qudit, without the aspiration of demonstrating any form of supremacy.

This is because, at least in the single qudit case, the entire protocol is easily classically

simulable with a runtime that scales polynomially in the dimension d of the qudit.

Finally, for relatively small values of d such as the ones we explore here, the value

for XEB can be substantially smaller than 1. As such, we instead consider a normalized

version of XEB, denoted XEBn, as proposed in [66] and employed in [61]. It is defined

as

XEBn =
XEB

dEU [qU(x) · qU(x)]− 1
. (18)

This quantity lies between 0 and 1, assuming the former value in the case of a depolarized

QPU and the latter when sampling from a perfect one.

4. Results

It is evident that the metrics used to gauge the qudit’s performance depend on the

coherence of the ancilla qubit. The degree to which other parameters impact these
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metrics is often less pronounced. The HOG metric is convenient in that the scheme

provides a hard pass/fail value of two-thirds for the heavy output fraction¶. Figure 3

shows the results of the HOG test fraction for various targeted qudit dimensions d as

a function of the qubit’s T1 time (where we have dropped the pure qubit dephasing

contribution in Eq. (13)), averaged over an ensemble of 1000 Haar random circuits for

each data point.

First, it is unsurprising that the HOG fraction increases given less noisy qubits. This

is a result of the phase kickback mechanism — which is fundamental to the operation of

the SNAP gate — becoming more coherent for larger qubit T1 times and hence imparting

the desired phases to the cavity mode Fock states. However, what is perhaps surprising

is that relatively modest qubit T1 values on the order of 25 − 50 µs — values far from

state-of-the-art — appear sufficient to achieve relatively good control (“good control”

here gauged with respect to the HOG test pass/fail value) over the first ∼ 10 Fock levels.

At a T1 value of 100 µs, typical for modern transmons, all simulated dimensions exceed

the “pass” value with a significant margin, pointing to the possibility of controlling

∼ 102-dimensional qudits.

It is instructive to note the relationship between the expected controllable

dimension of the cavity qudit, and the T1 time of the coupled transmon qubit. In

our simulations, a χ of 2π × 1 MHz was chosen. As such, a single SNAP pulse had a

length of 10
√
d/(1 MHz) = 10

√
d µs (recall that we scale the length of each SNAP pulse

to control the total microwave power deposited into the system). In order to reduce

incoherent errors due to the transmon’s decay, we would like our SNAP gate time to

be less than the decay time scale, i.e. 10
√
d < T1, or equivalently d < (T1/10)

2. In

contrast, since T1 times are inversely proportional to the average photon number, or

roughly the cavity qudit dimension, one may expect that the ratio of the cavity qudit

T1 (∼ 1 s) to that of the transmon qubit (∼ 100 µs), which is roughly 104, provides an

estimate of the controllable dimension of the cavity qudit.

Given the relationship between the transmon T1 and the qudit dimension d that we

just discussed, however, achieving d ∼ 104 translates to a transmon T1 ∼ 1 ms. While

this is larger than currently available T1 times, transmons optimized for coherence

can regularly achieve T1 times in excess of 100 µs [48, 67–69]. The current state-of-

the-art is > 500 µs [68, 69], and therefore should be more than sufficient for a qudit

dimension of d ∼ 100. Promising directions to achieve even higher T1 times include side

encapsulation of the base superconducting layer, substrate treatment to reduce bulk

loss, modification of the device geometry, fabricating Josephson junctions with materials

other than Aluminum etc. This suggests that bad qubit decay rates are potentially not

the largest bottleneck when creating arbitrary Fock states of higher dimension d in such

a cavity-qubit system. However, it should be noted that many other minor sources of

errors such as state readout error, non-zero thermal photon noise, control electronics

imperfections etc. are not accounted for in this model and may mildly decrease the

¶ This value arises from a combination of a worst-case approximation of the underlying binomial

distribution as well as a chosen z-score of 2 or greater [35].
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Figure 4: Normalized linear cross-entropy as a function of qubit T1 time (with no qubit

dephasing T2 channel), with small bootstrapped error bars.

HOG metric.

As our numerical studies above suggest, increasing the target qudit dimension

d, for a fixed T1, appears to have a relatively modest deleterious effect on the HOG

fraction. However, it may not be the case in practice because increasing d would entail

increasing the number of Fock levels to which arbitrary SNAP phases need to be applied.

The calibration of multiple simultaneous SNAP pulses is challenging in the laboratory

due to the presence of AC-Stark shifts in the qubit’s energy spectrum, which often

gives rise to other unwanted effects [45]. Studying other potential gatesets such as

Echoed Conditional Displacement [70] operations along with single-qubit rotations, the

description of which is more natural in terms of canonical coherent states rather than

Fock states, would be interesting.

Figure 4 plots the XEBn metric from the same datasets used in Fig. 3. This metric,

too, improves with a more coherent qubit. Once again, a relatively modest T1 time

appears capable of yielding appreciable linear cross-entropy values. However, for some

fixed T1 value, one cannot arbitrarily keep increasing the targeted cavity qudit dimension

without sacrificing controllability on its Hilbert space, as captured by the XEB metric.

The error bars in Figs. 3 and 4 are derived from bootstrapping the 1000 individual

HOG fraction/XEBn values, for each data point. We do not report the standard

deviation of these 1000 values since each one arises from an independent unitary with

a different underlying distribution; we are interested in investigating the performance

of the cavity-transmon device itself, rather than how well the device can prepare any

particular state. As such, we employed a Bayesian bootstrapping procedure outlined

in the Appendix Sec. Appendix A to derive the bootstrapped standard deviation error

bars shown in these two figures. These bars give an indication of how reliably the device

itself performs and how well it is able to consistently produce the HOG/XEBn values
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Figure 5: Heavy output test fraction and normalized linear cross-entropy metric for a

cavity-qubit system, all with T1 = 150 µs and T2 values as indicated.

for the various values of T1 and d. Given that these deviations are small (roughly

0.5 − 1% for each data point in each of the two figures), we may be confident that

we have sampled a sufficient number of Haar random unitaries and that the device’s

performance is relatively consistent.

Finally, we simulate the dynamics and investigate both metrics for a device with a

modest qubit T1 value of 150 µs [69], and two different qubit T2 values: one relatively

poor value (35 µs) and the other (300 µs) chosen such that the pure dephasing time Tϕ

[1] (where 1
Tϕ

= 1
T2

− 1
2T1

), is zero. Figure 5 shows the metrics’ behaviors as a function

of d. Note that T2 values appear to have relatively small effects on the performance on

the sampling tests we consider here. For instance, Fig. 5 suggests that the device passes

the HOG test for the same d even after an order of magnitude increase in the T2 value.

As in the previous figures, the error bars in Fig. 5, obtained from bootstrapping,

are negligibly small. Despite this, we observe non-negligible variations in the data at,

for example, d = 16 and 22. We confirmed that this deviation is not due to compilation

errors of the ideal Haar random target states, since each state was post-selected on

having been compiled to the pulse level with an infidelity of less than 1%, which

we deemed acceptable. Furthermore, we ensured that this post-selection would not

introduce any bias in the final results by applying a so-called t-design frame potential

test. Unitary t-designs provide a systematic method to approximate Haar-random

unitaries. In particular, given an ensemble of unitaries, the frame potential test helps
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to quantify how close this ensemble is to being truly Haar-random. These numerical

tests (see Fig. B1 in Appendix Sec. Appendix B) confirm that our postselection does

not bias the uniformity of the ensemble of unitaries used in the HOG test. This

test also confirmed that sampling 1000 states, for each data point, was sufficient.

Furthermore, such variations cannot be due to finite sampling errors arising from

insufficient measurements of the final state’s Fock level, given that we had full knowledge

of the noisy density matrices themselves and computed the HOG and XEB metrics

directly (although the Bayesian inference protocol one would need to implement in a

real-world setting to infer the posterior distribution, is outlined in the Appendix Sec.

Appendix A, for completeness).

The overall trends in Fig. 5 show that, given a fixed T1 time, a stronger dephasing

noise reduces the controllability of the qudit dimension. In contrast, in the case of no

pure qubit dephasing, the benchmarks perform better for all target qudit dimensions.

In summary, the three figures viewed together suggest that one should be able to

control a few tens of Fock states of a high-quality cavity mode using a transmon with

contemporary decoherence values, without regard to other possible noise channels.

5. Conclusion and Outlook

In this paper, we tested the ability of a qudit-based QPU, consisting of an ancilla

transmon qubit dispersively coupled to a cavity resonator, to generate ensembles of

random states in the Fock basis. These were in turn investigated using modified versions

of popular sampling tests that are often used, in the current NISQ-era, to gauge QPU

device performance. In particular, we adapted the heavy output generation test and

the linear cross-entropy benchmark, previously used for qubit-based platforms, to this

qudit-based one. These results were numerically studied using a full-stack of quantum

processing elements at the pulse-level, under a realistic noise model. We found that

under reasonable assumptions about the noise of the cavity-transmon system, one can

manufacture a cavity qudit with reliable controllability of its Hilbert space containing

a few tens of Fock levels with contemporary transmons. We expect this dimensionality

to go even higher as coherence times improve on transmon qubits [67–69].

Our study used classical simulation of a quantum device under a simple, but

realistic, noise model. We found intuitively plausible improvement of the metric values

under reduced noise. Our noise model assumed a very high coherence cavity, with the

primary limitations arising from noise on the transmon qubit. This arrangement is

expected based on current hardware implementations of these devices [18–21, 30]. The

most important next step is to apply the framework developed here to physical hardware

in the laboratory and assess how well one can control individual qudits with increasing

dimension.

It is also important to consider the performance of the metrics in a system

of entangled cavity resonators. As the system scales to multiple qudits [32, 33],

one could then employ random qudit circuits [71], with Haar random unitaries on
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individual qudits, as we have done here, and entangling gates between the qudits, to

perform quantum volume experiments analogous to the qubit case. Luckily, as the

pathway to operable multi-mode systems becomes clearer, these same tools should

be relatively easily generalizable, making possible comparisons between single- and

multi-mode devices. While a specific qudit platform with a specific gateset and

noise model was chosen, the underlying random sampling tests should still hold

for different qudit platforms with different gatesets. This is an advantage of our

random sampling, algorithm-agnostic benchmarking approach. Moreover, certain other

traditional benchmarking techniques such as randomized benchmarking [72, 73] face

difficulties in the continuous variable setting [74]. These difficulties can be circumvented

by the sampling tests we have adopted here, which are also often key to contemporary

quantum advantage demonstrations [17, 75, 76]. Such tests, as outlined in this

manuscript, may make future quantum advantage comparisons easier to compare

between different devices.

For the sampling tests employed here, an important ingredient is the classical

circuit simulation compute ideal probability distributions. In principle one could adopt

standard tensor network techniques to compute individual amplitudes or sampling

probabilities. However, larger qudit dimensions would increase the computational

runtime of such methods, if not necessarily their asymptotic complexity. It also leaves

room for improvement on qubit-based simulation algorithms, that may exploit certain

features of the gateset we employ here. While the HOG/XEB benchmarks generate

random quantum circuits (from one- and two-qubit random gates) in the multi-qubit

setting, here we directly sampled single-qudit Haar random unitaries and compiled them

to the native gateset.

A natural research direction for the future would be to investigate the efficient

construction of unitary/state t-designs [77–82] that can approximate Haar random

ensembles on single qudit Hilbert spaces in terms of SNAP and displacement gates, the

native gateset employed here (see Appendix Sec. Appendix B for details). The optimal

construction of qudit unitary designs has attracted a lot of attention recently, see e.g.,

the seminal work of Ref. [83] and the more recent [71] including references therein.

These are primarily based on “brickwork” circuits generated via 2-qubit Haar random

unitaries and it would be interesting to construct “hardware efficient” variants that can

generate them on cavity qudits via native interactions. It is worth mentioning that the

infinite-dimensional single cavity mode was truncated and studied in the discrete photon-

number basis in this study. In reality, the cavity mode is a continuous bosonic system.

However, constructing continuous-variable (CV) designs for such systems is a nontrivial

task and requires exquisite control over the measurements on a cavity mode [84]. While

randomized benchmarking will likely remain an important tool, the sampling approaches

we considered here offer a useful and readily accessible alternative for benchmarking

hybrid cavity-transmon systems when viewed from a continuous-variable lens.

We also remark that while a circuit ansatz consisting of SNAP and displacement

gates of depth O(d2) is expressive enough to compile arbitrary single qudit unitaries of
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dimension d, adopting a lower depth O(d) depth ansatz would be less noisy while still

maintaining expressivity. However, this comes at a cost of incurring compilation errors

in practice, as there is no known classical algorithm that can efficiently find the globally

optimal parameters for such an ansatz, unlike for the O(d2) ansatz. A crucial input

to the scalability of such systems would be to develop compilation algorithms for such

gatesets. We leave all such considerations for future work.
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Appendix A. Bayesian inference and bootstrapping setup

Given that we simulate the QPU classically and hence know the final noisy state ρU
exactly for the cavity qudit for each unitary U , as well as the classical Fock state

distribution pU derived from it, there is no need in the current article to consider finite

sampling statistics. However, one needs to employ statistical techniques to infer pU
when performing such experiments in practice. In that case we won’t have direct access

to ρU but may only sample from pU repeatedly, in a particular measurement basis (here,

the photon number basis). We here give a pedagogical outline of the Bayesian inference

techniques needed to glean pU for each unitary U . Furthermore, we outline a Bayesian

bootstrapping procedure [85] to assign error metrics for finite sampling of unitaries U

from the QPU itself.

For a given circuit described by the d × d unitary U , acting on a qudit initialized

in the ground state |0⟩, the ideal noiseless bitstring probability vector q⃗U is given by

Eq. 14. The probability of an output bitstring i ∈ {0, 1, · · · , d − 1} in the noisy

implementation of this circuit follows a different distribution, denoted by vector p⃗U
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with elements pU,i. The act of sampling a single discrete bitstring xU from one of the

d categories, each with corresponding probability pU,i, is modeled as sampling from

a categorical distribution, i.e. xU ∼ Categorical(p⃗U); drawing N independent and

identically distributed bitstrings x⃗U corresponds with sampling from the corresponding

multinomial distribution, x⃗U ∼ MultiNom(N, p⃗U).

The prior distribution most appropriate for modeling the uncertainty of p⃗U itself,

given that we sample from a multinomial distribution in the lab, is a Dirichlet

distribution as it is the conjugate prior distribution. So, p⃗U ∼ Dir(α0, · · · , αd−1) with

the set of αi’s being the concentration hyperparameters. As such, assuming the prior

distribution Dir(α0, α1, · · · ) and having observed the sample vector x⃗U consisting of the

number of recorded observations xU,i from each of the d categories (with
∑d−1

i=0 xU,i = N),

the updated posterior distribution is Dir(α0+xU,0, α1+xU,1, · · · ). The choice of α⃗ is up

to the user, generally.

One common choice is to set αi = 0 for all i. This is an extension of the Haldane

prior, which is an improper distribution often used in binomial sampling (i.e., repeatedly

sampling a binary variable). This prior has the property that the expectation value of

the posterior distribution for each outcome exactly matches the sample mean. Since one

cannot sample from an improper distribution, if we were to choose αi = 0 and observe

xU,j = 0 for some j, we’d have to “drop” such an element from the distribution. In

other words, we’d sample over only those elements for which xU,i ̸= 0. Doing so would be

equivalent to the Bayesian bootstrap from [85] whereby one sampled an indistinguishable

element repeatedly.

Another hyperparameter choice is to set αi = 1/d for the d categories. This is

a common choice for a prior such that the resulting Dirichlet distribution matches

the marginal distributions for each category [86]. Given that choosing a prior’s

hyperparameters is largely up to the user, and for reasons of simplicity, this is our

choice.

The “target” distribution q⃗U , as well as the above posterior, are enough to compute

the probability inner product from Sec. 3.2 for a single U , according to

⟨pU , qU⟩ ≡ pU(x) · qU(x) =
∫

(q⃗U · p⃗U) f(p⃗U ; α⃗ + x⃗U)dp⃗U , (A.1)

where the probability density function f of the posterior is given by (with A =
∑
αi)

f(pU,0, · · · , pU,d−1;α0, · · · , αd−1) =
Γ(A)∏d−1

i=0 Γ(αi)
×

d−1∏
i=0

pαi−1
U,i . (A.2)

However, in the case of the HOG test (see Sec. 3.1), further simplifications can be

made. Here, we first classically compute the heavy set HU (Eq. 15). We are interested

in what fraction of the bitstrings that we sample lie in HU . Luckily, the marginal

distribution for a bitstring being in HU , given our posterior distribution Dir(α⃗+ x⃗U), is

simple to describe. Indeed, for a general Dirichlet distribution over distinct categories

{A,B,C, · · · }, namely Dir(a, b, c, · · · ), the marginal distribution Pr(A OR B,C,D, · · · )
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formed by identifying categories A and B, is simply Dir(a + b, c, · · · ). In our case,

we simply aggregate all bitstrings into two categories: those that lie in HU and those

that do not. The marginal distribution for a bitstring being in HU is hence simply

Dir(α+
∑

i∈HU
xU,i, α+

∑
i/∈HU

xU,i). Or equivalently+, the fraction of measurements in

the heavy output has posterior pU,heavy ∼ Beta(α +
∑

i∈HU
xU,i, α +

∑
i/∈HU

xU,i) (with

α = 1/2 for this two category case).

Recall that we did not have to consider the sample size N in the main text as

our experiments were numerically simulated and we hence had access to the exact

noisy distribution p⃗U . However, in practice, how many bitstring measurements, N ,

would we need to take from each noisy implementation of U with the posterior

p⃗U ∼ Dir(1/d + xU,0, 1/d + xU,1, · · · ) in order to bound the error of each bitstring

probability pU,i? In this case, pU,i’s expectation value and variance are given by

E [pU,i] =
1
d
+ xU,i

N + 1
, (A.3)

Var [pU,i] =
(N + 1)( 1

d
+ xU,i)− (1

d
+ xU,i)

2

(N + 1)2(N + 2)
. (A.4)

This variance attains its maximum when xU,i is an integer close to 1
2
(N + 1) − 1

d
.

Employing Chebyshev’s inequality, we find

P(|pU,i − E [pU,i]| ≥ ϵ) ≤ Var [pU,i]

ϵ2
≤ 1

ϵ2
1

4(N + 2)
. (A.5)

For example, suppose that we wish the estimate of pU,i to be within 0.1 of the true value

with 99% certainty. In this case it is sufficient to take N ∼ 2, 500.

Finally, each circuit U gives rise to a different q⃗U and p⃗U . We therefore need to

repeat the above analysis for each circuit. With this in mind, one question remains: how

do we combine the individual HOG fractions or XEB “inner products” for distinct U ’s to

arrive at the QPU’s overall metric? One approach is to simply find the sample mean of

the individual HOG fraction or inner product values. However, this sample mean is over

an ensemble of HOG fractions and inner product values which all come from different

probability distributions. We wish to make inferences about the QPU itself which with

some unknown fixed distribution has given rise to the different circuits, both ideal and

noisy. Since we know nothing about the distribution across the different circuits a priori,

we will use a Bayesian bootstrapping technique over the circuits.

In general, bootstrapping involves random resampling, with replacement, of the

original sample in order to compute various accuracy metrics of the sample. This

takes place with the fundamental tenet of statistical bootstrapping in mind: any

bootstrapped statistic is to the original sample statistic as the original sample statistic

+ The Dirichlet distribution reduces to the Beta distribution for two categories: the Dirichlet

distribution Dir(x1, x2) samples p1 and p2, but p1 + p2 = 1. Therefore one needs only model a

distribution for p2, which is the Beta distribution Beta(x1, x2)
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is to the population’s statistic. This is only accurate if we take the sample of n random

unitaries/circuits to be a reasonable approximation of the QPU’s unknown population

distribution.

Rubin’s Bayesian bootstrap has a similar flavor [85]. It takes the observed elements

- here the n random unitaries, or values/metrics derived from them - as a given (i.e., the

distribution only has support on the observed elements). However, since we observed

each element only once (assuming they’re all distinguishable), we have learned nothing

about their relative frequency in the true distribution. Thus, Rubin suggests performing

a bootstrap by re-weighting each sample value according to a Categorical probability

distribution sampled uniformly over the simplex.

In our case the posterior estimate of the QPU’s heavy output probability, pheavy,

over all circuits, is pheavy ∼ ∑n
i=1 ωi pUi,heavy, where the n-dimensional weight vector ω⃗

is sampled from Dir(1, 1, · · · , 1), a posterior that is flat over the n − 1 simplex. As

mentioned above, this is equivalent to using an improper extended-Haldane prior over

the space of outcomes and dropping those elements that are not observed, in order to

render the posterior a proper distribution. The posterior for the QPU’s overall linear

cross-entropy metric is similar: XEB ∼∑n
i=1 ωi (d⟨pU , qU⟩ − 1). These distributions can

be used to assign error bars to the QPU’s heavy output and cross-entropy metrics. The

interested reader is directed to [86] for more details on Bayesian techniques.

Appendix B. Haar random unitaries and t-designs

The Haar measure on the unitary group U(d) is the unique (normalized) group invariant

measure that allows us to sample unitaries uniformly over a d-dimensional Hilbert space,

H ∼= Cd. Unitaries drawn from this distribution are commonly referred to as “Haar

random unitaries”. Similarly, applying a Haar random unitary V to a fixed reference

state |ψ0⟩ generates a state |ϕ⟩ = V |ψ0⟩ which is also uniformly distributed (over H).

Since the Haar measure is unitarily invariant, this means that the states |ϕ⟩ obtained in

this manner are also unitarily invariant and independent from the reference state |ψ0⟩.
Such states are colloquially known as “Haar random states”. They have a number of

unusual properties such as being nearly maximally entangled across any bipartition [87],

having nearly maximal magic (or nonstabilizerness) [88], and having close to maximal

quantum coherence [89], among others.

These unusual properties make Haar random states and unitaries a common tool

in quantum information theory, see e.g., the excellent review [82]. Unfortunately, these

states and unitaries suffer from a crucial drawback: their quantum circuit complexity

grows exponentially. Therefore generating them even on a quantum computer is not

an efficient task. Although this is not an issue for the (low-dimensional) single qudit

systems considered in this work, this can be an issue when generalizing to multi-qudit

and large dimensional systems. This bottleneck is at least partly resolved with the

invention of the so-called “unitary t-designs” which approximate Haar random unitaries

up to the t-th moment, where t ∈ N [77–82]. Therefore, if one is only interested in
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(c) Qudit dimension d = 12
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(d) Qudit dimension d = 16
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Figure B1: Normalized frame potential of the ensemble of “filtered” unitaries that

are used in our HOG test. We plot the normalized frame potential, F (t)
E /F (t)

Haar for

t ∈ {1, 2, 3, 4} and for qudit dimensions d = {4, 8, 12, 16}. We sample all of the 1050

unitaries generated for the HOG test. All the curves asymptotically converge to one,

which signifies that they behave as Haar-random unitaries. We fit these decay curves

to a functional form F (t)
E (N) = 1+ A

Np , where N is the number of samples. The legends

also list the sum of squared errors (SSE) for each of the fits. The fit parameters are close

to the values obtained by sampling the same number of elements from the Haar-random

ensemble. This confirms that our filtering does not bias the uniformity of the random

unitaries used in the HOG test.

low-degree polynomial properties arising from Haar random states/unitaries, they can

be efficiently generated quantumly. For multi-qubit systems some canonical examples

are: the Pauli group forms a 1-design and the Clifford group forms a 2- and 3-design.

Moreover, by using random circuit constructions, one can generate polynomial orders of

t-designs. This also provides the theoretical underpinnings of quantum supremacy and
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random circuit sampling experiments [17, 83].

This brings us naturally to the question of quantifying how close an ensemble of

unitaries E is to being Haar randomly distributed. A standard way to quantify this is

to measure the tth order “frame potential” of the ensemble, namely,

F (t)
E :=

1

|E|2
∑

U,V ∈E

∣∣Tr [U †V
]∣∣2t , t ∈ N, (B.1)

where |E| is the cardinality of E . The frame potential for Haar random unitaries has a

closed form expression as, F (t)
Haar = t! for t ≤ d. Moreover, we have, F (t)

E ≥ F (t)
Haar ∀t, ∀E

with equality if and only if the ensemble is a unitary t-design. One may then consider

the ratio F (t)
E /F (t)

Haar to quantify the distance from the Haar ensemble. At this point it

is worth mentioning that numerically estimating these quantities requires a number of

samples that typically scales with the dimension of the Hilbert space and a finite but

large number of samples may generate values away from the formulae listed above,

see e.g., the numerical work and techniques developed in Ref. [90]. As a result,

one often tests for the asymptotic convergence to the Haar-random value, namely,

limN→∞ F (t)
E (N) → F (t)

Haar instead of the actual finite-sample value of the frame potential

F (t)
E (N). To check this numerically we fit the frame potential date to a functional form

F (t)
E (N) = 1+ A

Np , where N is the number of samples. We find that each of the curves in

Fig. B1, corresponding to various values of the frame potential t and qudit dimension d,

all converge to the Haar-random value asymptotically. This confirms that our numerical

filtering does not bias the unitaries away from being uniformly distributed.

Appendix C. Perfect compilation of SU(d) unitaries into SNAPs and

SO(2)s

Here, we review how to compile arbitrary unitaries using SNAP gates and SO(2)

rotations, often termed Givens rotations, as described in [38, 91, 92]. In principle,

one could employ such a universal gateset and repeat the benchmarks described in the

main text. However, the SO(2) gates are not native to the hardware we consider, and

would further need to be compiled into SNAP and Displacement gates [38, 93]. On the

other hand, as we show in this section, the advantage of using such a gateset would be

that it would essentially eliminate all compilation errors, with the trade off of a larger

circuit depth. We leave the study of such a gateset in realistic noisy conditions for future

work, and describe the compilation procedure below.

The SNAP (Selective Number-Dependent Arbitrary Phase) gate [39] is a diagonal

gate that has the following representation

S(θ⃗) =
∞∑
n=0

eiθn |n⟩⟨n|, (C.1)

where θ⃗ = (θ0, θ1, . . . , ). In practice, of course, we would have θn = 0 for all n ≥ d

for some d. Typically, d would be the dimensionality of the qudit space we wish to
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manipulate. As is clear from Eq. (C.1), the SNAP gate imparts an arbitrary phase eiθn

to each of the basis state vectors {|n⟩}. We will describe how this is achieved in the

next section.

The second gate we wish to apply are SO(2) rotations that are only active in the

{|n⟩, |n+ 1⟩} subspace. These take the form

Gn(α) = In ⊕
(
cosα − sinα

sinα cosα

)
⊕ Id−(n+2), (C.2)

where Ik is the k × k identity matrix, 0 ≤ n ≤ d− 2 and d is the qudit dimensionality.

If our primitive gateset consists of Gn(α) for all 0 ≤ n ≤ d−2 and arbitrary α, and

S(θ⃗) for arbitrary θ⃗ = (θ0, . . . , θd−1, 0, 0, . . . ), then we can compile any arbitrary d × d

unitary matrix U(d) into a product of these simpler operations exactly. To demonstrate

this, we first show how to compile U †. Consider any unitary

U =

 a0,0e
iθ0,0 a0,1e

iθ0,1 . . . a0,d−1e
iθ0,d−1

...
. . .

...

ad−1,0e
iθd−1,0 ad−1,1e

iθd−1,1 . . . ad−1,d−1e
iθd−1,d−1

 , (C.3)

subject to the constraint UU † = U †U = I. Let θ⃗k ≡ (−θ0,k,−θ1,k, . . . ,−θk,k) for

0 ≤ k ≤ d− 1. Then, we can “de-phase” the entire last column of U by left-multiplying

it with a SNAP gate with parameter vector θ⃗d−1 so that

S(θ⃗d−1) · U =

 a0,0e
i(θ0,0−θ0,d−1) a0,1e

i(θ0,1−θ0,d−1) . . . a0,d−1

...
. . .

...

ad−1,0e
i(θd−1,0−θd−1,d−1) ad−1,1e

i(θd−1,1−θd−1,d−1) . . . ad−1,d−1

 (C.4)

Let us now note that we can transform an arbitrary 2-dimensional real vector to one

whose top component is 0 and the bottom component is 1 using an SO(2) rotation, i.e.(
cosα − sinα

sinα cosα

)(
a

b

)
=

(
0

1

)
(C.5)

for

α = tan−1
(a
b

)
= cos−1

(
b

a2 + b2

)
= sin−1

(
a

a2 + b2

)
(C.6)

Therefore, if we left-multiply the product in Eq. (C.3) by G0(tan
−1 (a0,d−1/a1,d−1)), then

we transform a0,d−1 → 0, a1,d−1 → 1 and all other matrix entries to some other values.

We can then repeat this process with G1, . . . , Gd−2 with the angles for Gi computed

each time from the previous product of matrices Gi−1(αi−1) . . . G0(α0)S(θ⃗d−1). When

finished, we would be left with 0 in all the entries along the last column except for a 1

in the bottom-right corner of the matrix product. Since the entire product is unitary,

this must also mean that the bottom-most row has all entries equal to 0 except (again)

the rightmost element, which is equal to 1. At this point, we have

0∏
i=d−2

Gi(α
(d−1)
i )S(θ⃗d−1)Ud ≡ Gd−2(α

(d−1)
d−2 ) . . . G0(α

(d−1)
0 )S(θ⃗d)Ud = Ud−1 ⊕ I, (C.7)
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where the superscript (d− 1) refers to the fact that are computing the α parameters for

the d − 1-th column. It is important to note that α
(d−1)
i cannot be computed until we

have computed all the α
(d−1)
j for j < i and composed the product of the corresponding

unitaries with S(θ⃗d−1) · U . We can now repeat the entire process as above for Ud−1

leaving us with Ud−2 ⊕ I2, and then for Ud−2 and so on until we are just left with Id.
At this point, we have compiled U † as

U † =
0∏

j=d−1

(
0∏

i=j−1

Gi(α
(j)
i )

)
S(θ⃗j), (C.8)

and so therefore

U =
d−1∏
j=0

S(−θ⃗j)
(

j−1∏
i=0

Gi(−α(j)
i )

)
, (C.9)

where Gi(−α(0)
i ) = I. We can readily observe from Eq. (C.9) that in order to compile an

arbitrary d× d unitary, we need d SNAP gates, and
∑d−1

j=0 j = d(d− 1)/2 many SO(2)

gates. Each SNAP gate consisting of k ≤ d many non-trivial parameters may also

require up to 2k many physical operations (see the section below). Thus, the physical

gate cost of the SNAP operation may also scale as d(d − 1)/2. By shaping the pulses

required to realize this gate in a clever way, we can actually bring the physical gate cost

down to just 2, however. In any case, the total quantum gate cost is O(d2).

Although one may be able to apply the SNAP gate in O(1) time, it may still require

O(d) to (classically) compute the parameters θ⃗d. Since θ⃗d−1 contains d many non-trivial

parameters, we have a total of
∑d

j=1 = d(d + 1)/2 many classical computations to

carry out for the SNAP gate. In addition, we also need d(d − 1)/2 many classical

computations to determine the SO(2) rotation angles, one for each gate. Thus, the

total classical computation cost of this compilation procedure is also O(d2).

It was recently shown by one of the authors that there is an efficient scheme

to compile an arbitrary SO(2) rotation into SNAPs and displacement gates without

numerical optimization [93]. In essence, one can break the rotation Gk(θ) between

states |k⟩ , |k + 1⟩ into a repeated sequence of SNAPs and displacements of the form

Vk(α) = D(α)Rπ(k)D(−2α)Rπ(k)D(α), where Rπ(k) applies a SNAP with parameters

eiπ for all states up to and including |k⟩. By setting α = θ/4
√
k + 1, Vk(α) approximates

Gk(θ) with an error that goes as θ6. Thus, breaking a larger rotation up into m

applications of Vk(θ/m). This compilation is constant time classically, and the total

number of SNAPs and displacements for a constant error as a function of dimension d

is O(d2.5).

Appendix D. Truncating the displacement Gate

The displacement gate, defined in terms of the creation (a†) and annihilation (a)

operators

D̂(α) = eαâ
†−α⋆â, (D.1)
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Figure D1: Average Frobenius norm difference between the true and truncated versions

of a 100 displacement operators for each value of qudit dimension, with the displacement

parameter being sampled uniformly randomly in (−5.0, 5.0).
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Figure D2: Distribution of displacement gate parameters appearing in the ansatz, Eq. 7

(with k = 2), arising from our parameter solver, aggregated over simulations with a

variety of qubit T1’s, qudit dimensions and 1000’s of unitaries each.

creates coherent states out of the vacuum

|α⟩ = D̂(α) |0⟩ , (D.2)

where the coherent states are defined as eigenstates of the annihilation operator

â |α⟩ = α |α⟩, and have an expansion in terms of the Fock basis number states as

|α⟩ = exp

(
−1

2
|α|2
) ∞∑

n=0

αn

n!
|n⟩ . (D.3)

In the Fock basis, the displacement gate has matrix elements given by [94]

⟨m| D̂(α) |n⟩ =
√
n!

m!
αm−ne−|α|2/2Lm−n

n

(
|α|2
)
, (D.4)

where

Lk
n(x) =

1

n!

n∑
j=0

n!

j!

(
k + n

n− j

)
(−x)j, (D.5)
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is the associated Laguerre polynomial, and where
(
n
k

)
is a binomial coefficient.

In practice, we must truncate the Fock basis up to some finite number Ncavity, which

needs to be large enough such that in the computational subspace d ≪ Ncavity of the

qudit, the matrix elements above agree to some negligible error. The true displacement

operator acts in a space where Ncavity → ∞, so that even in the absence of any physical

errors, or even compilation errors, the optimized parameters we find may not correspond

to the ideal parameters that would reproduce the desired displacement operator which

operators in a space of unbounded cavity dimension. This residual error is attributable

purely to the truncation of this cavity dimension, and so we ensure that it is negligibly

small.

In our simulations, we chose to truncate the cavity dimension to Ncavity = 60, and

limited our simulations to qudit dimensions of up to 25. Figure D1 shows the average

norm difference between the truncated and true displacement operators, taken across

100 displacement operators for each value of the qudit dimension, with the displacement

parameters draw uniformly randomly between -5 and 5. Here, we take the Frobenius

norm, which for some operator A is defined as

∥A∥2 =
[∑

i,j

|ai,j|2
]1/2

. (D.6)

The choice of the range for uniform sampling of the displacement parameters is

guided by the numerical range of the optimized displacement operators. Note that in

our ansatz, the displacement parameters can be taken to be real. The distribution of

the optimized parameters is plotted in Fig. D2 With the exception of a few outliers,

which we ignore, the overwhelming majority of the optimized displacement parameters

fall within the range (−3.98, 3.86). We round this interval to (−5, 5) in our estimate of

the errors arising due to truncation above.


	Introduction and Motivation
	Physical System
	Theory
	Displacement pulse
	SNAP pulse
	Noise model

	Metrics
	Heavy output generation test
	Linear cross-entropy benchmarking

	Results
	Conclusion and Outlook
	Bayesian inference and bootstrapping setup
	Haar random unitaries and t-designs
	Perfect compilation of SU(d) unitaries into SNAPs and SO(2)s
	Truncating the displacement Gate

