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Abstract

The Large Hadron Collider at CERN, delivering proton-proton collisions at much
higher energies and far higher luminosities than previous machines, has enabled a
comprehensive programme of measurements of the standard model (SM) processes
by the CMS experiment. These unprecedented capabilities facilitate precise measure-
ments of the properties of a wide array of processes, the most fundamental being cross
sections. The discovery of the Higgs boson and the measurement of its mass became
the keystone of the SM. Knowledge of the mass of the Higgs boson allows preci-
sion comparisons of the predictions of the SM with the corresponding measurements.
These measurements span the range from one of the most copious SM processes, the
total inelastic cross section for proton-proton interactions, to the rarest ones, such as
Higgs boson pair production. They cover the production of Higgs bosons, top quarks,
single and multibosons, and hadronic jets. Associated parameters, such as coupling
constants, are also measured. These cross section measurements can be pictured as a
descending stairway, on which the lowest steps represent the rarest processes allowed
by the SM, some never seen before.
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1 Introduction

The Large Hadron Collider (LHC) at CERN, colliding protons at much higher energies and
delivering far higher luminosities than previous machines, has enabled comprehensive mea-
surements of the standard model (SM) of particle physics by the general-purpose experiments,
CMS and ATLAS. The Higgs boson plays a special role in the SM, being the particle predicted
by the Brout-Englert-Higgs (BEH) spontaneous electroweak (EW) symmetry-breaking mecha-



nism. The discovery of the Higgs boson and the measurement of its mass became the keystone
of the SM. This allowed significantly tightening the constraints on the theory and facilitated
precision comparison of predictions with the corresponding measurements.

The unprecedented capabilities of the LHC detectors have enabled precise measurements of
the properties of a wide array of processes. The most fundamental of the properties is the cross
section, which quantifies the probability of two particles interacting and producing a particular
tinal state. Figure 1 shows the cross sections of selected high-energy processes measured by the
CMS experiment spanning some fourteen orders of magnitude, stepping from the total inelastic
proton-proton (pp) cross section to the production of hadronic jets, single and multibosons, top
quarks, Higgs bosons, down to the rarest processes, such as vector boson scattering of Z boson
pairs, production of Higgs boson pairs or four top quarks, the most massive of the SM particles.
Since the start of operation, the LHC has operated at several increasing energies allowing the
experiments to map the change of cross sections with energy. The agreement in Fig. 1 between
the SM predictions and the measurements is remarkable.
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Figure 1: Cross sections of selected high-energy processes measured by the CMS experiment.
Measurements performed at different LHC pp collision energies are marked by unique sym-
bols and the coloured bands indicate the combined statistical and systematic uncertainty of the
measurement. Grey bands indicate the uncertainty of the corresponding SM theory predic-
tions. Shaded hashed bars indicate the excluded cross section region for a production process
with the measured 95% CL upper limit on the process indicated by the solid line of the same
colour.

In this Report, we exemplify the full spread of the CMS experimental programme in measur-
ing cross sections involving high-energy quantum chromodynamics (QCD) and EW processes,
including those involving the top quark and those involving the Higgs boson. We point out
the fundamental aspects of the SM elucidated by these cross section measurements, highlight-
ing their importance. Accurate measurements of fundamental parameters, such as the Higgs
boson mass, top quark mass, their production cross sections, along with the strong coupling
constant and other SM parameters, play a pivotal role in refining the SM. They also contribute
significantly to shaping a more accurate and comprehensive model of the origin of matter and



of cosmology, e.g. by understanding the features that affect the early universe and its eventual
fate: the shape of the BEH vacuum potential and the EW vacuum stability, respectively.

The construction and operation of the LHC and the CMS and ATLAS detectors are a product
of the accumulated experience of the high-energy physics community. The instantaneous lu-
minosity provided by the LHC exceeds that of the most recent previous hadron collider, the
Fermilab Tevatron, by nearly two orders of magnitude. The higher pp collision energy signif-
icantly increases all production cross sections. This enables, for many processes, the collection
of data sets, sometimes in only days, that match those of the entire experimental programme of
previous experiments. For example, the precise measurement of the W and Z boson produc-
tion cross sections can be performed in CMS with data collected in one day of LHC operation
with a precision similar to that obtained during several years of operation of the UA1 and UA2
experiments that discovered the W and Z bosons.

The CMS detector at the LHC has performed both as a discovery instrument, observing a new
particle—the Higgs boson—and new production processes, such vector boson scattering and
tttt production, and as a cross section measuring device with the precision substantially ex-
ceeding that of previous experiments for a wide variety of final states. The CMS detector has a
larger angular acceptance than the previous generation of hadron collider experiments. It mea-
sures physics objects, electrons, muons, tau leptons, photons, and jets, with higher efficiency,
better precision, better purity, and fewer gaps in geometric coverage. These capabilities both
expand the CMS potential and enable cross section measurements with high precision. The
ability to measure new states in the SM allows CMS to study new aspects of the gauge struc-
ture of the theory, processes involving the top quark, explore the mechanism of EW symmetry
breaking, and to search for beyond-the-SM (BSM) physics. The Higgs sector, currently only
accessible at the LHC, is an ideal place to study the SM and to simultaneously look for signs of
BSM physics signalled by deviations from the predictions of the SM.

For a given process, with a particular final state, the number of events produced, n, is given
by the product of the instantaneous luminosity, £, and the cross section, o, integrated over the
time during which the events are recorded, i.e. n = f Lodt. The instantaneous luminosity,
which is expressed as an inverse cross section per unit of time, t, depends on the number of
protons in the colliding bunches, the frequency with which the bunches collide, and the lateral
size and overlap of the bunches. The unit of cross section used in particle physics is the barn,
where the barn is defined as 1072* cm?. Cross sections of production processes involving heavy
SM particles are typically of the order of nanobarns (nb), picobarns (pb), or femtobarns (fb).

Not all events produced are observed due to limitations in the acceptance and efficiency of the
detectors. The acceptance, A, is the fraction of events in which the kinematics of the final state
particles are such that they traverse, or impact, a detector with the capability to measure them.
The efficiency, €, is the fraction of events within the acceptance that are detected. Thus if N
signal events are observed ¢ is given by:

o =N/ [(LAe)dt.

We frequently measure a “fiducial” cross section, that is the part of the cross section that cor-
responds to a defined set of kinematic requirements on the final-state particles for which the
acceptance is high. Measuring fiducial cross sections eliminates theoretical uncertainties re-
lated to the extrapolation from the fiducial phase space to the full phase space.

In the following sections, we first describe the LHC operation and the CMS detector; discuss
the simulations and calculations used to predict cross sections; and then report cross sections,



fiducial cross sections, and selected differential cross sections (cross sections as functions of
kinematic variables) covering high-energy QCD and EW processes, including processes involv-
ing the top quark and the Higgs boson. Finally, we include projections for High-Luminosity
LHC and conclude with a brief summary of the results.

2 The LHC and CMS

2.1 LHC operations, energies, and luminosities

The LHC has operated providing collisions to feed its physics programme over three runs, with
long shutdowns in between for collider and detector maintenance, and upgrades. In Run 1
from 2010 to 2012, the LHC operated at 7 TeV (2010-2011) and 8 TeV (2012) providing 6.1 b !
and 23.3fb ™! of pp collision data, respectively, to the CMS experiment. In Run 2 from 2015 to
2018, the LHC increased the collision energy to 13 TeV and eventually more than doubled the
peak luminosity providing 163.6 b ! of pp collision data to the CMS experiment. In Run 3,
currently in progress (since 2022), the LHC has increased the collision energy to 13.6 TeV and
also increased the peak luminosity. The Run 3 results presented in this Report use data collected
during the first year of Run 3 operation. Only a subset of Run 3 data has been analyzed and
used in this Report.

The CMS experiment typically operates and records data for over 90% of the LHC operational
time, with the detector working at peak performance suitable for physics analysis 88% of the
LHC operational time. The LHC has additionally operated for short periods taking pp colli-
sion data at collision energies of 2.76 TeV and 5.02 TeV as reference for heavy ion collision runs
having those collision energies per nucleon pair.

CMS integrated luminosity: The integrated luminosities collected by the CMS experiment for
each LHC running period are listed in Table 1. The integrated luminosity for 20162018 Run 2
period was reevaluated, achieving a lower uncertainty and an increase in the evaluated value
from 137 to 138 fb . The total integrated luminosity of Run 2 is known with a better relative
uncertainty than that of subperiods of data taking within Run 2. The integrated luminosities for
the years 20152018 of LHC Run 2 data taking have individual uncertainties between 1.2 and
2.5% [1-3], and the overall uncertainty for the 20162018 period used in most of the analyses
included in this Report is 1.6%. The Run 1 absolute integrated luminosity of the pp collisions at
7 and 8 TeV has been determined with a relative precision of 2.2% and 2.6%, respectively [4, 5].
The Run 3 integrated luminosity is measured using the techniques from the 2015-2016 Run 2
luminosity determination [1] and is estimated to be 2.1% [6].

Some measurements were performed using short runs of pp collision data with features such
as low instantaneous luminosity. These measurements use luminosity determinations specific
to those runs with the uncertainties described with each corresponding analysis.

2.2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal dia-
meter, providing a magnetic field of 3.8 T. The large size of the solenoid allows the inner tracker
and almost all the calorimetry to be installed inside the solenoid. Thus, within the magnetic
volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter
(ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and
two endcap sections. The geometric coverage of the ECAL and HCAL goes down to an angle
of about 6° from the beamline, i.e. at a pseudorapidity |#| of about 3. The hadron forward (HF)
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Table 1: Integrated pp collision luminosity £, analyzed by the CMS experiment during LHC
Runs 1, 2 and 3, as well as during pp reference runs for the heavy ion physics programme at
2.76 and 5.02 TeV.

Run Energy (TeV) L (fb™')  Uncertainty

1 7 5.0 2.2%
1 8 19.6 2.6%
2 13 138 1.6%
3 13.6 5.0 2.1%
1 2.76 2.31 x107* 3.7%
2 5.02 0.302 1.9%

calorimeter extends the 17 coverage, using steel as an absorber with quartz fibres embedded in
a matrix arrangement as the sensitive material. The two halves of the HF are located 11.2m
from the interaction region, one at each end, and together they provide coverage in the range
3.0 < |5| < 5.2. They also serve as luminosity monitors. The very forward angles are covered
at one end of CMS (—6.6 < 1 < —5.2) by the CASTOR calorimeter [7]. Muons are measured
in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The
precision proton spectrometer [8] (PPS) is a system of near-beam tracking and timing detectors,
located in Roman pots (RPs) at about 200 m from the CMS interaction point.

A detailed description of the CMS detector, together with a definition of the coordinate system
used and the relevant kinematic variables, is given in Ref. [9]. The upgraded configuration of
the detector for the LHC Run 3 is given in Ref. [10]. The CMS detector as it was configured
during 2017-2018 is shown in Fig. 2.

Calibration of the calorimeters and alignment of the tracking systems have played an important
role in both maintaining and improving the performance of the detector as refined techniques
are developed. The calorimeter calibration includes both relative calibration of the detector
elements, in particular following changes in response (typically those resulting from radiation-
induced effects on the scintillating materials), and also absolute calibration of the physics ob-
jects, electrons, photons, and jets, using, e.g. the mass of the Z boson as a reference. Alignment
of the tracker uses tracks of charged particles to improve upon the original information about
the relative positions of the various detector modules and from the laser alignment system.

As described in Section 2.1 there have been three periods of LHC operation: Runs 1-3. The
Run 3 analyses covered in this Report typically rely on the methods developed for Run 2. In
the description of the CMS event selection and reconstruction below, substantial differences in
the CMS operation and methodology between these operational periods are noted.

Trigger: Events of interest are selected using a two-tiered trigger system. The first level, com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz within a fixed latency of about 4 s [11]. The
second level, known as the high-level trigger, consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the rate of
selected events to around 1kHz before data storage [12].

Particle-flow: The global event reconstruction (also called particle-flow event reconstruction [13])
aims at reconstructing and identifying each individual particle in an event, with an optimized
combination of all subdetector information. In this process, the identification of the particle
type (photon, electron, muon, charged or neutral hadron) plays an important role in the de-
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Figure 2: The CMS detector for the data-taking period 2017-2018.

termination of the particle direction and energy. Photons, both prompt, produced in parton-
parton collisions, and nonprompt, e.g. from 7° decays or electron bremsstrahlung, are iden-
tified as ECAL energy clusters not linked to the extrapolation of any charged-particle trajec-
tory into the ECAL. Prompt electrons and nonprompt electrons, which come from photon con-
versions in the tracker material or b hadron semileptonic decays, are identified as a primary
charged-particle track with potentially more than one ECAL energy cluster, corresponding to
the track, as extrapolated to the ECAL and possible bremsstrahlung photons emitted by the
electron as it traverses the tracker material. Prompt muons and nonprompt muons, which
come from b hadron semileptonic decays, are identified as tracks in the central tracker consis-
tent with either a track or several hits in the muon system, and associated with energy deposits
in the calorimeter compatible with the muon hypothesis. Charged hadrons are identified as
charged-particle tracks neither identified as electrons, nor as muons. Finally, neutral hadrons
are identified as HCAL energy clusters not linked to any charged-hadron trajectory, or as a
combined ECAL and HCAL energy excess with respect to an expected charged-hadron energy
deposit.

The energy of photons is obtained from the ECAL measurement. The energy of electrons is de-
termined from a combination of the track momentum at the main interaction vertex, the corre-
sponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons assigned to
the track. The energy of muons is obtained from the corresponding track curvature. The energy
of charged hadrons is determined from a combination of the track momentum and the corre-
sponding ECAL and HCAL energies, corrected for the response function of the calorimeters to
hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies. The reconstruction of each of these individual physics
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objects is described below.

Electrons: Electrons are identified and measured in the range || < 2.5. The momentum res-
olution for electrons with transverse momentum pr ~ 45GeV from Z — ee decays ranges
1.6-5.0% in Run 2, and 1.7-4.5% in Run 1. The resolution is better in the barrel region than
in the endcaps, and also depends on the bremsstrahlung energy emitted by the electron as it
traverses the material in front of the ECAL [14-16].

The dielectron mass resolution for Z — ee decays is in the ranges 1.2-2.0% (1.9% in Run 1)
when both electrons are in the ECAL barrel, and 2.2-3.2 (2.9% in Run 1) otherwise, the exact
values depending on the bremsstrahlung energy emitted by the electrons and the data-taking
year [14, 16].

Photons: Photons are identified and measured in the range || < 2.5. In the barrel section of the
ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons
in the tens of GeV energy range. The energy resolution of the remaining barrel photons is about
1.3% up to || = 1, worsening to about 2.5% by |17| = 1.4. In the endcaps, the energy resolution
is about 2.5% for unconverted or late converting photons, and 3—-4% for the rest [17].

The diphoton mass resolution, as measured in H — <<y decays, is typically in the 1-2% range,
depending on the topology of the photons [18].

Muons: Muons are identified and measured in the range |1| < 2.4, with detection planes made
using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers.
The single-muon trigger efficiency exceeds 90% over the full # range, and the efficiency to
reconstruct and identify muons is greater than 96%. Matching muons identified in the muon
detection system to tracks measured in the silicon tracker results in a py resolution, for muons
with pr up to 100GeV, of 1% (1.3-2.0% in Run 1) in the barrel and 3% (6% in Run 1) in the
endcaps. For muons with pt up to 1 TeV, the pt resolution in the barrel is better than 7% (10%
in Run 1) [19, 20].

Taus: Hadronic T decays (7},) are reconstructed from jets, using the hadrons-plus-strips algo-
rithm [21], which combines one or three tracks with energy deposits in the calorimeters, to
identify the tau lepton hadronic decay modes. Neutral pions are reconstructed as strips with a
dynamic size in 7—¢ (where ¢ is the azimuthal angle about the beam axis, measured in radians)
from reconstructed electrons and photons, where the strip size varies as a function of the pt of
the electron or photon candidate.

To distinguish T, decays from jets originating from the hadronization of quarks or gluons, and
from electrons or muons, the DEEPTAU algorithm is used [22]. Information from all individual
reconstructed particles near the (7},) axis is combined with properties of the (7;,) candidate and
the event. The rate of a jet to be misidentified as 7}, by the DEEPTAU algorithm depends on
the pr and quark flavour of the jet. Based on simulated events from W boson production in
association with jets, the misidentification rate has been estimated to be 0.43% for an identifi-
cation efficiency for genuine 7, of 70%. The misidentification rate for electrons (muons) is 2.60
(0.03)% for a genuine T}, identification efficiency of 80 (>99)%.

Primary vertex: In Run 2, the primary vertex (PV) is taken to be the vertex corresponding to the
hardest, i.e. highest pr, scattering in the event. The vertex position is evaluated from tracking
information alone, using a vertex fit procedure on a collection of charged-particle tracks that are
compatible with originating from the same interaction, as described in Section 9.4.1 of Ref. [23].
In Run 1, the reconstructed vertex with the largest value of summed charged-particle track p3
was taken to be the PV.



Jets: Using the particle-flow global event reconstruction, hadronic jets are clustered from the
reconstructed particles, using the infrared- and collinear-safe anti-ky algorithm [24, 25]. Typi-
cally, a distance parameter that measures the angular separation between constituents in the jet
and is defined as AR = V/(Ay)? + (A¢)? of 0.4 is used (AR = 0.5 in Run 1), but also AR = 0.8
is used to identify merged jets from hadronic decays of Lorentz-boosted particles, e.g. the W
boson. Jet momentum is determined as the vectorial sum of all particle momenta in the jet,
and is found from simulation to be, on average, within 5-10% of the true momentum over the
entire pp spectrum and detector acceptance.

Additional tracks and calorimetric energy depositions resulting from particles produced in ad-
ditional pp interactions within the same or nearby bunch crossings (pileup) can add to the jet
momentum. To mitigate this effect, charged particles identified as originating from pileup ver-
tices are discarded and an offset correction is applied to correct for remaining contributions. Jet
energy corrections are derived from simulation to bring the measured response of jets on aver-
age to that of jets constructed directly from the simulated particles. In situ measurements of the
momentum balance in dijet, v +jet, Z + jet, and multijet events are used to correct any residual
differences in the jet energy scale (JES) between data and simulation [26]. Additional selection
criteria [27] are applied to each jet to remove jets that are potentially affected by anomalous
contributions or reconstruction failures.

In many cases, the pileup-per-particle identification (PUPPI) algorithm [28, 29] is used to miti-
gate the effect of pileup, utilizing local shape information, event pileup properties, and tracking
information. A local shape variable distinguishes between collinear particles originating from
the hard scatter and the (on average) softer diffuse particles originating from the additional pp
interactions. Charged particles identified as originating from pileup vertices are discarded. For
each neutral particle, a local shape variable is computed using the surrounding charged parti-
cles compatible with the PV within the tracker acceptance (57| < 2.5), and using both charged
and neutral particles in the region outside of the tracker coverage. The momenta of the neutral
particles are then rescaled according to the probability that they originated from the PV de-
duced from the local shape variable, superseding the need for jet-based pileup corrections [28].

In a few early Run 1 analyses, prior to the full deployment of the particle-flow global event
reconstruction methodology, hadronic jets were reconstructed from the energy deposits in the
calorimeter, clustered using the anti-kt algorithm with a distance parameter of AR = 0.5.

Missing transverse momentum: The missing pr vector s is computed as the negative vector

sum of the transverse momenta of all the particle-flow candidates in an event, and its magni-
tude is denoted as pis® [30]. The pMs is modified to account for corrections to the energy scale
of the reconstructed jets in the event. In some cases, the PUPPI algorithm is applied to reduce
the pileup dependence of the g observable. The 7 is computed from the particle-flow
candidates weighted by their probability to originate from the PV [30]. Several early analyses
used a pss calculated from the calorimeter information alone, using calorimeter towers.

Heavy-flavour identification: A variety of algorithms are used to identify jets that originate from
heavy-flavour b and ¢ quarks. The algorithms may incorporate primary and secondary vertex
information; track kinematics, impact parameter and quality information; decay product in-
formation that is indicative of a heavy-flavour hadron decay, such as the presence of charged
leptons with high impact parameter; or partial or full reconstruction of heavy-flavour hadrons;
and various combinations of these ingredients.

The heavy-flavour jet identification algorithms used in the analyses presented in this Report
are listed below. Typically these algorithms are applied to the constituents of a particle-flow jet



and produce an estimator for the probability of the jet to originate from a b or ¢ quark.

e SSV, simple secondary vertex algorithm [31]: SSV uses the significance of the dis-
placement from the PV of a reconstructed secondary vertex (the ratio of the dis-
placement to its estimated uncertainty) as the discriminating variable.

e IVE inclusive vertex finder [32, 33]: IVF identifies vertices with high displacement
significance independently of jet reconstruction, by examining vertices around seed
tracks with high impact parameter significance Sjp (the ratio of the track impact
parameter to its estimated uncertainty).

e CSV, combined secondary vertex algorithm for 7 TeV [31] and 8 TeV [34]: CSV uses
secondary vertex information as in SSV, “pseudo vertices” formed from tracks with
high S;p, in addition to directly using the track S;p information to form a likelihood-
based discriminator.

e CSVv2, combined secondary vertex algorithm for 13 TeV [35]: CSVv2 is based on
CSV and combines the information of displaced tracks with the information on sec-
ondary vertices associated with the jet using a multivariate technique.

e DEEPCSV [35]: A deep machine-learning-based secondary vertex algorithm using
IVF vertices and tracks as input. Probability outputs are provided for bottom-,
charm- and light-flavoured or gluon jets and can be combined to form the bottom or
charm jet discriminants.

e DEEPJET [35, 36]: A deep neural network algorithm based on the properties of
charged and neutral particle-flow jet constituents, as well as 12 properties of sec-
ondary vertices associated with the jet.

e D hadron tag: Identifies a fully reconstructed D hadron within a jet based on the
secondary vertex and mass reconstruction of the decay products.

e u tag: Identifies a muon found in the candidate jet with large S;p and representing a
significant portion of the total jet momentum.

Jet substructure: Finally, massive particles such as top quarks, Higgs bosons, and W and Z
bosons that decay to jets can be identified in boosted topologies using algorithms that make
use of jet substructure, based on jets reconstructed with a distance parameter of 0.8. These
algorithms are described where the specific analyses that use them are discussed.

Intact scattered protons: The PPS makes it possible to measure the four-momentum of scattered
protons, along with their time-of-flight from the interaction point (IP). The proton momenta
are measured by the two tracking stations in each arm of the spectrometer.

3 Event simulation and cross section calculation

The measurement of cross sections and their comparison with the predictions of the SM re-
quires precise calculation of cross sections and the production of simulated events using Monte
Carlo (MC) techniques. Monte Carlo simulation of signal and background events involves a
sequence of distinct operations. First, occurrences of the hard scattering process are generated
modelling the full distribution of the possible kinematics of the partons (quarks and gluons)
and other elementary particles (leptons and gauge bosons) in the process of interest. This can
be achieved either by attaching a weight corresponding to the probability of the kinematic state
generated or by producing the states according to their kinematic probability. The calculations
are performed by factorization of the problem into a perturbatively calculable parton scatter-
ing process, and generalized functions that are obtained semi-empirically with fits to data.
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The most essential of these functions, used in every calculation, are the parton distribution
functions (PDFs), which describe the momentum distribution of the partons within the collid-
ing protons. They represent the probability densities to find a parton carrying a momentum
fraction x at a given energy scale (expressed as the squared momentum transfer Q?), and are
derived from fits to a large number of cross section measurements, generally measurements
made by many experiments, over a large range of Q* and x values. The hard scattering is
modelled by first sampling the probability distribution of the PDFs to take account of the kine-
matics of the incoming partons in the proton. The final-state partons produced by the hard
scattering are evolved down to some energy scale limit in a “parton shower” (PS) process that
simulates the radiation of additional quarks and gluons, using leading logarithmic approxi-
mations. The resulting partons are then hadronized—assembled into hadrons—producing jets
of final-state particles. This full process is known as hadronization. Short-lived particles are
decayed. An “underlying event” (UE), including, e.g. multiparton interactions (MPI), is added
simulating the production of particles from the partons in the colliding protons that were not
directly involved in the hard scattering process (and properly accounting for the kinematics
of the initial state partons of the process). The UE parameters in event generators are tuned
so that observed features of data particularly sensitive to the contribution of the underlying
event, such as charged-particle multiplicity and transverse momentum densities, match those
in simulated events, as described, e.g. in Ref. [37]. Finally, the particles are tracked through the
detector, modelling their interactions with the detector elements, followed by simulation of the
generation of electrical signals and their digitization to form a recorded event.

Table 2 lists the MC simulation programs used for analyses included in this Report. General-
purpose MC event generators, such as PYTHIA, which aim to describe all final state particles
emerging from a pp collision, usually rely on only the Born matrix element for the perturba-
tive calculation of the hard scattering. Increased precision may be achieved by using dedicated
MC programmes that aim to better model some subset of hard scattering processes, or some
aspect of a process, usually by using an improved level of approximation in QCD perturba-
tive expansion: next-to-leading order (NLO), next-to-next-to-leading order (NNLO), or even
N°LO (i.e. adding another “next-to”). These generators modelling higher-order Feynman di-
agrams are thus usually called matrix element (ME) generators. When dedicated generators
are used, the hadronization, and provision of the UE must be accomplished by a more gen-
eral event-generator program, such as PYTHIA or HERWIG, that can model the hadronization,
particle decay, final-state radiation, and UE, in addition to the hard-scattering process. Simu-
lation of the interactions of the particles with the detector is performed by GEANT4, using a
detailed geometrical model of the CMS detector, whereas the simulation of signal generation
and digitization is handled by the CMS software.

A list of the sets of PDFs used for analyses included in this Report is shown in Table 3, catego-
rized by the collaboration that produced them.

4 Measurements of quantum chromodynamics

The strong interaction between quarks is mediated by the gluons and is described by QCD,
which is a quantum gauge theory based on a non-Abelian SU(3)c symmetry group, operating
with three colour charges. Quarks and gluons are the fundamental constituents of the pro-
ton, which makes QCD physics ubiquitous at a hadron collider. The non-Abelian nature of
QCD, which leads to a self-coupling of the massless gluon, results in a renormalization scale
dependence (running) of strong coupling, the leading of the two major properties of the strong
interaction. On the one hand, the asymptotic freedom at large scales (or small distances) al-
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Cross section calculation

Table 2: Monte Carlo programs used by analyses included in this Report.

DYTURBO [38]
FEWZ [39-41]
v +jet [42, 43]
HELAC-ONIA [44, 45]
MATRIX [46]
NLLJET [47]
NLOJET++ (with FASTNLO) [48, 49] ([50, 51])
NNLOJET (with FASTNLO) [52-54] ([50, 51])
OPENLOOPS [55]
Hard-scattering process generation

BLACKHAT [56]
COMPHEP [57]
HJ-MINLO [58-60]
JHUGEN [61-65]
MCFM [66, 67]
MADGRAPH 5, MADGRAPH5_aMC@NLO [68-70]
NNLOPS [71-73]
OPENLOOPS [74-77]
PHOTOS [78]
POWHEG, POWHEG BPX [79-81]
VBFNLO, VBENLO 2.7 [82-84]
Full particle event generation

CASCADE 3 [85]
HERWIG 7, HERWIG++ [86, 87]
PHOJET [88]
PYTHIA 6, PYTHIA 8 [89-91]
SHERPA 1, SHERPA 2 [92-96]

Particle transport and detector interaction

GEANT4
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Table 3: Sets of PDFs used for analyses included in this Report.

ABKM/ABM/ABMP Collaboration

ABKMO09 [98]
ABM11 [99]
ABMP16 [100, 101]
CTEQ-]efferson Lab Collaboration

CJ15 [102]
CTEQ-TEA Collaboration

CT10 [103, 104]
CT14 [105]
CT18 [106]
HERAPDEF Collaboration

HERAPDF], 1.5 [107]
HERAPDEF2.0 [108]

MSTW/MMHT/MSHT Collaboration

MSTW 2008 NLO, NNLO [109]

MMHT2014 [110]
MSHT2020 NLO, NNLO  [111]
MSHT?20an3lo [112]
NNPDF Collaboration

NNPDF 2.0 [113]
NNPDF 2.1 [114]
NNPDF 2.3 [115]
NNPDF 3.0 [116]
NNPDF 3.1 [117]
NNPDF 3.11uxQED [118]
NNPDF 4.0 [119]

Transverse momentum dependent PDFs

PB-TMD PDFs [120-122]
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lows for a perturbative description of quasi-free quarks. On the other hand, at small scales
(large distances), the coupling becomes too large for perturbative calculations to be applied.
This large-ag region of the confinement can be only described phenomenologically. In many
cases of interest at the LHC, the interactions involve large momentum transfers, where the the-
ory is perturbative. However, the nonperturbative aspects of QCD are still relevant for the
understanding of large momentum transfer physics.

This section presents a selection of measurements essential for probing QCD in nonperturba-
tive and perturbative regimes. The measurements include PDF constraints, determinations of
the strong coupling constant ag, multiple-parton interaction (MPI) effective cross sections, and
the total inelastic cross section. High-pr measurements span total, inclusive differential, and
exclusive differential measurements of jet production cross sections. In differential measure-
ments regions of phase space can be chosen, typically involving high jet multiplicities, to test
the predictions of recent higher-order QCD calculations. Also, the high-pr jet data collected by
the CMS experiment offer sensitivity to deviations from the SM predictions that may occur in
a diverse set of BSM scenarios involving heavy new particles or new forces. Measurements of
the QCD jet production in association with heavy objects, such as vector bosons (as discussed
in Sections 5.1.4 and 5.1.5), top quarks (Section 6.6), and Higgs bosons (Section 7.2) are detailed
in the respective sections on those topics.

4.1 Total inelastic cross sections

The total pp cross section includes elastic- and inelastic-scattering components. In elastic scat-
tering, the protons scatter via QCD or quantum electrodynamics (QED) processes without the
proton dissociating (breaking up) or producing any additional particles. Inelastic scattering
includes diffractive and nondiffractive interactions. In the diffractive events, the protons may
emerge intact, excited, or dissociate into low-mass states, and these interactions are mediated
by the exchange of colour-singlet objects such as the Pomeron (for QCD-induced) or a photon
(for QED-induced) processes [123] (see section 20). In the nondiffractive case, the partons in
the colliding protons interact with sufficient momentum transfer to break up the protons. Pro-
cesses included in the inelastic component of the total pp cross section are the primary subject
of this Report. They encompass interactions with large momentum transfer (Q), and most cases
where heavier SM particles and possibly BSM particles may be produced. The total cross sec-
tion and its components are not analytically calculable and instead fit from lower-energy data,
and extrapolated to the LHC energies. The components of the total pp collision cross section
can be described by nonperturbative phenomenological models based on unitarity and analyt-
icity principles [124]. These models have large uncertainties when extrapolating to TeV-scale
collision energies and the measurement of these cross sections at new energies is an essen-
tial input to improving the reliability of the predictions. The measurement of the inelastic pp
interactions is necessary to address many issues essential for measuring cross sections. For ex-
ample, the inelastic cross section determines probability and properties of additional inelastic
collisions in the same or adjacent bunch crossings, referred to as pileup, which is necessary
for interpreting the performance of nearly all physics object reconstruction at hadron colliders.
Similarly, it enhances our understanding of the hadronic recoil from hard interactions, which
is essential in modelling the pr distributions of massive SM particles. Finally, understanding
the inelastic cross section is necessary for the estimation of the pp collision luminosity, a critical
component in the cross section measurements.

The CMS experiment has measured the inelastic component of the total pp cross section in
7 [125] and 13 TeV [126] pp collisions. The measurements were done for events with the dis-
sociation system masses exceeding 15.7 GeV using the 7 TeV data. In the 13 TeV analysis, the
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thresholds were above 4.1 GeV and 13GeV for dissociation masses at negative and positive
pseudorapidities, respectively. The extension of the 13 TeV analysis phase space to include
very low dissociated masses was enabled by utilizing the CMS CASTOR forward calorime-
ter. The measurements reported here are for a common phase space delineated by the re-
quirement that the longitudinal momentum loss fraction from one proton, &, exceeds 5 x 107°.
This corresponds to the mass of the larger disassociated proton system, my, being greater than
16 GeV, such that ¢ = my /+/s > 5 x 107°. At 7TeV, the CMS Collaboration measured c;, =
60.2 £ 0.2 (stat) = 1.1 (syst) = 2.4 (lumi) mb and at 13 TeV ¢, = 67.5 £ 0.8 (syst) £ 1.6 (lumi) mb
with a negligible statistical uncertainty. These measurements are compared with predictions
of general-purpose MC generators PYTHIA 6.4 [89], 8 [90, 91] for a variety of generator param-
eter tunes; generators specific to large rapidity gap physics PHOJET [88]; and generators used
in cosmic ray physics QGSJET-II [127, 128], sIBYLL [129], and EPOS [130]. The agreement of
the theory predictions with the data is good for almost all the generators at 7 TeV, whereas
at 13 TeV most generators overestimate the cross section by about 10%, which is attributed to
the mismodelling of the low-mass diffractive processes. The results are consistent with those
measured by the TOTEM Collaboration in the same fiducial phase space [131-134]. Fits to
lower-energy cross section data performed before the start of the LHC operations [135] by the
COMPETE Collaboration [136], which predicted the total hadronic cross sections from GeV
energies to the 57 TeV energy measured by the Pierre Auger Collaboration [137], are in agree-
ment with these measurements. The CMS measurements of fiducial inelastic production cross
sections are shown in Fig. 1 together with total or fiducial cross sections of all other processes
covered in this Report.

4.2 Jet production cross section measurements

Jet production measurements at the LHC test QCD over a large range of energies. The statis-
tical power of the data allows for comparison of QCD predictions to precise total, differential,
and multidifferential measurements. State-of-the-art calculations in QCD jet physics extend to
NNLO QCD and NLO EW accuracy in the perturbative expansion and may include additional
final-state partons in the ME predictions at a given order.

4.2.1 Inclusive fiducial jet production cross section measurements

Inclusive jet production cross sections have been measured as functions of basic kinematic
distributions at 2.76 [138, 139], 5.02 [140], 7 [139, 141-144], 8 [139], and 13 [145, 146] TeV. The
measurements typically present the inclusive jet production cross section as a function of pr
in intervals of rapidity y. The measurement is inclusive in that each jet that meets the rapidity
and pr criteria contributes to the cross section of the corresponding bin. The events including
those jets may contain any number of additional jets or other final-state particles. Multiple jets
in a collision event may contribute to the cross section according to their transverse momenta
and rapidity. These measurements have been used to test NLO and NNLO QCD predictions.

The conceptually simplest possible observable in high-pr QCD physics is a fiducial inclusive
cross section for the total production of all jets above a given pr threshold and within a given
rapidity range. The jet cross sections at 2.76 [138], 7 [142], 8 [139], and 13 [146] TeV for inclu-
sive production of jets that satisfy pr > 133GeV and |y| < 2.0 are reported in Table 4. Jets
are clustered from particle-flow objects using the anti-kt algorithm with a distance parameter
of AR = 0.7. These cross sections are calculated by integrating the differential measurements
presented in the original publications, taking into account the correlation of systematic uncer-
tainties between the bins when calculating the total systematic uncertainty. These results are
compared with NNLO QCD predictions calculated using the NNLOJET programme [52-54]
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with FASTNLO [50, 51] and the CT18 [106] PDF set, with nonperturbative (NP) corrections
applied based on MC generators, such as PYTHIA 6, PYTHIA 8, or HERWIG++ [86, 87] using
the state-of-the-art UE generator parameter sets (so called “tunes”) derived at the time of each
publication. These generators simulate UE and hadronization effects. Several MC generators
are used in each publication to derive NP corrections and associated uncertainties. Finally, the
QCD predictions are corrected for the EW effects [147]. These predictions in a single phase
space region have improved statistical and systematic precision compared to what is achiev-
able in more restricted phase space regions or differential measurements.

Table 4: The measured inclusive fiducial jet production cross sections for four pp collision
energies for inclusive production of anti-kt R = 0.7 jets satisfying pr > 133 GeV and |y| < 2.0.
Results are compared with predictions at NNLO QCD and NLO EW precision. The statistical
uncertainty in the theory predictions is negligible.

Vs (TeV)  o(jet) (pb) oM (jet) (pb)
2.76 [138] 787 + 7 (stat) 4 49 (syst) 777 133 (syst)

7 [142] 8520 = 90 (stat) = 610 (syst) 8760 *320 (syst)
8 [139] 11220 + 40 (stat) T80 (syst) 11650 7330 (syst)
13[146] 15230 4 70 (stat) = 700 (syst) 14980 T2 (syst)

4.2.2 Inclusive differential jet production cross section measurements

The analysis of inclusive jet production at 13 TeV [146] includes comparisons to several pertur-
bative QCD (pQCD) predictions. The NLO prediction using NLOJET++ [48, 49] and FASTNLO [50,
51] is further complemented by next-to-leading logarithmic (NLL) calculations using logarith-
mic resummation techniques. Two classes of logarithmic terms are relevant to jet physics are
resummed using the NLLJET programme [47]; those that depend on the jet radius and the so-
called threshold logarithms. The latter involve logarithmic terms created when a jet just fails
to pass the threshold to be considered as a jet. In addition, these cross section measurements
are compared with the NNLO predictions obtained using the NNLOJET programme. This
is the first analysis of jet production in pp collisions that is compared to NNLO predictions.
These QCD predictions at NLO+NLL and NNLO accuracy are computed by using different
available PDF sets, e.g. CT14 [105], NNPDF3.1 [117], MMHT2014 [110], ABMP16 [100, 101],
and HERAPDEF2.0 [108], evaluated at NLO or NNLO, respectively. The pQCD predictions are
augmented with the EW corrections [147]. Finally, the predictions are corrected for NP effects
using a correction derived from the average of the HERWIG++ (EE5C tune [148]) and PYTHIA
8 (CP1 tune [37]) simulations. The NP factors correct for the hadronization and UE effects that
are not included in the pQCD predictions. The inclusive jet production cross section at 13 TeV,
measured as a function of pt in four bins of rapidity, is shown in Fig. 3. The agreement seen
in the figure is excellent in all rapidity regions and spans nine orders of magnitude in cross
section.

4.2.3 Exclusive differential measurements of jet production cross sections

The CMS experiment has performed a wide array of differential cross section measurements
of jet production at all the collision energies at which the LHC operated. Of particular inter-
est are measurements that isolate areas of phase space where current cross section calculations
and MC simulations do not model the data well. For instance, let’s consider a case of high-pt
jets where the two highest pr jets are not back-to-back because of multiple additional jet emis-
sions. In this topology, no single MC prediction can model the jet multiplicity distribution for
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Figure 3: The inclusive jet production cross sections as functions of the jet transverse momen-
tum pr measured in intervals of the absolute rapidity |y|. The cross section obtained for jets
clustered using the anti-k algorithm with AR = 0.4 is shown. The results in different |y| inter-
vals are scaled by constant factors for presentation purposes. The data in different |y| intervals
are shown by markers of different styles. The statistical uncertainties are too small to be visi-
ble; the systematic uncertainties are not shown. The measurements are compared with NNLO
QCD predictions (solid line) using the CT14nnlo PDF set and corrected for EW and NP effects.
Figure and caption taken from Ref. [146].
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all ranges of azimuthal angle between the two highest pr jets [149] (as shown in Fig. 4). The
predictions shown in the figure use NLO MCs and matched PS generators at NLO including
dijet predictions from MADGRAPH5_.aMC@NLO: MG5_.aMC+Py8 (jj) and MG5_.aMC+CA3 (jj),
as well as the NLO three-jet prediction of MG5_.aMC+CA3 (jjj). The NLO prediction includes
MEs with one additional real emission of a parton at LO accuracy, effectively generating events
with up to three or four hard partons. Parton showering is performed with PYTHIA 8 (Py8)
and CASCADE3 [85] (CA3). The CA3 prediction uses transverse momentum dependent (TMD)
PDFs [120] based on the parton-branching method (PB-TMD PDFs)[121, 122] in the PS model.
In this analysis initial-state pt is generated and PB-TMD PDF-dependent PS is performed using
the CASCADE 3 MC simulation [85] and compared with predictions using standard PS simula-
tions. The TMD PDFs assess the pt of hard-scattering system as it recoils against the UE physics
involving the rest of the partons. These TMD PDFs implemented in the CA3 PS describe the
data as well as do the standard PS methods, but without the need for tunable parameters. In
general, the MC predictions fail to model the data for events with the jet multiplicity greater
than the number of hard partons generated in the ME predictions. Extending calculations and
simulations to NNLO with matched NNLO PS generation and/or a larger number of partons
simulated at the ME level would be expected to improve the agreement of the prediction with
the data in high jet multiplicity topologies. Improved agreement with the predictions would
increase the sensitivity of BSM physics searches using final states with high jet multiplicities.
However, improvements in methods of NNLO calculation for processes with high jet multi-
plicity are necessary to make them widely available for all pp collision processes.

4.2.4 Additional differential measurements of jet production cross sections

The full array of differential measurements performed by the CMS experiment is too extensive
to report here. Only selected examples were discussed above. In addition, many measure-
ments have been done that investigate lower-pt QCD physics and flavour physics. Other dif-
ferential measurements of high-pr jet production cross sections performed by CMS not already
discussed are listed below. Each analysis includes a rich set of comparisons to state-of-the-art
QCD predictions

¢ Differential dijet production vs. dijet invariant mass and jet rapidity at 7 TeV [150]

e Dijet azimuthal decorrelations at 7 [151], 8 [152], and 13 TeV [153].

e Ratio of two- to three-jet cross sections as a function of the total jet transverse mo-
mentum at 7 TeV [154].

e Shape, transverse size, and charged-hadron multiplicity of jets at 7 TeV [155]
e Jet mass in dijet and W /Z+jet (7 TeV only) events, 7 [156] and 13 [157] TeV.

¢ Azimuthal separation between the second- and third-leading jets in nearly back-to-
back topologies at 7 TeV [158].

e Study of hadronic event-shape variables, 7 [159] and 13 [160] TeV.
¢ Topological observable in inclusive three- and four-jet events at 7 TeV [161].
o Jet charge at 8 TeV [162].

e Azimuthal separation between the leading and second-leading jets in nearly back-
to-back jet topologies in inclusive two- and three-jet events at 13 TeV [163].

e Dependence of inclusive jet production on the anti-kt distance parameter at 13 TeV [164].

e Study of quark and gluon jet substructure in Z+jet and dijet events at 13 TeV [165].
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Figure 4: Differential cross section of jet production as a function of the exclusive jet multiplicity
(inclusive for 7 jets) in bins of pr and A¢;,. The data are compared with the NLO dijet predic-
tions from MADGRAPH5_aMC@NLO: MG5_aMC+Py8 (jj) and MG5_.aMC+CA3 (jj), as well as
the NLO three-jet prediction of MG5_aMC+CA3 (jjj), where parton showering is performed by
PYTHIA 8 (Py8) and CASCADE3 [85] (CA3). The vertical error bars correspond to the statistical
uncertainty, the yellow band shows the total experimental uncertainty. The shaded bands show
the uncertainty from a variation of the normalization and factorization scales. The predictions
are normalized to the measured inclusive dijet cross section using the scaling factors shown in
the legend. Figure taken from Ref. [149].
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4.3 Proton PDFs

Description of the proton structure, expressed in terms of PDFs, plays a central role in the in-
terpretation of all the processes in pp collisions at the LHC. Protons are composite particles
consisting of valence up- and down-flavoured quarks, gluons, and contributions from other
quarks and antiquarks collectively known as the sea quarks. High-energy pp collisions probe
the structure of the proton at small distance scales. Proton-proton collisions at high energies are
described by the QCD factorization theorem [166]. At a certain factorization scale, the pp cross
section may be represented as a convolution of a (hard) partonic process, where individual,
asymptotically-free partons from both colliding protons interact, with the parton distributions.
The parton (quark and gluon) distributions, are functions of the fraction x of the proton mo-
mentum carried by the parton involved in the interaction, and the factorisation scale. The scale
dependence is encoded in the Dokshitzer-Gribov-Lipatov—-Altarelli-Parisi (DGLAP) [167-174]
evolution equations, which are known up to N>LO. The dependence of PDFs on x needs to
be extracted from the experimental data. Most of the information on the PDFs is provided by
measurements in deep-inelastic scattering experiments data from either HERA-I [107] or the
combined HERA-I and HERA-II data [108]. Production of jets, top quarks, and weak bosons
at the LHC provides additional sensitivity to the PDFs. Using corresponding cross section
measurements, the PDFs and the strong coupling constant ag can be extracted with improved
precision. PDFs have been extracted at LO, NLO, NNLO, and even at approximate N°LO, as
well as in more complex systems, such as nuclei.

In practice, the PDFs are obtained in a course of a QCD analysis, assuming a certain x-dependence
of the PDFs at a starting evolution scale. In such a QCD fit, the measurements are confronted
with the corresponding pQCD predictions at highest available order and the parameters driv-
ing the x behaviour of each PDF are obtained. Besides a comprehensive QCD analysis where
the PDFs are fitted, sometimes it is useful to investigate a possible impact of a new measure-
ment on an uncertainty in already existing PDF without the re-evaluating PDEF. This is done by
performing a so-called profiling analysis. In the CMS experiment, the open-source QCD anal-
ysis framework XFITTER (former HERAFITTER) [175, 176] are used for PDF fits and profiling.
In a full PDF fit, together with the PDFs, further QCD or EW parameters such as quark masses,
strong coupling or EW mixing angle, can be obtained and the correlations of these parameters
with the PDFs are mitigated. Furthermore, once contributions of new physics are included (e.g.
via methods of effective field theory) in addition to the SM the cross section prediction, their
couplings can be constrained together with the PDFs and SM parameters.

4.3.1 Overview of CMS constraints on PDFs

The CMS Collaboration has explored the sensitivity of different processes to the PDFs and
SM parameters. The CMS Drell-Yan measurements have improved constraints on the valence
quark distributions, while production of tt and (multi)jets is particularly sensitive to the mass
of the top quark, the gluon distribution, and the xg. The associated production of W boson
with a charm quark (W+c) is the only process at a hadron collider directly probing the strange
content of the proton quark sea. The CMS experiment has pioneered the measurement of W+c
production at a hadron collider and its interpretation in terms of the strangeness distribution.
A list of CMS analyses used to constrain PDFs is given in Table 5. For each analysis the QCD
order of the analysis and a PDF distribution of interest that is constrained by the inclusion of
CMS data is listed. To date, the majority of these measurements are used by the global PDF
fit collaborations. Finally, comparisons of cross section measurements with the predictions
employing various PDFs are discussed in the relevant sections.
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Table 5: The CMS analyses where PDF fits were performed. The table lists the final state and
distributions considered, the pp collision energy, the HERA data set used or global PDF pro-
vided, the QCD perturbative order of the fit, and the most constrained PDFs. Whenever data
from multiple analyses are used, the first analysis listed contains the PDF extraction. In the
13 TeV analysis the inclusive jet data are used in an NNLO PDF fit, whereas the inclusive jet
and tt data are used in an NLO PDF fit.

Analysis NG HERA Data QCD Best PDF
(TeV) or PDF order constraint

W charge asym. [177], W+c [178] 7 HERA-I NLO u,d,s
Inclusive jet [144] 7 HERA-I NLO gluon

W charge asym. [179] 8 HERA-T+1I NLO uand d
Inclusive jet [139] 8 HERA-I+1I NLO gluon

3D dijet [180] 8 HERA-T+1I NLO gluon
Inclusive jet [146], tt [181] 13 HERA-I+1I, CT14nnlo NNLO,NLO gluon
Dijet mass [182] 13 HERA-T+1I NNLO gluon

4.3.2 The PDF constraints from jet production measurements

CMS measurements of multi-differential inclusive jet and dijet cross sections at different centre-
of-mass energies were extensively used to constrain the PDFs and the value of ag (presented
in Section 4.4). They include double-differential inclusive jet analysis at 7 [144], 8 [139], and
13 TeV [146]; triple-differential dijet analysis at 8 TeV [180]; and an analysis of dijet mass at
13TeV [182]. These data were included in comprehensive QCD analyses together with the
measurements of the DIS cross sections, available at the date of each analysis. Since the NNLO
predictions in a form suitable for the PDF fit became available only recently, the fits to 7 and
8 TeV measurements were performed only at NLO QCD, while the QCD analysis of 13 TeV data
were performed at NNLO. The CMS inclusive jet and dijet measurements provide a substan-
tial additional constraint on the gluon PDF at all values of x, as illustrated in Fig. 5 taken as
an example from the results obtained with inclusive jet cross sections at 13 TeV. In the same
analysis, the value of ag was extracted simultaneously with the PDFs. That paper also presents
an analysis including 13 TeV tt data was performed at NLO.

4.4 The strong coupling constant, «g, and its running

Important tests of QCD are the precise extraction of the value of ag at the scale of the Z boson
mass, ag(my ), and the illustration of the running ag as a function of the renormalization scale
Q, usually taken as p of the jet in proton collision, or momentum transfer in DIS. The scale
dependence is encoded in the renormalization group equation (RGE) of QCD and represents a
basic demonstration of our understanding of the dynamics of the strong interaction [183].

Jet production is an ideal instrument for determination of g, since its cross section is propor-
tional to ag already at LO QCD. The first CMS determination of ag was performed by inves-
tigating the ratio of jet cross sections in three- and 2-jet topologies R3, [184], which is linearly
proportional to the value of ag. In high-pr collisions involving the production of jets, ag is
typically of order 0.1-0.2, which, as calculated using pQCD, corresponds to a probability for
additional jet emissions in any pp hard-collision event of the same order. Two-jet and mul-
tijet events with three or more jets are common, allowing for statistically precise determina-
tions of ag. The Rj, analysis used events with jets with pr in the range 0.42 to 1.39 TeV and
conducted the first determination of ag at TeV scale energies. Simultaneous extraction of ag
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Figure 5: The gluon distribution, shown as a function of x for the factorization scale y; = m,.
The filled (hatched) band represents the results of the NNLO fit using HERA DIS and the CMS
inclusive jet cross section at /s = 13 TeV (using the HERA DIS data only). The PDFs are shown
with their total uncertainty. In the lower panel, the comparison of the relative PDF uncertainties
is shown for each distribution. The solid line corresponds to the ratio of the central PDF values
of the two variants of the fit. Figure and caption taken from Ref. [146].
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together with PDFs was performed using inclusive jet and di-jet measurements and exploring
the jet substructure. The uncertainties in ag extracted using jet production at hadron colliders
is dominated by missing higher-order pQCD calculations, usually estimated by varying the
renormalization and factorization scales by a factor of 2. Most of the aforementioned mea-
surements were performed at NLO and suffer from a large theory uncertainty. Simultaneously
CMS has pioneered extraction of ag using tt production cross section measurements, which
resulted in higher precision than jet-based extractions, due to availability of NNLO calcula-
tions for tt production cross section. In addition, other physics processes such as weak boson
production have been used to make precise determinations of ag. Since the NNLO calculation
for jet production in pp collisions have become available, the theory uncertainty in ag extrac-
tion using jet production is significantly reduced. The most precise measurement of ag ()
to date of ag(myz) = 0.1166 £ 0.0014 (fit) = 0.0007 (model) £ 0.0004 (scale) & 0.0001 (param) =
0.1166 £ 0.017 (tot) is obtained using in a simultaneous fit of PDF and ag at NNLO using double-
differential inclusive jet production data at 13 TeV [146]. The most recent CMS determination
of ag uses jet substructure[185], performed by comparing with NLO plus approximate next-to-
next-to-leading-logarithmic (aNNLL) [186-188] predictions of two- and three-point energy cor-
relators inside jets. The most precise value of ag (1) in substructure measurements is achieved
and the running of as is probed.

The CMS extractions of ag are listed in Table 6 and displayed in Fig. 6. For comparison, the
results are presented by extrapolating ag to the energy scale of the Z boson mass, ag(my).
Uncertainties are grouped together by type and further descriptions of the uncertainty types
are reported in the glossary of terms in Appendix A.

A summary of the running of ag, probed by several measurements shown in Fig. 7 includ-
ing CMS, ATLAS [194, 195], and earlier determinations by the DO [196, 197], H1 [198], and
ZEUS [199] Collaborations. For the CMS measurements ag is determined in dijet pt (R, [184]),
3-jet mass [189], and jet pr (inclusive jets 7 TeV [144], inclusive jets 8 TeV [139], and R Ad [193])
regions based on the average Q of events in those regions. The QCD RGEs, encoding the run-
ning of &g, are obtained using NLOJET++ implemented in the FASTNLO framework evolved
from 2023 world-average value of ag(1m,) = 0.1180 £ 0.0009 [123]. The CMS determinations of
ng agree well with the world-average and with the RGE at NLO predictions.

4.5 Double-parton scattering

Double-parton scattering (DPS) is a process in which two parton-parton scattering interactions
occur in a single hadron-hadron collision. The study of DPS is a test of our knowledge of
the structure of the proton. For instance, DPS provides information on the energy evolution
of the pt profile of the partons in the proton, which is information that cannot be accessed in
single-parton scattering (SPS) events. Thus, where SPS interactions are widely used to measure
the longitudinal PDFs of the partons in the proton, DPS events can measure the transverse
PDFs. Also, since multiple partons in each proton are colliding, DPS can be used to study the
correlations between quantum numbers of the constituents of the proton. For instance, the spin
of two partons in a single proton will be correlated and will have effects on the kinematics of a
DPS collision.

The cross sections of DPS interactions are typically modelled as the product of the two inde-
pendent SPS cross sections divided by an effective cross section, o, as shown in Eq. (1). The
ratio is multiplied by a combinatorial factor, m, that is equal to 2 when processes A and B are
different and 1 when they are the identical. This effective cross section can be interpreted as
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Table 6: Overview of ag(m;) from CMS analyses. Results where ag is determined by profiling
a global PDF set, list the set used. The other results were obtained using a combined PDF and
ag fit of the CMS and HERA data as described in the text. The 2D inclusive jet [144] analysis
only uses the HERA-I data, whereas the other combined PDF and «g fits use the combined
HERA-I and HERA-II data. The QCD perturbative order (pQCD order) of the determination
is also given. For publications where more than one value is extracted, only one is reported.
Whenever data from other analyses are used in the ag determination, the first analysis listed
documents the ag extraction.

Analysis Vs ag(my) fit unc. PDF unc. scale unc. other unc. PDF pQCD
(TeV) order
R, [184] 7 01148 +0.0014 +0.0018 +0.0050 theo incl. scale ~ NNPDF2.1 ~ NLO
2D inclusive jet [144] [142] 7 01185 +0.0019 +0.0028 Ho.ones +0.0004 NP — NLO
Inclusive 3-jet mass [189] 7 01171 +0.0013 +0.0024 oo +0.0008 NP CT10 NLO
tt cross section [190] 7 0.1151 oo Hooms +00000  £0.0013+0.0008 NNPDF2.3 NNLO
myg NG
2D inclusive jet [139] 8  0.1185 ooone Fo.0002 00000 +0.0022 — NLO
N N~
model param
3D dijet mass [180] 8  0.1199 £0.0015 £0.0002 00002 00026 — NLO
model param
W, Z cross section [191] 7,8 01163  £0.0007 0.0010 o0 +0.0009  £0.0013+£0.0006  CT14 NNLO
stat syst lumi num
tt (dilepton) [192] 13 0.1151 +0.0035 fit + PDF +0.0020 MMHT14 NNLO
Normalized tt [181] 13 01135 +0.0016 +H0.0002 +0.0008 oot — NLO
model param
2D inclusive jet [146] 13 0.1166 +0.0014 £0.0007 £0.0001  =£0.0004 — NNLO
N N——
model param
2D & 3D dijet mass [182] 13 0.1181 40.0013 40.0006 £0.0002  4:0.0009 — NNLO
N— e N——
model param
Ry, [193] 13 01177 +0.0013 £0.0010 £0.0020 0014 +£0,0011+0.0003 NNPDF3.1 NLO
N e N — ! N e N e’
NNPDE3.1  choice NP EW
Energy correlators injets [185] 13 0.1229 fg:gg}g fg:gggg fggggg — aNNLL

stat syst
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Figure 6: A summary of ag(my ) extractions from the CMS experiment compared with the 2023
PDG world-average. For each measurement, pp collision energy and the QCD perturbative
order of the ag(my) extraction are listed. Results are grouped by the type of the final state
used: vector boson, tt, and jets.



4.6 Summary of QCD measurements 25

CMS

Theory at NLO N CMS R, 7 TeV : EPJC 73:2604 (2013) o
v CMS 3-Jet mass 7TeV : EPIC 15:186 (2015) ]
+ CMS incl. jets 7 TeV : EPIC 15:288 (2015)

* CMS incl. jets 8 TeV : JHEP 03:156 (2017)

L]

*+

°

as(Q)

0.25

ATLAS TEEC 8 TeV : EPJC 77:872(2017)

0.2 ATLAS R,,8 TeV : PRD 98:092004 (2018)

CMS R,,13 TeV
-------- PDG 2023: ag(m,) = 0.1180+0.0009

\‘*‘%M

0.15 . —
- M*‘m m ’

- g -
01— g by " i
- e

B A DO : Phys. ReV. D 80:111107 (2009) LI ¢ i

— o DO : PLB 718:56 (2012) ! —
0.05— o H1: EPJC 75:65 (2015) ]
: o ZEUS : Nucl. Phys. B 864:1 (2012) :

_I 1 1 11 I 1 1 1 1 11 11 I 1 1 1 1 11 11 I 1 I_

10 10? 10°

O
@)
®
S

Figure 7: Running of the strong coupling as a function of momentum transfer, a5(Q) (dashed
line), evolved using the 2023 world-average value, ag(my) = 0.1179 £ 0.0009, together with its
associated total uncertainty (yellow band). The CMS extractions, which extend above 2TeV,
are compared with results from the H1, ZEUS, DO, and ATLAS experiments. The vertical error
bars indicate the total uncertainty (experimental and theoretical). All the experimental results
shown in this figure are based on predictions at NLO accuracy in perturbative QCD. Figure
from Ref. [193].

the square of the average transverse distance between the interacting partons.

DPs _ M UAUB 1)

The DPS has been extensively studied at the Tevatron by the CDF [200] and DO [201-204] ex-
periments and at the LHC by the CMS [205-208] and ATLAS experiments. Figure 8 shows
the effective cross section values for DPS processes from the Tevatron and LHC experiments
determined from measurements with quarkonium final states and from processes with jets,
photons, and W bosons. The expected relationships between the SPS, DPS and triple-parton
scattering (TPS) cross sections from HELAC-ONIA [44, 45] are used to extract 0.4 for DPS from
the CMS measurement of triple-J/¢ production [205]. Distributions sensitive to DPS based on
the MADGRAPH5_aMC@NLO and PYTHIA 6 simulation of DPS physics are used to extract o ¢
in W plus 2 jet events, whereas multivariate classifiers based on PYTHIA 8 simulation with
the CP5 and CUETP8MI1 tunes of MPI parameters [37] are used to extract o in WEW¥ and
W=W= events. The effective cross sections obtained from quarkonium measurements favour
values below 10mb, as compared with effective cross sections derived from final states with
harder scales, which favour values above 10mb. Such apparent process-dependent og val-
ues are suggestive of different parton transverse PDFs and/or correlations probed inside the
proton at varying fractional momenta.

4.6 Summary of QCD measurements

The CMS Collaboration has conducted a broad array of QCD measurements across a large
range of energies. The PDF measurements substantially constrain the gluon, valence quark,
and sea quark (collectively and individually such as constraints on the s quark) PDFs. The
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Figure 8: Selected measurements of the effective DPS cross section in pp collisions at the LHC
by the CMS and ATLAS experiments, and in pp collisions at the Tevatron by the CDF and DO
experiments. The horizontal bars indicate the combined statistical and systematic uncertainty
for each measurement. Figure taken from Ref. [205].
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ag(my) extractions are competitive and agree with those of other experiments and measure the
running of ag(my) up to TeV energy scales. Together these measurements constrain important
aspects of QCD that are essential for making predictions of high-pt interactions at the LHC.
Inclusive and multidifferential jet production measurements have been performed, testing the
limits of the current generation of NNLO QCD and NLO EW perturbative predictions. In
general, given the high probability of additional jet production in high-energy pp collisions,
the detailed QCD analyses produced by the LHC experiments and their comparisons with
the most sophisticated theory predictions are essential for expanding our understanding of all
aspects of high-pt SM physics.

5 Measurements in the electroweak sector of the standard model

The EW sector involves the EW gauge bosons (the photon, and the W and Z bosons) and
their interactions with other SM particles. The EW sector of the SM combines a ¢/(1)y and a
non-Abelian SU(2); gauge symmetries, with associated weak hypercharge and weak isospin
charges, respectively. The electromagnetic force is based on a U (1)gy; symmetry, with electric
charge, and the associated massless photon resulting from a linear combination of the B and W;
fields of the ¢ (1)y and SU(2); gauge symmetries after the EW symmetry breaking. Similarly,
the weak force, weak charges, and W and Z bosons result from linear combinations of the W;
and W, fields of the SU/(2); symmetry and a linear combination of the B and W fields, respec-
tively. The combination of these gauge symmetries and the EW symmetry-breaking mechanism
forms a unified EW theory. Electroweak physics measurements at the LHC test many aspects of
the SM. These include the complex interactions between multiple EW gauge bosons predicted
by the non-Abelian SU(2); portion of the EW gauge structure and the nature of EW symme-
try breaking via the Brout-Englert-Higgs mechanism, which generates masses of the W and Z
bosons. The small values of the EW couplings imply that most EW processes at the LHC can
be calculated perturbatively with good precision. The EW bosons are copiously produced at
the LHC and can be measured with high precision by the LHC detectors.

For EW physics, the number of accessible final states at the LHC is without precedent. They
include states with single, double, or triple gauge bosons. Production of EW gauge bosons can
occur via radiation from quarks, multi-gauge-boson interactions, such as vector boson scat-
tering (VBS) and vector boson fusion (VBF), and from the decay of heavier particles, such as
the Higgs boson and top quark. Many processes have only been observed at the LHC, which
is the first collider that allows access to processes such as VBS. In each subsection total and
fiducial cross sections, cross sections including production of additional jets, and differential
measurements are presented. At the end of the section we briefly summarize the results.

Analysis of the EW physics at the CMS experiment is primarily conducted using physics ob-
jects, such as jets, photons, electrons, or muons. Neutrinos are inferred from the ﬁ{mss in the
vector sum of objects reconstructed as originating from the PV. Jets are typically required to
have pr > 30GeV. Photons are required to satisfy pr > 25GeV to remove lower-p photons
originating from the decay of neutral pions. Electrons and muons are used to identify events
with W or Z bosons. In EW analyses described in this Report, W (W' or W™) and Z bosons
are efficiently reconstructed via their leptonic decays, W — ¢*v, (charge conjugate states are
implied) and Z — ¢*¢~, where ¢ = u or e. Backgrounds to Z — ¢*{~ decays are very low.
Muons and electrons with py > 20 GeV are used in analysis with a single W boson. Analyses
with Z bosons or multiple bosons often use thresholds as low as py > 10GeV for a second
lepton and pr > 5GeV for additional leptons. The W bosons are also selected by identifying

events with FIs or selecting events with large transverse mass calculated using a lepton mo-
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Figure 9: The Feynman diagram for Drell-Yan production of W and Z bosons (left). The Z
boson production process involves annihilation of quark-antiquark pairs of same flavour. The
W boson production process requires different-flavour quarks, such as ud or td pairs. The
NLO diagrams with real emission of a jet for the production of single vector bosons and one jet
with a final-state gluon jet (middle) or quark jet (right).
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mentum and M. The selection listed above is typical of CMS analyses, but higher thresholds
are used in some cases to reject backgrounds, or lower thresholds to increase the acceptance.
Generally, events using reconstructed W and Z candidates have low background caused by
misidentified prompt leptons. The largest backgrounds (the so-called “physics” backgrounds)
come from events with identical final-state particles. Flavour-tagging algorithms are used to
identify bottom and charm jets. Reconstruction algorithms and identification criteria are de-
scribed in Section 2.1.

5.1 Vector boson production

Measurements of the production of single EW bosons are the simplest test of EW theory pre-
dictions. However, the prediction of the corresponding cross sections at a hadron collider is
complicated by the necessity to understand the radiation of QCD jets and the PDFs of the pro-
ton, which describe the structure of the proton and predict the partonic luminosities of the
colliding partons. Despite these complications, measurements of EW production cross sections
can still be made with percent-level precision. This makes physics involving single bosons
both a precision test of EW theory and, in either inclusive production or production of vector
bosons with jets, of perturbative QCD predictions. The low backgrounds when identifying
vector bosons in the W — (T, and especially Z — ¢7¢~ decay modes and the size of the
LHC data sets allows theoretical and experimental comparisons of total, differential, and often
multidifferential distributions with good precision over wide ranges of energy, angle, and jet
multiplicity. Together these processes provide a stringent test of SM predictions over a broad
array of final states and kinematic configurations.

Measurements of single-boson production constitute an essential test of our ability to predict
SM parton-parton interaction cross sections using perturbative techniques. Single photons are
radiated off charged objects. Single weak boson production proceeds primarily through the
Drell-Yan (DY) quark-antiquark annihilation process [209], as shown in Fig. 9. The production
of Z bosons is sensitive to the sum of the u and d and the sum of the @ and d PDFs and also
the EW mixing angle 6yy. The W and W~ boson production has sensitivity to the ratios of

u to d and U to d contributions, especially when considering the charge asymmetry of the
leptons from the W boson decays as a function of their pseudorapidity. The DY process has
been predicted at N°LO accuracy in perturbative QCD using matching N°LO PDF sets. The
PDF uncertainties, and higher-order QCD and EW radiative corrections limit the precision of
current predictions. Other sensitive comparisons are made using N°LO or NNLO predictions
of ratios of production cross sections or in two-dimensional planes depicting pairs of the Z,
W, and W~ boson cross sections.
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5.1.1 Single photon production

The photon is the longest known and most extensively studied vector boson. In high-energy pp
collisions the photon is observed as a promptly produced particle in a large number of SM pro-
cesses and may also be produced in BSM topologies. Examples are Higgs boson decay to two
photons [210] and monophoton searches for new physics, such as dark matter [211]. Photons
are also produced in neutral pion decays and are radiated from final-state particles, leading
to backgrounds in the study of prompt high-energy photons. The simplest measurement of
photon production uses events with one or more prompt isolated photons above a given pr
threshold that are produced in the hard interaction. Unlike the situation with massive vec-
tor bosons, it is necessary to define a minimum momentum threshold, because singularities in
the perturbative calculation of cross sections near zero momentum are not well defined. Also,
experimental constraints make it impossible to measure the lowest energy portion of photon
production due to overwhelming backgrounds. A minimum threshold is required to reject both
instrumental and physics backgrounds. In 7 TeV collision data the CMS experiment finds a pro-
duction cross section of 39.6 £ 0.7 (stat) == 6.9 (syst) nb for photons with pr > 25GeV [212]. This
cross section was calculated by integrating the differential cross section for photon production
presented in that paper.

Inclusive photon production cross sections have been measured differentially as functions of
basic kinematic variables at 7 [212, 213] and 13 [214] TeV. As with jet production, the results are
reported as functions of the photon Er in several intervals of rapidity. An example from the
13 TeV analysis of single-photon data is shown in Fig. 10. The measurements of differential and
inclusive photon production cross sections are compared with the NLO calculations from JET-
PHOX [215] using the BFG [216] fragmentation functions for quarks and gluons into photons,
and found to be well modelled.

5.1.2 Single weak boson production

The cross sections of single prompt massive vector bosons inclusively produced with any num-
ber of final-state quarks or gluons are among the most precisely measured at hadron colliders.
The CMS experiment has measured single inclusive W and Z boson production in events where
the boson decays to an electron or a muon and the corresponding antineutrinos, and e*e™ or
iy~ pairs, respectively. Inclusive cross section measurements have been made with 2% preci-
sion primarily limited by the uncertainty in the integrated luminosity. This precision has been
achieved because of several factors. The large data sets of W and Z bosons result in small to
negligible statistical uncertainty in the measurements. Small systematic uncertainty is achieved
due to large data sets for evaluating in granular detail the efficiency of lepton (electron and
muon) detection; accurate MC simulations for estimating the acceptance for prompt leptons
from W and Z boson decays, and predicting physics backgrounds involving prompt leptons
from other sources; and low backgrounds and reliable methods to predict the rates of hadrons
and leptons in jets being misidentified as prompt leptons based on control samples in data. The
limiting integrated luminosity uncertainty has been extensively studied and minimized using
techniques described in the references given in Section 2.1.

These measurements have been made in fiducial phase spaces and extrapolated to the full pro-
duction cross sections for both the W and Z bosons at each energy at which the LHC has oper-
ated. Shown in Fig. 11 is a comparison of the CMS measurements of the full production cross
section of W and Z bosons in leptonic decay channels at 2.76 TeV [217, 218] (W and Z bosons,
respectively), 5.02 [219], 7 [220, 221], 8 [222, 223], and 13 [219] compared with the predictions
at N°LO [224] in QCD using the MSHT20aN®LO [112] PDF set. The measurement of the Z
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Figure 10: Differential cross sections for isolated-photon production in four photon rapidity
intervals. The points show the measured values and their total uncertainties; the lines represent
the NLO JETPHOX predictions with the NNPDF3.0 PDF set. Figure and caption taken from
Ref. [214].
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boson cross section at 2.76 TeV uses the differential measurement versus rapidity presented in
Ref. [218] integrating the results over the measured rapidity range and extrapolating to the
full one using DYTURBO [38] at N3LO. The measurements at 2.76 and 5.02 TeV are based on
the pp collision reference data for the heavy ion physics programme. The N°LO cross section
predictions are the most accurate currently available and Fig. 11 illustrates the ability to make
precise comparisons of cross sections between experimental measurements and theoretical pre-
diction at a hadron collider. Figure 12 presents the CMS W and Z cross section measurements
along with cross section measurements from previous pp colliders including the UA1 [225] and
UAZ2 [226] experiments at the CERN SppS, where the W and Z bosons were first discovered,
and the CDF [227] and DO [228] experiments at the Tevatron. The results are compared with
the NNLO predictions computed using DYTURBO and the NNPDF4.0 PDF, which yields the
smallest cross section uncertainties for weak boson production of the currently available global
PDF sets. The CMS results are also presented in the full cross section summary Fig. 1. The the-
oretical predictions for total, fiducial, and ratio measurements presented in the following tables
are computed at NNLO using, for the 5 and 13 TeV predictions, DYTURBO with the NNPDF3.1
PDF set; and, for 7 TeV, using FEWZ with the NNPDF2.1 PDF set. The theoretical predictions
for the 8 TeV ratio of cross sections are computed at NNLO using FEWZ with the MSTW2008
PDF set.

Table 7 presents the inclusive cross section for Z production in pp collisions at various energies.
The largest source of uncertainty in the measurements is the integrated luminosity. The most
precise cross section measurements have been made with low-pileup data sets collected in short
time periods that allow a more precise determination of the luminosity.

Table 7: Measured inclusive cross sections for Z boson production at pp collision energies from
2.76 to 13 TeV. Total uncertainties in the experimental measurements are given in pb and as a
percentage. Separate components of the experimental statistical and systematic uncertainties
other than the dominant integrated luminosity uncertainty were not published for the 2.76 TeV
cross section measurement. The statistical uncertainties of the 7 and 8 TeV measurements are
smaller than 1 pb and are not shown. The measurements are compared with theoretical predic-
tions obtained at N°LO in QCD using the MSHT20aN>LO PDF set. The theoretical uncertainty
is from normalization and factorization scale variations.

Vs (TeV)  o(Z) (pb) Tot. exp. unc. °M(Z) (pb)
2.76 [218] 298 £ 10 (stat) (syst) + 11 (lumi) 5.0% 31311

5.02 [219] 669 + 2 (stat) + 6 (syst) & 13 (lumi) 2.2% 674.7171

7 [221] 986 + 22 (syst) =+ 22 (lumi) 3.1% 96815

8 [223] 1138 + 26 (syst) =+ 30 (lumi) 3.5% 1124+7
13[219] 1952 + 4 (stat) + 18 (syst) & 45 (lumi) 2.5% 1940713

Measuring the cross section in a fiducial phase space reduces the total systematic uncertainty by
removing or minimizing the additional uncertainty from the extrapolation of the cross section
from the fiducial phase space region where it is measured to the full production phase space.
Fiducial measurements of the Z cross section are presented in Table 8. The 8 TeV fiducial cross
section measurement is from Ref. [222].

Table 9 lists the measurements of ratios of the inclusive W and Z cross sections, and Table 10
lists the measurement of the ratios of fiducial cross sections. The measurements of the ratios
of W to Z boson cross sections remove the dependence on the integrated luminosity deter-
mination and that of any other efficiencies or factors that apply to both measurements identi-
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Figure 11: Summary of the production cross section of weak gauge bosons, measured by CMS,
plotted against the pp centre-of-mass energy ranging from 2.76 to 13 TeV. The error bars around
the experimental data points represent the total uncertainty of the measurement. The measure-
ments are compared with theoretical predictions (black lines) obtained at N°LO in QCD using
the MSHT20aN>LO PDF set. The grey band shows the envelope from normalization and fac-
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Table 8: Measured fiducial cross sections for Z boson production and decay to electrons and
muons in pp collisions at energies from 5.02 to 13 TeV. Total uncertainties in the experimental
measurements are given in pb and as a percentage. The measurements are compared with
theoretical predictions at NNLO in QCD described in the references above. In each case, the
uncertainty in the CMS measurement of the fiducial Z boson cross section is reduced compared
with the inclusive measurement and the integrated luminosity uncertainty dominates the over-
all uncertainty of the measurements.

Vs (TeV)  054.(Z) (pb) Tot. exp. unc. 0:3(Z) (pb)
5.02[222] 319.8 £ 0.9 (stat) &= 1.2 (syst) & 6.2 (lumi) 2.0% 3195+ 3.7
7[221] 5247 + 0.4 (stat) £ 5.2 (syst) £ 11.5 (lumi)  2.4% 525+ 6
8[222]  410.0 + 10.0 (stat) & 10.0 (syst) + 10.0 (lumi) 4.2% 400+ 10
13[222] 754 4 2 (stat) = 3 (syst) & 17 (lumi) 2.3% 743 + 18

cally, substantially reducing the systematic uncertainty. For this reason, cross section ratios are
among the most precise measurements performed by the CMS experiment.

Table 9: Measured ratios, Rexp, of inclusive cross sections for W and Z boson production times
the branching fractions B(W — (v) and B(Z — ¢7¢~) (with the dilepton mass between 60
and 120 GeV), respectively. Ratios Ry + jyy— = o(WH)B(W* — £Tv)/oc(WT)B(W™ — £77)
and Ry ,z = c(W)B(W — v)/0(Z)B(Z — (™) are shown for pp collision energies from
5.02 to 13 TeV. The total uncertainty in the experimental measurement is shown in the standard
and percentage forms. The measurements are compared with theoretical predictions, Rgyy,
obtained at NNLO in QCD. The theoretical uncertainties, expressed as percentages, are from
renormalization and factorization scale variations, ag, and the PDF uncertainty.

Vs (TeV)  Ratio Rexp Tot. exp. unc. Rgy
5.02[219] Ry+ - 1519 40.002 (stat) £ 0.010 (syst) 0.67% 1.524010:33%
7 [220] Ry+ w- 1421 =+0.006 (stat) + 0.032 (syst) 1.8% 1.43+0.7%
8 [222] Ry+ w- 1.39=£0.01 (stat) + 0.02 (syst) 1.6% 1.41 +£0.7%
13[219]  Ry+,w- 1.3615=+0.0018 (stat) & 0.0094 (syst) 0.70% 1.35361035%
5.02[219] Rw,z 10.905 = 0.032 (stat) 4= 0.054 (syst) 0.58% 10.777+333%
7 [220] Ry ,z 10.54 + 0.07 (stat) =+ 0.18 (syst) 2.3% 10.74 + 0.4%
8 [222] Ry 7z 10.63 & 0.11 (stat) £ 0.25 (syst) 2.6% 10.74 +0.4%
13[2191  Ry,z 10.491 =+ 0.024 (stat) 4= 0.083 (syst) 0.82% 10.3411941%

The recent cross section results at 5.02 TeV are the most precise because they feature an im-
proved integrated luminosity uncertainty of 1.9%. Comparisons of theoretical predictions
to the total, fiducial, and the ratios of the measured 5.02 and 13TeV W to Z cross sections
are reported in Ref. [219], computed at NNLO in QCD using DYTURBO [38, 229, 230] and
the NNPDF3.1 NNLO PDF set. These predictions were improved to next-to-next-to-leading-
logarithmic (NNLL) accuracy using resummation [231, 232], which better models the py distri-
bution of the Z bosons at low pr values. This reduces systematic uncertainties associated with
the extrapolation from the measurement in the fiducial region to the total cross section. For
instance, in 5.02 TeV pp collisions the Z and W boson cross sections with a subsequent decay
to leptons were measured in a fiducial phase space as: ¢(Z) = 319.8 £ 0.9 (stat) £ 1.2 (syst) =
6.2 (lumi) (2.0% total uncertainty), and o(W) = 4000 =+ 3 (stat) £ 11 (syst) £ 76 (lumi) pb (1.9%
total uncertainty), which are the most precise single cross section measurements performed by
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Table 10: Measured ratios, Re,y,, of fiducial cross sections for W and Z boson production times
the branching fractions B(W — fv) and B(Z — (%{7), respectively. Ratios Ry - =
c(WHBW* = £tv)/c(W™)B(W™ — £ V) and Ry ,z = c(W)BW — v)/c(Z2)B(Z —
¢7¢~) are shown for at pp collision energies from 5.02 to 13 TeV. The total uncertainty in the
experimental measurement is shown in the standard and percentage forms. The measurements
are compared with theoretical predictions, Rgy;, obtained at NNLO in QCD. The theoretical un-
certainties, expressed as percentages, are from normalization and factorization scale variations,
g, and PDF uncertainty.

Vs (TeV) Ratio Rep Tot. exp. unc. Rgy
5.02[219] Ry+,w- 1.6232+0.0026 (stat) + 0.0065 (syst) 0.43% 1.631 + 0.98%
812221  Ry+,yy— 140+ 0.01 (stat) + 0.02 (syst) 1.6% 1.42 +1.4%
13 [219] Ry+ w- 1.3159+0.0017 (stat) & 0.0053 (syst) ~ 0.43% 1.307 £1.3%
5.02[219] Ry, 12.505 + 0.037 (stat) &= 0.032 (syst) 0.39% 12.51 +0.96%
8 [222] Ry /z 13.26 £ 0.15 (stat) & 0.21 (syst) 1.9% 1349 +2.1%
13 [219] Ry 7z 12.07840.028 (stat) &= 0.032 (syst) 0.35% 12.02 +2.3%

the CMS experiment. Ratios of cross sections can be measured with better than 0.5% precision
in fiducial phase space, since the dependence of the measurement on the integrated luminos-
ity and the understanding of some reconstruction efficiencies is removed by forming a ratio
of cross sections of similar production processes. For 13TeV pp collisions the same analy-
sis measured c(W™)/c(W™) = 1.3159 £ 0.0017 (stat) & 0.0053 (syst) (0.43% total uncertainty),
and 0(W)/c(Z) = 12.078 £ 0.028 (stat) & 0.032 (syst) (0.35% total uncertainty). The effort by
the LHC experiments to make precise measurements has been matched by progress in theory
in producing higher QCD and EW perturbative order predictions, and improving our under-
standing of PDFs and other relevant theoretical issues. As with the experimental measurements
precise predictions can be made of ratios of production cross sessions. For comparison theoret-
ical prediction of c(W™)/c(W™) at 13 TeV, computed at NNLO, has a precision 0.35% for the
ratio of total cross sections and 1.3% for the ratio of fiducial cross sections (using one PDF set)
due to larger renormalization and factorization scale uncertainties when computing the ratio
in a restricted phase space. These ratios are sensitive to the quark content of the protons as
described above and, in general, vector boson production measurements are a strong input to
determining the proton PDFs.

In Fig. 13 a 2D comparison of the W+ and W~ boson cross sections in 8 TeV pp collisions is
shown, illustrating the improved precision of ratios of both the experimental measurements [222]
and theoretical predictions calculated at NNLO in QCD using FEWZ [39, 40]. The large inte-
grated luminosity uncertainty and its cancellation in the ratio are clearly seen in the shape of
the uncertainty ellipse.

5.1.3 Differential measurements of vector boson production

The CMS experiment has measured the differential cross sections of photons, and W and Z
bosons vs. a variety of kinematic variables considered in up to three dimensions. Of particular
interest are analyses that differentially measure the rapidity or other angular variables of the
weak bosons or their leptonic decays. In W boson decays, these measurements have direct
sensitivity to the PDFs of the quarks in the proton of the same charge sign as the W boson. The
DY production of £* ¢~ pairs, when considering a wider range of masses around the Z boson
peak, has the sensitivity to the EW mixing angle 0},. The measurements are often reported as
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Figure 13: Measured and predicted W™ versus W™ production fiducial cross sections times
branching fractions. The ellipses illustrate the 68% CL coverage for total uncertainties (open)
and excluding the integrated luminosity uncertainty (filled). The uncertainties in the theoretical
predictions correspond to the PDF uncertainty components only and are evaluated for three
PDF sets: NNPDF2.3, CTEQ CT10, and MSTW 2008 NLO. Figure taken from Ref. [222].

asymmetries comparing the positive and negative W boson or lepton distributions as a function
of rapidity in W boson production or as a forward-backward asymmetry of the negative lepton
direction in DY production of ¢~ pairs.

The W production charge asymmetry can be measured as:

do/dlyw|(WT — £1v) —do/d|yw|(W™ — £77)

Allywl) = do/d|yw|(W+ = 0+v) +do/d|yw|(W— = 7))’ @

where do/d|yw]| is the differential cross section for the absolute value of the W boson produc-
tion rapidity in the laboratory frame.

The charge asymmetry in leptonic W boson decays has been measured in pp collisions at
7 [177, 233, 234], 8 [179], and 13 [235] TeV, where the charge asymmetry was also separately
reported for the left- and right-handed W boson helicity states. The W boson charge asym-
metry as a function of the absolute value of the W boson rapidity is shown in Fig. 14. Com-
parisons are made to MADGRAPH5_aMC@NLO NLO simulation (denoted MC@NLO) interfaced
with PYTHIA for PS and QED lepton FSR and normalized to NNLO calculations using FEWZ
2.0 [41] with two PDF sets. For the NLO comparison, the pt distribution of the generated W
boson is reweighted based on comparisons between the pr distribution of Z boson data and
MADGRAPH5_aMC@NLO simulation. Also, the QED lepton FSR distribution is corrected to
that of PHOTOS [78]. All predictions agree well with the data, except at high rapidity where
some fluctuations are visible in the measurements relative to all three predictions. The PDF fits
performed using the 7 and 8 TeV data were reported in Section 4.3.

For DY production of ¢*¢~ pairs, the forward-backward asymmetry, Agg, is computed in sev-
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MG5_aMC with the NNPDEFE3.0 PDF set, the pink band represents the FEWZ generator with the
NNPDEF3.1 PDF set, and the cyan band represents the FEWZ generator with the CT18 PDF set.
The uncertainty bands of the prediction include the PDF uncertainties only, which are domi-
nant with respect to ag, or renormalization and factorization scale variations for this quantity.

Figure taken from Ref. [235].



5.1 Vector boson production 37

eral regions of lepton pair mass as:
0p — OB
App = /
O + 0B

®)

where o (o) is the total cross section for the forward (backward) events, defined by cos 6* > 0
(cos 0% < 0), where cos 6* is the angle between the negatively charged lepton and the Z boson
momentum vector direction (in the laboratory frame) measured in the lepton pair centre-of-
mass frame. The Apg depends on m(£*¢™), quark flavour, and the EW mixing angle 6yy. Near
the Z boson mass peak, the Agg is close to zero because of the small value of the charged-
lepton vector coupling to Z bosons. Due to weak-electromagnetic interference, Apg is large
and negative for m below the Z boson peak (m < 80 GeV) and large and positive above the Z
boson peak (m > 110 GeV).

The DY A measurements are reported for pp collision data at 7 [236, 237] and 8 [238, 239] TeV.
In Ref. [239], using Apg around the Z boson peak, as modelled for different sin? Qﬁf}gt values
using POWHEG v2 and the NNPDEF3.0 PDF set, the effective leptonic EW mixing angle was ex-
tracted as sin’ Gleeflfgt = 0.23101 +0.00036 (stat) £ 0.00018 (syst) &= 0.00016 (theo) £ 0.00031 (PDF) =

0.23101 £ 0.00053.

5.1.4 Measurements of vector boson production in association with jets

Many vector boson analyses also consider associated jet production. As with pure QCD jet
analysis, the production of vector bosons in association with jets is an excellent test of per-
turbative QCD predictions. Production of W and Z in association with jets, followed by the
W+ — {ty and Z — (T4~ decays, respectively, allows for some of the most stringent pertur-
bative QCD tests. Figure 9 shows Feynman diagrams for the radiation of a photon, Z boson,
or W boson from a quark where the boson is produced in association with one jet. These NLO
QCD diagrams for vector boson production can either involve a gluon in the initial state or
the radiation of a gluon in the final state. The addition of new initial states, in this case in-
volving a gluon, means that NLO production almost always increases the expected inclusive
cross section and including NLO diagrams is always necessary to get reasonably accurate cross
section predictions. Topologies with up to 8 jets have been analyzed and compared with MC
generators at LO, NLO, and NNLO accuracy.

The most recent 13 TeV Z+jets measurement [240] is shown in Fig. 15 with comparisons to
three fixed-order MC generator predictions. Fixed-order predictions generate at a given level
of perturbative accuracy all tree-level production diagrams for the selected process and all di-
agrams with additional partons up to a given number. In the analysis, jets are required to have
pr > 30GeV and |y| < 2.4. The first comparison is to MADGRAPH5_aMC@NLO generated
with <4 partons at LO accuracy interfaced with PYTHIA 8 for PS using the MLM [241, 242]
ME-PS jet merging scheme. The second comparison is to MADGRAPH5_aMC@NLO generated
with <2 partons at NLO accuracy interfaced with PYTHIA 8 for PS using the FxFx [243] ME-
PS jet merging scheme. As an NLO QCD prediction, one-loop diagrams are included, as well
as diagrams with real emission of an additional parton at LO accuracy. The samples are nor-
malized to NLO cross section predictions produced using MCFM. The final comparison is to
the GENEVA [244, 245] MC which combines an NNLO ME calculation with an NNLL accu-
racy resummation of the zero-jettiness T variable, also known as the beam thrust [246]. The
NNLO matrix elements include the real emission of two additional partons. Thus the MAD-
GRAPH5_aMC@NLO prediction effectively includes three-jet topologies at LO accuracy, and the
GENEVA NNLO prediction effectively includes one-jet topology at NLO accuracy and two-jet
topology at LO accuracy. The results show that modelling additional jets using ME calcula-
tions produces the best agreement with predictions at higher jet multiplicities. In fact, the
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MADGRAPH5_aMC@NLO (NLO) and GENEVA (NNLO) predictions exhibit disagreement for all
jet multiplicities that exceed the number of jets included in the ME calculations. The MAD-
GRAPH5_aMC@NLO LO generator, with up to 4 partons in the ME calculations, models the en-
tire distribution well. In this analysis, PYTHIA 8uses the CUETP8M1 [148] tune of UE physics
based on the MONASH [247] tune, which was trained to improve modelling of a wide variety
of data sets including DY production at lower LHC energies.

A complete set of cross section measurements for W and Z production in association with
jets is displayed in Fig. 63. The analyses, and the MC generators and configurations used to
evaluate the theory comparisons shown in the plot are given in Table 11. The figure includes
cross section measurements for topologies with vector bosons, multiple vector bosons, Higgs
bosons, and top quark production in association with jets. The 8 TeV Z+jets results [248] are
summed as necessary over the exclusive results per number of jets with uncertainties computed
accounting for correlations of systematic sources.

Table 11: Measurements of W and Z boson production in association with jets and the MC
generators used for comparison to the measured cross sections. All measurements are inclusive
cross sections for the vector boson produced in association with the listed or higher number of
jets. For each measurement, the pp collision energy, ME generator, largest number of hard
partons generated, largest number of hard partons generated at NLO accuracy, PS generator,
and the ME-PS matching scheme are given. Events generated with greater than the number
of NLO partons have LO accuracy. If no matching scheme is listed the comparison was done
directly to the parton-level cross section predictions after applying a correction for NP effects.
For the 7 and 8 TeV results the SHERPA with BLACKHAT (SHERPA 1/2, BH) NLO comparison
was done only for lower parton multiplicities. The MADGRAPH 5 or MADGRAPH5_aMC@NLO
(denoted MG5_aMC) comparisons are shown for higher jet multiplicities.

Boson NG Generator partons partons PS  ME-PS

# Jets (TeV) total NLO scheme

W 1-5j[249] 7 SHERPA 1, BH 5 5 — -

W 6j [249] 7 MADGRAPH5 4 — Py6 CKKW [241]
W 1-4j[250] 8 SHERPA 2,BH 4 4 — -

W 5,6j[250] 8 MG5_aMC 3 2 Py8 FxFx

W 1-6j [251] 13 MG5_aMC 4 2 Py8 FxFx
Z1-6j[252] 7 SHERPA 1,BH 4 1 CS MEPS@NLO
Z1-7)[248] 8 SHERPA 2,BH 4 2 CS MEPS@NLO
Z1-6j[253] 13 MG5_aMC 4 2 Py8 FxFx

Differential properties of vector boson production in association with jets are a complex and
stringent test of our understanding of perturbative QCD physics. An illustrative example is
shown in Fig. 16 of the jet rapidity of the 4% jet from the 8 TeV analysis of Z+jets data [248].
This 8 TeV Z+jets measurement includes comparisons to three MC generators. The first com-
parison is to MADGRAPH 5 generated with <4 partons with LO accuracy interfaced to PYTHIA
6 for PS (denoted MG5 + PY6). The parameters of PYTHIA 6 are set to the Z2* tune [254],
which are designed to reproduce lower collision energy LHC data, and are found to model DY
data well [148]. The MADGRAPH 5 prediction is normalized to the FEWZ NNLO cross section.
The second comparison is to MADGRAPH5_aMC@NLO (denoted MG5_.aMC) generated with
<3 partons, at NLO accuracy for events with <2 partons and LO accuracy for 3 partons. The
MADGRAPH5_aMC@NLO generator is interfaced with PYTHIA 8 for PS using the FxFx ME-PS
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Figure 15: The differential cross section of Z — ¢{~+jets production as a function of inclu-
sive jet multiplicity, compared with the predictions calculated with MADGRAPH5_aMC@NLO
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around the MADGRAPH5_aMC@NLO (NLO) + PYTHIA 8 to measurement ratio represent the
uncertainty in the prediction as listed in the legend. Figure taken from Ref. [240].
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merging scheme. The final comparison is to SHERPA 2 with BLACKHAT [56, 255] generated with
<4 partons, with NLO accuracy for events with <2 partons and LO accuracy for 3 and 4 par-
tons, PS using CSSHOWER PS [94] based on Catani-Seymour dipole factorization, interfaced
with NLO accuracy using the MEPS@NLO [256] ME-PS merging scheme (the combination of
which is denoted Sherpa 2). The NLO predictions are not normalized. In this measurement, an
analysis of the rapidity of each jet, where the jets are ordered in pr, is performed. The selected
plot corresponds to the fourth pr-ordered jet, which is the highest jet multiplicity for which
the statistical power is sufficient for a precise comparison of the rapidity distribution with the
simulation. As shown above, LO predictions do well with more inclusive properties, such as
the simple production of a given number of jets. However, they do not perfectly model many
kinematic features of the production of jets. Higher-order generators can capture more of the
details of the production kinematics. In this analysis, the LO predictions of the rapidity distri-
bution of jets disagree for the lower-pr jets in Z boson + multijet events with high multiplicities
of jets. The best agreement is seen with the SHERPA 2 predictions, which include LO MEs for
four-jet production and NLO generation for lower numbers of jets. Differential analyses of
complex final states are essential in pushing our understanding of QCD and combined EW
and QCD physics. These are the types of analyses that most directly reveal the shortcomings in
our ability to model complex physics interactions and show the need for higher perturbative
order predictions of parton-parton interactions.

Associated production of a photon and a jet has been measured triple-differentially at 7 [257],
8 [258] and 13 [214] TeV as a function of photon Ep, photon rapidity, and jet rapidity. The
results are compared with the NLO calculations from JETPHOX [215] (7 and 13 TeV) and NLL
calculations using <y + jet [42, 43] and the CJ15 PDF set [102] (8 TeV). Both calculations use
the BFG [216] fragmentation functions for quarks and gluons. The measurements are in good
agreement with the predictions. In the same analysis, the inclusive production cross section of
events with at least one photon and one jet has been measured. With a requirement of py >
40GeV for both objects, a cross section of 8.01 & 0.11 (stat) &= 0.74 (syst) nb [257] is measured
consistent with theory predictions. This result was obtained by integrating over the differential
n and pt cross sections presented in Ref. [257], accounting for correlations between systematic
uncertainty sources.

Although the CMS experiment has not generally performed simple y+jets counting analyses
as in the W+jets and Z+jets cases, it has performed an array of differential analyses of y+jets
production. Among the most interesting of these analyses are comparisons between -y +jets and
Z+jets production, where the Z bosons decay to muons which is the lowest background decay
mode. These allow us to study the similarities between these final states, which are leveraged
in SM cross section analysis and BSM physics searches involving photons, by using our exten-
sive understanding of low-background events with Z bosons to better describe topologies in-
volving a photon. The y+jets and Z+jets comparisons have been performed at 7 [259], 8 [260],
and 13 [261] TeV. Comparisons are made to MC simulations of the kinematic distributions
of the bosons and the jets as functions of the number and type (light or b-flavoured) of jets.
Cross section distributions are shown separately for events with Z bosons and photons, and
as ratios. Figure 17 shows a comparison from the 13 TeV analysis [261] of the ratio of Z+jets
and y+ets production in events with at least one jet compared with NLO QCD with NLO
EW theoretical predictions. Two fixed-order NLO MC generator comparisons are shown. The
MADGRAPH5_aMC@NLO comparison (denoted MG5_aMC) of Z production includes topolo-
gies with up to 3 hard partons and events with <2 partons have NLO QCD accuracy, whereas
events with 3 partons have LO accuracy. The MADGRAPH5_.aMC@NLO ‘y+jets production is
generated with up to one parton at NLO QCD accuracy. Matrix element to PS matching is
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Figure 16: The differential cross section for Z — ¢*/~ + jets production as a function of the
absolute value of the 4th jet’s rapidity compared with the predictions calculated with MAD-
GRAPH 5+PYTHIA 6, SHERPA 2, and MG5_.aMC +PYTHIA 8. The lower panels show the ratios
of the theoretical predictions to the measurements. Error bars around the experimental points
show the statistical uncertainty and the cross-hatched bands indicate the statistical and sys-
tematic uncertainties added in quadrature. The boxes around the MG5_.aMC + PYTHIA 8 to
measurement ratio represent the uncertainty in the prediction, including statistical, theoretical
(from scale variations), and PDF uncertainties. The dark green area represents the statistical
and theoretical uncertainties only and the light green area represents the statistical uncertainty
alone. Figure taken from Ref. [248].
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performed using the FxFx prescription [243]. The cross section of the generated Z boson sam-
ple is normalized to the value of an NNLO prediction computed with FEWz. The SHERPA +
OPENLOOPS [55, 96] samples of Z and -y production are generated with <4 partons, with NLO
QCD accuracy for events with <2 partons and LO accuracy for events with 3 and 4 partons.
Approximate EW corrections are applied to these samples using the COMIX [93] and OPEN-
Loors [74-77] ME generators. Parton showering is performed using CSSHOWER [94] and
ME-PS jets matching is performed using the MC@NLO method [262, 263]. As the branching
fraction of the Z boson to muons is 3.4%, Fig. 17 is an illustration of EW unification at high
energy, since the ratio of production cross sections and thus the coupling constants for the Z
bosons and photons is of order one and independent of energy above several times the Z boson
mass.

5.1.5 Measurements of vector boson production in association with heavy-flavour jets

The CMS experiment has performed many analyses of vector boson production in associa-
tion with bottom- and charm-flavoured jets. Representative Feynman diagrams are shown in
Fig. 18. Advancements in machine-learning techniques have resulted in the creation of highly
efficient jet taggers for bottom and charm jets, demonstrating high accuracy and minimal back-
grounds from light-flavour quark and gluon jets. Other effective techniques of identifying
heavy-flavour jets include the reconstruction of exclusive final states for charm tagging. The
measurement of W + charm jet events provides a direct probe of the strange quark content
of the proton. The CMS PDF constraints from W + charm measurements are competitive with
those from the neutrino scattering and global PDF fits. The study of W and Z boson production
with charm jets may eventually contribute to the endeavour to measure the second-generation
quark Yukawa coupling to the Higgs boson using associated VH production with the Higgs
boson decaying to charm quarks. The study of Z + charm jets could contribute to studies of
the intrinsic charm component of the proton PDF, where it would contribute to additional Z
+ charm jet events at high pt. Consequently, the CMS Z + charm analyses measure the differ-
ential distribution of charm jet production vs. jet pr. The V+b or multiple b jets production,
where V is a W or Z boson, contains events sensitive to the b quark content in the proton or
gluon splitting to b jets. The CMS experiment has also studied WZ and ZZ production, with
one Z boson decaying to two b jets [264], yielding the V+2 b jets signature, constitutes the
dominant irreducible background to associated Higgs boson production (WH and ZH), and
provides important input to that study.

A complete set of cross section measurements for vector boson with heavy-flavour jet produc-
tion is shown in Fig. 63. One of the most critical components of each analysis is the heavy-
flavour jet tagging method. Table 12 lists the production cross sections measured, the pp
collision energy, the heavy-flavour tagging technique, and the source of theory cross section
calculation used for comparison of the vector boson with heavy-flavour jet production mea-
surements. The heavy-flavour tagging techniques were explained in Section 2.2. In addition,
the table lists for each analysis other results produced, such as differential distributions and
PDF constraints. As the measurement of the Z + charm jet cross section at 8 TeV is performed
in a fiducial region, the cross section is multiplied by the acceptance for leptonic Z boson de-
cays taken from the same Ref. [265] to calculate the total cross section for comparison to the
other results. The measurement and prediction of cross sections with jets have long been dif-
ficult at high-energy colliders with many discrepancies between data that were identified and
later resolved with a better understanding of both detector calibration of quark and gluon jet
momentum and the theoretical modelling of such processes. The good agreement between the
experimental measurements and predictions for a high multiplicity of jets, including the pro-
duction of heavy-flavour jets, is an important achievement of the LHC physics programme that
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Figure 17: Differential cross section ratio of Z+jets to y+jets as a function of the vec-
tor boson (V) transverse momentum compared with the theoretical prediction from MAD-
GRAPH5_aMC@NLO and SHERPA + OPENLOOPS. Only bosons produced centrally, with |y| <
1.4, in association with one or more jets are considered. The panel shows the ratio of the theo-
retical prediction to the unfolded data. The vertical errors bars around the experimental data
points show the statistical uncertainties of the measurements. The hatched band is the sum
in quadrature of the statistical and systematic uncertainty components in the measurement.
The dark (light) shaded band on the NLO prediction from MADGRAPH5_aMC@NLO represents
the PDF (scale) uncertainties, which are treated as uncorrelated between Z+jets and y+jets,
whereas the statistical uncertainties are barely visible. The shaded band on the SHERPA +
OPENLOOPS calculation is the statistical uncertainty. Figure taken from Ref. [261].
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Figure 18: Production of W or Z bosons with heavy-flavour quarks. Examples of lowest order
Feynman diagrams include W + charm (left), Z + charm or bottom (middle), W or Z production
with two heavy-flavour quarks (right).

found use in the discovery of the Higgs boson and in the searches for BSM physics.

Table 12: Table of measurements of W and Z boson production in association with heavy-
flavour quarks. The table lists the measured production cross sections, pp collision energy,
heavy-flavour tagging technique, source of theory cross section calculation used for compar-
ison, and other results of interest produced by the analysis. In several cases, ratios of pro-
duction cross sections are measured including Ry+¢,w-. = 0(W'C)/c(W™c), Rye/zp =
0c(Wc)/o(Zb), Rzp zq = 0(Zb)/0(Zq) and Rz>op/z>1 = 0(Z > 2b)/0(Z > 1b). Parton-
level MCFM NLO and NNLO predictions are corrected for NP effects. All predictions are com-
puted at NLO QCD accuracy except for the W+c 13 TeV analysis, where the prediction is done
at NNLO QCD and NLO EW accuracy [266, 267].

Boson Vs Heavy flavour Theory Other

#Jets (TeV) tagging calculation results

W+1c [178] 7 D meson MCFM Ry+c/w—er PT(H)

W+lc [268] 8 u, SSV, IVF MCFM Ry+e,w—c Pr(#), 11(£), s PDF
W+lc[269] 13 D meson MCFM Ry +c/w—cr (1), s PDF
W+1c [270] 13 SV tag: SSVIVF ~ NNLO Ry+e,w—cr Pr(H), 1(1)
W+2b [271] 7 Ccsv MCFM

W+2b [272] 8 Ccsv MCFM

Z+1c [265] 8 u+SV: SSVIVE D  MCFM Rwe zb, P1(Z), pr(c)
Z+1c [273] 13 DEEPCSV+mgy ~ MG5.aMC  p1(Z), pr(c)

Z+12b [274] 7 SSV MCFM Rzb/zq

Z+1,2b [275] 8 Csv MG5.aMC  Rz9p /z>1bs Mpp, 20 dist.
Z+1,2b [276] 13 DEEPCSV MG5.aMC  Rzop /z>1bs Mpp, 15 dist.

5.2 Inclusive multiboson production and interactions

Multiboson production is typically categorized into inclusive production that is dominated
by the radiation of vector bosons from initial-state quarks in the proton, and EW production
in which the radiation of bosons is followed by pure EW interactions among the vector (and
Higgs) bosons via scattering or fusion. These interactions are classified into the subsets of dibo-
son production, triboson production, VBF, and VBS. Studying multiboson production provides
a test of the gauge structure of the SM that uniquely predicts how the gauge bosons interact
with each other by directly measuring triple gauge boson couplings (TGCs) and eventually
quartic gauge boson couplings (QGCs). Studying VBS and the polarization of the bosons gives
sensitivity to the features of EW symmetry breaking, which has been exclusively studied at the
LHC and can provide a platform to search for BSM anomalous quartic gauge boson couplings
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Figure 19: Feynman diagrams for WZ diboson production. Shown are radiative production
(left), where the vector bosons are radiated off a quark, and a TGC production (right), where
a W boson is created by qq annihilation and splits into W and Z bosons. These diagrams are
representative of all diboson production mechanisms that involve radiative or TGC processes.
In the case of neutral final states TGCs are forbidden in the SM and only anomalous coupling
due to new physics could lead to contributions from that type of diagram.

(@aQGCs). In addition, ratios of production rates have sensitivity to PDFs. Measurements are
typically made either inclusively of a diboson signature, including the EW processes, or of only
the EW component, as described in Section 5.3. In principle, every multi-gauge-boson process
in the SM with up to three gauge bosons can be observed at the LHC experiments. Several
multiboson states can be observed in such pure samples for which cross section measurements
are approaching the 3% total uncertainty level, and they may eventually be measured with the
accuracy approaching that of single vector boson production. Currently, only the rarest of the
multivector boson processes, such as ZZ VBS production (which has been detected with 4¢ sig-
nificance [277]), have not been observed by the CMS experiment. Representative LO Feynman
diagrams for WZ production are shown in Fig. 19 including both radiative production, where
the bosons are radiated off a quark, and TGC production, where qq annihilation results in an
off-shell W boson, which splits into the W and Z bosons. The interference of the amplitudes of
these two processes dominates the production cross section for inclusive WZ production.

5.2.1 Diboson production

The diboson production cross sections are among the most precisely measured by the CMS
experiment. The combination of pure W+ — (*v, and Z — ("¢~ samples and the large
integrated luminosity delivered by the LHC and collected by the CMS experiment provide
a precision rarely achieved previously by hadron collider experiments. An understanding of
diboson production is essential for the studies of the Higgs boson and searches for new physics
where diboson production is often a significant SM background. Diboson production also has
an indirect sensitivity to new physics that may occur in loop diagrams often characterised as
anomalous additions to the SM TGC and QGC multiboson couplings. The Feynman diagram
shown in Fig. 19 (right) illustrates how WZ production has sensitivity to measure the SM WWZ
TGCs or anomalous TGCs (aTGCs) that could modify those couplings due to BSM physics
contributions.

In the first LHC 7 TeV run all the diboson states seen by previous experiments were observed,
including vy [278], W and Zv [279], opposite-sign WEWT [280], WZ [281], and ZZ [282]
signatures. The cross sections for diboson production have been measured at 5.02, 7, 8, and
13 TeV in Run 1 and Run 2 of the LHC. The diboson production processes measured at CMS are
listed in Table 13. Included is information on pp collision energy, theory calculations used for
comparison in Fig. 21, and other results of interest. For comparison NNLO QCD predictions
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Figure 20: Feynman diagrams for ZZ diboson production including radiative production (left)
and NNLO production via a gluon-gluon initial state (right), which increases the total produc-
tion cross section significantly.

are necessary to predict the cross sections and distributions of these processes with sufficient
accuracy. This is both because NNLO production can introduce new initial states, such as the
gluon-gluon initial state for ZZ (and W*WT) production, shown along with the radiative pro-
duction Feynman diagram in Fig. 20, and because the precision of the experimental diboson
production measurement in many final states is at the several percent level, which requires
NNLO QCD computations to achieve equivalent accuracy. These factors have pushed exten-
sive developments in the theory to accurately predict these states and match the precision of the
experimental measurements. The theoretical cross section for comparison to the measured 7y
production rate is calculated using the 2yNNLO [283] programme. Comparisons to theoretical
cross section predictions for the 7 TeV W+ and Z+ production are calculated using parton-level
MCFM NLO predictions corrected for NP effects. The 8 TeV Z v result is compared with the
NNLO prediction from Ref. [284]. The MATRIX predictions have NNLO QCD and NLO EW
precision for qq processes, and NLO QCD accuracy for the gg initial state processes that con-
tribute to W¥WT and ZZ production. Same-sign (SS) WEW= production has been measured
as well and is discussed in Section 5.3.

These measurements are summarized in Fig. 21. The figure shows that both experimental mea-
surements and theory, typically at the level of NNLO QCD, agree over all of the diboson pro-
duction states with percent-level precision. In papers with total and fiducial measurements
(13 TeV WEWTF, WZ and Z7), the fiducial cross section measurements have better precision
and are used in the figure.

A plot focused on VV production, where V = W or Z, is shown in Fig. 22 for four energies
measured by the CMS experiment. The measured total cross sections of pairs of weak bosons
agree with the theoretical predictions [287]. Also shown are results from the ATLAS experi-
ment [293-301], and from the Tevatron CDF [302, 303] and DO [304-306] experiments where the
production of pairs of weak bosons in hadron collisions was first observed. The figure presents
the inclusive total cross sections for weak boson pair production and, where necessary, results
reported as production cross section times branching fraction to lepton final states have been
scaled by the inverse of the appropriate branching fraction. Extrapolation from the fiducial
measurement regions for the states involving Z — ¢7/¢~ to total cross sections was done in
mass ranges of 66-116 GeV and 60-120 GeV for ATLAS and CMS, respectively, leading to a
1.6% (0.8%) difference in the total cross sections calculated by ATLAS vs. CMS and the MATRIX
predictions for ZZ (WZ) production. This effect is not corrected for in the plot and is not visible
given the logarithmic scale. Diboson production cross sections are also summarized with other
cross sections measured by CMS in Fig. 1 where, as above, the diboson results are presented as
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Table 13: Table of diboson production cross section measurements. Listed in the table are the
final states studied, pp collision energy, theory cross section calculation used for comparison,
and selected additional results of interest from each paper.

Process Vs Theory Other results
(TeV) calculation
vy [278] 7 2¢yNNLO m,.,, 4 dist.
W [279] 7 MCEM NLO aTGC, pr(7v)
W+ [285] 13 MG5.aMC 1p NLO aTGC
Zvy [279] 7 MCFM NLO aTGC, pr(7)
Zy [286] 8 NNLO aTGC, pr(7)
WEWT [287] 5.02  MATRIX
WEWT [280] 7 MATRIX aTGC
WEWT [288] 8 MATRIX aTGC, o: with jet veto, 4 dist.
WEWT [289] 13 MATRIX aTGC, 0: with jet veto
WZ [287] 5.02  MATRIX
WZ [281] 7 MATRIX
WZ [281] 8 MATRIX aTGC, pr(Z2), pr(jet)
WZ [290] 13 MATRIX aTGC, boson polarization, 9 dist.
77 [287] 5.02  MATRIX
77 [282] 7 MATRIX aTGC
77 [291] 8 MATRIX aTGC, my,, 7 dist.
77 [292] 13 MATRIX aTGC, 6 dist.
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Diboson measurements vs. NNLO theory CMS
T T T T T T T T T T T T T T T T T T T T
(NLO Wy, Zy 7 TeV) Theory 5.02, 7, 8, 13 TeV CMS measurements
HAH HOH H=aH HeH innerunc. (stat), outer (+sys)
stat  sys
YY  EPJC 74 (2014) 3129 —e— 1.06 +0.01+0.12
Wy PRD 89 (2014) 092005 —o— 1.16 £ 0.03 £ 0.13
Wy PRL 126 252002 (2021) ted 1.01+0.00 £ 0.05
Zy  PRD 89 (2014) 092005 HeH 0.98 £ 0.01+0.05
Zy  JHEP 04 (2015) 164 H 0.92 £ 0.01+0.05
WW PRL 127 (2021) 191801 H—— 1.24 +0.18 + 0.09

WW EPJC 73 (2013) 2610 o 1.04 + 0.04 + 0.09
WW EPJC 76 (2016) 401 i 0.98 +0.01+ 0.08
WW PRD 102 092001 (2020) HH 0.96 + 0.01+ 0.05
Wz PRL127(2021) 191801 —A— 0.57 £0.20 + 0.04
Wz EPJC 77 (2017) 236 FoH 1.02 +0.07 £ 0.06
Wz EPJC 77 (2017) 236 HH 0.98 +0.04 + 0.07
WZ JHEP 07 (2022) 032 ™ 1.00 + 0.02 + 0.03

77  PRL 127 (2021) 191801 " e § 1.52+0.66 +0.13

77  JHEP 01 (2013) 063 —o—i 1.00 + 0.14 + 0.07

77  PLB 740 (2015) 250 Ha—H 1.02 +0.07 + 0.08
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77 EPJC 81 (2021) 200
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-1 I I 0 I I I

2 3
Production cross section ratio: 0,/ O

~F

theo

Figure 21: Summary of cross section measurements for diboson production shown as a ratio
over the NNLO or NLO QCD predictions. The yellow bands indicate the uncertainties in the
theoretical predictions and the error bars on the points are the statistical uncertainties, whereas
the outer bars are the combined statistical and systematic uncertainties.
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Figure 22: The total W*WT, WZ and ZZ cross sections as functions of the pp centre-of-mass
energy. Results from the CMS and ATLAS experiments for pp collisions are compared with the
predictions from MATRIX at NNLO in QCD and NLO in EW, and at NLO in QCD. Also shown
are results from pp collisions at the CDF and D0 experiments compared with MATRIX predic-
tions as above. The inner vertical errors bars around the experimental data points show the
statistical uncertainties of the measurements, whereas the outer bars show the total uncertain-
ties. Measurements at the same centre-of-mass energy are shifted slightly along the horizontal
axis for clarity. Figure taken from Ref. [287].

total cross sections.

The most precisely measured diboson cross sections at the CMS experiment are WZ and ZZ
production. In the WZ case the high precision is possible because of the low background for Z
decays to electrons or muons and the higher branching fraction for leptonic W decay. The WZ
cross section in 13 TeV pp collisions [290] is measured as oy, (pp — WZ) = 50.6 & 0.8 (stat) =
1.5 (syst) £ 1.1 (lumi) & 0.5 (theo) pb = 50.6 = 1.9 pb. The overall 3.7% accuracy is dominated
by the systematic and integrated luminosity uncertainties. The cross section is also measured
in a fiducial phase space, which reduces the extrapolation uncertainty to the full phase space,
where a 3.4% precision is achieved. At the time, the precision exceeded that of the single bo-
son cross section measurements from the CMS. Despite having the lowest statistical precision
of any diboson production process, the cross section for ZZ production is the next most accu-
rately measured. The precision of the measurement is driven by the very low background to
two fully reconstructed Z boson decays to electrons and muons. The ZZ cross section for 13 TeV
pp collisions [292] is measured as oy (pp — ZZ) = 17.2 £ 0.3 (stat) = 0.5 (syst) £ 0.4 (theo)
0.3 (lumi) pb. The combined overall uncertainty is 4.3%. The cross section measured in a fidu-
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cial phase space has 3.7% precision.

The importance of NNLO QCD calculations is shown in Fig. 23 taken from Ref. [292], where
the measured ZZ cross sections are shown compared with two calculations. The first calcu-
lation is performed with MCFM [66] at NLO in QCD for qq processes and LO QCD accu-
racy for gg initial-state processes (denoted MCFM qqNLO+ggLO). The second calculation is
performed using MATRIX [46], which includes both NNLO QCD and NLO EW contributions
for qq processes and NLO QCD accuracy for gg initial-state processes [307] (denoted MA-
TRIX qq[NNLOXNLOEW]+ggNLO). The predictions use NNPDF31_nnlo_as_0118_luxqed and
NNPDEF3.0 PDF sets, respectively, and fixed factorization and renormalization scales g =
ur = myz. The CMS and ATLAS [299-301] measurements are compared with the theoretical
predictions. The ATLAS measurements were performed with a Z boson mass window of 66—
116 GeV, instead of 60-120 GeV used by CMS, and are corrected for the resulting 1.6% difference
in acceptance. Contributions from NLO and NNLO QCD diagrams substantially enhance the
cross section of diboson production and are necessary to show agreement with the experimen-
tal data with measured total cross sections.

Differential measurements have been made for all the diboson final states. A variety of distri-
butions have been measured focusing on: basic kinematics, such as the pr of leptons in leptonic
vector boson decays and the py of the bosons; measurements of jets, including the number and
pr of associated jets; and quantities with sensitivity to possible BSM physics, such as the invari-
ant mass of the diboson system or other quantities that assess the energy of the vector boson
system. In differential measurements, areas of phase space can be identified that are particu-
larly sensitive to higher-order QCD and EW perturbative predictions. For instance, variables
that assess the energy of the diboson system, such as the diboson invariant mass, show large
enhancements due to NLO and NNLO QCD effects at high mass. The NLO EW contributions
tend to reduce the cross sections in the high-energy part of the distributions. As an illustration,
Fig. 24 shows the m,, distribution from Ref. [308]. Comparisons are made to four MC generator
predictions. The first prediction is from MADGRAPH5_aMC@NLO for qq — ZZ at NLO QCD,
POWHEG H — ZZ at NLO QCD, and MCFM gg — ZZ at LO QCD (denoted MG5_aMC@NLO).
The second prediction is from POWHEG at NLO in QCD. The final two comparisons are cal-
culated using nNNLO simulation, which performs NNLO QCD calculations matched to PS
using the MiINNLO method [309] (denoted nNNLO+PS). This simulation includes EW correc-
tions that were applied as a multiplicative K-factor as a function of m,,. The best agreement
with data is seen with the nNNLO+PS with EW corrections applied, which are necessary to
achieve better agreement at high m,.

An essential test of the EW interactions and the nature of the W and Z bosons is a measurement
of their polarization. Through the EW symmetry-breaking Brout-Englert-Higgs mechanism,
the W and Z bosons acquire longitudinal polarization and hence mass. The SM fractions of
bosons produced in specific polarization states in pp collisions in both single and multiboson
production are predicted by the EW theory. These fractions can be extracted from the angu-
lar distributions of the decay products of W and Z bosons. In cases with decays to charged
leptons, the CMS experiment makes very accurate measurements of the angular distributions
of the emitted leptons. The lepton emission angles in the boson rest frame relative to the bo-
son momentum direction in the laboratory frame, which are approximately expected to have
simple trigonometric probability distributions based on first- and second-order sine and co-
sine functions for each polarization state, can be precisely reconstructed and the polarization
fractions extracted by fitting the expected distributions for the fraction of each polarization. In
events with neutrinos, partial reconstruction of the full angular information can be used. The
CMS experiment has measured boson polarization in the W*W (discussed in Section 5.3) and
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Figure 23: The total ZZ cross section as a function of the pp centre-of-mass energy. Results from
the CMS and ATLAS [299-301] experiments are compared with the predictions from MATRIX
and MCFM, as described in the text. The ATLAS measurements were performed with a Z boson
mass window of 66-116 GeV, instead of 60-120 GeV used by CMS, and are corrected for the
resulting 1.6% difference in acceptance. The inner vertical errors bars around the experimental
data points show the statistical uncertainties of the measurements, whereas the outer bars show
the total uncertainties. Measurements at the same centre-of-mass energy are shifted slightly
along the horizontal axis for clarity. Figure taken from Ref. [292].
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Figure 24: Differential cross section normalized to the fiducial cross section as a function of 1.
The on-shell Z requirement 60 < m; < 120 GeV is applied for both Z boson candidates. Points
represent the unfolded data, the solid lines the (MADGRAPH5_.aMC@NLO qq — ZZ) + (MCFM
gg — ZZ) + (POWHEG H — ZZ) predictions, and red dashed lines the (POWHEG qq — ZZ)
+ (MCFM gg — ZZ) + (POWHEG H — ZZ) predictions. The MADGRAPH5_aMC@NLO EW
Z7 predictions are included. The purple dashed lines represent the nNNLO+PS predictions,
and the yellow dashed lines represent the nNNNLO+PS prediction with EW corrections applied.
Vertical bars on the MC predictions represent the statistical uncertainties. The lower panels
show the ratio of the measured to the predicted cross sections. The shaded areas represent the
full uncertainties calculated as the sum in quadrature of the statistical and systematic uncer-
tainties and the vertical bars around the data points represent the statistical uncertainties only.
The overflow events are included in the last bin of the distributions. Figure and caption taken
from Ref. [308].
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Figure 25: Confidence regions in the ff Vs. flf — fOZ parameter plane for the Z boson polariza-
tion. The results are obtained with no additional requirement for the charge of the W boson.
The blue, magenta, and red contours present the 68, 95, and 99% confidence levels, respectively.
Figure from Ref. [290]. The cross indicates the best fit to the observed data and the diamond
shows the result of the POWHEG +PYTHIA simulation.

WZ production [290]. In the latter case, polarized production was observed. The fitted longi-
tudinal polarization fraction versus the difference of left and right polarization fractions for Z
bosons in WZ production is shown in Fig. 25 demonstrating the ability of the measurement to
distinguish the polarization states.

A test of perturbative QCD in a more complex signature involving EW vector bosons is the
measurement of differential cross sections of diboson production versus the number of ob-
served jets. Accurate predictions of these types of final states are essential for performing
studies of diboson production through VBS, which is observed in the diboson + 2 jets final
state; in Higgs physics where many signatures involve multiple vector bosons; and in searches
for BSM physics involving multiple vector bosons. Previously, this type of analysis had only
been performed by the CDF experiment, which observed W*W T +jets production and mea-
sured the cross section for final states up to 2 jets [310]. The CMS experiment has measured
W [311] and Z+y [312] with two jets production in 13 TeV collisions; WiW$+jets up to two jets
at 13 TeV [289]; WZ+jets up to three jets in 8 TeV collisions [281]; and ZZ +jets up to three jets at
8 and 13 TeV [313]. Details of the cross sections measured and generators used for comparison
are given in Table 14. In the last case, a subsequent reanalysis of the 13 TeV ZZ +jets data [308]
with larger data samples showed that a more advanced nNNLO+PS simulation achieves better
agreement at high jet multiplicities (as shown in Fig. 26). The full description of the predictions
in Fig. 26 is presented above in the discussion of the m,, distribution from the same analysis.
The improved modelling of the data seen with the new nNNLO+PS simulation demonstrates
the importance of continued development of advanced NNLO computations.

The results for diboson production in association with jets are summarized in Fig. 63 where
they are presented as fiducial cross sections for leptonic final states. In the case of the WZ+jets
at 8 TeV [281], the result was multiplied by the leptonic branching fractions for easier compari-
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Figure 26: The differential cross section normalized to the fiducial cross section as a function of
the number of jets. The on-shell Z requirement 60 < m; < 120 GeV is applied for both Z boson
candidates. Points represent the unfolded data, the solid lines the (MADGRAPH5_aMC@NLO
qq — ZZ) + (MCFM gg — ZZ) + (POWHEG H — ZZ) predictions, and red dashed lines the
(POWHEG qq — ZZ) + (MCFM gg — ZZ) + (POWHEG H — ZZ) predictions. The MAD-
GRAPH5_.aMC@NLO EW ZZ predictions are included. The purple dashed lines represent the
nNNLO+PS predictions. Vertical bars on the MC predictions represent the statistical uncer-
tainties. The lower panels show the ratio of the measured to the predicted cross sections. The
shaded areas represent the full uncertainties calculated as the sum in quadrature of the statis-
tical and systematic uncertainties and the vertical bars around the data points represent the
statistical uncertainties only. The overflow events are included in the last bin of the distribu-
tions. Figure and caption taken from Ref. [308].
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Table 14: Summary of measurements of diboson production in association with jets. Listed
are the diboson state, number of jets measured, generator(s) used with perturbative QCD or-
der and K-factors used to scale the result to a higher order, total number of additional partons
generated, number of partons generated at NLO, parton shower MC, and ME-PS jet merging
scheme. The total number of partons includes additional real-emission partons generated by
NLO or NNLO QCD matrix element calculations. The highest bin in the jet multiplicity in-
cludes events with a higher number of jets as well.

Diboson N V5 Generator Partons Partons PS ME-PS
State (TeV) total NLO scheme
Wy [311] 2 13 MG5_aMC (NLO) 2 1 Py8 FxFx
Zv [312] 2 13 MG5_aMC (NLO) 2 1 Py8 FxFx
WFTW-[289] 0-2 13 (POWHEG (NLO) + MCFM (LO)) * K nnio [314] 1 0 Py8 —
WZ [281] 02 8 (MADGRAPH 5 (LO) + MCFM (LO)) * Kypo MCFM - 0 — Py6 —
77 [313] 0-3 8 (MG5_aMC (NLO)+ MCFM (LO)) * Knp 0 MCEM 2 Py8 CKKW
77 [315] 0-3 8 nNNLO + MCFM (NLO) 2 MINNLOpg —

u 7 u 7 u Z

W+
7 W Z Z
d W+ d W+ d W+

Figure 27: Triboson WZZ production via diagrams involving radiative production (left), TGCs
(centre), and QGCs (right). This set of triboson Feynman diagrams is representative of most
triboson signatures, with the caveat that neutral TGCs and some QGC combinations are not
allowed in the SM.

son.

5.2.2 Triboson production

The high centre-of-mass collision energy and the large integrated luminosity produced by the
LHC have made it possible to observe triboson production for the first time. The most challeng-
ing measurements are those of the production of three massive vector bosons. The Feynman
diagrams for WZZ production are shown in Fig. 27 including radiative production of three
vector bosons and diagrams involving TGCs and QGCs. The sensitivity of triple gauge boson
production to measure TGCs is weaker than that of diboson production because of the small
production cross section, but the quartic coupling diagram gives this type of process direct
sensitivity to QGCs. In a comprehensive analysis, CMS measured all possible massive triboson
states simultaneously, categorizing them into all the possible final states involving electrons
and muons, according to type and charge, and pairs of jets from hadronic boson decay. This
analysis achieved collective observation of WWW, WWZ, WZZ, and ZZZ, and individual ev-
idence for WWW and WWZ production at 3.3 and 3.4 standard deviations, respectively [316].
Figure 28 depicts all of the analysis categories clearly showing the observed signal for all of
the final states. The triboson production processes measured at CMS are listed in Table 15.
Included in the table is information on pp collision energy, theory calculations used for com-
parison in Fig. 21, and other results of interest in the paper.
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Figure 28: Comparison of the observed numbers of events to the predicted yields. For the
WWW and WWZ channels, the results from boosted decision tree (BDT) based selections are
used. For the other results different categorizations based on the number of jets, whether dijet
masses are inside or outside a selection window used to identify the boson, and specific lepton
combinations or the number of same-flavour, opposite-sign (SFOS) leptons are shown. The
VVV signal is shown stacked on top of the total background. The points represent the data and
the error bars show the statistical uncertainties. The expected significance L in the middle panel
represents the number of standard deviations (sd) with which the null hypothesis (no signal)
is rejected. The lower panel shows the pulls for the fit result. Figure taken from Ref. [316].

Table 15: Table of triboson production cross section measurements. Listed in the table are
signatures studied, pp collision energy, theory cross section calculation used for comparison,

3 leptons

suoida| §
suoids| 9 i

4 leptons

Data and prediction
¢+ Data * stat. uncertainty
N Background + systematics

Triboson signals
EWWW G, =115
BWWZ = 086153
WWZZ (1, =22413)
WZZZ v, =005%)

Bkg. in same-sign / 3 leptons
[DLost / three leptons
[ Charge mismeasurement
DWW+ / iw
[ONonprompt leptons
Wy - lepton

Backgrounds in 4/5/6 leptons
Ozz [Otwz [Jother
Wtz @wz

and selected additional results of interest from each measurement.

Process Energy (TeV) Theory calculation Other results
Wy [317] 8 MG5_.aMC Py6 NLO aQGC

Wy [318] 13 MG5.aMC Py8 NLO aQGC

Zyy [317] 8 MG5.aMC Py6 NLO aQGC

Zyy [318] 13 MG5.aMC Py8 NLO aQGC
WV~y[319] 8 MG5.aMC Py8§ NLO aQGC

WW+ [320] 13 MG5_.aMC Py8 NLO aQGC, Hy search
VVYV [316] 13 NLO [321-323] VH production
WWW [316] 13 NLO [321-323] VH production
WWZ [316] 13 NLO [321-323] VH production
WZZ [316] 13 NLO [321-323] VH production
777 [316] 13 NLO [321-323] VH production
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Figure 29: Production of oppositely charged W bosons via vector boson scattering. Example
Feynman diagrams include: scattering via Z boson and two TGC vertices (left), a QGC vertex
(middle), and scattering via a Higgs boson in f-channel (right).
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Figure 30: Feynman diagrams for vector boson fusion production of Z (left) and W bosons
(middle) via the WWZ TGC vertex and W via the WW<+ TGC vertex (right).

5.3 Electroweak single-boson and multiboson production

Pure EW production of single and multiple vector bosons with jets in collision events where
bosons are radiated off incoming quarks and either fuse to a single boson (VBF) or scatter to
pairs of bosons (VBS) is an essential test of the EW sector of the SM. Vector boson fusion directly
measures the TGCs of the SM. Vector boson scattering events can occur via the combination of
double TGC interactions, in t- or s-channel; quartic coupling of bosons; or scattering via a Higgs
boson, in t- or s-channel. The theoretical investigation of the Higgs boson scattering process
was an important early component in understanding the essential role of the Higgs boson in the
SM. The calculation of longitudinal VBS without the Higgs boson would predict an infinite cross
section at high energy. Shown in Fig. 29 are representative VBS Feynman diagrams for WXW+
scattering. The features of these types of interactions are two scattered jets with large rapidity
separation and one or two bosons produced centrally. The expected kinematic distributions
from the different amplitudes contributing to VBS and their interference can be used to study
the scattering kinematics and assess the polarization of the scattered bosons

The CMS experiment has measured VBF of single W or Z bosons in 7 (Z only) [324], 8 [325, 326],
and 13 [327, 328] TeV pp interactions. The Feynman diagram for VBF production of a Z boson
is depicted in Fig. 30 showing direct sensitivity to the WWZ TGC. The extraction of the signal
from a very large background of standard single boson + jets production requires the use of
a multivariate discriminant. An example BDT distribution from the measurement of EW Z
production at 13 TeV is shown in Fig. 31 demonstrating the performance of machine- learning
techniques to separate the signal over an overwhelming Z+jets background with the same final
state but slightly different kinematics [328]. These analyses have been used to set stringent
limits on deviations from the expected SM TGC values.

The EW production processes measured at CMS are listed in Table 16. Included is information
on pp collision energy, theory calculations used for comparison in Fig. 32, and other results of
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Figure 31: Distribution for a BDT discriminant used to select VBF Z events in dimuon events.
The contributions from the different background sources and the signal are shown stacked,
with data points superimposed. The vertical errors bars around the experimental data points
show the total uncertainties. The expected signal-only contribution is also shown as an open
histogram. The lower panel shows the relative difference between the data and expectations, as
well as the uncertainty envelopes for the jet energy scale, and renormalization and factorization
scale uncertainties. Figure taken from Ref. [328].
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interest. Good agreement with theoretical calculations is observed for all of these purely EW
production processes.

Table 16: Purely EW production cross section measurements. Listed in the table are signatures
studied, pp collision energy, theory cross section calculation used for comparison, and selected
additional results of interest from each paper.

Process Energy Theory Other results
(TeV) calculation
VBF W [325] 8 MG5_aMC Py6 LO —
VBEF W [327] 13 MG5_aMC Py8 LO aQGC
VBF Z [324] 7 VBENLO NLO central hadronic activity
VBF Z [326] 8 MG5_aMC Py6 LO jet activity
VBF Z [328] 13 MG5_aMC Py8 LO aQGC, jet, central hadronic activity
EW W*WT WZ[329] 13 MG5_aMC Py8 LO aQGC
7y — WEWH [330] 13 MADGRAPH 5 LO rescaled aQGC
EW W [331] 8 MADGRAPH 5 Py6 VBFNLO NLO aQGC
EW W [311] 13 MG5_aMC Py8 LO aQGC, m;j, 6 dist.
EW Z+ [332] 8 MADGRAPH 5 Py6 LO aQGC
EW Zv [312] 13 MG5_aMC Py8 LO aQGC, m;jxA(jj) +3 1D dist.
EW W+ W+ [333] 8 MADGRAPH 5 Py6 VBENLO 2.7 NLO aQGC
EW W+ W [334] 13 MG5.aMC Py8 corr NLO QCD and EW [335,336] aQGC, m;;, 3 dist.
EW W W~ [337] 13 MG5_aMC Py8 LO —
EW WZ [338] 13 MG5_aMC Py8 corr NLO QCD and EW [339] aQGC, my;
EW 727 [277] 13 POWHEG BPX NLO [340] aQGC

The first observed VBS process was WXW=. The distinctive same-sign signature and signifi-
cant pss in leptonic decays of the W bosons, as well as the smaller cross section for the QCD-
induced W*W = process, where the W bosons are radiated off incoming quarks that scatter via
a gluon, made it possible to observe this process in the initial year of LHC Run 2 at 13 TeV.
Similarly, these characteristics made this mode the first place where polarized vector boson
production in VBS could be studied [341]. The observation of the scattering of longitudinal
vector bosons would be a clear sign of the presence of the Higgs boson scattering interaction as
a component of VBS and is considered one of the essential tests of the EW symmetry-breaking
mechanism. A first measurement has been made of longitudinal VBS in this mode using 13 TeV
collision data where a 2.3 standard deviation signal consistent with the SM expectation was
measured. A summary of all the measured EW production cross sections presented as a ratio
to the SM prediction is shown in Fig. 32 showing the ability of the CMS experiment to see clear,
well-measured signals in never before observed VBS production modes.

Among the listed results is the purely EW process of exclusive scattering to W boson pairs,
vy — WEWT, for which evidence is reported using 8 TeV collision data [330]. The calculation
of the expected theory cross section for exclusive vy — W*W= is performed using MAD-
GRAPH 5 using the equivalent photon approximation [342] and rescaled to account for proton
dissociation, as studied in the same analysis using a comparison of vy — u*u~ to a MC sam-
ple generated using LPAIR [343, 344]. The CMS experiment has also searched for the high-mass
exclusive scattering of 7y — W¥W= and 7y — ZZ using intact forward proton reconstruction
in the precision proton spectrometer and set limits on these processes [345].

A combination of production mechanisms is necessary to unitarize the cross section of the
overall VBS processes. Contributions from new scalar or vector particles could cause large de-
viations in the cross section, especially at the highest energies where the unitarization of the
divergent contributions to the cross section would be modified. In CMS, analyses of most VBS
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Figure 32: Summary of cross section measurements of EW single or diboson production pro-
cesses including vector boson fusion, vector boson scattering, and scattering via exclusive pro-
cesses. Production of pairs of W bosons can occur in same-sign (ss) W W, opposite-sign (os),
W*WT, or exclusive production where photons are radiated from the incoming protons and
form WEW pairs via EW scattering. Results are displayed as a ratio of the experimental mea-
surement over the SM prediction. The yellow bands indicate the uncertainties in the theoretical
predictions and the error bars on the points are the experimental uncertainties, with the outer
bar being the combined statistical and systematic uncertainty.
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modes have used that sensitivity to search for anomalous couplings and differential measure-
ments have been made of related kinematic distributions.

5.4 Summary of EW measurements

The CMS Collaboration has carried out a broad array of QCD EW measurements. The preci-
sion of some measurements has reached the percent level and N*LO perturbative QCD theory
computations are necessary to test the measurements at a similar level of precision. Differen-
tial measurements are also testing our ability to model SM processes and NNLO QCD, NLO
EW, and integrated PDF and parton shower computations at the same perturbative order are
necessary to model the data. In general, SM predictions model the data well. At the level of
both inclusive and fiducial cross sections, all the measurements are well modelled, within sta-
tistical expectations, across a large number of signatures involving single or multiple vector
bosons and up to two jets, as would be expected with correct modelling of the physics us-
ing computations of at least NLO accuracy. Also, the modelling of differential distributions
is generally good with discrepancies observed only in complex final states involving larger
numbers of additional jets. The theory community is actively engaged in confronting the LHC
data, and in many cases, new computations have improved the modelling of the data where
previously there was disagreement. Measurements with percent-level accuracy and studies of
complex final states along with improved theoretical modelling are constantly extending our
ability to further investigate the complexities of the SM and search for BSM physics indirectly
and in complex final states. A visual summary of the results of the standard model QCD, EW,
top quark, and Higgs boson measurements of individual cross sections and cross sections of
processes including jets is presented in Figs. 63, and 1, respectively.
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6 Top quark measurements

The large mass of the top quark, m, = 172.5GeV [346], and, as a consequence, its short lifetime
of about 0.5 x 10~%*s, drive the phenomenology associated with this particle. Its properties
make the top quark stand out amongst all the elementary fermions. The top quark lifetime
is so short that it decays before hadronizing [347], making it the only quark whose physical
properties can be studied as if it were “bare”, which, in turn, makes it a unique probe for
constraining several extensions of the SM. Its mass attracts particular attention also from a BSM
physics perspective, for two main reasons: because it is the largest known for an elementary
particle, by orders of magnitude with respect to any other elementary fermion; and because
its Yukawa coupling to the Higgs boson (y;) is remarkably close to unity. These two facts
have inspired a very rich theoretical literature, in which the top quark is surmised to hold
the key to the spontaneous EW symmetry breaking of the SM [348-350], and, in general, to
be a promising window on BSM physics, contributing to the EW oblique parameters [351]
and, potentially, coupling to new physics with a rich phenomenology, as discussed in a recent
review [352]. The top quark is also a privileged probe of the proton PDFs, since, due to its large
mass, its production is very sensitive to the gluon density at high values of x. Moreover, the
relatively abundant production rates, the variety of final states, and the large kinetic energy of
its decay products, make top quark processes a significant background for several other studies
at particle colliders. The measurements of the production cross sections, its decay parameters,
and the properties of the top quark are key areas of study at the LHC and have been explored
by the CMS Collaboration since the beginning of Run 1.

At the LHC, the top quark is predominantly produced in top quark-antiquark pairs (tt) through
the strong interaction, with a relatively large cross section that translates to a rate of about 8 Hz
at an instantaneous luminosity of 10**cm~2s~! at 13TeV. Other production modes include
mixed EW and QCD, or pure EW vertices, which yield either single top quarks, or top quarks
produced in association with other particles, such as vector bosons, Higgs bosons, or additional
quarks.

The top quark decays through an EW process, and hence its natural width is primarily deter-
mined by m,, my, and the Fermi constant (Gg), receiving relatively small higher-order cor-
rections from ag [123]. The t — Wb decay channel dominates, since the value of the V,,
element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is very close to unity, and thus
[Vib| > |Viql, [Vis|- As a result, top quark events are characterized by final states with b jets
and the decay products of the W bosons, i.e. charged leptons and neutrinos, or light-quark jets.
Additional jets, stemming from gluon radiation, may also be present in the events, and add to
the complexity of the event signature.

Experimentally, the kinematics of the parent top quark are reconstructed using dedicated al-
gorithms. Challenges arise from the presence of neutrinos originating in the decays of the
W bosons, as well as from combinatorial ambiguities in associating hadronic jets and charged
leptons to form top quark or antiquark candidates; both difficulties are typically addressed by
exploiting mass constraints. The CMS Collaboration has explored different techniques in fully
hadronic [353, 354], single leptonic [355, 356], and dileptonic [181, 357, 358] final states, and in
boosted topologies [359, 360], or in associated production with bosons [361]. Top quark cross
section measurements at the LHC are often presented as differential cross sections, obtained
using an unfolding procedure [362-364] in which corrections for detector resolutions and effi-
ciencies, as well as PS and hadronization effects are applied, to obtain a measurement at the
level of stable particles or at parton level. At the particle level, so-called pseudotops [365] have
been defined, which are reconstructed from generator-level final-state particles with a lifetime
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greater than 0.3 x 1075, The particle level simplifies the definition of detector-independent
cross section acceptances and minimizes the impact of theory assumptions. Parton-level mea-
surements of top quark cross sections and properties, although affected by uncertainties stem-
ming from nonperturbative models and PS uncertainties, are crucial inputs for comparison of
the data with fixed-order calculations and the extraction of fundamental theoretical parame-

ters, such as ag or m{mle, the top quark pole mass [366]. CMS has often made measurements
at both particle and parton level. Conceptual definitions and technical details for both these
approaches are described in Refs. [365, 367].

The following subsections focus on cross section measurements performed by CMS using pp
collisions at centre-of-mass energies ranging from 5.02 to 13.6 TeV. The first cross section mea-
surements with proton-lead (pPb) and lead nuclei (PbPb) collisions are also described. A de-
tailed report of top quark mass measurements in CMS has recently been published in Ref. [366].

An overview of the measurements of inclusive single top quark and tt production is presented
in Sections 6.1 and 6.2. In Section 6.3, a few examples of differential tt cross sections are pre-
sented. The first measurements of top quarks in heavy ion collisions are described in Sec-
tion 6.4. The processes of top quark production in association with vector bosons or with
additional jets are reviewed in Sections 6.5 and 6.6, and the four top quark production pro-
cess is presented in Section 6.7. Finally, the extraction of fundamental SM parameters from
inclusive top quark cross sections is briefly discussed in Section 6.8. A summary of the quark
cross section measurements spanning several orders of magnitude (10 fb to 1nb) is presented
in Section 6.9.

6.1 Electroweak top quark production

The production and decay of single top quark events occur through the EW tWq vertex. Fig-
ure 33 represents the dominant Feynman diagrams for single top quark production in the SM.
In single top quark measurements, the properties of the tWq vertex, marked in Fig. 33 as a
purple dot, are probed, including its magnitude, the CKM matrix elements (th), and the po-
larization of the top quark. As a result of the V-A coupling structure of the EW interaction, the
top quarks are expected to be almost 100% polarized. Additional contributions from flavour-
changing neutral currents [368] and other BSM-induced effects [369] are other aspects that are
uniquely probed by these processes.

L 1 N L T AL N S ) B
W+
4 a9 b T b 9 W~

Figure 33: Feynman diagrams illustrating the pure EW contributions to single top quark pro-
duction at the LHC at Born level. Charge conjugate states are implied. From left to right: the
t-channel production, (a) with and (b) without a b quark in the initial state; (c) the s-channel;
and (d) the tW-production. In all diagrams the tWq vertex is marked with a purple dot.

Figure 34 summarizes the measurements of EW top quark production performed by CMS at
different centre-of-mass energies. At the LHC, the t-channel, represented in Figs. 33 (a) and (b),
has the highest cross section of the EW top quark production processes. The cross section at
13 TeV, calculated at NNLO in QCD, is expected to be ¢, = 214.2 732 (scale) 33 (PDF + ag) pb,
where “scale” refers to the contributions from the uncertainties in the QCD factorization and
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Figure 34: Single top quark cross section summary of CMS measurements as a function of
the pp centre-of-mass energy. Where available the results from the full LHC combination are
also overlaid for comparison. The theoretical calculations for t-channel, s-channel, and W-
associated production are from Refs. [370-373].

renormalization scales [374]. The t-channel signature is characterized by the production of
a top quark with a recoil jet that is typically produced at large rapidity. The large rapidity
gap between the top quark and the forward jet is depleted in additional QCD emissions. In
cross section measurements, this signature is exploited to separate the t-channel signal from
the background, which is dominated by top quark pair production. Depending on whether
the b quarks are considered part of the proton or not, measurements in the t-channel can be
compared with predictions in the 5-flavour (udscb) scheme (5FS), or in the 4-flavour (udsc)
scheme (4FS) [375].

CMS has measured the t-channel cross section at 7 TeV [376], 8 TeV [377], and 13 TeV [378], as
depicted in the upper curve of Fig. 34. In general, the measurements indicate that the 5FS
predicts the rate more accurately, as expected from the resummation of initial-state large logs
in the b quark PDF, improving the stability of the calculations [379]. On the other hand, the
4FS yields a more precise description of the kinematic distributions. These conclusions are
supported by additional measurements of the differential t-channel cross sections [380].

The selections and background estimations used in the measurement of the t-channel reflect the
evolution of the data-taking conditions and event reconstruction techniques in CMS and of the
theoretical (MC) predictions. Analyses make use of the single-lepton final states. To discrimi-
nate the signal from the main backgrounds (tt, W+ jets, and multijets), the events are catego-
rized according to the jet and b jet multiplicity. The region of two jets and one b jet is expected to
be enriched in signal events. Backgrounds arise from multijet events, typically estimated from
data, W jets events, and top quark pair production. Two different approaches have been ex-
plored for the signal-to-background separation: a simple robust variable (the pseudorapidity
of the forward jet, 7 j’)/ or a multivariate-analysis (MVA) approach. Already the experience with
the 7 TeV data recorded in 2011 showed that both approaches lead to accurate measurements
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of the t-channel cross section. The MVA approach improves the statistical precision by up to
40% with respect to 17, but suffers slightly more from signal-modelling uncertainties.

The relative uncertainty achieved in the measurements varies from 15% to 9%, after fitting the
variable of interest in different categories. In the latest measurements the dominant uncertain-
ties are related to the signal modelling, most notably the variation of the PS and the matching
PS-ME matching algorithm. The most precise measurement of this process is attained in com-
bination with results from the ATLAS Collaboration, yielding a 6.6% relative uncertainty [381],
where the dominant contribution is still related to modelling uncertainties. Additional mitiga-
tion of this uncertainty is expected from using higher-order accuracy predictions, employing
better reconstruction algorithms, and, in general, using larger data sets. Fiducial and ratio
measurements, are also expected to have reduced extrapolation uncertainties [374].

The flavour of the initial light quark defines the charge of the produced top quark: u(d) quarks
in the initial state result in t(t) quarks in the final state. Given this simple property, the cross
section inherits a charge asymmetry from the proton PDF of the quarks involved in the produc-
tion. This asymmetry is typically quantified by the ratio of cross sections R; = ¢, /g, which is
predicted to be about 1.7 at 13 TeV [374, 382]. In the measurement of the ratio, most systematic
uncertainties cancel or are significantly reduced, resulting in a significantly more precise test of
the PDF than the absolute cross section measurement. Figure 35 summarizes the different R,
measurements compared with the predictions. Overall a good agreement is found for various
PDFs.
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Figure 35: Summary of the CMS measurements of R, = 0;/03, the cross section ratio between
t-channel top quark and ¢-channel top antiquark production. The measurements are compared
with NNLO QCD calculations using the PDF sets CT18 and PDF4LHC21. The coloured bands
represent the uncertainties in the theoretical predictions (scale and PDF uncertainties). The PDF
uncertainties are estimated using the PDF4LHC21 prescription [383].
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From the experimental point of view, the s-channel production, shown in Fig. 33(c), is the most
challenging of the purely EW processes at the LHC. This is due to the large backgrounds from
tt, f-channel, and W boson production in association with heavy-flavour quarks, with respect
to the small expected s-channel signal cross section of 10.32 7957 (scale) *557 (PDF + ag) pb, as
calculated at NLO in QCD for 13 TeV [370, 371]. The CMS Collaboration has searched for the

s-channel top quark production at both 7 and 8 TeV [384], and the result is included in Fig. 34.

The analysis relies on MVAs for discriminating the signal process from the backgrounds. A
combined fit to the MVA output distributions in the categories of different jet and b jet multi-
plicities yields a measurement with an uncertainty of about 45% in the signal strength, corre-
sponding to an observed significance of 2.5 s.d. with 1.1 s.d. expected. Although the measure-
ment has a significant statistical uncertainty (11%), its total uncertainty is dominated by the
choice of the factorization and normalization scales, the matching scale in the modelling of the
backgrounds (33%), as well as by the jet energy scale and b tagging uncertainties (25%). An ex-
perimental observation of this channel is expected with improvements in the higher-order pre-
dictions, state-of-the art b tagging, jet-energy scale uncertainties, as well as machine-learning
based algorithms.

Finally we discuss the associated tW production, shown in Fig. 33(d), which can be interpreted
as a more global set of double, single, and nonresonant WHW-bb diagrams including both the
tW and the tt processes described in the next Section 6.2. Establishing the single-resonant tW
process is interesting in itself, as it is well defined at Born level and sensitive to CKM matrix
elements and possible BSM effects. Most measurements in Run 1 and Run 2 have focused on
isolating this process from the double-resonant (tt) production by using distinctive features,
such as lower jet multiplicity and the balance in the transverse plane between the top quark and
the W boson decay products. The predicted cross section of tW production in pp collisions at
13TeV is 0 (tW) = 79.3 113 (scale) £ 2.2 (PDF + ag) pb at NLO+NNLL in QCD [382], and thus
about 10% of the cross section for tt.

Evidence for tW production was attained at 7 TeV [385] and observation at 8 TeV [386]. Mea-
surements with improved precision were made at 13TeV [387, 388]. With the exception of
Ref. [388], the measurements have focused on dilepton final states with one b jet. A fit to the
output of the MVA discriminator (or ancillary variables such as the subleading jet p in the two-
jet-two-b-tag bin) in the different categories resulted in improved precision from 31% (7 TeV) to
11% (13 TeV). Run 1 measurements were combined with those performed by the ATLAS Col-
laboration, and the final result is in agreement with the SM prediction with a total uncertainty
of 16.5% [381]. The improvements obtained in Run 2 were due to the increased sample size and
accuracy in the predictions, improved identification algorithms, and a better calibration of the
CMS detector [13, 15, 16, 20, 28, 30, 35].

CMS has also measured the tW process in the single-lepton channel at 13 TeV [388]. Although
this channel offers the advantages of larger branching fractions and the possibility to fully
reconstruct the top-quark system, it suffers from more numerous and larger backgrounds. The
result, shown in the middle curve of Fig. 34, is in agreement with that obtained in the dilepton
channel.

6.2 Top quark pair production

The LO Feynman diagrams, depicted in Fig. 36, illustrate the main tt production modes at the
LHC, where the gluon fusion (diagrams b, ¢, and d) are dominant contributions to the cross sec-
tion (about 85% at 13 TeV). At the lowest order in perturbation theory, the partonic cross section
is proportional to (ag/m;)* and it is dominated by the region where the rapidity difference of
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the pair is relatively small. Parton distribution functions are sensitive to the determination of
o the formation of a tt pair requires high energy transfer (Q > 2m,) and thus a relatively
high momentum fraction of the incoming partons x > 0.03 (0.07) at 13 (7) TeV; the rapidity of
the tt system y(tt) is related to the momentum fraction via y(tt) ~ 1/2log(x’/x), where x and
x' are the fractional momenta of the initial-state partons. Precise cross section measurements of

o have the potential to improve the knowledge of the gluon PDF, of g, and of the top quark

pole mass mf()le [366], which are crucial ingredients to predictions for LHC physics such as the

Higgs boson production cross section, and hence the Higgs boson couplings. In addition, tt is
a background for many BSM searches and in some cases a final state.

q (a) t g (b) t g (c) - g (d) .
t t
q T g T g g

Figure 36: Leading order Feynman diagrams for tt production.

Within the top quark sector the prediction for c; is currently amongst the most precise; it
is calculated at NNLO and includes the resummation of soft gluon terms at NNLL. The ex-
pected cross section at 13TeV is oy = 833.9 7302 (scale) = 21 (PDF + ag) pb computed with

ToP++2.0 [389-395].

The CMS Collaboration made early measurements of ,¢, in pp collisions at each centre-of-mass
energy, and in pPb and PbPb collisions. These were milestones in the extensive programme of
precision measurements and searches for new physics. Examples are: the very first measure-
ment which inaugurated the top quark physics programme at the LHC using as few as 11
events collected in 3pb_1 of 7TeV data [396]; the first measurements at the various +/s [397-
399]; and the first and so far only measurements of top quark pair cross sections in pPb [400]
and PbPb [401] collisions. High precision measurements, employing larger data samples and
more accurate calibrations of the detector, have been performed, such as Refs. [192, 402, 403], or
in combination with the ATLAS Collaboration [404], reaching uncertainties as small as 2-3%.

In the CMS detector, top quark events can be identified with high purity and their rich final
state comprising b jets and leptons also makes them standard candles for calibration purposes.
The measurements have made use of all the various tt final states, which are generically clas-
sified according to the number of leptonically decaying W bosons. Among the dileptonic final
states that have been exploited to measure c;;, the channel with one electron and one muon in
the final state is particularly clean, whereas the channels containing 7 leptons are particularly
challenging, as they require dedicated trigger and reconstruction algorithms.

The top quark programme has benefited from the increasingly large data samples and it heav-
ily draws on experimental techniques such as b tagging [405], missing transverse energy [406],
reconstruction of boosted topologies [407], kinematics-based selections (from likelihoods to
MVA-based approaches) [408, 409], fitting techniques using several control regions and vari-
ables [406], profiling of systematic uncertainties [408], and, not least, the combination of re-
sults [402].

A summary of the 0, measurements performed by CMS is shown in Fig. 37. In this figure,
the most precise results at each centre-of-mass energy are shown. Overall, all the results are
compatible with each other and with the predictions. While consistent within the uncertainties,
the data tend to be somewhat lower than most NNLO+NNLL predictions obtained for m; =
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172.5GeV and ag = 0.118. Summaries of all the individual tt measurements are shown in
Fig. 38.
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Figure 37: Summary of top quark-antiquark pair cross section measurements by the CMS Col-
laboration in comparison with the theory calculation at NNLO+NNLL accuracy. The Tevatron
measurements are also shown. The lower panel displays the ratio between the different mea-
surements and the theory prediction. The coloured bands represent the theory uncertainty,
while the error bars represent the uncertainty on the measurements.

The precision of most top quark cross section measurements is limited by systematic uncer-
tainties. While the initial measurements at 7 TeV were limited by the trigger and selection
uncertainties (~4%), jet energy scale and b tagging uncertainties (ranging from 7% to 20%),
and the signal modelling, namely the choice of factorization and renormalization scales in the
LO MC used, the most precise CMS measurements to date achieve a total relative uncertainty
of 3.7% (Run 1) [402] and 3.9% (Run 2) [192]. The latter measurements are performed in the
ey final state in which a pure selection of events can be achieved with relatively loose lepton
selection requirements. The analysis requires up to two b jets (from the tt decays) and counts
the additional jets in the events. Categories are thus defined from the multiplicity of selected b
and extra jets.

The categorization by b-tagged jet multiplicity facilitates a fit procedure in which the tt cross
section and the b-tagging efficiency are measured simultaneously, exploiting the binomial de-
pendency of the b-tagged jet multiplicity distribution on the b-tagging efficiency. With this
approach, the dominant uncertainties remain in the trigger and lepton selections, as well as the
integrated luminosity (~2.2%).
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Figure 38: Summary of CMS top quark-antiquark pair cross section measurements at different
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In the 13 TeV measurement, the signal was modelled using the NLO POWHEG v2 MC genera-
tor [79-81]. Although this change had reduced uncertainties from the theoretical point of view,
it had no significant impact on the total uncertainty of the measurement since the experimental
method effectively decreases uncertainties related to the ME-PS matching.

Variants of this approach have also been used with the ¢+jets final states at v/s = 5.02 TeV [410]
and 13 TeV [398], and more recently at 13.6 TeV, by combining both the dilepton and /+jets
final states [399]. The relative uncertainties attained in these measurements are 12%, 3.8%,
and 4%, respectively. In the 5.02TeV analysis, the uncertainty is larger because of the low
integrated luminosity of that data set. These analyses have successfully applied the extra-jets
categorization technique simply counting events in the different categories, or using variables
such as AR(j, j'), the distance between the two jets from the decays of W bosons (W — jj’), and
m(fb), the invariant mass of the lepton-b jet system.

In Ref. [403], a total of 22 different measurements of o,; are performed, each based on the inte-
gration of a differential cross section measurement described below. The results are in general
agreement with the SM and attain a total uncertainty of 3.2%. The integrated luminosity is the
dominant uncertainty (1.8%) followed by lepton-selection uncertainties (1%), b tagging (0.9%)
and jet energy scale (1.4%).

Further improvements in the measurement of o; require reduced uncertainties in the inte-
grated luminosity, in the trigger, and in the lepton identification efficiencies. Luminosity mea-
surements with an uncertainty of 1.2% have been achieved for the CMS data recorded in 2015
and 2016 [1]. Improved uncertainties are expected for the later data sets. In addition, the use of
new luminosity detectors and novel techniques, such as Z boson rates, can further improve the
luminosity calibrations and their extrapolation uncertainties at high beam intensities [411, 412].
Better measurements of the trigger and lepton identification efficiencies are expected from
novel approaches. With larger sample sizes, efficiencies can be measured in finer categories,
in turn leading to reduced uncertainties.

6.3 Differential top quark cross sections

Precise measurements of differential cross sections provide important information about the
production process; the results have been used for detailed comparisons with theory predic-
tions and to measure various SM and modelling parameters. In Fig. 39, a recent differential
measurement of the tt cross section is shown as a function of the top quark transverse momen-
tum pr(t) and the tt invariant mass m; [403]. These are only two of 22 differential distribu-
tions, which were also used to determine the inclusive cross section, as described in Section 6.2
above.

The pr distribution of the top quark, shown in Fig. 39 (left), shows a clear trend of most theory
predictions to be somewhat harder than the data. Already early measurements of the top quark
pr in Run 1 identified this trend, as reported in Refs [353, 356, 407, 413, 414]. Although it was
found that the discrepancy is reduced by higher-order QCD and EW corrections [415, 416], it
still has a significant impact on precision measurements, most notably those where an extrapo-
lation to the full phase space is needed to measure top quark properties. The uncertainty in the
top quark pr modelling is also relevant to searches in which the top quark is a background.

An underlying challenge of differential measurements is the wide range of energy transfer
at the LHC; although the tt system is most often produced at rest, it is possible that it will
also be produced at a large mass scale Q > 2m;, yielding boosted topologies in which the fi-
nal state objects, jets and leptons, are merged. Experimentally, special techniques are used to
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retain high efficiency for boosted top quark jets [407, 417]. On the theory side, additional mod-
elling uncertainties arise. The most recent calculations achieve NNLO accuracy in perturbative
QCD [415, 418], and include NNLL corrections [389-395], and NLO EW corrections [416, 419].
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Figure 39: Differential cross sections at the parton level as a function of the hadronically decay-
ing top quark pr (left) and of the tt invariant mass (right). The analysis was performed using
tt events in the /+jets final state. The data are shown as points with grey (yellow) bands indi-
cating the statistical (statistical and systematic) uncertainties. The cross sections are compared
with the predictions of POWHEG combined with PYTHIA (P8) or HERWIG (H7), the multiparton
simulation MADGRAPH5_aMC@NLO (MG)+PYTHIA FXFX, and the NNLO QCD calculations
obtained with MATRIX. The error bars represent the theory uncertainty in the predictions. The
ratios of the various predictions to the measured cross sections are shown in the lower panels.
Figure from Ref. [403].

CMS has also published a wealth of multidifferential distributions, such as those shown in
Fig. 40 for the dilepton channel [420]. Detailed comparisons are performed between the data
and predictions up to approximate N°LO. In Fig. 40 (upper), especially in the bin of large
m(tt), a clear improvement can be seen in the description of the data by the NNLO calculations
MATRIX [46], STRIPPER [416] and MiNNLOPS [421]. In Fig. 40 (lower), the data are compared
with predictions from POWHEG+PYTHIA (P8) for various PDF sets. The differences between
the PDF illustrate the sensitivity of the data to the parton distribution functions. In the region
300 < m(tt) < 400GeV, the data are consistently higher than the NLO predictions for all PDFs.

In Fig. 41, the difference in azimuthal angle between the two charged leptons, A¢ (Y, 0') is pre-
sented as an illustration of how differential cross sections give access to the fundamental prop-
erties of the top quark. The SM predicts a correlation between the spins of the top quark and
antiquark [422]. As the figure shows, the data are compatible with the standard model expec-
tation, while a scenario without spin correlations is excluded. More recent measurements of
spin correlations also show overall good agreement with the SM [423].

6.4 Top quark production in heavy ion collisions

The set of 0,; measurements performed by CMS is augmented with the first measurements of
tt production in pPb and PbPb collisions [400, 401]. These measurements bridge the SM and
heavy ion physics programmes of the LHC with the potential to contribute to a better knowl-
edge of the nuclear PDFs (nPDF) and the quark-gluon plasma (QGP) [425, 426]. Top quarks are
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Figure 40: Normalized differential cross sections as a function of py(t) in bins of m(tt) (upper),
and as a function of y(tt) in bins of m(tt) (lower). The data, shown as bullets with grey and
yellow bands indicating the statistical and total uncertainties, are compared with the prediction
from POWHEG +PYTHIA 8 and various theoretical predictions (see text). The error bars repre-
sent the theory uncertainty in some of the predictions. The lower panel in each figure shows

the ratios of the predictions to the data. Figure from Ref. [420].
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Figure 41: Normalized differential cross section as a function of the azimuthal opening an-
gle between the two charged leptons in a tt dilepton final state (|A¢+,-|) from data (points);
parton-level predictions from MC@NLO (dashed histograms); and theoretical predictions at
NLO with (SM) and without (no spin corr.) spin correlations (solid and dotted histograms,
respectively). The ratio of the data to the MC@NLO prediction is shown in the lower panel.
The inner and outer vertical bars on the data points represent the statistical and total uncertain-
ties, respectively. The hatched bands represent variations of yz and pp simultaneously up and

down by a factor of 2. Figure from Ref. [424].
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a theoretically precise probe of the nuclear gluon density at high virtualities (Q ~ m;) and in a
region of relatively unexplored Bjorken x (x > 2m,/+/s__ ~ 0.05), where enhancement with re-
spect to the free-proton PDF case (antishadowing) and “EMC” [427] effects are expected [428].
In both the pPb [400] and the PbPb [401] data, the CMS analyses are limited by the small size of
the data sets of 174nb ! and 1.7nb !, respectively. The tt production has been observed with
a significance above 5 standard deviations (s.d.) in pPb collisions and the cross section was
measured with a relative uncertainty of 18%, whereas in PbPb collisions the significance was
4 s.d. and the cross section was measured with a relative uncertainty of 33%. Both results are
somewhat lower than the corresponding SM expectations, albeit compatible within 1-2 s.d.,
and are still largely dominated by statistical effects. The relevance of the top quark as a hard
probe for nuclear PDFs (nPDFs) and the QGP is expected to gain relevance with larger data
samples, as explored in Refs. [411, 426, 429].

6.5 Top quark production in association with vector bosons

Rare processes, such as the associated production of the top quark with vector bosons, have
become accessible with the larger data samples of Run 2. Such processes offer the possibility
to directly probe the EW couplings of the top quark and explore the sensitivity of the data to
several BSM extensions. The production cross sections are typically small (<1 pb) owing to
both the high mass of the state produced and the weaker couplings of the vector bosons with
respect to QCD. The CMS Collaboration has either observed or found experimental evidence
for all processes in which either tt or single top quarks are produced in association with vec-
tor bosons (Z,W,v) or the Higgs boson (setting aside tHq). The measurements of associated
production with the Higgs boson are later discussed in Section 7, whereas associated tW was
already discussed in Section 6.1.

Processes with neutral bosons V' in the final state (V? = <, Z) share similar diagrams that can
be studied to examine the different EW dipole operators of the top quark [430], or in back-
ground estimations [431]. Examples of these Feynman diagrams are shown in Fig. 42 where
the VY is pictured as arising either from initial state radiation (ISR) or from a direct coupling to
the top quark. Figure 42(a) depicts the possibility of a W boson being produced by ISR only.
Some additional differences between 7y and Z bosons arise from an enhanced probability that
the 7 may be radiated from a final-state charged particle, because it is massless. Conversely,
the dilepton states typically explored in the Z boson analysis, can be produced by additional
off-shell and v* — ¢ contributions. In the data analyses, such additional contributions are typ-
ically suppressed by the requirement that the dilepton invariant mass m (/) is reconstructed in
the vicinity of the Z boson pole mass. These differences are also present in single top quark as-
sociated production with V0 illustrated in Fig. 43, where contributions from WWZ and WW+y
TGCs may be present, as well as nonresonant dilepton contributions (Fig. 43(c)). Therefore,
single top quark associated production has the potential of providing additional handles for
EW fits of aTGCs. Besides the obvious interest in the couplings of the top quark and the EW
sector, the presence of the V" introduces an additional intrinsic asymmetry in the tt system at
LO level, which is a clean probe of BSM effects. The asymmetry arises from the increase of the
relative contribution of qq-initiated processes [432]. The ttV’ processes receive background
contributions from tWV’ processes, and at NLO, interference terms between ttV? and tWV?
arise, in analogy to the inclusive case of tW and tt described in Section 6.1 above. The cross
section for tWZ is expected to be about 15% of that for ttZ [433]. CMS obtained evidence for
the tWZ process with an observed 3.4¢ statistical significance [433]. The result is in agreement
with the SM expectation within one standard deviation.

The CMS Collaboration has carried out several measurements of the ttV® and tV°q processes;
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q t q t q t

Figure 42: Example Feynman diagrams for the production of tt with a vector boson through
initial state radiation (a) or a direct coupling to the top quark (b and c). The latter is only
possible for neutral bosons V0 = v, Z.
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Figure 43: Example Feynman diagrams for the production of tZq.

the results are summarized in Figs. 44 and 45. Table 17 summarizes the final states explored
in these measurements, the corresponding references, and the NLO predictions. Overall, good
agreement between theory predictions and data is attained in these measurements.

The current uncertainties are about 8% for the ttZ cross section, dominated by statistical and
lepton-selection efficiency uncertainties [434]. In this analysis, the main background is from
nonprompt leptons and WZ boson production, modelled from dedicated control regions, and
other associated top quark production t(t)X, modelled from simulation. The measurements
of the tZq production cross section are mostly limited by the statistical uncertainty (~=12%)
followed by systematic uncertainties related to backgrounds from WZ and ttZ processes, from
misidentified lepton candidates, jet energy scale, and lepton selection efficiencies [435].

In the context of associated processes with photons, a total uncertainty of 3.5% is achieved for
the tty process using all the available data at /s = 13 TeV, whereas the tyq process has been
measured with 10% total uncertainty (4.4 s.d.significance) [436] with an initial subset of the
13 TeV data. Both are in agreement with the SM predictions at NLO.

The ttW process, depicted in Fig. 42(a), is particularly interesting because the tt pair is pro-
duced via gluon splitting from a qq initial state. Because of the proton PDFs, it is expected
that o (ttW™) = 1.90(ttW~) at LO, i.e. it is a charge-asymmetric process. With the inclusion of
higher orders in perturbation theory new production channels open up, and hence new colour-
flow and flavour structures, and this results in a significant increase of the cross section. The PS
predictions used to model this process have NLO accuracy in QCD for the production and are
limited to on-shell decays, with the top quark decay modelled at LO [439-441]. More advanced
tixed-order calculations, including off-shell effects, emission of extra partons, and NNLL con-
tributions, are available but not employed yet. Some effects, such as EW corrections, are larger
in ttW than in ttZ production, making the ttW process especially interesting. In Ref. [451], it is
estimated that NLO+PS cross sections, such as the one quoted in Table 17, fall short by 10-35%
with respect to a calculation at the same order, including the missing full off-shell effects. The
experimental measurements of ttW production are currently about 20% higher than the SM
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Figure 44: Summary of CMS ttW and ttV" cross section measurements with respect to the SM
prediction. The horizontal bars display separately the statistical and the total uncertainties of
the experimental measurements. The uncertainty associated to the theory predictions is repre-
sented by shaded bands and includes the variations of the renormalization and factorization
scales and parton density functions.
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Figure 45: Summary of CMS measurements of tV°q (V? = Z, ) cross sections at 13 TeV. The
cross section measurements are compared with the NLO QCD theoretical calculation. The
horizontal bars display separately the statistical and the total uncertainties. The uncertainty
associated to the theory predictions is represented by shaded bands and includes the variations
of the renormalization and factorization scales and parton density functions.
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Table 17: Summary of final states covered experimentally in associated top quark and neutral
boson production by CMS. For each process listed in column (a), column (b) quotes the theo-
retical prediction at 13 TeV. Columns (c) and (d) summarize the different final states generated
by the top quark (s) and boson decays with the corresponding branching fraction (B) listed
in column (f). The combined results for the W and Z boson Bs include the propagation of -
leptonic decays. The nomenclature assigned to these channels is shown in column (e) with SS
(OS) used as a shorthand for same- (opposite-) charge lepton pairs. The CMS measurements of
these channels are listed in column (g). The theoretical uncertainties include the PDF+ag and
scale choice. Symbols provide additional information: (t) predicted at NLO accuracy using
MADGRAPH5_aMC@NLO v2.6.5, and corresponding to the fiducial region [437]; (e) the quoted
fiducial t-y cross section is predicted at NLO QCD accuracy [70] corresponding to the selection
of Ref. [436]; (*) - computed at NLO including QCD+EW effects and NNLL QCD effects [438];
(%) - computed at NLO QCD and EW accuracy [439-441]; (¢) - computed at NLO QCD accuracy
in the 5FS [70], in the phase space of [442]. (§) - computed at NLO QCD accuracy [243, 440].

(@) (b) (© (d) (e) (f) ()

Process o or ogq (fb) tt decay Boson decay Channel B Measurements
i 773+£135%  (¢*ub)(qqb) - 14 34.4% [437,443]
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prediction and thus provide important input in a phase-space region where theory is actively
evolving.

In CMS, the measurements of the ttW process have mostly focused on multilepton final states,
in particular those comprising either a same-sign dilepton pair or three leptons. A multitude
of different competing processes constitute the background ranging from tt, dibosons, non-
prompt leptons, and rare tt associated production processes, but also conversions of photons
into electron pairs, and incorrect lepton charge measurements. These need to be estimated from
data themselves. The events are analysed in different categories that enhance the different con-
tributions, typically using jet or b jet multiplicities, total lepton charge, Z bosons reconstructed
with same-sign lepton candidates, or leptons with loosened identification criteria. To reduce
the uncertainties in lepton selection and background contamination, dedicated MVA methods
have been employed. The most precise measurement of the ttW cross section has a relative
uncertainty of 7.5%, dominated by the statistical component and the modelling of signal and
backgrounds, specifically ttH. The interplay between the ttW and ttH processes is discussed
in Section 7. The measured charge asymmetry, o zw+/0gw— = 1.61:’8}2, is slightly below the
SM prediction. Table 18 summarizes the ttW measurements performed so far by the CMS Col-
laboration, and Fig. 44 includes a comparison of the most precise ttW measurement with the
theory prediction.

Table 18: Summary of final states covered experimentally in associated ttW production. The
structure of the table is similar to that of Table 17. The cross section column cites the prediction
at 13 TeV computed at NLO including QCD (up to two jets) and EW contributions [452].

Process o (fb) tt decay Boson decay Channel B Measurements
W 99 +71 (¢*vb)(qqb) Fv 2SS 4.4% [361, 446448, 453]
78 (t*ub)(fFub) Fy 3¢ 1.7% [361, 453]

6.6 Associated production of tt with jets

Measurements of tt with jets are typically performed as differential cross section measurements
and interpreted as tests of perturbative QCD. The CMS Collaboration has produced several
such measurements at different /s, using different final states and exploring the correlation
with the kinematics of the top quark, the tt system, and other event variables, as outlined in
Refs. [403, 454-459]. The sensitivity of these distributions to the UE, PS modelling, and the ME-
PS matching is explored in conjunction with ancillary measurements to improve the theoretical
modelling and to validate new models. Recent examples are available in Ref. [37], where the
best agreement with data is found for the MADGRAPH5_aMC@NLO matrix element generator
and the FXFX matching scheme using PYTHIA 8, and in Ref. [460] where good agreement is
found between data and the POWHEG+HERWIG 7 setup.

When the additional jets are heavy-flavoured, these processes are particularly important to un-
derstand, since they constitute backgrounds to the measurements of processes such as ttH(—
bb) and tttt. The final states of ttbb and ttcc are complex, as they comprise many jets. The ad-
ditional heavy-flavour quark pair arises typically from gluon splitting and the jets in the final
state end up being soft in p and close in the #—¢ plane. A gluon splitting Feynman diagram
is shown in Fig. 46(a). With the exception of the ttH measurements, described in Section 7, the
analyses do not distinguish whether the origin of a jet is from gluon splitting, boson decay or
another multiparton interaction. Two of these cases are represented in Figs. 46(b) and (c).

A summary of the ttbb measurements by CMS is given in Fig. 47. The latest ttbb [459, 461, 462]
and ttcc [463] measurements improve significantly over previous results because of higher
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Figure 46: Feynman diagrams contributing to the associated production of top quarks with
heavy-flavoured jets.

statistics and better identification of heavy-flavoured jets. The achievement was made possible
by the improved tracking capabilities of the upgraded pixel detector in the second part of Run 2
and the usage of more modern machine learning (ML) algorithms such as DEEPJET [35, 36].

The measured cross sections are generally somewhat higher than the predictions. Models that
rely on parton showers for high jet multiplicities tend to underestimate the rate of events with
three or more b jets, indicating that either additional tuning or higher-order accuracy is needed.
From the theoretical point of view, the calculations of these multiscale processes come with
large NLO corrections, up to a factor of 2, and a relatively large final uncertainty of typically
20% [464, 465]. Because of the still large theoretical uncertainties, the difference of the exper-
imental data with respect to theory has a reduced significance (1-2 s.d.). Similar to previous
discussions in Section 6.1, the 5FS generally describes the observed rates better than the 4FS.
The dominant experimental uncertainties are related to the efficiency of the flavour-tagging
algorithms and to the modelling of the parton shower.

Additional measurements, with larger data samples and exploring new jet algorithms which
can probe the phase space typically vetoed by the hard jet selection constraints, will help to
improve the description of these important processes.

6.7 Four top quark production

With a cross section that is five orders of magnitude lower than that of tt production, four top
quark production (tttt) is among the rarest QCD processes established by the CMS experiment.
At NLO plus next-to-leading logarithmic accuracy (NLO+NLL QCD+EW), the expected cross
section is oy (13 TeV) = 13.4779 fb [466]. The large number of permutations of decay modes
of the four W bosons leads to a large number of different final states, all of which also contain
four b jets. Besides the dominant strong production mode, tttt receives contributions from EW
vertices, such as the ones involving the top quark Yukawa coupling as shown in Fig. 48(b). In
addition, several BSM scenarios, such as supersymmetry, simplified dark matter models, and
Type II Higgs doublet models, predict modifications to the SM tttt production [467, 468].

The CMS Collaboration has analysed a large number of decay channels, including the fully
hadronic [469], 1/ [469-472], 2{OS [469, 471, 472], 2/SS, and multilepton [473-475] final states.
Various backgrounds contribute to each of these final states, some of them being common with
the backgrounds of tt+V associated production or tt+jets. The correct modelling of tt in asso-
ciation with vector bosons and with heavy flavours plays a crucial role, and control regions are
established in data to validate the background estimations.

Among all these final states, the multilepton final states, specifically the 2/SS and 3¢ channels,
achieve the highest significance, owing to their purity. In both Ref. [474] and Ref. [475] MVA
discriminators are trained to separate the tttt signal from the backgrounds. The cross section
is measured from a combined fit using several categories. Although using the same data set,
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Figure 47: Summary of ttbb cross section measurements. The left plot depicts the measure-
ments performed in the full phase space using different final states and data sets, compared
with different MC predictions. The right plot shows the ratio between the theoretical and mea-
sured cross. The statistical and total uncertainties on the measurements are represented by
different shaded bands, while the uncertainty on the predictions are represented by error bars.
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Figure 48: Representation of different Feynman diagrams contributing to tttt production at the
LHC. Diagrams that involve strong coupling vertices, shown in (a), are expected to dominate.
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Ref. [475] improves over the results obtained in Ref. [474] because of the improved lepton and
b jet identification techniques. Observation-level significance above the background-only hy-
pothesis is attained in Ref. [475]: 5.6 s.d. with 4.9 s.d.expected. The measured cross section
(13 TeV) is 17.9 £ 4.1 fb, in agreement with the SM. The result is still statistically limited,
and the main systematic uncertainties arise from the b tagging efficiency (about 5%) and the jet
energy scale uncertainty (about 3%).

The all-hadronic channel has also been explored by the CMS experiment for the first time [469],
making use of both resolved and boosted top quark reconstruction. A custom BDT and min-
imum #—¢ separation is used in the resolved regime, whereas the boosted regime makes use
of CMS’s DEEPAKS algorithm [417]. The combination of the /+jets, 2¢OS, and all hadronic
channels using full Run 2 data yield a significance of 3.9 s.d. with 1.5 s.d. expected; the excess is
attributed to the full hadronic channel. After combination with the 2/SS and multilepton anal-
ysis from Ref. [474] and the 2¢OS analysis from Ref. [472] the observed significance becomes
4.0 s.d. with 3.2 s.d. expected.

Figure 49 summarizes all the tttt searches and measurements performed so far by CMS. They
are consistent with the SM within the uncertainties. The most precise combination [475] shows
a slightly larger measured cross section value and achieves observation of tttt production.

Larger data sets will be used by CMS to further explore this process, to constrain fundamental
parameters such as y; and to look for BSM effects [411]. Related analyses of the production of
three top quarks in association with a jet or a W boson will require data sets of higher inte-
grated luminosity because of their small expected cross sections of about 0.47 and 0.73 fb, re-
spectively [477, 478]. This is analogous to the history of top quark cross section measurements
in which the tW process was established long after that of tt. The three-top quark processes
share similar overlapping issues, albeit at a higher energy scale and top quark multiplicity.

6.8 Extraction of fundamental theory parameters from top quark cross sections

One of the main aims of inclusive cross section measurements is to extract information about
fundamental SM parameters. Top quark production cross sections allow measurements of ag,
Y and Vi,. A short description of the precision achieved so far by CMS is given below. Direct
measurements of ttH and the combined Higgs boson results to extract y, are described later in
Section 7.

As noted in Section 6.2, the ; cross section is sensitive to both ag and mele, thus its mea-
surement can be used to extract one of the two parameters while fixing the other. In addition,
a choice has to be made related to the PDF set, and the corresponding fixed order and mass

scheme. In differential cross section measurements, e.g. of the mass and rapidity of the tt sys-

tem, the three quantities (ag, m{mle and PDF) can be extracted simultaneously, as demonstrated

in Ref. [181].

For the extraction of ag, the inclusive tt cross section is used, and hence, residual uncertainties
related to the extrapolation of the cross section from the fiducial phase space to the full phase
space enter the measurement and cannot be constrained from data since they impact a region
that is not accessible experimentally. The uncertainties include scale choices, PDF uncertainties,
and the uncertainty in the LHC beam energy. Nonperturbative (NP) contributions related to
the intrinsic kg, but also to the modelling of the QCD colour charge carried by the top quark
or antiquark (i.e. colour reconnection [479]) may contribute as well. Even though NP effects
occur at a scale Agcp and in most cross section measurements Q%> Aqcp (and o > onp), NP
effects may still be relevant if the selection is strict or involves a large extrapolation. The pt
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Figure 49: Summary of CMS measurements of the tttt production cross section at 13 TeV in
various channels. The total (statistical) uncertainty associated with the measurements is repre-
sented by the outer (inner) error bars. The cross section measurements are compared with the
NLO QCD and EW theoretical calculation. The theoretical band represents uncertainties due to
renormalization and factorization scales. Complementary theory predictions are also available
in Ref. [476].
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distribution of the top quarks, discussed in the previous section, is also relevant. In most cases,
cross section measurements using dilepton final states have been used in the determination of
ag since they involve smaller extrapolations to the full phase space and have overall the best
precision achieved so far. In the most precise measurements of ag from oz, summarized in the
next paragraph, the dominant uncertainties turn out to be related to the QCD scale choice and
the PDE.

The strong coupling ag is technically measured at the tt scale, and one relies on the running of
g to translate the results to the my scale. The measurement of ag(m;) from oy with the 7 TeV
data has a total uncertainty of 2.4% [190] and with 13 TeV data a total uncertainty of 3.4% [480].
Data sets at smaller centre-of-mass energy are more sensitive owing to the larger correlation
between ag and 0,;. The most precise result to date comes from the combination of the CMS
and ATLAS measurements at 7 and 8 TeV and achieves a total uncertainty of 1.8%, as the main
uncertainties in the individual measurements (tt signal modelling and lepton identification
and energy) are largely complementary between CMS and ATLAS [404]. The measurements
are in agreement with the world average, as summarized in Fig. 50.
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Figure 50: Summary of ag determinations from inclusive and differential top quark cross sec-
tion measurements. The error bars represent the total uncertainty of the measurements. The
results obtained with different PDF sets are compared with the world average [123] and the
reference ag in the corresponding PDF set. The 68% confidence intervals are represented by the
error bars and the coloured ranges. The PDFs marked with a 1 include LHC top quark data in
their fits.
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Another fundamental standard model parameter is V,;,. Since Vy, is related to the EW coupling
of the top quark, the measurement is carried out using the single top quark ¢t-channel (Figs. 33
(a) and (b)). As noted in Section 6.1, in t-channel processes, the tWb vertices contribute twice,
in the production and in the decay, giving rise to terms of order V3 . This results in an increased
sensitivity with respect to the analysis of the top quark decays alone. In practice, from the sig-
nal strength of the t-channel, i.e. the ratio between observed and theoretical cross section, one

extracts | fry Vip| = +/ ‘;'t‘;z;, where in the SM the form factor f;, = 1. For simplicity, we assume

fry = 1in the following. The CMS Collaboration has made several measurements at differ-
ent /s, the most precise result is achieved by combination of the results using this method on
the 7TeV and 8 TeV data: |Vy,| = 0.998 & 0.038 (exp) £ 0.016 (theo) [377]. The experimental
uncertainty is dominated by the signal modelling and jet energy scale, as summarized in Sec-
tion 6.1. The combination with ATLAS results achieves a total uncertainty of 4.4% [381]. More
recently, by performing a fit which includes the parameterized contributions of the different
CKM matrix elements to the production and decay of single top quarks [481], a more precise
measurement of |Vi,| = 0.988 & 0.024 has been obtained. The uncertainty is limited by jet
energy scale and PS scale uncertainties. The result is promising since it relaxes the SM-based
assumptions used in the most precise measurement of V};, to date, based on the measurement
Ry, = B(t - Wb)/B(t — Wq) in tt events in which a limit of V,;, > 0.975 at 95% confidence
level was determined [482]. A direct measurement of |V,4|? + |Vs|?> = 0.06 £ 0.06 is also made
in [481]. Figure 51 summarizes the various measurements of |V, | performed by the CMS Col-
laboration. The combinations with ATLAS results are also included. All measurements are
consistent with each other.

Finally, the top quark Yukawa coupling can be extracted from the tttt cross section as an almost
independent measurement in which no other Higgs boson couplings intervene, given that at
LO 0y « |y /yPM|*, neglecting interference terms [485]. There is, however, a contamination
from the ttH background in the final sample. Its contribution (about 5%) must also be taken
into account for the final limit. The resulting upper limit is |y, /y?M| < 1.7 at 95% confidence
level [474]. The value of y, can also be extracted from the differential measurement of m,; and
Y, attaining uncertainties of 20 to 40% with 13 TeV data. This is possible owing to the con-
tribution of diagrams where a virtual Higgs boson is exchanged between the tt pair, giving
sensitivity to y, independently of other H couplings. More details about the CMS measure-
ments can be found in Refs. [358, 486].

Additional constraints on the Higgs boson propagator can be obtained from tttt production.
The constraints are obtained after quantifying the modifications to o3 with an effective field
theory approach where additional contributions are added to the SM Lagrangian. These BSM
contributions can be modelled with new operators proportional to my/A?, where A is the
energy scale of new physics. The so-called oblique H-parameter falls in this category and
modifies the Higgs boson propagator [487] inducing a parabolic variation of o;3; as a function
of H. This dependency is used to obtain [ < 0.12 at 95% confidence level [472]. Even though it
does not use the most precise 0;;,; measurement, this limit is better than that originally expected
for the end of the HL-LHC [487].

6.9 Top quark summary

The CMS experiment has observed or measured the majority of the expected production pro-
cesses involving top quarks at the LHC. The results are in good agreement with the SM pre-
dictions and, in some cases such as tttt, are still dominated by statistical uncertainties. The
inclusive cross section measurements have been used to extract or set independent constraints
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Figure 51: Summary of |V, | determinations from top quark events using different techniques.
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represent separately different uncertainties, as described in the legend. In the LHC combina-
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puted at NLO QCD accuracy [371] with the PDFALHC prescription for the PDF uncertainty
using CT10nlo, MCSTW2008nlo, and NNPDF2.3nlo [483], whereas in the tW channel the the-
ory reference is computed at NNLO+NNLL QCD accuracy [484] using the MSTW2008 NNLO
PDF [109]. A line at |V, | = 1 is used as a common reference.
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on fundamental parameters of the theory such as ag, Vy;,, or y,. Furthermore, measurements of
0 and t-channel single top quark production provide important inputs for the determination
of PDFs.

An overview of the main top quark cross section measurements at CMS is provided in Fig. 52.
Good overall agreement with the SM is observed. Future measurements with increased statis-
tics, improved experimental methodologies, and theoretical models are expected to contribute
to finer tests of the SM along with the final goal to discover new physics.
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Figure 52: Summary of production cross section measurements involving top quarks. Mea-
surements performed at different LHC pp collision energies are marked by unique symbols
and the coloured bands indicate the combined statistical and systematic uncertainty of the
measurement. Grey bands indicate the uncertainty of the corresponding SM theory predic-
tions. Shaded hashed bars indicate the excluded cross section region for a production process
with the measured 95% C.L. upper limit on the process indicated by the solid line of the same
colour.



88

7 Measurements of Higgs boson production

The discovery of the Higgs boson in 2012 by the CMS and ATLAS Collaborations [210, 488, 489]
was a milestone in particle physics, leading to the experimental confirmation of the BEH EW
symmetry-breaking mechanism and the first measurement of a fundamental parameter of the
SM: the Higgs boson mass. The production of Higgs bosons at the LHC is dominated by gluon-
gluon fusion (ggF) proceeding via a virtual top quark loop. Over the past decade, many studies
have been performed in the form of precise measurements in order to characterize the nature
of the Higgs boson. These started with the verification of the BEH mechanism through the
observation of the direct Higgs boson decays to pairs of W or Z bosons [210, 488, 490-493],
and the indirect decay to photon pairs through fermion and W boson loops [210, 488, 494,
495]. An additional feature of this mechanism is that it grants masses to fermions through
the Yukawa interaction, confirmed by the measurement of the Yukawa couplings of the Higgs
boson to b quarks and T leptons [496—499] and tree-level ttH production [500]. There is also
evidence for other decay channels with smaller branching fractions, such as H — up [501]
and H — Zv [502, 503]. The Higgs boson mass is now known to the permille level (125.38 =
0.14GeV [18]). The total Higgs boson width has been measured to be Ty; = 3.2727MeV, in
agreement with the SM expectation of 4.1 MeV [504]. The spin (J) and parity (P) were also
found to be compatible with the SM prediction (J° = 0%), already during Run 1 [505, 506].
Further measurements have explored the Higgs boson spin and tensor structure [507-511] of
its couplings to bosons and fermions [512]. Limits on the production cross section of pairs of
Higgs bosons in a variety of final states and constraints on the Higgs boson self-coupling have
also been derived [512-518]. A large number of direct and indirect searches for BSM physics
connected to the Higgs sector have also probed the frontiers of the SM. With the current level
of precision, the results are in agreement with the SM predictions.

The study of the cross section of the Higgs boson production at the LHC provides valuable
insights into its underlying production mechanisms and kinematics, a stringent test of the SM
predictions. These cross section measurements are not only performed inclusively, but also
have been expanded to focus on obtaining a thorough description of the Higgs boson kinemat-
ics with the measurement of fiducial, differential, and double-differential cross sections.

A detailed discussion of recent CMS measurements of Higgs boson production and decay is
presented in Ref. [512]. In the next sections, the status of inclusive and differential cross sec-
tions of single Higgs boson production is reported, followed by a discussion of the current
constraints on the production of pairs of Higgs bosons. These results are based on the pp col-
lision data collected by the CMS experiment during the Run 2 of the LHC, at a centre-of-mass
energy of 13 TeV. When useful, comparisons to the corresponding 7 and 8 TeV results are made.

7.1 Inclusive cross sections for single Higgs boson production

The main Feynman diagrams for the production and decay of the Higgs boson are shown in
Fig. 53. For a Higgs boson mass of 125.38 GeV, the total predicted cross section for its produc-
tion within the SM in pp collisions at a centre-of-mass energy of 13 TeV is 55.4 4= 2.6 pb [439].
In the dominant production mode, gluon-gluon fusion (ggF, Fig. 53 a), the Higgs boson is pro-
duced by the fusion of a pair of gluons, one from each of the colliding protons. With a cross
section in the SM of 48.3 4= 2.4 pb, the ggF dominates over the other production modes. The next
in relevance is vector boson fusion (VBF, Fig. 53 b), with a SM cross section of 3.77 & 0.80 pb,
where two quarks radiate virtual vector bosons (W or Z), which then combine to produce a
Higgs boson. As discussed in Section 5.3, a distinctive feature of VBF production is the presence
of forward- and backward-scattered quarks that produce jets with large separation in rapidity.



7.1 Inclusive cross sections for single Higgs boson production 89

Other processes where the Higgs boson is produced in association with other SM particles have
smaller cross sections. These include the associated production with vector bosons (WH and
ZH, Fig. 53 ¢, 1.359 £ 0.028 pb and 0.877 &+ 0.036 pb in the SM, respectively), the associated
production with pairs of top quarks (ttH, Fig. 53 d, 0.503 &= 0.028 pb in the SM) or single top
quarks (tH, Fig. 53 e and f, 0.092 & 0.008 pb in the SM), and the associated production with bot-
tom quarks (bbH, Fig. 53 d, 0.482 4= 0.097 pb in the SM). The leading Higgs boson production
modes (ggF, VBF, VH, tH+ttH) have been observed independently, with the measurements of
the cross sections with precision at the 10-20% level. The sensitivity of the LHC to the bbH SM
production is limited and this mode has not been extensively studied yet.

Higgs boson production modes Higgs boson decay channels
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Figure 53: Higgs boson production in (a) gluon-gluon fusion (ggH), (b) vector boson fusion
(VBE), (c) associated production with a W or Z (V) boson (VH), (d) associated production with
a top or bottom quark pair (ttH or bbH), (e, f) associated production with a single top quark
(tH); with Higgs boson decays into (g) heavy vector boson pairs, (h) fermion-antifermion pairs,
and (i, j) photon pairs or Zv; Higgs boson pair production: (k, 1) via gluon-gluon fusion, and
(m, n, 0) via vector boson fusion. The corresponding Higgs boson interactions are labelled with
the coupling modifiers «, and highlighted in different colours for Higgs-fermion interactions
(red), Higgs-gauge-boson interactions (blue), and multiple Higgs boson interactions (green).
The distinction between a particle and its antiparticle is dropped. Figure taken from Ref. [512].

These production cross sections have been measured with dedicated analyses targeting the
decay to a pair of b quarks (with the branching fraction in the SM [439] of B(H — bb) =
57.63 £ 0.70%), W bosons (B(H — WW) = 22.00 & 0.33%), T leptons, (B(H — t7) = 6.21 £+
0.09%), Z bosons (B(H — ZZ) = 2.71 £ 0.04%), and photons (B(H — ) = 0.2%). These
decay modes have all been measured [492, 493, 495, 498, 499] and their branching fractions
are in good agreement with the SM predictions in Ref. [439]. Other decay modes, which are
rarer or more challenging to observe experimentally, also have been studied. Examples include
H — pp [501], H — cc [519], and H — Z+ [502, 503].

Specific signatures associated with each decay mode and production mechanism are used to
categorize the events. The reconstruction of Higgs boson candidates is based on the identifi-
cation of pairs of photons, oppositely charged leptons (e, u, T), or b jets. Kinematic variables
and their correlations are needed to discriminate against other SM processes with similar de-
cay products that are produced more abundantly, such as the Z boson. Production modes other
than ggF are distinguishable because of the additional objects in the event. The VBF events are
characterized by the presence of two high-pr jets with a large separation in rapidity, and VH
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events by the identification of the V decay through high-py charged leptons, jets, and /or piss.
The ttH and tH signatures involve the decay of both the top quark and the Higgs boson, re-
sulting in a rich variety of final states with the distinctive presence of multiple b jets. Detailed
descriptions of the event selection for each final state and production mode are presented in
the references cited above. A brief summary was included in Ref. [512].

Measurements are compared with the predictions of the production and decay of the Higgs bo-
son obtained using MC generators such as POWHEG 2.0 [79-81], MADGRAPH5_aMC@NLO [69,
70], JHUGEN [61-65], or HJ-MINLO [58-60]. Events produced via the ggF mechanism are
simulated at NLO with POWHEG 2.0 and reweighted to match the predictions at NNLO in the
strong coupling, including matching to the parton shower (NNLOPS [71-73]) as a function of

the p? and of the number of jets in the event.

The individual results featuring specific production and decay modes are combined for a global
picture of Higgs boson production. The overall statistical methodology used in this combina-
tion is described in Refs. [520, 521].

As a first step towards quantifying the agreement of the observed Higgs boson signal with
the expectation of the SM, the data from the various production modes and decay channels
discussed are combined through a model that introduces signal strength parameters (y1). These
parameters scale the observed signal yields relative to the SM predictions, while preserving
the shape of the distributions. For specific initial and final states i — f, the corresponding

signal strength is denoted as yif . Signal strengths for individual production channels and decay
modes are defined as functions of the cross section ¢; and the branching fraction By as y; =

o;/c?™M and pf = B 124 B3M, respectively. A result in total agreement with the SM would be
f

characterized by all signal strengths y; being equal to 1.

We introduce different scenarios in which we incrementally increase the freedom allowed in the

model, from considering a single signal strength parameter () that connects all the production

and decay modes to allowing individual parameters (y{ ) that modify individual channels in-

dependently. Figure 54 summarizes the signal strength parameters per individual production

mode and decay channel y{ , and combined per production mode y; and decay channel 1.
This result was obtained with the data collected at 13 TeV, corresponding to an integrated lu-
minosity of 138 fb™!. Here the ttH and tH production modes are considered together. This
global picture, including details of the production and decay of the Higgs boson, shows good
agreement with the SM expectation.

The measurements [512, 522] of a common signal strength parameter are in excellent agreement
with the SM:

(7 and 8 TeV) = 1.00 £ 0.008 (theo) £ 0.09 (stat) + 0.07 (syst),

H(13TeV) = 1.002 £ 0.036 (theo) £ 0.029 (stat) + 0.033 (syst).

For the 13 TeV measurement, the theoretical uncertainties in the signal prediction, as well as the
experimental statistical and systematic uncertainties, are of comparable size.

The theoretical uncertainties in the prediction of the production cross section impact the rate
of events being produced and the kinematics of the Higgs boson and its decays. The signal
strength parameters are relative measurements of the agreement with the SM, y = o/ogy,
and therefore fold in the total theoretical uncertainty in the prediction. In contrast, a cross
section measurement is only subject to theoretical uncertainties in the acceptance, as discussed
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Figure 54: Signal strength parameters per individual production mode and decay channel y;,

f

and combined per production mode y; and decay channel 3f. The SM expectation at 1 (dashed
vertical lines) is shown as a reference. Light-grey shading indicates that y is constrained to be
positive. Dark-grey shading indicates the absence of a measurement. The measured value for
each production cross section modifier obtained from the combination across the decay chan-
nels, y;, is indicated by the blue vertical line. The corresponding 68% CL interval is indicated
by the blue bands. The arrows indicate cases where the confidence intervals exceed the scale of

the horizontal axis. Figure taken from Ref. [512].
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in Section 1. As a result, production cross sections are less affected by theoretical uncertainties
than the signal strength parameters.

The signal strength model with six y; parameters presented in Ref. [512] has been modified to
obtain cross sections per production mode. The measurements of the inclusive cross sections
at 13 TeV obtained deploying this method are represented graphically in Table 19 and Fig. 55.
Table 19 also lists the available measurements of inclusive cross section at 7 and 8 TeV. These
have been derived by scaling the theoretical cross sections of Ref. [523] by the signal strengths
published in Ref. [522]. The table also shows the corresponding SM prediction for the cross
sections, taken from Ref. [523] and computed for my = 125GeV for the 7 and 8 TeV results,
and from Ref. [522] and for my = 125.38 GeV for 13 TeV results, following the comparison
done in the original publications. Overall, there is good agreement with the SM prediction in
Ref. [439].

Table 19: Measured inclusive cross sections for the main Higgs boson production modes. At 7
and 8 TeV, the measured cross sections are derived by scaling the theoretical cross sections of
Ref. [523] by the signal strengths published in Ref. [522]. At /s = 13 TeV, the cross sections are
obtained from a global fit, as described in the text. The results are in good agreement with the
predictions from Ref. [523] and Ref. [439], respectively.

Vs Production mode ¢ (H) (pb) cSM(H) (pb)
7 TeV ggF 15.6125 1513 +1.58
VBF 22172 1.222 4 0.038
8 TeV ggF 152737 19.27 £2.01
VBF 1.61755 1.578 4 0.035
VH 1.08757% 1.120 + 0.034
ttH 0.421078 0.1293 + 0.0078
13 TeV ggF+bbH 47.6718 (stat) 123 (syst) 48.80 +2.46
VBF 2941037 (stat)T03L (syst) 3.7 +£0.81
WH 1957028 (stat) 075 (syst) 1359 +0.028
ZH 1137018 (stat) 075 (syst) ~ 0.877 & 0.036
ttH 0.4670.97% (stat) s, (syst)  0.503 £ 0.035
tH 0.547519 (stat) T0 15 (syst) 0.092 - 0.008

In addition to this global view of Higgs boson production, fiducial production cross sections
for specific decay modes have also been measured individually [524-529]. These fiducial cross
sections correspond to well-defined regions of the phase space, and avoid the extrapolation to
the full phase space necessary for the determination of total inclusive cross sections. Minimiz-
ing the differences in selection between the reconstructed- and particle-level objects facilitates
a more model-independent comparison to theoretical calculations. Table 20 summarizes the
available measurements at a centre-of-mass energy of 13 TeV, with an integrated luminosity of
138fb~!. The table also lists the variables and the selection criteria that delineate the fiducial
phase space. The variables used to define it follow closely the event selection criteria of each
analysis. These variables include the pr and (pseudo)rapidities of the reconstructed Higgs bo-
son and its visible decay products, the reconstructed invariant and transverse masses of the
system, or the jet multiplicity. They are calculated at the MC generator level after parton show-
ering and hadronization. The lepton momentum includes the momenta of photons radiated
within a cone of AR < 0.1 in the WW and 77 analyses or AR < 0.3 in the ZZ case. Lepton
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Figure 55: Measured cross sections for the main Higgs boson production modes. The best
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The grey boxes indicate the theoretical uncertainties in the SM predictions. The lower panel
shows the ratio of the fitted values to the SM predictions.
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or photon isolation (Zgen, Igfen) is defined at the generator level as the sum of the energy of all
stable hadrons produced in a cone of radius AR = 0.3 around the object. Additional details
on the definition of the fiducial cross section are presented in the original references. Overall,
there is remarkable agreement with the SM prediction. Figure 56 shows the evolution of the
fiducial cross section for H — ZZ — 4/ from 7 and 8 TeV [525] to 13 TeV [527].

Table 20: Measurements of the fiducial cross sections of Higgs boson production in various
decay modes published by CMS using pp data at a centre-of-mass energy of 13TeV and an
integrated luminosity of 138 fb~!. The reference Higgs boson mass is 125.38 GeV. Isolation (Z)
represents the sum of scalar pr of all stable particles within AR = 0.3 of the lepton or photon.
Additional details on the fiducial phase space variables and on the calculation of the reference
SM cross section are presented in the original references.

Decay mode Fiducial phase space 0qq(H) (fb) 0N (H) (fb)
H — 7 pit/m,., > 1/3, 73.4734 (stat) T35 (syst) 75.4 +4.1
[526] pi2/m.,., > 1/4,
Tgen < 10GeV, |17 < 2.5
H— ZZ — 4¢ pead > 20 GeV, 2.73 £0.22 (stat) +- 0.15 (syst)  2.86 4-0.15
[527] pirblead > 10 GeV,

pk > 5(7) GeV for u (e),
7’| < 2.4(2.5) for u (e),
Tten < 0.35pr,

40 < my; < 120GeV,
12 < my, < 120GeV,
AR(¢;, ¢;) > 0.02 for i # j,
Myyp— > 4GeV,

105 < my, < 160 GeV

H—rt7 uty, (eTy): ph > 20(25) GeV, 426 102 408 £ 27
[528] Prhis > 30GeV,
7| < 2.1, |5 <23,
m (£, pTiss) < 50 GeV,
T Ty p}f‘vis > 40GeV,
™| < 2.1, nj306ev = 1
ep: piad > 24 GeV,
piblead > 15GeV, || < 24,
mr(ep, piss) < 60 GeV

H— WW e, p'ead > 25GeV, 86.5+9.5 825+ 4.2
[529] pirblead > 13 GeV,

| < 2.5, my >12GeV,
pit > 30GeV, m? > 30GeV,
my > 60GeV

7.2 Differential cross sections for single Higgs boson production

The characterization of Higgs boson production cannot rely solely on measuring inclusive pro-
duction cross sections. For a more complete picture of the nature of the boson, a detailed map-
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ping is needed of its production as a function of different observables, such as its transverse

momentum, p?. The measurement of differential production cross sections with respect to key
kinematic variables, compared with the corresponding theoretical expectations, provides a use-
ful probe of the effects from higher-order corrections in perturbation theory or any deviation
from the SM expectations.

The CMS experiment has measured Higgs boson differential production cross sections in the
principal decay modes: H — <y [524, 526, 533], H — ZZ — 4( [525, 527, 534], H — T [528],
H — WW [529, 535], Lorentz-boosted H — bb [536, 537]. These measurements are comple-
mentary, as they probe different aspects of the Higgs boson production. As previously dis-
cussed, in the SM, the branching fraction for the Higgs boson decaying to a pair of photons or
to four leptons is remarkably small. Nevertheless, because of the high precision of the invariant
mass reconstruction and the fully reconstructed final state, the H — yy and H — ZZ — 4/
decay channels provide the most comprehensive measurements of the Higgs boson differen-
tial production cross sections. These analyses probe a large number of observables, related to
the measurement of the diphoton or four-lepton system, but also to the accompanying jets and

event topology. These include the kinematics of the Higgs boson (e.g. p? or |yy|) and the ac-
companying jets (e.g. m;; or the rapidity-weighted jet veto, 7™, which provides a complemen-
tary way to divide the phase space into exclusive jet bins, allowing for an accurate comparison
to theory predictions [538]). In the case of the four-lepton analysis, the measurements can also
be performed as a function of matrix element discriminators targeting anomalous couplings
(D9e%). Double-differential cross sections are also possible to measure for a selected number of

variables.

The larger branching fractions of the H — bb, H - WW, and H — 77 decay modes allow
studies in the areas of the phase space with smaller production cross sections. This is the case
for high jet multiplicities (1;) and large Lorentz boosts of the Higgs boson. There is considerable
interest in the measurement of Higgs bosons produced with very high pt in the more dominant
decay modes (particularly in H — bb) since they yield significantly better sensitivity than in
H — yyand H — ZZ — 4/ final states. At the highest pt, this measurement can resolve
loop-induced contributions to the ggH process from BSM particles, which would be described
by an effective ggH vertex at low pr. Advances in the identification of large-radius jets [417]
resulting from massive colour-singlet particles with high p; and decaying to bb pairs have
been fundamental for these measurements.

These measurements of the differential cross sections in the different decay modes can be com-
bined, as shown in Ref. [539], which incorporated the first measurements at 13 TeV, with 36 bt
of H = vy, H = ZZ and H — bb into a global measurement of the differential cross section

as a function of observables, such as p? or n;. TheH - ZZ,H — vy, H—> WW,and H — 17
measurements have been updated using the full data sample collected during the second data-
taking period of the LHC, 138 fb~! and are summarized in Table 21. Additional details of
the observables targeted in each case are presented in the original references [526-529, 537].
Overall, they are in agreement with the SM predictions within uncertainties.

Figures 57 and 58 show the fiducial differential distributions as functions of the pr of the Higgs
boson and the number of jets in the event for the various decay modes, respectively. Figure 59
is an example of a double-differential cross section; it shows the differential cross sections in
bins of the absolute rapidity of the Higgs boson |y | as functions of the Higgs boson transverse

momentum p? inthe H — ZZ — 4/ decay channel. The measurements are compared with
the predictions of the production and decay of the Higgs boson obtained using MC generators
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mentioned in the previous section.

An alternative approach to characterize the production of the Higgs boson is the “simplified
template cross sections”, STXS [540]. In this approach, fiducial cross sections are measured per
production mode and in specific regions of phase space (“bins”), defined in terms of specific

kinematic variables (p?, mg, p? . pY). Their purpose is to reduce the theoretical uncertainties,
that are directly folded into the measurements, as much as possible, while at the same time
allowing for the combination of the measurements of different decay channels. The STXS ap-
proach offers convenient benchmarks for comparing theoretical predictions with experimental
data to probe and understand the properties and interactions of the Higgs boson, while pro-
viding a well-defined platform to test for BSM deviations in kinematic distributions.

The CMS experiment has measured STXS in the principal Higgs boson decay modes at 13 TeV:
H— vy [495],H — Z2Z — 40 [492], H — 77 [499], H — WW [493], and H — bb [541].
Figure 60 shows the STXS measurement for the H — <y process as an illustration.

Table 21: Measurements of the various fiducial cross sections of the Higgs boson for different
decay modes published by CMS using proton-proton data at a centre-of-mass energy of 13 TeV.
Previous results at 7 and 8 TeV or with a partial data sample are not included in the table. The
list of Higgs boson kinematic variables targeted in each case are listed.

Decay mode Observables Data set
H — 77 [526] 1 |y | |cos(6%), ¢y, iy jer e, PR, 1377
pzfl{ il 18Py il 18Y 00l TS,
P, Vi | AP o, [AD, 1172 ],
Tijp = Mgy s M3 1A 12
H — ZZ — 40[527] P lyal ny, oy, pE, m, 138 b~
ADj;, |Anyl, myj, Py, pr, TR T,
My 1,Mz,,C08 0%,cos 6, cos b,, ®, Dy,

dec dec dec dec dec Z dec
DOf’DOh+’DCP’Dint’DAl’DAl

H — 77 [528] p?, n;, pjTl 137fb !

H — WW [529] pron; 137fb !
Boosted H — bb [537] pr (P > 450 GeV) 137 b1
Combination H — vy p? MiYH, p]‘T 36fb!

H — ZZ*,H — bb [539]

7.3 Pair production of Higgs bosons

The main mechanisms for Higgs boson pair production at the LHC were shown in Fig. 53.
This process has not been observed yet at the LHC because of its very small production cross
section. In the SM, Higgs boson pairs are produced at the LHC mainly via ggF, involving either
couplings to a loop of virtual fermions, or the Ay coupling itself. The LO ggF Feynman
diagrams shown in Fig. 53 have approximately the same amplitude but interfere destructively.

This yields a very small SM cross section: UgHgll;I = 31.05%2] fb at NNLO precision for a centre-

of-mass energy of /s = 13TeV and an my; of 125GeV [542-549]. The CMS experiment has
searched for this production in a variety of final states [512-518] and placed limits at 95% CL
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Figure 57: Differential fiducial cross sections for Higgs boson production in the H — 7y [526]
(upper) and H — bb [537] (lower) decay channels as functions of the transverse momentum of

the Higgs boson p? . Figure compiled from Refs. [526, 537].
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Figure 60: Observed results of the minimal merging scheme STXS fit for H — vy at 13 TeV. The
best fit cross sections are plotted together with the respective 68% confidence level intervals.
Figure taken from Ref. [495].
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on the production cross section and the self-coupling. The most sensitive final states are HH —
yybb, HH — ttbb, HH — bbbb, which benefit from the larger branching fraction of bb
decays and the identification of the diphoton or ditau pair.

Figure 61 shows the expected and observed limits on Higgs boson pair production, expressed
as ratios to the SM expectation, in searches using the different final states and their combination.
With the current data set, and combining data from all currently studied modes and channels,
the Higgs boson pair production cross section is less than 3.4 times the SM expectation at 95%
CL [512].

CMS 138 fb™ (13 TeV)
T T T T T T
K=K =1 —e— Observed ~ ----- Median expected
= =1
Kv=Kay B 68% expected
----- 95% expected
bb zZ
Expected: 40
Observed: 32
Multilepton
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Observed: 8.4
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Combined
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Figure 61: The expected and observed upper limits on the production of Higgs boson pairs. The
results are expressed as a ratio to the SM prediction for the cross section (c(pp — HH)/ogy).
A vertical red line at c(pp — HH)/ogy = 1 is drawn to guide the eye. The search modes
are ordered, from upper to lower, by their expected sensitivities from the least to the most
sensitive. The overall combination of all searches is shown by the lowest entry. Figure taken
from Ref. [512].

8 Prospects

The upgraded High-Luminosity LHC machine (HL-LHC), scheduled to start running in 2029,
is planned to deliver, over its operational life, an integrated luminosity of 3000 fb~* at a collision
energy of \/s = 14 TeV. This will make available a data sample some 30 times larger than that
used in this paper, making possible measurements offering interesting and exciting prospects.
In addition, the CMS detector, with its trigger and readout, will be substantially upgraded for
HL-LHC running, resulting in important improvements in performance. The larger data set
will improve the cross section measurement of processes, where they are currently statistically
limited. Constraints on PDFs at high values of x will be improved, providing reduced PDF
uncertainties in cross section measurements. The precision to which ag is known will also
be improved. The larger data set will allow more detailed studies of backgrounds and allow
tighter selection to reduce them, increasing the precision of the measurements of processes,
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where dealing with background contributes significantly to the uncertainty. It will enable a
search of BSM particles some 200 GeV beyond their current mass limits in numerous suggested
models. A discussion of the physics potential of CMS during the HL-LHC can be found in
Refs. [411, 550]. This section presents some of the highlights in terms of future measurements
of cross sections and SM parameters.

The remaining unobserved SM EW processes, such as production of ZZZ and VBS ZZ are ex-
pected to be observed during LHC Run 3, but during the HL-LHC era the cross section of some
VBS final states will be measured with a precision similar to that of current measurements of
diboson final states [550]. An interesting prospect for the full HL-LHC data set is the measure-
ment of longitudinal VBS, a key process in establishing the mathematical consistency of the
SM, because of the role played by the Higgs boson in regulating its calculated cross section
(resulting in its being finite). Projection of the sensitivity for the full HL-LHC data set using
simulation of the upgraded CMS Phase-2 detector indicates that a significance greater than 5¢
can be expected for longitudinal VBS of W=EW= [551]. The uncertainty in the SM parameters,
such as sin® 9{35{),[ will be reduced by a factor which may be as large as 4, due to improved sta-
tistical precision and improved constraints on PDFs. More details are reported in Section 6.1.1
of Ref. [550].

The HL-LHC will enable better measurement of rare top quark processes, such as tttt produc-
tion, as discussed in Section 4.1.3 of Ref. [550]. With increased integrated luminosity for heavy
ion collisions, the top quark is expected to produce significant results when used as a hard
probe for nuclear PDFs, and for exploring the quark-gluon plasma [411, 426, 429].

The HL-LHC will see the reduction of the uncertainties in the cross sections of all Higgs boson
production modes, ranging from < 2% for ggH to about 6% for WH when both ATLAS and
CMS results are combined [411]. A factor of 5 reduction is anticipated in the uncertainties in
the measurements published so far of Higgs boson couplings to other SM particles. This will
enable testing of BSM theories that predict only subtle differences in these couplings from the
SM expectation.

The observation of Higgs boson pair production will be a landmark result. This process pro-
vides information on the exact shape of the BEH potential and is crucial for the understanding
of the EW phase transition that occurred in the early universe, and its consequences [552].
Projection of the 36fb~! analyses to 3000 fb~' has shown that the combination of the CMS
and ATLAS data sets could provide a signal significance in excess of 4 standard deviations for
HH production [411]. The corresponding precision obtained on the Higgs boson self-coupling
would be approximately 50%. The projections do not include all improvements expected from
future detector upgrades. With the addition of future analysis developments, it can be hoped
that the observation and first measurement of this process will take place during the HL-LHC
era.
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9 Summary

A wide selection of cross section measurements has been presented from the CMS programme
of the quantum chromodynamics, electroweak, top quark, and Higgs physics. Summary plots
of electroweak (Fig. 62), electroweak with jets (Fig. 63), top quark (Fig. 64), and Higgs bo-
son (Fig. 65) production cross sections are shown below. No significant deviations from the
standard-model (SM) predictions have been found in total or fiducial cross section measure-
ments. Some deviations from the best predictions based on SM physics are found in differential
measurements of difficult-to-model areas of phase space in events where multiple SM particles
are produced including both light-flavour QCD jets and massive SM bosons or quarks. There
is an expectation that improvements in the modelling of QCD and electroweak physics would
result in better agreement in these measurements. These discrepancies present a challenge to
improve our ability to model SM physics, rather than a sign of beyond-the-SM physics. Of
particular note among the CMS cross section measurements are: the SM single W boson pro-
duction cross section determined with 1.9% uncertainty; the ratios of W to Z production cross
sections measured with 0.35% accuracy; the measurement of the WZ diboson cross section
with 3.4% precision; the measurement of the top quark pair production cross section with 3.2%
uncertainty; and the measurement of the inclusive Higgs boson production cross section with
an uncertainty of 5.7%. The achievement of sub-2% level accuracy in production cross section
measurements of massive SM particles is unprecedented at hadron colliders. The exploration
of the Higgs boson through cross section measurements with high precision is one of the CMS
physics programme’s most exciting aspects, and the study of the Higgs boson, currently unique
to the LHC, is one of our best prospects for finding signs of new physics. These CMS cross sec-
tion measurements are an enduring legacy in particle physics.
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A

Glossary of terms

Abbreviations:

4FS: four-flavour scheme (udcs)

5FS: five-flavour scheme (udcsb)

ag: the strong coupling

aNNLL: approximate next-to-next-to-leading logarithmic (approximation)
aQGC: anomalous quartic gauge boson couplings

aTGC: anomalous triple gauge boson coupling

BDT: boosted decision tree

BSM: beyond the standard model

CA: Cambridge-Aachen jet clustering algorithm

CERN: Conseil Européen pour la Recherche Nucléaire (English: European Council
for Nuclear Research)

CKM: Cabibbo-Kobayashi-Maskawa

CMS: Compact Muon Solenoid

CSV: Combined secondary vertex, a secondary vertex tagger used in CMS analyses
DEEPCSV: Deep learning based secondary vertex tagger used in CMS analyses
DIS: deep inelastic scattering

DPS: double-parton scattering

DY: Drell-Yan quark-antiquark annihilation forming a virtual photon or Z boson
which decays to a charged lepton-antilepton pair. Sometimes also used to refer to
the similar process forming a W boson decaying to a lepton-antineutrino pair

ECAL: electromagnetic calorimeter

EW: electroweak

FS: flavour schemes

FSR: final-state radiation

ggF: gluon-gluon fusion

ggH: gluon-gluon fusion Higgs production

ISR: initial-state radiation

IVF: inclusive vertex finder, secondary vertex tagger used in CMS analyses
IP: interaction point

IP5: interaction point 5, where the CMS experiment is located
HCAL: hadron calorimeter

HF: hadron forward calorimeter

HL LHC: High-Luminosity LHC upgrade

j: jet, also jj for two jets and jjj for three jets

JES: jet energy scale

JER: jet energy resolution

¢: charged lepton, typically an electron or a muon

LHC: Large Hadron Collider
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LO: leading order, as in calculation in QCD or EW theory
MC: Monte Carlo

ME: matrix element

ML: Machine learning

MPI: Multiparton interactions

MVA: Multivariate analysis

NLL: next-to-leading logarithmic all-order resummation calculations in QCD theory.
Typically used with an NLO calculation after matching the calculations to remove
any overlaps.

NLO: next-to-leading order, as in calculation in QCD or EW theory

NNLL: next-to-next-to-leading logarithmic all order resummation calculations in
QCD theory. In principle for use with an NNLO calculation but more often used
as an addition to a NLO+NLL calculation.

NNLO: next-to-next-to-leading order, as in calculation in QCD theory
nINNLO: NNLO QCD calculations matched to PS showers using the MiNNLO method
N3LO: next-to-next-to-next-to-leading order, as in calculation in QCD theory

NP: Nonperturbative, including underlying event, hadronization, and multiparton
interactions

nPDF: nuclear parton distribution functions
os or OS: opposite-sign

PB: Parton branching, as used in parton branching method transverse momentum
dependent parton distribution functions PB-TMD PDFs

PDF: parton (typically quark and gluon) distribution functions
PF: particle flow, CMS global event reconstruction

pp: proton-proton

pp: proton-antiproton

pQDC: perturbative quantum chromodynamics

PS: parton shower

PU: pileup

PUPPI: pileup-per-particle identification algorithm

PV: primary vertex

Q: momentum or energy transfer between partons in a collision
QGC: Quartic gauge boson coupling

QCD: quantum chromodynamics

QED: quantum electrodynamics

QGP: quark-gluon plasma

RGE: renormalization group equation

RP: Roman pot particle detectors

sd: standard deviations

SM: standard model

SPS: single-parton scattering
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SSV: Simple secondary vertex, a secondary vertex tagger used in CMS analyses
SV: Secondary vertex where a b or ¢ hadron decays

ss or SS: same-sign

SU: special unitary, as in the special unitary groups SU(2) and SU(3)

TGC: triple gauge boson coupling

TMD: transverse momentum dependent, as used in parton branching method trans-
verse momentum dependent parton distribution functions PB-TMD PDFs

TPS: triple-parton scattering

U; unitary, as in the unitary group U(1)
UE: underlying event

VBF: vector boson fusion

VBS: vector boson scattering

x: Bjorken x, momentum fraction of the proton carried by a parton

Units:

b: barn = 1 x 1072* cm?
mb: millibarn =1 x 10~3b
pb: microbarn = 1 x 107°b
nb: nanobarn = 1 x 10~?b
pb: picobarn = 1 x 10~2b
fb: femtobarn = 1 x 10~°b

eV: electronvolt = 1.60218 x 10~'7]; energy gained by an electron traversing a po-
tential difference of 1V

keV: kiloelectronvolt = 1 x 10% eV

MeV: megaelectronvolt = 1 x 10°eV

GeV: gigaelectronvolt = 1 x 10° eV

TeV: teraelectronvolt = 1 x 102 eV

Energy: typically given in GeV

Momentum: typically given in GeV, which should be understood as GeV/c
Mass: typically given in GeV, which should be understood as GeV /c?

Types of uncertainties in cross sections and other measurements:

(ag): uncertainties associated with the uncertainty in the strong coupling (ag) (in
this Report types of uncertainties are listed with parenthesis around the type)

(exp): uncertainties associated with experimental sources
(fit): fit uncertainty
(lumi): integrated luminosity uncertainty

(model) uncertainties associated with a model or comparisons between different
models

(num) numerical uncertainties

(param): parameter uncertainty
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(PDEF): parton distribution function uncertainties

(scale): factorization and renormalization scale uncertainties
(stat): statistical uncertainty

(syst): systematic uncertainty

(theo): theoretical uncertainty

(tot): total uncertainty

Monte Carlo simulation programmes and production cross section and related process calculators. More
details on the use of simulations for generating physics samples, on detector simulation, and the use of
PDFs are given in Section 3.

2yNNLO [283]: NNLO diphoton production calculation

BFG [216]: Bourhis, Fontannazand, Guillet fragmentation functions for quarks and
gluons into photons

BLACKHAT [56]: Monte Carlo programme for automatic calculation of one-loop am-
plitudes for QCD cross sections

CA3: CASCADE [85]: Monte Carlo event generator based on transverse momentum
dependent (TMD) parton distribution functions

CoMIX [93]: matrix element generator typically used with SHERPA

COMPHEP [57]: automatic calculation in high-energy physics from Lagrangians to
collision events or particle decays

CSSHOWER [94]: parton shower programme based on the Catani-Seymour dipole
factorization, typically used with SHERPA

DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [167-174] QCD evolution equa-
tions that describe the variation of PDFs with the energy scale

DYTURBO [38]: fast predictions for Drell-Yan processes at NNLO and N°*LO
FEWZ [39-41]: Fully Exclusive W and Z production generator
v +jet [42, 43]: NLL calculation of photon plus jet cross sections

GEANT4 [97]: toolkit for simulation of the passage of particles through matter used
for full detector simulations

GENEVA [244, 245]: Monte Carlo programme that combines NNLO matrix element
calculations with NNLL-accuracy resummation

HATHOR [370, 371]: HAdronic Top and Heavy quarks crOss section calculatoR
Monte Carlo programme

HELAC-ONIA [44, 45]: onia production Monte Carlo generator
HERWIG and HERWIG++ [86, 87]: general-purpose Monte Carlo generator

HJ-MINLO [58-60]: programme for precise predictions for Lorentz-boosted Higgs
boson production

JETPHOX [215]: NLO photon production programme
JHUGEN [61-65]: programme for simulating Higgs boson decays with full angular
correlations

MADGRAPH 5 or MG5 and MADGRAPH5_aMC@NLO or MG5_aMC [70]: automated
computation of tree-level and NLO differential cross sections, matched to parton
shower simulations
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MATRIX [46]: Munich Automates qT-subtraction and Resummation to Integrate X-
sections, fully automated NNLO QCD and NLO EW calculator

MCFM [66]: parton-level Monte Carlo programme at NLO, NNLO, and N°LO in
QCD

MINNLO [309]: nNNLO Monte Carlo simulation with NNLO QCD calculations
matched to parton showers using the MiNNLO method

NLOJET++ [48, 49] and FASTNLO [50, 51]: 3-jet NLO QCD calculator
NLLJET [47]: next-to-leading logarithmic cross section calculator for jet production
NNLOJET [52-54]: NNLO QCD calculator for single jet inclusive production

NNLOPS [71-73]: NNLO matched to parton shower simulation of Higgs boson pro-
duction

OPENLOOPS [74-77]: matrix element calculator, typically used with SHERPA for
NLO+EW accuracy simulations

PHOJET [88]: Monte Carlo programme for generating processes with large rapidity
8aps

PHOTOS [78]: Monte Carlo programme for precision simulation of QED radiation in
decays. Used for description of final-state radiation

POWHEG and POWHEG BPX [79-81]: matching NLO QCD computations with parton
shower simulations

PYTHIA 6.4 [89], 8.1 [90], 8.2 [91], Py: general-purpose LO Monte Carlo generator
with simulation of parton showers, underlying event, and hadronization [91]

SHERPA versions 1 and 2 [92]: general-purpose Monte Carlo generator

PB-TMD PDFs: transverse momentum dependent parton distribution functions [120]
based on the parton branching method [121, 122]

VBFNLO VBFNLO 2.7 [82-84]: NLO vector boson fusion and vector boson scattering
cross section Monte Carlo calculator
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