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We present a deep learning-based method for estimating the neutrino energy of charged-current
neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino
energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection cham-
ber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which
largely rely on reconstructing and summing visible energies, often experience sizable biases and res-
olution smearing because of the complex nature of neutrino interactions and the detector response.
The estimation of neutrino energy can be improved after considering the kinematics information of
reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the
deep learning-based approach shows improved resolution and reduced bias for the muon neutrino
Monte Carlo simulation sample compared to the traditional approach. In order to address the com-
mon concern about the effectiveness of this method on experimental data, the RNN-based energy
estimator is further examined and validated with dedicated data-simulation consistency tests using
MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after account-
ing for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This
method has good potential to improve the performance of other physics analyses.

I. INTRODUCTION

Neutrino oscillations, which refer to transitions be-
tween different neutrino flavor states along their propa-
gation length, are of strong scientific interest as they un-
equivocally prove the existence of neutrino mass, which
was not predicted by the original Standard Model (SM).
The precise nature of these oscillations is not yet known
and is a focus of many experiments [1]. Some key unan-
swered questions include the order of neutrino masses,
the octant of the mixing angle θ23, and the presence of
leptonic CP violations. The latter question is especially
relevant to early universe phenomena such as leptoge-
nesis which has been proposed to explain the observed
baryon asymmetry of our universe [2]. In addition, neu-
trino oscillations serve as a probe for physics beyond the
SM such as the hypothetical sterile neutrino states within
well-motivated extensions of the SM [3].

The estimation of neutrino energy Eν is of crucial im-
portance to experiments studying the phenomenon of
neutrino oscillation, since the transition probabilities de-
pend on neutrino energy, in particular on L/Eν , where L
is the distance the neutrino has traveled. These experi-
ments typically involve the scattering of neutrinos with a
broad distribution of energy (i.e., they are not monochro-
matic) on a fixed nuclear target, which also serves as a

∗ microboone info@fnal.gov

detector. Examples in accelerator experiments can be
found in Refs. [4–7] among others. As a result, the neu-
trino energy is not known a priori on a per-interaction
basis and must be reconstructed from the interaction it-
self.
This work focuses on the energy estimation of charged-

current (CC) neutrino events since these events are of
most interest for oscillation analyses. The ν-Ar CC
neutrino interactions are associated with the weak CC
neutrino interaction vertex νl → l− + W+ (and ν̄l →
l+ + W−) and are characterized by the presence of the
primary outgoing lepton l±. The energy of the incoming
neutrino is transferred to the primary lepton l± and the
argon nucleus (through W± bosons). The latter part of
the energy can, in turn, create a number of secondary
hadronic particles. By measuring the energy of the pri-
mary lepton and the energies of the resulting hadronic
particles one can make inferences about the energy of
the incoming neutrino.
For simple CC interactions where the scattering is

elastic and on quasi-free nucleons within the nucleus
(“charged-current quasi-elastic” or CCQE), the neutrino
energy can be reconstructed from the kinematics of the
outgoing charged lepton that is associated with the neu-
trino, i.e. µ (e) for νµ (νe) [8]. For the CCQE interaction
νµ + n → µ− + p, assuming 2-body scattering under the
energy and momentum conservation laws, we have

EQE
ν =

m2
p − (mn − Eb)

2 −m2
µ + 2(mp − Eb)Eµ

2(mn − Eb − Eµ + pµ cos θµ)
, (1)
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where mp, mn, and mµ refer to the mass of the pro-
ton, neutron, and outgoing muon, respectively. Eµ is
the muon energy. pµ and θµ are the muon momentum
and angle with respect to the incoming neutrino momen-
tum direction and Eb is the binding energy of the proton
within the nucleus, typically ∼ O(10) MeV for various
nuclear targets [9].

However, a significant fraction of neutrino interactions
are not quasi-elastic. The nucleons within the nucleus are
generally not quasi-free, and the interaction can, there-
fore, exhibit a strong dependence on the initial nuclear
state [10]. In addition, the incoming neutrino can excite
baryon resonances leading to a variety of hadronic final
states, typically pions and nucleons [11]. Moreover, the
mechanism of intra-nuclear transport of these final-state
hadrons is a research topic itself [12] and introduces an
additional layer of uncertainty to the presence as well as
the kinematics of final-state hadronic particles. These
complications subsequently introduce limitations to the
use of Eq. (1).

A separate strategy to reconstruct Eν based on
calorimetry is commonly adopted for tracking calorime-
ters, such as that used in the MicroBooNE experi-
ment [13]. The MicroBooNE detector is a liquid argon
time projection chamber (LArTPC), which provides mm-
scale position resolution, ns-scale timing resolution [14],
and sub-MeV energy threshold to resolve neutrino in-
teractions in fine detail. With the reconstructed infor-
mation of particles (e.g. type and 4-momentum) in the
final state including both the primary and secondary in-
teractions, the energy of the neutrino is estimated by
summing up the estimated leptonic, hadronic, and nu-
cleon binding energies [15] based on energy conservation
only. This strategy does not limit itself to the CCQE
interactions and is more general. However, simple sum-
mation methods cannot account for energy lost to unde-
tected particles (e.g., particles below threshold, outgoing
neutrinos, or neutrons), which leads to missing energy.
Additionally, binding energy corrections can only be per-
formed on average. Finally, the kinematics of individual
particles may be mis-estimated for a variety of reasons,
including biases in the reconstruction algorithms, exiting
particles, and re-interactions of charged hadrons. To bet-
ter estimate neutrino energies, an algorithm needs to be
capable of inferring missing energy from the kinematics
and topology of the reconstructed particles of individual
events.

In this paper, we present a deep learning (DL) based
approach to estimate the neutrino energy using both the
energy and momentum information for general neutrino-
nuclei interactions at the GeV energy scale. Deep learn-
ing refers to a class of modern machine learning (ML)
techniques that perform deep inference by automatically
deriving important representations of the input feature
set in a high dimensional space for various tasks such
as classification and regression [16]. This is in contrast
to more traditional ML-based approaches that rely on
significant human inputs for the feature set. Deep learn-

ing techniques have been shown to improve performance
on a wide array of targeted metrics within high-energy
physics [17], including neutrino physics which is often an
early adopter on this front [18]. Within neutrino experi-
ments, they have contributed to detector simulation and
signal processing [19], particle identification [20, 21], esti-
mation of the interaction vertex [22], and reconstruction
of energies [23] and directions [24], among other tasks.
The DL approach is especially well suited to energy es-

timation because of the many multi-dimensional inputs,
which include the various outgoing particles in the in-
teraction and their particle-flow information, as well as
the ability to model non-linear relationships among those
inputs in the high-dimensional space. Through training
on the simulated event samples, the DL-based approach
learns to estimate the neutrino energy considering corre-
lations of the kinematics of the final-state particles em-
bedded in event generators, which are constrained by
both the energy and momentum conservation laws. In
this work, we employ recurrent neural networks (RNNs),
which have found use in various contexts such as Natu-
ral Language Processing (NLP) [25], and are especially
suitable for a varying sequence of inputs like the particle
flow of a neutrino interaction.
The DL-based neutrino energy estimator is aiming at

a better neutrino energy estimation which can benefit
future physics analyses. One example is neutrino oscilla-
tion measurement [6]. The sensitivity of the neutrino os-
cillation analysis depends on the quality of reconstructed
neutrino energy spectra and on the ability to resolve var-
ious features of these spectra. To evaluate the perfor-
mance of the DL-based neutrino energy estimator, we
consider two key metrics related to the quality of the re-
constructed energy spectra. These are the bias and res-
olution, which refer to the mean and root-mean-square

(RMS) of the ratio (Ereco−Etrue)
Etrue respectively. A large

energy resolution (RMS) leads to a smearing of features
in the oscillated neutrino energy spectrum, reducing sen-
sitivity in measuring neutrino oscillations. Similarly, a
large bias in the energy estimation can skew the oscilla-
tion measurement, resulting in a faulty estimate of the
oscillation parameters if the bias is not modeled correctly
by the simulation. This can be checked by the model val-
idation procedure shown in Sec. VB. Even when the bias
in the energy estimation is properly modeled, it can again
lead to a reduction of features in the oscillated neutrino
energy spectrum, thus decreasing sensitivity.
While the DL-based energy estimator can be shown to

outperform traditional energy estimators evaluated with
simulation samples, there can be a significant model de-
pendence in mapping from true to reconstructed neutrino
energies, given the simulation’s task of modeling the com-
plex nuclear physics (i.e. kinematics correlations among
final-state particles). While such model dependence may
not be apparent in evaluations using simulations, it be-
comes crucial when applying the DL-based energy esti-
mator to experimental data. In order to mitigate this
concern, we perform dedicated model validations with
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the experimental data from the MicroBooNE experiment
to demonstrate that the bias and resolution in the DL-
based energy estimator are compatible within the quoted
uncertainties of the overall model. These validations rely
on the goodness-of-fit metric [15], which is further en-
hanced by the conditional constraint methodology [26].
These dedicated model validations build confidence not
only in our overall simulation but also in the DL model,
which often suffers from a lack of interpretability because
of its black-box nature and sometimes non-intuitive as-
sociations among its inputs.

This paper is organized as follows. In Sec. II, we re-
view various techniques used for neutrino energy estima-
tion and outline the advantages of using the DL-based
approach. In Sec. III, we introduce the RNN-based DL
energy estimator (DL-EE), the preparation of input par-
ticle flow information, and the DL model architecture.
In Sec. IV, we outline the training of the DL-EE on Mi-
croBooNE simulation, including methods to control the
resulting output bias of the energy estimator. In Sec. V,
we evaluate the performance of the DL-EE using simula-
tion and show that this technique is able to improve both
the resolution and bias of the neutrino energy estimation.
In addition, we perform validation of the DL-based en-
ergy estimator using experimental data. Furthermore, we
study the impact of incorporating the DL estimator on
the sensitivity of searching for a sterile neutrino in the νµ
disappearance mode using the MicroBooNE detector [6]
before concluding in Sec. VI.

II. REVIEW OF VARIOUS NEUTRINO
ENERGY ESTIMATORS

A. The MicroBooNE Experiment

The MicroBooNE detector [13] is a LArTPC consisting
of 85 tonnes of liquid argon in the active volume, which is
a rectangular volume measuring 10.36 m in length, 2.32
m in height, and 2.56 m in width. The TPC is placed
inside a larger cylindrical cryostat which has a total ca-
pacity of 170 tonnes of liquid argon. The MicroBooNE
detector sees the on-axis neutrinos produced from the
Booster Neutrino Beam (BNB) at Fermilab National Ac-
celerator Laboratory (FNAL) [27]. The distance between
the MicroBooNE detector and the BNB target is about
468 m. The neutrinos from the BNB are predominantly
(∼ 93.6%) νµ with a mean energy of 0.8 GeV.
Ionization electrons are produced by the charged parti-

cles from the neutrino interaction traveling through LAr.
Under an external electric field of 273 V/cm, these ion-
ization electrons drift horizontally at a constant speed of
around 1.1 mm/µs towards the anode plane. The anode
plane consists of 3 planes of wires. The passage of ioniza-

tion electrons induces bipolar readout signals on two of
these planes (“induction planes”) oriented at ±60◦ with
respect to the vertical. The ionized electrons are then
collected and induce unipolar signals at the third plane
(“collection plane”) oriented vertically. The wire pitch
is 3 mm. In addition, a set of 32 photomultiplier tubes
(PMTs) are placed behind the wire planes to detect scin-
tillation light from the interaction. The light signal pro-
vides a prompt timing signal for when the interaction
occurred.
Three 2D views of the detector activity can be ob-

tained from the projective LArTPC wire channel read-
outs and drift time. Using tomographic reconstruction
algorithms [28], the three 2D views can be combined to
create a complete 3D image of the detector activity.

B. Energy Estimators in MicroBooNE

In this section, we describe the traditional energy esti-
mation algorithm in MicroBooNE, which serves as a base-
line for the performance comparisons. In searching for a
νe low-energy excess [29], MicroBooNE performed three
different analyses, each of which relied on completely dif-
ferent reconstruction paradigms, namely, Wire-Cell [15],
Pandora [30], and deep learning [31]. Nevertheless, these
analyses are based on the same calorimetry neutrino en-
ergy estimation strategy [21, 28, 32]. In the following, we
briefly review the neutrino energy reconstruction within
the Wire-Cell reconstruction paradigm, upon which the
work of this paper is based.
Wire-Cell is a tomography-inspired algorithm that pro-

vides a 3D representation of the interaction based on
the three 2D projection measurements from the anode
planes [28, 33]. The particles in the final state and their
4-momenta, including those from secondary interactions,
are then reconstructed by various downstream algorithms
that perform TPC-charge/PMT-light matching [33], tra-
jectory fitting and particle identification, and neutrino
vertex identification, so that the best description of the
interaction (“particle-flow”) is produced [22].
The traditional Wire-Cell energy estimator used in Mi-

croBooNE is based on the reconstructed particle flow
tree information and employs a straightforward logic [22].
One of three methods is used to reconstruct the deposited
energy for each particle: i) range based method for
track-like particles stopping inside the detector with suf-
ficient length (> 4cm); ii) summation of dE/dx for other
track-like particles; iii) scaling of the summed charge for
shower-like particles. The primary final-state charged
lepton in CC neutrino interactions is selected based on
reconstructed energy and particle identification informa-
tion. The visible neutrino energy is reconstructed by
adding up the single-particle kinematic energies, parti-
cle masses, and an averaged nucleon binding energy, 8.6
MeV, for each identified proton. More details can be
found in Ref. [22]. As discussed in Sec. I, this parti-
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cle flow summation method is general and robust against
neutrino-argon interaction models, yet it suffers from bias
induced by missing energy. This motivates our search for
alternative algorithms.

C. Energy Estimation with Convolutional Neural
Networks

The NOvA experiment introduced a DL energy esti-
mator based on a convolutional neural network (CNN)
architecture [23]. This energy estimation method uti-
lizes images of neutrino events and tries to predict the
energy of the neutrino from the features present in the
image. The CNN-based approach was shown to give su-
perior energy reconstruction compared to the traditional
energy estimation methods. However, the use of CNN-
based networks is computationally expensive because of
large computational costs associated with the convolu-
tional operations. In addition, the CNN-based neutrino
energy estimator demands an accurate detector simula-
tion since even tiny pixel-size systematic inaccuracies of
the simulation can be captured by the convolutional net-
work, leading to the domain shift problem [34]. Recently,
a CNN-based approach was applied to LArTPC detec-
tors, for the task of shower energy estimation [35]. As a
CNN algorithm, it shares similar trade-offs as the NOvA
method.

D. Previous Works on Energy Estimation with
Recurrent Neural Networks

Large computational costs of DL algorithms are asso-
ciated in part with a large dimensionality (e.g., a large
number of pixels) of inputs. To reduce such computa-
tional costs, one approach is to use alternative inputs
that have fewer dimensions. For instance, high-energy
physics (HEP) experiments usually run multiple sim-
ple and traditional reconstruction algorithms over the
events (e.g., event type prediction, particle localization,
etc.). The outputs of these algorithms are relatively low-
dimensional and less affected by the potential systematic
differences between the simulation and the real experi-
mental data. Therefore, one can build a robust and less
computationally expensive DL energy estimator on top
of these outputs.

The application of recurrent neural networks (RNN)
to the task of neutrino energy estimation was pioneered
by the NOvA experiment [36]. The RNN-based energy
estimator consumes information from the reconstructed
particles in each neutrino event and predicts the neu-
trino energy. Similar to the CNN-based energy estima-
tion method, the RNN-based method is able to outper-
form the traditional energy reconstruction methods [37],
but without incurring large computational costs.

In this work, we utilize the particle flow output
from the state-of-the-art Wire-Cell event reconstruction

paradigm [22] to estimate neutrino energy with the
RNN. The use of the reconstructed particle flow infor-
mation allows us to suppress the potential difference be-
tween the detector response simulation and experimental
data [38, 39]

III. METHOD DESCRIPTION

A. Energy Estimation with Recurrent Neural
Networks

In this section, we describe how the recurrent neural
network energy estimator operates. The existing Wire-
Cell algorithms reconstruct individual particles in the
LArTPC volume [22]. These reconstructed particles are
hierarchically grouped into a structure called a particle
flow (PF). For each particle in the PF, we know its start-
ing and ending coordinates, the best estimate of the par-
ticle type, and rough estimates of the particle’s energy
and momentum.
For each neutrino interaction event, the RNN en-

ergy estimator aggregates information from all particles
present in the PF structure in order to make inferences
about the neutrino energy and the energy of the primary
outgoing lepton. The use of the PF information creates
unique challenges and opportunities. First, the number
of particles in each event varies, depending on the type of
the neutrino interaction. Some neutrino interactions can
produce just a few particles, while others create many of
them. Therefore, in order to operate on the PF infor-
mation, the DL model needs to be able to handle inputs
of varying lengths. Second, each particle in the PF in-
formation has the same semantic meaning and the same
format of input variables. This structure of inputs can
be exploited to create a sample-efficient deep learning al-
gorithm. In particular, the structure of inputs can be
encoded as an inductive bias of the DL algorithm [40].
Adding such an inductive bias can lead to a model with
a smaller number of parameters, faster training times,
and better performance with a limited amount of data.
An RNN is a natural deep learning model candidate to

handle the PF information. An RNN model operates on
a sequence of tokens of arbitrary lengths. It treats each
token in the same way, thus ensuring the proper inductive
bias. The RNN reads tokens sequentially and maintains
a fixed-size memory state of the past tokens. Once all of
the tokens have been consumed, one can use the resulting
memory state to make inferences about the data. For the
energy estimation problem, we consider each particle of
the PF to be a separate token, use an RNN to aggregate
all particles, and then use another DL model to predict
the energy of the neutrino from the RNN’s memory. The
detailed architecture of this energy estimator is described
in Sec. III B.
There is another, more recent, candidate DL model

that can be used to work with the PF data – the trans-
former model [41]. In many domains, transformer-based
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models achieve state-of-the-art performance [42]. How-
ever, in order to achieve outstanding performance they
require large amounts of training data, which is not avail-
able at MicroBooNE. Therefore, we have chosen to use
the RNN-based model in this work.

B. Model Architecture

The RNN energy estimator is designed to predict both
the energy of the neutrino and the energy of the pri-
mary final-state lepton in a neutrino interaction event.
To make such predictions, it relies on reconstructed par-
ticle information available for each neutrino event (PF
information). As inputs, the RNN estimator extracts
the following quantities from each particle: i) parti-
cle track starting and ending coordinates; ii) estimated
particle momentum and energy; iii) estimated particle
type. These quantities are reconstructed by the up-
stream Wire-Cell 3D pattern recognition algorithms [22].
Besides the particle-level information, the RNN energy
estimator incorporates the information about the entire
event such as: i) a flag indicating whether the event is
fully (FC) or partially contained (PC) in the detector [15]
volume; ii) a prediction on whether the event is a νµ CC
or a νe CC event. The FC events are defined as those
that have the reconstructed TPC activity fully contained
within the fiducial volume (3 cm inside the effective TPC
boundary [43]).

The architecture of the RNN is shown in Fig. 1. We
chose a long short-term memory (LSTM) [44] neural net-
work cell as a recurrent neural network model since it is
rather stable to train. Before feeding the information
from each particle into the LSTM cell, we perform a fea-
ture extraction step with the help of a simple fully con-
nected network [45] (depicted as the Preproc branch in
Fig. 1). After the LSTM cell has finished processing par-
ticles in an event, the memory state of the LSTM (vector
of 32 features) is concatenated with the event level infor-
mation and fed through another fully connected network
(depicted as Predictor), which is responsible for the ac-
tual prediction of the neutrino energy and the energy of
the primary lepton in the event.

IV. DL MODEL TRAINING

The RNN energy estimator is trained on a simulated
dataset made of true-νe and true-νµ CC events. Both FC
and PC events are included in the training sample. In
this section, we show the performance on νµCC events,
where a large amount of data events are available to per-
form dedicated model validations, as described in Sec. V.

A. Training Dataset

In the MicroBooNE experiment, the simulated BNB
neutrino flux [27] is provided to the event generator Ge-
nie [46, 47] to generate neutrino-argon interactions. Ge-
nie v3.0.6, G18 10a 02 11a, was used, which includes im-
provements on the use of the Valencia model [48–50]
for the local Fermi gas nucleon momentum distributions,
improvements in the CCQE and CC two-particles-two-
holes (CC2p2h) interactions, and improvements in the
treatments of final state interaction (FSI) and pion pro-
duction with respect to earlier versions. In addition to
the default configuration, the parameters governing the
CCQE and CC2p2h models are adjusted according to the
T2K CC0π cross-section results [51] to form the “Mi-
croBooNE Tune” model [52]. The resulting final-state
particles of each Monte Carlo (MC) simulated event are
processed using the LArSoft [53] software framework,
which is a toolkit to perform simulation, reconstruction,
and analysis of LArTPC data. The final state particles
are propagated through the detector using the Geant4
toolkit [54] v4 10 3 03c. The resulting energy deposi-
tions are further processed by dedicated detector simu-
lation programs taking into account detector effects to
simulate the ionization charge and scintillation light sig-
nals after considering the space charge effect [55, 56].
The position and number of ionization electrons modi-

fied by space charge and recombination effects are ported
to the TPC detector simulation [38, 39], which takes into
account the charge transportation and diffusion [57]. The
induced currents on the wires are simulated by convolv-
ing the ionization charge distribution at the wire plane
with the position-dependent (at 1/10th of the wire pitch
resolution) field response function as well as the electron-
ics response function. The optical detector simulation
models the light emitted by charged particles interacting
with the detector and produces signals in photomultiplier
tubes.
The simulated neutrino interactions are further merged

with a dedicated data stream which is collected in a pe-
riod when there is no neutrino beam, ensuring faithful
modeling of cosmic-ray backgrounds and detector noise.
At the same time, this choice limits the number of avail-
able simulation events due to a finite number of cosmic-
only data events. We split the simulated neutrino dataset
into training/test partitions following a previously used
MicroBooNE procedure [58]. Table I summarizes the fi-
nal sample sizes used in the training and testing.

B. Initial Training

Initially, we trained the RNN energy estimator (Fig. 1)
on a dataset described in Table I including all 4 samples
({νµ, νe} × {FC, PC}). The model was trained to predict
both the energy of the neutrino and the energy of the
primary lepton in the event. As a loss function for each
target (neutrino and primary lepton), we used a mean
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FIG. 1: The schematic representation of the energy estimator architecture. The yellow circle labeled Event denotes
the event-level inputs. The circles labeled P1 . . .PN represent input variables coming from the reconstructed par-
ticles (1 . . . N) in the event. RNN is a recurrent neural network cell. Preproc is a particle-wise feed-forward neural
network used to perform the feature extraction from the particle-level variables. Predictor is another feed-forward
neural network that predicts neutrino and lepton energies.

TABLE I: Number of neutrino CC events in the train-
ing and test datasets obtained from the MicroBooNE
simulation.

Train Test
νµ FC 80,256 134,707
νµ PC 156,628 303,422
νe FC 93,289 112,822
νe PC 66,792 68,061

absolute percentage error:

Lν,lep = 100 ·
∣∣∣∣Ereco − Etrue

Etrue

∣∣∣∣ (2)

where Etrue is the true energy of the particle, and Ereco

is its predicted energy.
The total loss function is a sum of losses for each tar-

get, i.e. L = Lν + Llep. We have found this loss func-
tion to perform much better than the traditional regres-
sion losses (mean squared error and mean absolute er-
ror [45]). The training was performed for 200 epochs
(complete passes through the training dataset) with a
ReduceLROnPlateau learning rate scheduler [59] allowing
the energy estimator to converge. The complete training
details can be found in Appendix A.

The sequential nature of the RNN network may make
the energy estimator dependent on the particular order-
ing of the particles used in the training. To ensure that
the energy estimator performance does not depend on
the particle ordering, we have implemented particle or-
der randomization as a data augmentation strategy.

To assess the performance of the energy estimator, one
can consider its energy resolution defined as a ratio of

(Ereco − Etrue)/Etrue. Figure 2 shows distributions of
the νµ CC energy resolutions of the FC events. The dis-
tribution of the RNN energy resolution (shown in red)
has a smaller width compared to the traditional energy
estimator (shown in black). This indicates that the RNN
energy estimator is able to better predict the true neu-
trino energy Etrue.
For a more quantitative assessment of the performance,

one can consider two characteristics of the energy reso-
lution – its mean and RMS values

Mean := E
[
Ereco − Etrue

Etrue

]
(3)

RMS :=

√√√√E

[(
Ereco − Etrue

Etrue

)2
]

(4)

where E is an expectation over the test sample. Gener-
ally, smaller RMS values correspond to better energy es-
timators. The mean value indicates the overall bias of the
energy estimator. According to Fig. 2, the RNN energy
estimator (RMS ∼ 0.19) achieves about 26% improve-
ment compared to the traditional MicroBooNE energy
reconstruction method (RMS ∼ 0.26) in the test sample.
Another metric that is commonly considered in HEP

experiments is the bias of the energy estimator. To de-
termine a bias of the energy estimator, a binned statistics
plot is made, where the x-axis represents the true energy
and the y-axis shows a mean of the energy resolution
histogram constructed for each bin. Figure 3 shows the
bias plot for the RNN energy estimator (red) and the
traditional MicroBooNE energy estimator (black). Any
deviation from zero represents the bias of the energy es-
timator in a particular true energy bin.
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FIG. 2: νµ energy resolution histograms for the tradi-
tional MicroBooNE energy estimator (black) and the
initial training of the RNN energy estimator (red) in
the Fully Contained (FC) CC sample.
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FIG. 3: νµ energy bias for the traditional MicroBooNE
energy estimator (black) and the initial training of the
RNN energy estimator (red) in the Fully Contained
(FC) CC sample.

According to Fig. 3, the RNN energy estimator has
a smaller bias compared to the traditional MicroBooNE
energy estimator for energies above ∼ 0.6GeV. However,
at lower energies the RNN energy estimator quickly ac-
quires a rather significant bias. Such a large bias is not
ideal, since it may lead to a reduction in physics sensi-
tivities.

C. Reducing Bias

In this section, we develop a mitigation strategy for
the large bias of the RNN energy estimator. Before de-
veloping such a strategy, it is instructive to consider the
reasons for the appearance of the bias. We believe there
are two main sources of bias, one is related to physics,
and the other is related to ML.
From the physics point of view, as the energy of the

neutrino gets higher, a larger fraction of this energy be-
comes invisible in neutrino-argon interactions. This hap-
pens due to the increased production of various mesons at
higher energies. Meson decays have a common byprod-
uct – neutrinos, which easily escape the detector carry-
ing some fraction of the energy of the original interaction
away. Therefore, one may expect to see an increasingly
negative (missing energy) bias at high energies for all es-
timators. Figure 3 shows that both energy estimators
acquire large negative biases at high energies.
From the ML side, the peaked nature of the energy

distribution in the training sample (Fig. 4) can also con-
tribute to the bias. Since the target energy distribution
has high population around the 1GeV peak, energy es-
timators will prioritize correctly reconstructing the en-
ergy of neutrinos around the peak. Moreover, on average,
an energy estimator can increase the overall accuracy of
predicted energies by slightly pushing all the energies to-
wards the peak. That is, the energy of neutrinos to the
left of the peak will be pushed up (positive bias), and the
energy of neutrinos to the right of the peak will be pushed
down (negative bias). This prediction is consistent with
the observed behavior of the bias in Fig. 3.
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FIG. 4: True neutrino energy distribution in the train-
ing sample.

The proper way to improve the bias, stemming from
the peaked nature of the distribution, is to re-simulate
the training sample with a flat true neutrino energy dis-
tribution. Since we are limited by the total amount of
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simulation events available, we decided instead to use the
standard ML approaches to deal with imbalanced data.
In particular, we applied event reweighting to flatten the
true neutrino energy distribution. The new event weights
were constructed using the following procedure.

A histogram of the true neutrino energy Ni was made
in a range of 0−5GeV with 50 bins. A weight histogram
Wi was constructed, so that each bin’s height is propor-
tional to the the inverse of the true neutrino energy bin
height, i.e. Wi ∝ 1/Ni. In training the RNN energy es-
timator, the weight for each event was determined from
the corresponding bin of the weight histogram Wi. To
preserve the scale of the loss function, the weights were
normalized to add up to unity.

The weight construction procedure described above
guarantees that the true neutrino energy distribution is
approximately flat. However, the tails of the distribu-
tion in Fig. 4 will have to acquire quite large weights,
since there are too few events in those tails. Giving large
weights to a few events will result in severe overfitting
in the model training. In order to reduce the magnitude
of overfitting, we clipped the maximum weight value, en-
suring the ratio of the maximum weight to the minimum
weight does not exceed 50. Figure 5 shows the true neu-
trino energy spectrum of the training sample after the
reweighting.

Figure 6 shows the νµ neutrino energy bias after re-
training with the flat weights. It demonstrates that the
use of the reweighted training sample improves the bias
of the energy estimator.
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FIG. 5: Reweighted true neutrino energy distribution in
the training sample.
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FIG. 6: νµ energy resolution bias for the tradi-
tional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red)
in the Fully Contained (FC) CC sample.

V. DL MODEL EVALUATION

A. Performance Metrics in Testing Simulation
Sample

In the previous section, we showed the basic νµ energy
reconstruction performance plots for the RNN energy es-
timator in the test sample. We now perform a more de-
tailed evaluation of the RNN energy estimator. Figure 7
demonstrates the νµ neutrino energy resolution after re-
training with the flat weights. The use of the reweighted
training sample produces a small degradation of the RNN
energy resolution (RMS increases from ∼ 19% to ∼ 20%).
We believe that the reduction of the bias of the en-

ergy estimator, brought by the reweighting, outweighs
the associated small degradation of the RMS value. This
is partly because the reduction of the bias makes the en-
ergy estimator more agnostic to the choice of the neutrino
energy spectrum. For instance, the original behavior of
the bias stems from the BNB energy spectrum having a
peak around 0.8GeV. However, MicroBooNE can also
study the NuMI neutrino beam [60] with higher average
energies. Having an unbiased energy estimator would al-
low us to expect better transferability of its performance
between different neutrino beams.
Since the reweighted training results in a better energy

estimator overall, we will use the reweighted version in
the subsequent analysis. Likewise, each time we refer
to the RNN energy estimator below, we will imply its
reweighted version.
Apart from predicting the νµ energy, the RNN en-

ergy estimator is also capable of predicting the energy
of the primary lepton. Figure 8 shows energy resolution
histograms for the energy reconstruction of the primary
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FIG. 7: νµ energy resolution histograms for the tradi-
tional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red)
on the Fully Contained (FC) CC sample. The “shoul-
der” at the lower reconstructed energy comes from a
combined effect of missing hadronic energy and the bi-
ased recombination model.

outgoing µ in the νµ CC events. The traditional energy
estimator exhibits two peaks in the shape of the muon
energy resolution. We discuss the nature of the peaks
later in this section. The RNN energy estimator has a
well-behaved energy resolution histogram with a single
peak. Overall, the RNN energy estimator displays better
energy resolution in terms of RMS (15% vs. 22%).

The unusual shape of the energy resolution of the tra-
ditional estimator is traced back to reconstruction er-
rors. The central (main) peak has a small bias and cor-
responds to correctly identified muons. The energies of
these muons are mostly reconstructed from range infor-
mation. The resolution of these events is, therefore, good.
The second peak with a negative bias is traced back to
muons for which the energy was reconstructed by inte-
grating the energy loss per unit length dE/dx. Biases
in the detector modeling, including the inaccuracies in
charge recombination, contribute to this offset. This is
evident as a second peak in Fig. 8 and an enhanced left
“shoulder” in Fig. 7. The same recombination model was
used for reconstructing the simulation, and dedicated val-
idation tests have demonstrated its consistency with the
data [15, 26].

As shown in Fig. 8, the peak of the RNN’s muon en-
ergy resolution is shorter and wider than the first (main)
peak of the traditional energy estimator. The degrada-
tion of the energy resolution in the main peak is likely
a result of the inability of the RNN energy estimator to
differentiate between various types of the imperfect event
reconstruction. Because the RNN energy estimator uses
reconstructed particle flow information, it inherits all the
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FIG. 8: Primary µ energy resolution histograms for the
traditional MicroBooNE energy estimator (black) and
the reweighted training of the RNN energy estimator
(red) on the Fully Contained (FC) CC sample.

shortcomings of the particle flow reconstruction. In ad-
dition, unlike the traditional energy estimator, we do not
provide any explicit indicators of the reconstruction qual-
ity to the RNN model. Therefore, even for the properly
reconstructed muons, we may anticipate a degradation
of the performance of the RNN method compared to the
traditional method.
In principle, in the absence of explicit indicators of

the reconstruction failures, a DL model could try to in-
fer them from some other features (e.g. incorrect event
topology). However, it is unclear what fraction of infor-
mation about the reconstruction quality can be inferred
from the existing features. Moreover, very large datasets
are required for DL models to make such complex infer-
ences. Therefore, the relatively small size of our training
dataset may contribute to the degradation of the quality
of the main muon peak.
While the RNN energy estimator does not directly pre-

dict the hadronic part of the neutrino energy, it can be
trivially inferred by subtracting the energy of the pri-
mary muon from the total neutrino energy. Figure 9
shows the hadronic energy resolution histograms for the
reweighted RNN and the traditional MicroBooNE energy
estimators. The RNN hadronic energy resolution ex-
hibits more Gaussian-like behavior and has a much better
RMS (∼ 38% vs. ∼ 50%).
In this section, we have studied the performance of the

RNN energy estimator on the sample of fully contained
νµ CC events. The RNN estimator is also capable of pre-
dicting the energy of partially contained νµ CC events,
and the energy of νe CC events. The corresponding per-
formance evaluations are provided in the appendices. In
particular, the RNN energy estimator performance for
the νe events is discussed in Appendix B. Likewise, Ap-
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FIG. 9: Hadronic energy resolution histograms for the
traditional MicroBooNE energy estimator (black) and
the reweighted training of the RNN energy estimator
(red) on the Fully Contained (FC) CC sample.

pendix C demonstrates the performance of the RNN en-
ergy estimator on the partially contained events. Finally,
Appendix D discusses the behavior of the RNN energy
resolution for various ranges of true neutrino energy.

B. Model Validation with Experimental Data

When developing new ML algorithms for HEP exper-
iments, it should always be kept in mind that the algo-
rithms are trained on a simulated sample, but eventu-
ally are applied to experimental data. The simulation
data in HEP experiments commonly possess systematic
differences from the real experimental data. For exam-
ple, as briefly reviewed in Sec. I, the response of argon
nuclei to a neutrino probe depends on the complex nu-
clear structure and quantum chromodynamics in the non-
perturbative region, which is at the frontiers of nuclear
physics research. In addition, understanding LArTPCs’
response and calibration have considerable room for im-
provement. Because of these differences between data
and simulation, it is possible that ML algorithms have
systematically different performance when applied to real
experimental data than those evaluated through simula-
tions.

HEP communities have developed a strict scheme of es-
timating systematic uncertainties to evaluate and quan-
tify the differences between data and simulation. Differ-
ent sources of systematic uncertainties serve as effective
degrees of freedom in describing the differences between
prediction (e.g., simulation) and data. Instead of requir-
ing that the simulation faithfully reproduce every feature
in the data, the HEP community requires that the dif-
ferences between the data and simulation are within the

quoted systematic uncertainties. In other words, the sim-
ulation is required to be compatible with data within its
quoted uncertainties.
Since the RNN energy estimator combines the

calorimetry information, which is sensitive to detector re-
sponse modeling, and the kinematics information, which
is sensitive to the complex neutrino-argon interaction, we
expect differences in performance between data and sim-
ulation. We utilize a MicroBooNE data set to demon-
strate the compatibility between simulation that is en-
hanced with the RNN energy estimator and data. This
data set was collected from February 2016 to July 2018
corresponding to an exposure of 6.369×1020 protons on
target from the BNB at FNAL that was used to search for
a low-energy νe excess [15]. As elaborated in Ref. [15],
the sources of systematic uncertainties associated with
the simulation include i) neutrino flux, ii) neutrino-argon
interaction cross sections, iii) detector effects, and iv) sta-
tistical uncertainties due to a finite number of simulation
events with unequal weights.
Following previous work [15, 26], the primary tools to

test the compatibility between data and simulation (i.e.
model validation) are based on goodness-of-fit (GoF)
tests, which allow one to quantify the comparison of
data and predictions into a single number for evaluation.
As detailed in Section V of [15], the term “simulation”
within the context of MicroBooNE refers to the overall
simulation model. This model consists of various com-
ponents, including the neutrino beam flux model, the
neutrino-argon interaction model, the detector model,
and the reconstruction algorithms, among others. There-
fore, changes in the energy estimator impact the consis-
tency between data and simulation.
While the total GoF test is essential, it may hide some

problems of the model when some model uncertainties are
overestimated. Additionally, since the missing hadronic
energy Emiss cannot be directly measured, an event gen-
erator (or a neutrino-nucleus interaction model) is often
required to describe Emiss accurately in order to ensure
a correct mapping from Ereco

ν to Etrue
ν . This mapping

is crucial as neutrino oscillation measurements rely on
estimations of Etrue

ν . However, modeling Emiss remains
a challenging theoretical problem, particularly for heavy
nuclei such as argon where final state interactions can
produce a variety of complex final states that contain
significantly different amounts of missing energy, even
for a simple quasi-elastic interaction. In order to mit-
igate these shortcomings, we implement a conditional
constraining procedure. In Refs. [15, 26], this procedure
was used to validate the modeling of missing hadronic
energy and its associated uncertainties. The validation
was performed by comparing the reconstructed hadronic
energy distribution between data and an MC prediction
after constraining the reconstructed muon kinematic dis-
tributions (i.e. energy and polar angle) to those of data.
The validation of the mapping between the true and the
reconstructed neutrino energy enables the measurement
of neutrino-energy dependent total and differential cross
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sections [26, 61] as well as searches for sterile-neutrino-
induced oscillations [6].

In the following, we briefly review the model valida-
tion procedure, which is based on a covariance matrix
formalism in constructing the χ2 test statistic:

χ2 = (M − P )
T × Cov−1

full (M,P )× (M − P ) , (5)

where M and P are vectors of measurement and predic-
tion, respectively. The Cov (M,P ) is the full covariance
matrix:

(6)Covfull = Covstatstat + CovsysMC stat + Covsysxs

+ Covsysflux + Covsysdet + Covsysadd.

The Covstatstat , CovsysMC stat, Covsysxs , Covsysflux, Covsysdet, and
Covsysadd terms represent the statistical uncertainties of the
data sample, the statistical uncertainties corresponding
to finite statistics in simulation, systematic uncertain-
ties in cross section modeling, systematic uncertainties
from the modeling of the neutrino flux, systematic uncer-
tainties from detector response modeling, and additional
systematic uncertainties associated with estimating back-
ground events from outside the cryostat, respectively.

The GoF evaluation is performed to test the compati-
bility between the data and the overall simulation model
using Eq. (6). The χ2 value can be used to perform a
GoF test and to deduce a p-value by comparing to the
χ2 distribution with the associated number of degrees of
freedom (ndf), which is the total number of bins used in
the measurement. For example, Fig. 10 demonstrates a
data-MC comparison of the selected FC νµ CC events as
a function of reconstructed neutrino energy. The p-value
is above 0.05, which is a pre-defined threshold for each
GoF test. We should note that the MicroBooNE overall
simulation model contains many conservative systematic
uncertainties (e.g. cross section uncertainties). There-
fore, the reduced χ2 values, which are the ratios between
χ2 and number of degrees of freedom, are generally low
suggesting that the overall simulation model describes
the data well within its uncertainties.

The conservative estimation of systematic uncertain-
ties aims to determine uncertainties that are large enough
to cover all reasonable systematic differences between
simulated and real data. However, the resulting uncer-
tainties may be overestimated, potentially obscuring defi-
ciencies in the overall simulation model. To address this
shortcoming, the global goodness-of-fit test can be en-
hanced to study different parts of the overall simulation
model using the conditional covariance matrix formal-
ism [62].

For example, consider two quantities (channels) X and
Y with the goal of assessing data-simulation differences
between their simulated predictions (XMC, YMC) and the
actual measurements (XData, YData). These quantities
could correspond to any measurements, such as the re-
constructed neutrino energy, muon energy, muon angle,
etc. One can perform a direct GoF test by comparing
XMC to XData (and similarly for Y ), but such a test may

suffer from the overestimation of systematic uncertain-
ties. Additionally, if one can simulate conditional proba-
bilities of the form P (X|Y ), then the difference between
YMC and YData can be used to refine XMC and constrain
the magnitudes of its systematic uncertainties. This al-
lows us to create a more stringent GoF test. The proce-
dure of refiningXMC from Y is referred to as constraining
X on Y using the conditional constraining method.
Figure 10 illustrates data-simulation comparisons of

the RNN neutrino energy for νµ CC FC events. The
red curve shows the direct prediction of the neutrino en-
ergy with the RNN energy estimator. The blue curve
is a prediction of the neutrino energy after constraining
on muon kinematics (reconstructed muon energy and an-
gle) and hadronic energy simultaneously. The constrain-
ing procedure significantly reduces the magnitudes of the
systematic uncertainties (shaded areas in the ratio plot)
and provides a more precise GoF test.
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FIG. 10: Top: Distribution of the selected FC νµCC
events as a function of the reconstructed neutrino en-
ergy. The MC prediction after applying constraints on
muon kinematics (Ereco

µ and cosrecoθ ) and hadronic en-
ergy (Ereco

had ) is shown in blue, and before applying in
red. The last bin represents all events with Ereco

ν >
2.6 GeV. Bottom: The blue (red) points represent the
ratio between data and the MC prediction with (with-
out) constraint, and the bands with same colors depict
the ±1σ of the total uncertainty (statistical and sys-
tematic) of the MC central prediction.

Following this methodology, we have run a comprehen-
sive and systematic set of MicroBooNE validation tests
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on the overall simulation model that has been enhanced
by the RNN energy estimator using CC νµ interactions.
We should note that the CC νe interactions are limited
by the data statistics at O(100), which is not sufficient
to perform precision tests on the models. Table II sum-
marizes the results of these model validation tests, with
the p-values above 0.05 indicating a successful test. The
RNN energy estimator passes all the tests successfully,
suggesting that the difference between data and simula-
tion are within the quoted uncertainties.

Test
p-value

Traditional RNN
P (Eµ) 0.89 0.92
P (Ehad) 1.00 0.99
P (Eν) 1.00 0.97

P (EPC
µ |EFC

µ ) 0.95 0.70
P (EPC

had|EFC
had) 1.00 0.96

P (EPC
ν |EFC

ν ) 1.00 0.84
P (Eµ|cos θµ) 0.45 0.50
P (Ehad|cos θµ) 1.00 0.99
P (Eν |cos θµ) 1.00 0.97
P (Ehad|Eµ) 1.00 0.97
P (Eν |Eµ) 1.00 0.99
P (Ehad|Eµ, cos θµ) 1.00 0.99
P (Eν |Eµ, cos θµ) 1.00 1.00
P (Eν |Eµ, cos θµ, Ehad) 1.00 0.97

TABLE II: Data vs MC validation results of the
reweighted RNN energy estimator. The first column
of the table shows the label of the statistical test that
was performed. The second and third columns indicate
p-values returned by the test for the traditional and
RNN energy estimators respectively. A p-value above
0.05 indicates that the respective test was passed.

C. Sensitivity Studies of Searching for a Sterile
Neutrino in νµ Disappearance
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FIG. 11: Reconstructed energy spectra of the selected
νµCC FC events assuming no neutrino oscillation in
simulation, normalized to 6.369× 1020 POT.

In this section, we show the impact of the RNN en-
ergy estimator on the sensitivity of determining neutrino
oscillation parameters using the example of a νµ disap-
pearance search. Assuming νµ disappearance only, the
oscillation probability formula is

Pνµ→νµ
= 1− sin22θµµsin

2(∆m2
41L/Eν), (7)

where L/Eν is the ratio of the neutrino traveling distance
and its energy, θµµ is the mixing angle that determines
the oscillation magnitude, and ∆m2

41 is a mass-squared
splitting that modulates the oscillation frequency. The
better energy resolution of the RNN energy estimator in-
duces less smearing of the oscillating features, which leads
to a better sensitivity in determining neutrino oscillation
parameters.
The CC νµ-argon interaction event selection and cor-

responding statistical and systematic uncertainties are
taken from Ref. [15]. Figure 11 shows the reconstructed
energy spectra of the the selected νµ CC FC events with
no oscillations. Compared to the traditional energy es-
timator, the RNN energy estimator reconstructs a neu-
trino energy spectrum that is much closer to the truth
value. Figure 12 shows the sensitivity contours at the
95% CL in the plane of ∆m2

41 and sin22θµµ for the tra-
ditional energy reconstruction and the RNN energy esti-
mator, respectively. As expected, the sensitivity is im-
proved especially in the intermediate ∆m2

41 region where
the oscillation pattern changes considerably over differ-
ent neutrino energies. To avoid biases, the study depicted
in Fig. 12 does not utilize any training samples from the
RNN model.
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FIG. 12: MicroBooNE Gaussian CLs [6] sensitivity con-
tours at the 95% CL in the plane of ∆m2

41 and sin2θµµ
from the traditional (black) and the RNN (red) meth-
ods.
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VI. CONCLUSIONS

We developed a deep-learning energy estimation
method for charged current neutrino interactions in
LArTPC detectors. This method is based on a recurrent
neural network (RNN) architecture. As inputs it uses
reconstructed calorimetry and final-state particle kine-
matics obtained from the particle flow information. As
outputs, it provides inferences about the energy of the
neutrino and the energy of the primary outgoing lepton.
Evaluating this method with simulations, we have shown
that the RNN energy estimator’s performance is superior
to the Wire-Cell traditional energy estimator in terms of
bias and resolution.

In order to make this method more resilient to incon-
sistencies between simulated and real data, we apply the
RNN to the reconstructed particle flow information. This
is at the cost of inheriting some inefficiencies from the
event reconstruction algorithm. In principle, the RNN
is capable of correcting for both mis-estimated particle
energies and energy from particles that were not recon-
structed (either due to inefficiencies or because they do
not produce observable signatures). By training an RNN
on only the Wire-Cell traditional neutrino energy esti-
mate, we can determine to what extent the RNN lever-
ages individual particle information to determine the
missing energy contribution. In this case, the perfor-
mance is better than the traditional calculation, but falls
short compared to the full RNN, indicating that the RNN
can indeed learn correlations between the reconstructed
particles and the missing energy.

Besides performance evaluations with simulations, a
set of dedicated model validation tests was performed to
demonstrate that the overall simulation model enhanced
by the RNN energy estimator is compatible with Micro-
BooNE experimental data within the model uncertain-
ties. Using a simple example of searching for a sterile neu-
trino with νµ disappearance oscillations, we show the im-
pact of this RNN energy estimator on the physics sensi-
tivity. Besides the impact on neutrino oscillations, we ex-
pect that this technique can be extended to cross-section
measurements in both inclusive and exclusive interaction
channels. Adaptation of this method for other LArTPC
experiments, such as DUNE [63] and SBND [64], is un-
derway.
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APPENDIX A: TRAINING DETAILS

The RNN energy estimator is trained with the help
of the vlne [65] package, which is built on top of the
TensorFlow/Keras (v2.9) frameworks. The training is
performed for up to 200 epochs using the RMSprop opti-
mizer, and an initial learning rate of 0.001. The learning
rate is progressively annealed by the ReduceLROnPlateau
scheduler (patience = 5, factor = 0.5).
The RNN training is terminated if the validation loss

has not improved over the last 40 epochs, or if the to-
tal number of training epochs has reached 200. To re-
duce overfitting, an L2 regularization is applied with a
strength of 0.008. As an additional regularization tech-
nique we have randomly shuffled the order of particles in
each event.
For the training we have used a batch size of 1024.

When updating the neutrino energy spectrum with flat
event weights we applied the weights only to the the neu-
trino part Lν of the loss function. We did not reweight
the primary lepton part Llep of the loss. The training
is run on a single NVIDIA GeForce RTX 3090 GPU.
Because of the reliance on high-level input variables, it
takes less than 20 minutes to train a single RNN energy
estimator.
To determine the final network configuration we have

performed several hyperparameter sweeps. We have ex-
plored a grid of the following parameters: learning rate,
number of training epochs, number of features in the
LSTM cell and fully connected layers, depth of the fully
connected layers, regularization type (L1 vs L2), and the
strength of the regularization.



15

APPENDIX B: RNN FOR νeCC ENERGY
ESTIMATION

In this appendix we explore the basic performance
of the RNN energy estimator on the νe events. The
training sample of the RNN energy estimator contains
charged-current electron neutrino interaction (νe CC)
events. Therefore, the RNN is capable of predicting ener-
gies of such events as well. Because of the small statistics
of the νe CC sample we are unable to perform a similar
data/MC validation as that with the νµ CC sample. This
situation is expected to be improved with future experi-
ments.

−1.0 −0.5 0.0 0.5 1.0

(Ereco
ν − Etrue

ν )/Etrue
ν

0

1000

2000

3000

4000

5000

6000

E
ve

nt
s

Traditional
Mean -0.11
RMS 0.21

RNN
Mean 0.01
RMS 0.18

MicroBooNE Simulation (νeCC FC)

FIG. 13: νe energy resolution histograms for the tradi-
tional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red)
in the Fully Contained (FC) CC sample.

Figure 13 shows the νe CC energy resolution histogram
of the RNN compared to the traditional energy estima-
tor. In terms of the RMS, the RNN slightly outperforms
the traditional energy estimator (18% vs 21%). Figure 14
illustrates biases of the RNN and traditional energy es-
timators. For the majority of true energy bins, the RNN
displays a much smaller bias compared to the traditional
energy estimator. Only at the lowest energy bin does the
RNN acquires a large bias.

Figure 15 and Fig. 16 show the energy resolution his-
tograms of the primary lepton and hadronic energies, re-
spectively. There is little difference in the resolution of
the energy of the primary lepton. However, the RNN
achieves superior hadronic energy reconstruction, with
improvement in RMS from 49% to 40%.
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FIG. 14: νe energy resolution bias for the tradi-
tional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red)
in the Fully Contained (FC) CC sample.
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APPENDIX C: ENERGY ESTIMATION OF THE
PARTIALLY CONTAINED EVENTS

In this appendix, we review the performance of the
RNN energy estimator on the Partially Contained (PC)
events and compare it to the performance of the tradi-
tional MicroBooNE energy estimator. Figure 17 com-
pares neutrino energy resolution for the νµ CC and νe
CC events. For the PC events, the RNN energy estima-
tor demonstrates improvement in the energy resolution



16

−1.0 −0.5 0.0 0.5 1.0

(Ereco
had − Etrue

had )/Etrue
had

0

500

1000

1500

2000

E
ve

nt
s

Traditional
Mean -0.26
RMS 0.49

RNN
Mean 0.07
RMS 0.40

MicroBooNE Simulation (νeCC FC)
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from 43% to 28% for νµ CC, and improvement from 31%
to 24% for νe CC, compared to the traditional Micro-
BooNE energy estimator.

Likewise, Fig. 18 compares energy resolutions of the
primary leptons in the νµ and νe CC events. It shows
a large improvement in reconstructing the energy of the
primary muons with the RMS improving from 50% for
the traditional MicroBooNE energy estimator down to

29% for the RNN energy estimator.
The improvement for the energy reconstruction of the

primary electron energy is much smaller, with the RMS
improving from 29% down to 23%. Moreover, the ma-
jority of this improvement comes from the tail of the dis-
tribution, indicating that the traditional electron energy
reconstruction approach is close to the optimal.
Finally, Fig. 19 shows the bias of the neutrino energy

estimators as a function of the true neutrino energy. The
νµ CC energy bias of the RNN energy estimator is smaller
than the bias of the traditional MicroBooNE energy es-
timator for the majority of neutrino energies. It is, how-
ever, larger at small true Eν (Eν < 0.5GeV). This be-
havior is similar to the energy bias behavior for the FC
events, observed in Sec. IVB. The energy reweighting
reduces the low energy bias for the FC events, but evi-
dently, it is not sufficient to remove the bias for the PC
events. For the νe energy estimation, Fig. 19 shows a dif-
ferent behavior. The RNN energy estimator has a smaller
bias for virtually the entire energy range, compared to
the traditional MicroBooNE energy estimator. However,
it also exhibits large oscillations in the low energy region.

APPENDIX D: RESOLUTION DEPENDENCE
ON ENERGY

In this appendix, we review the binned statistics plots,
depicting energy resolution versus true neutrino energy
bins. Figure 20 illustrates the behavior of the RMS of
the energy resolution as a function of the true neutrino
energy. For the FC events, the RNN energy estimator
has better neutrino energy resolution compared to the
traditional MicroBooNE energy estimator across the en-
tire energy range. For the PC events, however, the RNN
loses its performance in the low-energy region.
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FIG. 17: νµ and νe energy resolution histograms for the traditional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red), evaluated on the samples of PC CC events.
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FIG. 19: νµ and νe energy resolution bias plot for the traditional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red), evaluated on the samples of PC CC events.
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FIG. 20: νµ and νe energy resolution vs true neutrino energy plots for the traditional MicroBooNE energy estima-
tor (black) and the reweighted training of the RNN energy estimator (red), evaluated on the samples of FC and PC
events.
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