
DES-2023-0820
FERMILAB-PUB-24-0255-PPD

Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet
harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological

results

M. Gatti,1, ∗ G. Campailla,2 N. Jeffrey,3 L. Whiteway,3 A. Porredon,4 J. Prat,5 J. Williamson,3 M. Raveri,2 B.
Jain,1 V. Ajani,6, 7 G. Giannini,5 M. Yamamoto,8 C. Zhou,9, 7 J. Blazek,10 D. Anbajagane,5 S. Samuroff,10

T. Kacprzak,6 A. Alarcon,11 A. Amon,12, 13 K. Bechtol,14 M. Becker,15 G. Bernstein,1 A. Campos,14

C. Chang,5, 7 R. Chen,8 A. Choi,16 C. Davis,17 J. Derose,18 H. T. Diehl,19 S. Dodelson,20, 21 C. Doux,22

K. Eckert,1 J. Elvin-Poole,23 S. Everett,24 A. Ferte,25 D. Gruen,26 R. Gruendl,27, 28 I. Harrison,29

W. G. Hartley,30 K. Herner,19 E. M. Huff,24 M. Jarvis,1 N. Kuropatkin,19 P. F. Leget,17 N. MacCrann,31

J. McCullough,17 J. Myles,32 A. Navarro-Alsina,33 S. Pandey,1 R. P. Rollins,34 A. Roodman,17, 25

C. Sanchez,1 L. F. Secco,5 I. Sevilla-Noarbe,35 E. Sheldon,36 T. Shin,37 M. Troxel,8 I. Tutusaus,38

T. N. Varga,39, 40, 41 B. Yanny,19 B. Yin,20 Y. Zhang,42 J. Zuntz,43 T. M. C. Abbott,42 M. Aguena,44

S. S. Allam,19 O. Alves,45 F. Andrade-Oliveira,45 D. Bacon,46 S. Bocquet,26 D. Brooks,3 A. Carnero Rosell,47, 44

J. Carretero,48 L. N. da Costa,44 M. E. S. Pereira,49 J. De Vicente,35 I. Ferrero,50 J. Frieman,19, 5

J. Garćıa-Bellido,51 E. Gaztanaga,52, 46, 53 G. Gutierrez,19 S. R. Hinton,54 D. L. Hollowood,55 K. Honscheid,56, 57

D. J. James,58 K. Kuehn,59, 60 O. Lahav,3 S. Lee,24 J. L. Marshall,61 J. Mena-Fernández,62 R. Miquel,63, 48

A. Pieres,44, 64 A. A. Plazas Malagón,17, 25 E. Sanchez,35 D. Sanchez Cid,35 M. Schubnell,45

M. Smith,65 E. Suchyta,66 G. Tarle,45 N. Weaverdyck,67, 68 J. Weller,40, 41 and P. Wiseman65

1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Physics, University of Genova and INFN, Via Dodecaneso 33, 16146, Genova, Italy

3Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
4Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute (AIRUB),

German Centre for Cosmological Lensing, 44780 Bochum, Germany
5Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

6Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
7Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

8Department of Physics, Duke University Durham, NC 27708, USA
9Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

10Department of Physics, Northeastern University, Boston, MA 02115, USA
11Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

12Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
13Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

14Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison,
1150 University Avenue Madison, WI 53706-1390, USA

15Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
16NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA

17Kavli Institute for Particle Astrophysics & Cosmology,
P. O. Box 2450, Stanford University, Stanford, CA 94305, USA

18Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
19Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
20Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15312, USA

21NSF AI Planning Institute for Physics of the Future,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
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44Laboratório Interinstitucional de e-Astronomia - LIneA,
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We present a simulation-based cosmological analysis using a combination of Gaussian and non-
Gaussian statistics of the weak lensing mass (convergence) maps from the first three years (Y3) of
the Dark Energy Survey (DES). We implement: 1) second and third moments; 2) wavelet phase
harmonics; 3) the scattering transform. Our analysis is fully based on simulations, spans a space of
seven 𝜈𝑤CDM cosmological parameters, and forward models the most relevant sources of systematics
inherent in the data: masks, noise variations, clustering of the sources, intrinsic alignments, and shear
and redshift calibration. We implement a neural network compression of the summary statistics, and
we estimate the parameter posteriors using a simulation-based inference approach. Including and
combining different non-Gaussian statistics is a powerful tool that strongly improves constraints over
Gaussian statistics (in our case, the second moments); in particular, the Figure of Merit FoM(𝑆8,Ωm)
is improved by 70 percent (ΛCDM) and 90 percent (𝑤CDM). When all the summary statistics
are combined, we achieve a 2 percent constraint on the amplitude of fluctuations parameter 𝑆8 ≡
𝜎8 (Ωm/0.3)0.5, obtaining 𝑆8 = 0.794 ± 0.017 (ΛCDM) and 𝑆8 = 0.817 ± 0.021 (𝑤CDM), and a ∼10
percent constraint on Ωm, obtaining Ωm = 0.259±0.025 (ΛCDM) and Ωm = 0.273±0.029 (𝑤CDM). In
the context of the 𝑤CDM scenario, these statistics also strengthen the constraints on the parameter
𝑤, obtaining 𝑤 < −0.72. The constraints from different statistics are shown to be internally consistent
(with a 𝑝-value>0.1 for all combinations of statistics examined). We compare our results to other
weak lensing results from the DES Y3 data, finding good consistency; we also compare with results
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from external datasets, such as Planck constraints from the Cosmic Microwave Background, finding
statistical agreement, with discrepancies no greater than < 2.2𝜎.

I. INTRODUCTION

Weak gravitational lensing serves as an efficient tech-
nique for investigating the large-scale structure and mat-
ter distribution throughout the Universe. This method
enables us to infer the distribution of matter lying in the
foreground by examining the minor distortions evident in
the shapes of background galaxies. Such effects of weak
gravitational lensing provide a window into the history
of the Universe’s expansion and its geometric properties,
acting as tools for understanding the underlying struc-
ture of the cosmos.

Conventional methods of cosmological analysis employ
Gaussian statistics, using tools such as two-point corre-
lation functions or power spectra to analyze the lensing
signals. The most up-to-date analyses of this type are
from the Dark Energy Survey (DES, Amon et al. 6, Secco
et al. 76), the Kilo-Degree Survey (KiDS, Asgari et al.
9, Li et al. 50), and Hyper Suprime-Cam (HSC, Dalal
et al. 22, Li et al. 51). A growing number of studies,
however, have investigated and highlighted the role of
non-Gaussian statistics in improving cosmological con-
straints, as the lensing observables carry information be-
yond that probed by standard Gaussian statistics. Ex-
amples of non-Gaussian statistics investigated include
higher-order moments [17, 29, 31, 64, 65, 68, 83–85], peak
counts [2, 23, 36, 46, 48, 52, 58, 64, 77, 87, 88], one-point
probability distributions [11, 14, 79], Minkowski func-
tionals [49, 62, 65, 86], Betti numbers [25, 63], persis-
tent homology [38, 39], scattering transform coefficients
[18, 19, 80, 81], wavelet phase harmonic moments [4],
kNN and CDFs [7, 10], map-level inference [13, 67], and
machine-learning methods [26, 27, 41, 53, 72].

This work uses a comprehensive simulation-based in-
ference approach to analyze the weak lensing data from
the first three years of the Dark Energy Survey (DES
Y3). Our analysis concentrates on three distinct statis-
tics: second and third-order moments, wavelet phase
harmonic moments, and the scattering transform. While
the second and third moments have been previously ap-
plied to DES Y3 data [31], their implementation was
based on a theoretical framework for the modelling of
the moments. In contrast, our current approach is driven
by simulations; i.e., we use simulations to model our ob-
servables. Moreover, this research is the first applica-
tion of wavelet phase harmonic moments to weak lens-
ing data, and one of the first applications of scattering
transform (see [18]). These two statistics have become
prominent for their similarities to convolutional neural
networks (CNNs), designed to extract information from
fields in a manner comparable to CNNs [57], but with-
out the requirement for training. In [32] (hereafter paper
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I), we showed that these non-Gaussian statistics provide
additional information beyond that of third moments,
indicating their potential utility.

We use the Gower Street simulations (Jeffrey et al.
44), a suite of N-body simulations spanning a seven-
dimensional 𝑤CDM parameter space. We incorporate
key sources of systematic uncertainties in our forward
model such as photometric redshift uncertainties, shear
calibration errors, intrinsic alignments, and the effects
of source clustering [33]. We implement an efficient neu-
ral network compression of our summary statistics, and
we estimate the parameter posteriors via neural density
estimation of the likelihood surface, using flexible neu-
ral networks that do not imposing restrictive assump-
tions about the likelihood or data model. This paper
builds upon a companion work (paper I), in which the
methodology was validated using simulations and a se-
ries of systematic observational tests were conducted to
verify the robustness of the analysis. This work applies
the validated methodology to the DES Y3 data to yield
cosmological constraints; we also compare these findings
with results from other DES Y3 analyses and from ex-
ternal datasets.

A companion DES analysis (Jeffrey et al. 44) uses the
same simulation-based inference pipeline as described
in this paper, but using convolutional neural networks
(map-level inference), peak counts, and power spectra
to infer cosmology. Their results are consistent with the
results presented in this work. All of these are analyses
of DES Y3 data, pending the final full DES Year 6 data.

This paper is organized as follows: Section 2 summa-
rizes the survey data as well as the simulations used for
our model predictions and validation. Section 3 briefly
describes the summary statistics used in this paper and
the data compression. Section 4 briefly describes our
simulation-based inference pipeline for parameter infer-
ence. Section 5 presents the pre-unblinding tests, and
Section 6 discusses our main results, together with com-
parisons against other DES results and external probes.

II. DATA AND SIMULATIONS

A. DES Y3 weak lensing catalogue and weak lensing mass
maps

We use the DES Y3 weak lensing catalogue for
our analysis [34]. This extensive catalogue comprises
100,204,026 galaxies, offering a weighted effective galaxy
number density of 5.59 galaxies per square arcminute
across a 4139 square degree area. The catalogue is
based on the METACALIBRATION algorithm [40,
78], which calculates self-calibrated shear measurements
from the multi-band, noisy images of observed objects.
To correct for any residual calibration issues such as mul-
tiplicative shear bias, we incorporate adjustments based

mailto:marcogatti29@gmail.com


4

Table I. Model parameters (first column), their distribution
in the Gower Street sims and in the mock catalogues derived
from these sims (second column), and the prior used in the
cosmological analysis (third column, shown only where dif-
ferent from the second column). The analysis prior can differ
from the distribution of the samples as long as these parame-
ters have been explicitly used during the training of the Neu-
ral Density Estimators (NDEs) when learning the likelihood
surface; see §IV for more details. ∗ In our simulation runs we
usually excluded values of 𝑤 less than −1, but 64 simulations
were run without this constraint. These were still used to
train our NDEs, although we applied a strict prior of 𝑤 > −1
for the analysis.

Parameter Mocks parameters Analysis prior
distribution

Ωm mixed active-learning U(0.15, 0.52)
in U(0.15, 0.52)

𝑆8 mixed active-learning U(0.5, 1.0)
in U(0.5, 1.0)

𝑤 N(−1, 13 ) for −1 < 𝑤 < −1
3 U(−1,−1

3 )
0 else∗

𝑛𝑠 N(0.9649, 0.0063)
ℎ N(0.7022, 0.0245)

Ωbℎ
2 N(0.02237, 0.00015)

𝑚𝜈 exp(U[log(0.06), log(0.14)])
𝐴𝐼 𝐴 U[−3, 3]
𝜂𝐼 𝐴 U[−5, 5]
𝑚1 N(−0.0063, 0.0091)
𝑚2 N(−0.0198, 0.0078)
𝑚3 N(−0.0241, 0.0076)
𝑚4 N(−0.0369, 0.0076)
𝑛𝑖 (𝑧) 𝑝HyperRank (𝑛𝑖 (𝑧) |𝑥phot)

on sophisticated image simulations [54]. The catalogue
includes a per-galaxy inverse variance weight, which en-
hances the signal-to-noise ratio of our measurements.
The galaxies are partitioned into four tomographic bins
of roughly equal number density, as described in [60].

The redshift distributions for these bins are derived
using the SOMPZ method [60], augmented by clustering-
based redshift information [30] and a correction for the
redshift-dependent influences of blending [54]. We pro-
duce weak lensing mass maps for each tomographic bin
using a full-sky extension of the Kaiser and Squires
algorithm [47], [42]. The maps are pixelized using
HEALPIX [35] at a resolution of NSIDE = 512; this
yields a pixel size of approximately 6.9 arcminutes.

B. Simulations

Here is a brief summary of the simulations used in this
work; see paper I for details.

The Gower Street simulation suite [44] is key to our
inference process. The mocks created from the Gower
Street suite serve two purposes: they are used both for
compressing the summary statistics and for performing
the cosmological inference. The suite consists of 791

gravity-only full-sky N-body simulations, produced us-
ing the PKDGRAV3 code [69]. The simulations span a
seven-dimensional parameter space in 𝑤CDM (Ωm, 𝜎8,
𝑛𝑠, ℎ ≡ ℎ100, Ωb, 𝑤, 𝑚𝜈); see Table I. This table uses the
parameter 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5.
Each full-sky simulation can be divided into four non-

overlapping DES sky footprints, yielding 3,164 indepen-
dent mock DES surveys. To generate additional pseudo-
independent DES Y3 shear mock maps, we rotated the
four independent DES Y3 footprints by 45, 90, and 135
degrees in galactic longitude, thereby covering different
(but overlapping) regions of the full-sky map. For each
map we generated two distinct noise realizations, finally
yielding a total of 25,312 pseudo-independent noisy DES
Y3 mock maps. The maps from the first noise realiza-
tion are used for the compression step, while those from
the second noise realization are used for the cosmological
inference step.

For this analysis, we augmented the Gower Street sim-
ulation suite with N-body simulations from the Dark-
GridV1 suite [88, 89]. This integration was done because,
unlike paper I, we include ΛCDM results in this work,
and the DarkGridV1 simulations are exclusively ΛCDM
simulations, in contrast to those from Gower Street. We
later discover, however, that this addition has a negli-
gible impact on our constraints (see Appendix D), and
the Gower Street simulations were sufficient also for the
ΛCDM case. The DarkGridV1 simulations suite explores
58 different ΛCDM cosmologies, varying Ωm and 𝜎8.
Each cosmology is represented by five independent full-
sky simulations. For each full-sky simulation, we applied
the same procedure as used for the Gower Street suite
to generate multiple DES Y3 mock catalogues, resulting
in an additional 2,320 mocks. These mocks are added
to those from the Gower Street suite and are used both
in the compression of the summary statistics and in the
cosmological inference.

In this analysis we only explicitly learn the likelihood
surface for the cosmological parameters Ωm, 𝑆8, 𝑤, and
the intrinsic alignment amplitude 𝐴IA; the dependence
on other parameters is not explicitly learned, but is effec-
tively marginalised over according to the distribution fol-
lowed by the simulations (§IV). In contrast to the Gower
Street suite, the DarkGridV1 suite does not vary ℎ100, 𝑛𝑠,
Ωb, or the neutrino mass. This implies that the distri-
bution of these parameters when the two sets of simu-
lations are combined is narrower than that arising from
the Gower Street suite alone. We verified in Appendix
D that this has a negligible impact on our posteriors.

Last, for testing purposes only, we also use a subset of
the simulations from the CosmoGridV1 suite [45]. From
this suite we chose a set of 100 full-sky simulations at
the fiducial cosmology 𝜎8 = 0.84, Ωm = 0.26, 𝑤 = −1,
ℎ = 0.6736, Ωb = 0.0493, 𝑛s = 0.9649. Each simulation
has been post-processed with a baryonification algorithm
that mimics the impact of baryons at small scales. These
simulations have been used only to produce the covari-
ance matrices for the signal-to-noise estimates and to
serve as mock data measurements for testing the full
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end-to-end pipeline. They have not been used for the
compression of the summary statistics, nor during the
cosmological inference.

The map-making procedure is detailed in paper I. In
brief, for each simulation we generate noisy mock shear
maps following:

𝛾(𝑝) =
∑

𝑠 𝑛(𝑠) [1 + 𝑏 𝛿(𝑝, 𝑠)] (1 + 𝑚) [𝛾(𝑝, 𝑠) + 𝛾 IA (𝑝, 𝑠)]∑
𝑠 𝑛(𝑠) [1 + 𝑏 𝛿(𝑝, 𝑠)] +( ∑

𝑠 𝑛(𝑠)∑
𝑠 𝑛(𝑠) [1 + 𝑏 𝛿(𝑝, 𝑠)]

)1/2
𝐹 (𝑝)

∑
𝑔 𝑤𝑔𝑒𝑔∑
𝑔 𝑤𝑔

. (1)

Here 𝑝 is a simulation pixel; 𝑠 is a thin redshift shell;
𝛾(𝑝, 𝑠) is the noiseless shear from the shear simulation;
𝑛(𝑠) is the galaxy count across the whole footprint [60];
𝑚 is the multiplicative shear bias that models shear mea-
surement uncertainties [54]; 𝛾 IA (𝑝, 𝑠) is the intrinsic
alignment contribution to each pixel; 𝛿(𝑝, 𝑠) is the mat-
ter overdensity in the shear simulation; 𝑏 is the galaxy-
matter bias of the weak lensing sample (fixed to unity);
𝑤𝑔 and 𝑒𝑔 are the DES Y3 galaxy weights and elliptici-
ties for the galaxies 𝑔 in pixel 𝑝 (ellipticities have been
randomly rotated to erase the cosmological signal of the
catalogue); and 𝐹 (𝑝) is a near-unity scale factor intro-
duced to avoid double-counting source clustering effects
(see paper I for more details). The latter reads

𝐹 (𝑝) = 𝐴

√︃
1 − 𝐵𝜎2

𝑒 (𝑝), (2)

where 𝐴 and 𝐵 are constants with values 𝐴 =

[0.97, 0.985, 0.990, 0.995] and 𝐵 = [0.1, 0.05, 0.035, 0.035]
(one for each tomographic bin), and 𝜎2

𝑒 (𝑝) is the vari-
ance of the pixel noise. The intrinsic alignment term
𝛾 IA (𝑝, 𝑠) is:

𝛾 IA (𝑝, 𝑠) = 𝐴 IA

(
1 + 𝑧

1 + 𝑧0

) 𝜂 IA 𝑐1𝜌𝑚,0

𝐷 (𝑧) 𝑠(𝑝, 𝑠), (3)

with 𝑧0 = 0.62, 𝑐1𝜌𝑚,0 = 0.0134 (Bridle & King 15), 𝐷 (𝑧)
the linear growth factor, and 𝑠(𝑝, 𝑠) the shear tidal field.
We obtain 𝑠(𝑝, 𝑠) directly from the density field 𝛿(𝑝, 𝑠)
by applying the (inverse) Kaiser-Squires algorithm.

This procedure is repeated for each of the four to-
mographic bins of the DES Y3 source catalogue. The
noisy shear maps are then converted to noisy weak lens-
ing mass maps using the same algorithm as for the data.
The mock-making procedure has several free parameters:
four multiplicative shear biases 𝑚𝑖 (one for each tomo-
graphic bin), four redshift distributions 𝑛𝑖 (𝑧) (one for
each tomographic bin), and parameters 𝐴IA and 𝜂 IA

controlling the amplitude and the redshift evolution of
intrinsic alignment. For each DES Y3 mock catalogue we
draw at random one of these parameters from their prior
(see Table I); for the redshift distributions, we draw from
one of the multiple realisations provided by [60], which
encompass the uncertainties in the redshift calibration
of the DES Y3 𝑛(𝑧).

III. SUMMARY STATISTICS

The summary statistics considered in this work are: 1)
second and third moments; 2) wavelet phase harmonics;
3) the scattering transform. The summary statistics are
applied to ‘smoothed’ variants of the weak lensing maps,
with the choice of smoothing varying according to the
specific statistic employed: moments use top hat filters,
while wavelet phase harmonics and the scattering trans-
form use wavelet filters [20, 55, 82]. We provide below a
brief description of these statistics; for more details see
paper I.

A. Second and Third Moments

Second moments of weak lensing mass maps are a
Gaussian statistic, while third moments reflect the skew-
ness of the field [17, 29, 31, 64, 65, 83–85]. Briefly, we
first smooth the maps using top-hat filters, and we con-
sider eight smoothing scales 𝜃0 equally (logarithmically)
spaced from 8.2 to 221 arcmin. The second and third
moments estimators are:

⟨𝜅2𝜃0⟩(𝑖, 𝑗) = Avg𝑝

(
𝜅𝑖𝜃0 , 𝑝 𝜅

𝑗

𝜃0 , 𝑝

)
(4)

⟨𝜅3𝜃0⟩(𝑖, 𝑗 , 𝑘) = Avg𝑝

(
𝜅𝑖𝜃0 , 𝑝 𝜅

𝑗

𝜃0 , 𝑝
𝜅𝑘𝜃0 , 𝑝

)
, (5)

where 𝜅𝑖
𝜃0 , 𝑝

is the smoothed lensing mass map of tomo-

graphic bin 𝑖 (𝑖, 𝑗 , 𝑘 refer to different tomographic bins),
and the average is over all pixels 𝑝 on the full sky. In
the case of third moments, we subtracted noise-signal
third moments of the form ⟨𝜅

𝜃0 ,obs
𝜅2
𝜃0 ,N

⟩; this approach
was chosen because it improved the compression process
and minimized the influence of source clustering on our
summary statistics.

B. Wavelet Phase Harmonics

Wavelet phase harmonics (WPH) correspond to the
second moments of smoothed weak lensing mass maps
that have undergone a nonlinear transformation [4, 20,
55, 82]. A directional, multi-scale wavelet transform is
used to smooth the maps. Let us consider a smoothed

map 𝜅𝑖
𝑛,ℓ

( ®𝜃), where 𝑛 specifies the size of the filter

(roughly equivalent to 2𝑛+1 pixels), and ℓ the orientation.
The non-linear operation on the smoothed map, which
enables us to capture inter-scale interactions and access
the non-Gaussian characteristics of the field through sec-
ond moments, is defined as:

PH(𝑟𝑒i𝜃 , 𝑞) ≡ 𝑟𝑒i𝑞𝜃 , (6)

where 𝑟 is the modulus of the field and 𝜃 its phase. We
consider only 𝑞 = 0 or 𝑞 = 1 in this work, correspond-
ing to taking the modulus or leaving the field unaltered,
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respectively. The WPH statistics used in this work are:

𝑆00(𝑖, 𝑗 , 𝑛) = Avg𝑝 Avgℓ

(
|𝜅𝑖𝑛,ℓ | |𝜅

𝑗

𝑛,ℓ
|
)

(7)

𝑆11(𝑖, 𝑗 , 𝑛) ≡ WPHG(𝑖, 𝑗 , 𝑛) = Avg𝑝 Avgℓ

(
𝜅𝑖𝑛,ℓ 𝜅

𝑗

𝑛,ℓ

)
(8)

𝑆01(𝑖, 𝑗 , 𝑛) = Avg𝑝 Avgℓ

(
|𝜅𝑖𝑛,ℓ | 𝜅

𝑗

𝑛,ℓ

)
(9)

𝐶01𝛿ℓ0(𝑖, 𝑗 , 𝑛1, 𝑛2) = Avg𝑝 Avgℓ

(
|𝜅𝑖𝑛1 ,ℓ | 𝜅

𝑗

𝑛2 ,ℓ

)
for 𝑛1 < 𝑛2

(10)

𝐶01𝛿ℓ1(𝑖, 𝑗 , 𝑛1, 𝑛2) = Avg𝑝 Avgℓ

(
|𝜅𝑖𝑛1 ,ℓ+1 | 𝜅

𝑗

𝑛2 ,ℓ

)
for 𝑛1 < 𝑛2.

(11)
We average over all pixels 𝑝 and we also average over the
three values 0, 1, 2 of the rotation index ℓ (corresponding
to three possible orientations of the directional wavelet).
The number 𝑛 varies from 0 to 5. The above summary
statistics probe both Gaussian and non-Gaussian fea-
tures of the field (with the exception of WPHG, which
is equivalent to the power spectrum of 𝜅). To reduce the
impact of source clustering, for WPH 𝑆01, 𝐶01𝛿ℓ0, and
𝐶01𝛿ℓ1 we subtract a term involving one noise-only map
and the observed noisy convergence map.

C. Scattering Transform

The scattering transform [16, 19, 56, 80, 81] concep-
tually resembles the wavelet phase harmonics (WPH)
previously introduced. It involves smoothing the field
using a directional, multi-scale wavelet transform (same
as implemented in WPH), but then followed by a modu-
lus operation. This transform-then-modulus operation is
iteratively applied 𝑚 times, after which we take an over-
all field average; the result is the scattering transform
coefficient ST𝑚. This study considers scattering coeffi-
cients of orders 𝑚 = 1, 2. Given a directional multi-scale
wavelet 𝜓𝑛,ℓ and the convergence map 𝜅𝑖 of tomographic
bin 𝑖, we obtain:

ST1 (𝑖, 𝑛) = Avg𝑝 Avgℓ
(
|𝜅𝑖 ∗ 𝜓𝑛,ℓ |

)
(12)

ST2 (𝑖, 𝑛1, 𝑛2, ℓ′) = Avg𝑝 Avgℓ
(
| |𝜅𝑖 ∗ 𝜓𝑛1 ,ℓ | ∗ 𝜓𝑛2 ,ℓ

′−ℓ |
)

for 𝑛1 ≤ 𝑛2, (13)

where the average runs over all the pixels 𝑝 and over all
values of the rotation index ℓ (similar to the WPH case).

D. Measurement in data and signal-to-noise

We present various statistics in Fig. 1, both as mea-
sured in the data and as measured in a set of simula-
tions that we did not use for our cosmological inference
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Figure 1. Some of the Gaussian and non-Gaussian statistics
considered in this work, for the first (left column) and fourth
(right column) tomographic bins. Red points are the statis-
tic as measured in data, using the noisy convergence map;
error bars have been estimated using 400 measurements at a
fixed cosmology from the CosmoGridV1 simulations [45]. Blue
lines show the measurements in the CosmoGridV1 simulations,
averaged over the multiple simulations available at the fidu-
cial cosmology. The blue lines only serve to guide the eye, as
they are not a best fit to our data. However, the cosmological
parameters of the CosmoGridV1 simulations are not too dis-
similar from our best-fit parameters, so the blue lines provide
a reasonable fit. For statistics involving filters with different
sizes 𝑗1, 𝑗2, we considered 𝑗1 = 𝑗2. The grey region shows for
comparison the 68 % contour of the noisy measurements from
the Gower Street simulations with |𝐴 IA | < 1 and |𝜂 IA | < 1
(which correspond to ∼ 500 mock measurements).
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Table II. Salient properties of the summary statistics. The second column denotes whether it carries Gaussian (G) or non-
Gaussian (NG) information. The third column refers to the order of the field 𝜅. The fourth column is the number of
components of the data vector across scales and tomographic bins. The further columns show the signal-to-noise ratio (SN)
of the measurements in data.

G/NG Order Data vector length SN(Bin 1) SN(Bin 2) SN(Bin 3) SN(Bin4)

2nd moments G 2 160 3.9 7.8 16.6 13.7

3rd moments NG 3 512 0.7 1.3 2.5 1.9

WPH S11 (WPHG) G 2 120 3.4 7.1 15.9 13.1

WPH S00 NG 2 96 3.2 6.7 15.2 12.3

WPH S01 NG 2 480 0.5 2.5 2.1 3.2

ST1 NG 1 60 3.4 7.6 16.3 14.4

ST2 NG 1 630 3.3 7.3 15.9 13.7

pipeline (CosmoGridV1 simulations [45]). The simu-
lated data vector is used solely to guide the eye, as the
simulations are not expected to provide the best fit to
the measurements in the data. The figure also shows
the 68% contour spanned by the noisy measurements
from the Gower Street simulations; these encompass the
measurements in data very effectively. When calculat-
ing this region, we limited the analysis to an Intrinsic
Alignment (IA) interval smaller than the Gower Street
prior (|𝐴 IA | < 1 and |𝜂 IA | < 1) to simplify visualisa-
tion. Without this restriction, the grey region in the
first bin would be significantly larger, as it can be highly
impacted by large IA values. We also report the mea-
sured signal-to-noise ratio in Table II; these ratios are
very similar to the ones reported in paper I for simu-
lated measurements.

E. Data Compression

Data compression increases the efficiency of density
estimation by reducing the data vector’s dimensionality.
In this work we use neural compression and we match the
dimension of the compressed summary statistics to that
of the parameters of interest 𝜃. Specifically, for a sum-
mary statistic d, we compress it as t = 𝐹𝜙 (d), modelling
the compression function 𝐹𝜙 with a neural network. We
optimize 𝜙 by minimizing a mean squared error (MSE)
loss using the first half of our pseudo-independent mocks.
The architecture used for the network and the number
of parameters are summarised in Table 3 in paper I.

Given that we are principally focused on constrain-
ing the parameters Ωm, 𝑆8, 𝑤, and 𝐴IA, we target these
parameters exclusively for individual compression and
refrain from compressing the data vectors for any other
parameters. We compress each summary statistic sep-
arately and then amalgamate their compressed forms
during the likelihood inference stage. Specifically, we
compress the second moments, third moments, WPHG,
WPH 𝑆00, ST1, and ST2 on an individual basis, whereas
for optimisation purposes we compress WPH 𝑆01 and
WPH 𝐶01 jointly.

IV. SIMULATION-BASED INFERENCE AND
POSTERIOR ESTIMATION

This work relies on simulation-based inference (also
known as likelihood-free inference) to ensure a reliable
inference of the cosmological parameters. More details
are given in paper I; in brief, in simulation-based infer-
ence the likelihood is not assumed to have a closed form,
but rather is estimated from mock noisy realisations of
the summary statistics. We use an ensemble of neu-
ral density estimators (NDEs) – Gaussian Mixture Den-
sity Networks (MDNs; [12]) and Masked Autoregressive
Flows (MAF; [61]) – to estimate the conditional distri-
bution 𝑝(𝑑 |𝜃). NDEs approximate this distribution with
estimates 𝑞(𝑑 |𝜃; 𝜙′) where the network parameters 𝜙′ are
optimized by minimizing a loss function.

We use the package pyDELFI [5] both for density esti-
mation and for neural network training. For the training
phase, we input the compressed statistics from half of our
simulations, specifically those not used in the compres-
sion step. Density estimation is performed using the pa-
rameter set 𝜃 = [Ωm, 𝑆8, 𝑤, 𝐴 IA] and the corresponding
compressed data vectors. This approach implies that the
remaining parameters, which vary in the mock produc-
tions, are effectively marginalized over [43]. The process
of marginalization respects the prior distributions that
were applied to sample these parameters during the mock
generations, as detailed in Table I.

The final density estimation combines the different
ensemble estimates (MDNs and MAFs) weighted by
training-derived losses. With the estimated target dis-
tribution 𝑝(𝑑 |𝜃), we compute the likelihood at observed
data 𝑑 = 𝑑obs. The final posteriors are derived via
Markov chain Monte Carlo (MCMC) sampling of the
likelihood, while considering the priors mentioned in Ta-
ble I for the parameters 𝜃 = [Ωm, 𝑆8, 𝑤, 𝐴 IA]. For the
ΛCDM analysis, we simply run the MCMC sampling fix-
ing 𝑤 = −1. This MCMC sampling is carried out using
the publicly available software package EMCEE [28], an en-
semble sampler with affine-invariant properties designed
for MCMC.
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V. PRE-UNBLINDING TESTS

Blinding procedures are commonly used in weak lens-
ing analyses to prevent observer biases. Researchers in-
tentionally conceal from themselves specific details of the
data or analysis pipeline until late in the analysis; this
promotes objectivity and reduces the influence of expec-
tations on the results. The main DES Y3 weak lensing
analysis [6, 76] uses a two-stage blinding scheme. First,
the weak lensing sample was blinded by means of a mul-
tiplicative factor [34]; second, the summary statistics un-
der study were manipulated according to a transforma-
tion introduced by [59]. This transformation was specif-
ically designed to induce a shift in the posterior distri-
butions, while ensuring that the measured data vectors
could still be subjected to systematic tests and analy-
sis. At the time of writing, the shape catalogue was al-
ready published and unblinded; therefore the first level
of blinding was not applied in this paper. Furthermore,
our pipeline does not accommodate the second blinding
stage, as that stage relies on a parameter-based model of
noise-free summary statistics, which we lack. Given that
the main DES Y3 cosmological findings are already pub-
lic, we opted not to blind our catalogue or data vectors.
Instead, we refrained from examining the data posteriors
until after our pipeline validation and null tests on the
data vectors were successfully completed. In addition to
the tests conducted at the catalogue and map level, as
described in [34] and [42], we performed the following
tests, detailed in paper I:

• Validation of the Gower Street simulations: We
tested that the power spectra of the noiseless, full-
sky convergence of the Gower Street simulations
were in an approximately one percent agreement
with theory predictions; moreover, we tested that
the noise properties of our mocks (i.e. second,
third, and fourth moments of the noise, as well
as its cumulant distribution function) were able to
describe the noise properties of our data.

• Validation of the posteriors: We checked, using an
empirical coverage test, that the size of the posteri-
ors estimated by our NDEs was not misestimated.

• End-to-end validation of the pipeline on simula-
tions: We tested, using an independent set of sim-
ulations, that the pipeline was able to recover true
cosmology for the summary statistics considered in
this work.

• Tests on baryonic contamination: We conducted
tests using a subset of simulations that have been
post-processed to incorporate baryonic feedback
via the baryonic correction model [8, 74]. Our
objective was to verify that our statistics and
the scales utilized in this study were not signifi-
cantly impacted by potential baryonic contamina-
tion, which the simulations in our pipeline do not
model. Specifically, we confirmed that the peak

of the marginalized two-dimensional posterior dis-
tribution of Ωm and 𝑆8, when analyzing baryon-
contaminated data, falls within 0.3𝜎 of the peak
obtained from clean data.

• Tests on additive biases due to PSF modelling er-
rors: We checked that additive biases due to PSF
modelling errors were negligible at the data vector
level, i.e. that if neglected they would not bias our
cosmological analysis. This test is similar to that
performed in the DES Y3 cosmic shear analysis [6].

• Tests on possible modelling errors of the source
clustering effect: We checked that potential errors
in our model for the source clustering effects were
negligible, i.e. that they would not bias our cos-
mological analysis.

These tests were performed in paper I for a 𝑤CDM
analysis. Appendix A repeats some of these for a ΛCDM
analysis, and also adds two sets of tests:

• Test on the impact of redshift uncertainties and
shear biases: We show that we can recover the true
cosmology of the simulations even if the parame-
ters describing redshift uncertainties and shear bias
calibrations were 2𝜎 off their mean values.

• Sensitivity to the details of the N-body simula-
tions: We show that our posteriors are not sensi-
tive to the details of the simulations used (box size,
number of particles, redshift resolution).

Finally, before examining the posteriors we performed
three additional tests:

• B-mode ‘null-test’: Weak lensing does not produce
B-modes at first order, making such modes useful
for identifying systematics. For masked data, how-
ever, the map-making procedure can cause small
B-modes due to E-modes leakage at large scales.
We perform in Appendix B a comparison between
data and simulated B-modes; this suggests no
anomaly in our data measurements.

• Goodness-of-fit: We assess the goodness-of-fit 𝑝-
value for the compressed data vectors, ensuring
they do exceed 1 percent (𝑝-value> 0.01, see Sec-
tion VI, Tables IV, III). We used the following pro-
cedure to measure 𝑝-values. Let L(x) denote the
likelihood of a data vector x. For each summary
statistic (or combination of statistics), we trained
the Neural Density Estimators on all (compressed)
simulated data vectors except one, denoted x𝑖, se-
lected at random. We then estimated the minimum
log likelihood2 from the learned likelihood surface
for the simulated data vector excluded from the

2 The routine scipy.optimize.differentialevolution was used.
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training; we denote this minimum log likelihood
by

minLL𝑖 ≡ min logL(x𝑖). (14)

This process was repeated for a thousand data vec-
tors. Next, we estimated the minimum log likeli-
hood for our data:

minLLdata = min logL(d). (15)

Subsequently, we computed the probability-to-
exceed 𝑝 by counting the fraction of simulated data
vectors that had a minimum log likelihood greater
than that of the observed data:

𝑝 =
1

𝑁

𝑁∑︁
𝑖=1

𝟙(minLL𝑖 > minLLdata), (16)

where 𝟙 is the indicator function, which is 1 if its
argument is true and 0 otherwise. We note that
this goodness-of-fit test is valid only for compressed
data vectors; a satisfactory 𝑝-value for compressed
statistics does not necessarily imply a similar out-
come for uncompressed statistics. Unfortunately,
we are unable to test the uncompressed statis-
tics, as learning the likelihood of the uncompressed
measurements is not feasible with the limited sim-
ulations available to us. However, we note that
the uncompressed data are effectively encompassed
by the uncompressed mock measurements from the
Gower Street simulations, as depicted in Fig. 1.
This provides evidence that the uncompressed data
vector does not exhibit features that are unac-
counted for in our mock simulations.

• Stability of the posterior: We visually checked that
the four NDEs were delivering consistent posteriors
when considered individually (Appendix ??). This
was done by blinding the cosmological parameter
axes.

• Internal consistency of summary statistics: We as-
sess the internal consistency of the various sum-
mary statistics employed. To do this, we use the
Posterior Predictive Distribution (PPD) method-
ology, developed by [24] and implemented in the
main DES Y3 analysis. This methodology is
designed to calculate a calibrated probability-to-
exceed 𝑝-value. For consistency tests between two
types of summary statistics, we generate realisa-
tions of one type of summary statistic (e.g. sec-
ond moments) under the assumption that the other
type (e.g. third moments) is the one measured in
data. These realisations are obtained using pa-
rameters drawn from the posterior combining both
types of statistics. In our case, we easily obtained
these realisations from the joint likelihood, which
we learned using the noisy (compressed) measure-
ments from the Gower Street simulations. These
realisations are then compared to actual observa-
tions using a distance metric (in our case, the log

likelihood) in the compressed data space; this met-
ric is then used to determine the 𝑝-value. More
details on the exact implementation are given in
[24]. We report in Table V the PPD 𝑝-values ob-
tained comparing second moments against third
moments, ST, and WPH (and vice-versa); all the
values are well above the 𝑝 = 0.01 threshold. Note
that the PPD calculation is not symmetric in its
two arguments.

Only once all these tests were passed did we look at
the unblinded posteriors of our analysis.

VI. RESULTS

We present the cosmological constraints obtained from
our analysis of the DES Y3 data, assuming in turn the
ΛCDM and 𝑤CDM models. We focus on the param-
eters used to learn the likelihood, which are the most
constrained ones: Ωm, 𝑆8, 𝐴IA, and (for the 𝑤CDM sce-
nario) 𝑤. The other cosmological parameters and nui-
sance parameters varied when creating the mocks are
automatically marginalized over in our formalism. When
reporting constraints, we also report the Figure of Merit
(FoM) associated with 𝑆8 and Ωm, defined by

FoM(𝑆8,Ωm) =
(
det(𝐶𝑆8 ,Ωm)

)−0.5
. (17)

where 𝐶𝑆8 ,Ωm is the covariance matrix of the parameters
(estimated from their posterior).

A. ΛCDM results

This subsection presents the ΛCDM results. The left
plot in Fig. 2 displays the posterior distributions for 𝑆8,
Ωm, and 𝜎8 from a combination of different summary
statistics; the constraints are also detailed in Table III,
together with 𝑝-values and the FoMs. Constraints for the
individual statistics are shown in Appendix E. As con-
firmed by our PPD consistency tests (Table V), all the
posteriors appear to be consistent with each other, with
their constraints largely overlapping. The marginalised
mean values of 𝑆8, Ωm, and 𝜎8 for the combination of
all the summary statistics (grey line in plot), along with
the 68 percent credible intervals, are:

𝑆8 = 0.794 ± 0.017

Ωm = 0.259 ± 0.025

𝜎8 = 0.857 ± 0.042 .

The constraints obtained by combining all the summary
statistics are significantly tighter than the constraints
from second moments only: by ∼ 15 percent for 𝑆8, ∼ 25
percent for 𝜎8 and Ωm, and ∼70 percent for the FoM. Im-
portantly, constraints significantly improve not only 𝑆8
but also Ωm. When combining non-Gaussian statistics
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Table III. Constraints on various parameters for different summary statistics and their combinations, for the ΛCDM model.
For each parameter we report the mean and 68 percent credible interval. The last two columns report the FoM and the
𝑝-values.

ΛCDM Summary Statistic(s) 𝑆8 𝜎8 Ωm 𝐴IA FoM(𝑆8,Ωm) 𝑝-value

2nd moments 0.796+0.021−0.020 0.849+0.055−0.056 0.267+0.033−0.033 0.45+0.48−0.42 1303 0.39

2nd+3rd moments 0.801+0.021−0.021 0.847+0.044−0.044 0.270+0.028−0.029 0.51+0.53−0.50 1398 0.79

2nd moments+ST 0.791+0.019−0.018 0.846+0.044−0.044 0.264+0.027−0.028 0.34+0.35−0.33 1770 0.41

2nd moments+WPH 0.801+0.020−0.020 0.866+0.044−0.045 0.259+0.027−0.026 0.44+0.45−0.43 1817 0.75

2nd moments+ST+WPH 0.791+0.018−0.018 0.855+0.043−0.044 0.259+0.027−0.027 0.36+0.37−0.36 2069 0.60

2nd+3rd moments+ST+WPH 0.794+0.017−0.017 0.857+0.042−0.042 0.259+0.025−0.025 0.32+0.33−0.31 2234 0.71

DES Y3 cosmic shear 0.788+0.016−0.019 0.810+0.061−0.071 0.289+0.044−0.039 0.33+0.28−0.27 1402

DES Y3 2nd+3rd moments (G22) 0.787+0.021−0.016 0.819+0.038−0.028 0.279+0.033−0.029 0.40+0.61−0.38 1747

DES Y3 Cl+Peaks (Z22) 0.797+0.014−0.014 0.849+0.100−0.117 0.276+0.077−0.064 -0.04+0.19−0.19 1031

Table IV. Constraints on various parameters for different summary statistics and their combinations, for the 𝑤CDM model.
For each parameter we report the mean and the 68 percent credible interval (except that for 𝑤 we report the mean and 68
percent upper limit). The last two columns report the FoM and the 𝑝-values.

𝑤CDM Summary Statistic(s) 𝑆8 𝜎8 Ωm 𝑤 𝐴IA FoM(𝑆8,Ωm) 𝑝-value

2nd moments 0.826+0.028−0.028 0.870+0.056−0.057 0.274+0.037−0.037 < -0.62 0.31+0.37−0.29 899 0.66

2nd+3rd moments 0.825+0.026−0.027 0.858+0.047−0.047 0.280+0.033−0.033 < -0.69 0.58+0.39−0.39 1121 0.73

2nd moments+ST 0.814+0.024−0.024 0.847+0.046−0.046 0.279+0.032−0.033 < -0.68 0.38+0.30−0.29 1274 0.30

2nd moments+WPH 0.830+0.024−0.024 0.862+0.043−0.043 0.281+0.032−0.032 < -0.65 0.35+0.31−0.30 1435 0.90

2nd moments+ST+WPH 0.819+0.021−0.021 0.855+0.045−0.045 0.277+0.032−0.032 < -0.70 0.28+0.25−0.25 1605 0.58

2nd+3rd moments+ST+WPH 0.817+0.021−0.021 0.861+0.041−0.041 0.273+0.029−0.029 < -0.72 0.37+0.30−0.29 1725 0.67

DES Y3 cosmic shear 0.813+0.032−0.022 0.816+0.082−0.077 0.303+0.040−0.051 < -0.77 0.34+0.28−0.25 901

ΛCDM Data Splits 𝑝-values

2nd moments vs. 3rd moments 0.50

3rd moments vs. 2nd moments 0.20

2nd moments vs. ST 0.58

ST vs. 2nd moments 0.28

2nd moments vs. WPH 0.16

WPH vs. 2nd moments 0.11

𝑤CDM Data Splits 𝑝-values

2nd moments vs. 3rd moments 0.47

3rd moments vs. 2nd moments 0.36

2nd moments vs. ST 0.45

ST vs. 2nd moments 0.33

2nd moments vs. WPH 0.14

WPH vs. 2nd moments 0.13

Table V. Summary of internal consistency test 𝑝-values. All
internal consistency tests pass the pre-defined (arbitrary)
threshold of 0.01.

with second moments, WPH provides the largest gain,
followed by ST and 3rd moments; the combination of all
the summary statistics provide a further enhancement
in the constraints, confirming the findings of paper I.
The gain in constraining power comes both from the ad-
ditional information probed by non-Gaussian statistics
and from the degeneracy breaking in the Ωm–𝜎8 plane
(as non-Gaussian statistics are characterized by a slightly
different tilt in that plane compared to second moments).

Fig. 3 shows the constraints on the intrinsic alignment
parameter 𝐴IA, for second moments and the combination
of all summary statistics. The constraints improve by up
to approximately 35 percent when non-Gaussian statis-
tics are included, underscoring the ability of beyond-
Gaussian statistics to enhance non-cosmological param-
eters as well. Our measurements indicate a preference
for a small positive (i.e. non-zero) intrinsic alignment
amplitude.
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Figure 2. Posterior distributions of the cosmological parameters Ωm, 𝑆8, and 𝜎8, for different summary statistics and their
combinations (“All”), as measured in our data (ΛCDM on the left, 𝑤CDM on the right). The two-dimensional marginalised
contours in these figures show the 68 percent and 95 percent credible regions.

B. 𝑤CDM results

This subsection analyzes the 𝑤CDM results. The right
plot in Fig. 2 displays the posterior distributions for
𝑆8, Ωm, and 𝜎8 for a combination of summary statistics
(the same as shown for the ΛCDM case); constraints
are also detailed in Table IV, along with 𝑝-values and
the Figures of Merit (FoMs). Fig. 4 shows the poste-
rior for 𝑆8 and 𝑤. The results are in spirit very similar
to what we obtained for the ΛCDM case; posteriors de-
rived from different summary statistics largely overlap,
and the combination of these statistics significantly im-
proves constraints compared to those from second mo-
ments only. The marginalised mean values of 𝑆8, Ωm,
and 𝜎8 for the combination of all the summary statistics
(grey line in plot), along with the 68 percent credible
intervals, are:

𝑆8 = 0.817 ± 0.021

Ωm = 0.273 ± 0.029

𝜎8 = 0.861 ± 0.041 .

We observe an improvement in the constraints over
second moments of approximately 25 percent for 𝑆8 and
𝜎8, approximately 20 percent for Ωm, and about 90 per-
cent for the Figure of Merit (FoM) when all the statistics
are considered. Interestingly, we obtain slightly higher
values for 𝑆8 in the 𝑤CDM scenario compared to the
ΛCDM case. This is a consequence of opening the pa-
rameter space along 𝑤 in a non-symmetric way (𝑤 > −1);

since the 𝑆8 and 𝑤 posteriors show a slight degeneracy
(see Fig. 4), this pushes 𝑆8 upwards compared to the
case when 𝑤 is fixed at −1. Concerning the constraints
on the parameter 𝑤, all the probes are consistent with
each other. The constraints get smaller as we include
more summary statistics, and they push towards our
prior boundary at 𝑤 = −1, consistent with a ΛCDM sce-
nario. Last, the constraints on the intrinsic alignment
amplitude 𝐴IA are completely consistent with the ones
obtained in the ΛCDM case, as shown in Fig. 3.

C. Comparison with other DES analyses

We discuss how the parameter constraints obtained
from this work compare to those obtained by other
cosmological analyses using DES Y3 weak lensing
data. Several analyses incorporating Gaussian and non-
Gaussian statistics have been conducted with DES Y3
data. Although these studies use identical data and cali-
bration, direct comparison of their outcomes is complex.
This complexity arises from varying analysis and mod-
elling choices adopted in each study, as these can signif-
icantly impact the results. To facilitate a more accurate
comparison, we attempted to replicate the analyses us-
ing similar analysis and modelling choices as in our study,
wherever feasible. Below, we provide an overview of each
study we are comparing. Fig. 5 offers a visual compar-
ison of the constraints on 𝑆8, 𝜎8, and Ωm for both the
ΛCDM and 𝑤CDM models, and the corresponding con-
straint values and Figures of Merit (FoMs) are detailed
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eters 𝑆8 and 𝐴IA, for second moments and for the combina-
tion of all the summary statistics (“All”), to better highlight
the contribution of non-Gaussian statistics to the overall con-
straints. The two-dimensional marginalised contours in these
figures show the 68 percent and 95 percent credible regions.
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Figure 4. Posterior distributions of the cosmological param-
eters 𝑆8 and 𝑤, for second moments and for the combina-
tion of all the summary statistics (“All”), to better highlight
the contribution of non-Gaussian statistics to the overall con-
straints.The two-dimensional marginalised contours in these
figures show the 68 percent and 95 percent credible regions.

in Tables III and IV.

DES Y3 cosmic shear. The first study to which we
compare our results are the DES Y3 cosmic shear anal-
yses [6, 76] for both ΛCDM and 𝑤CDM models. We
repeated these analyses trying to match the same anal-
ysis choices used in our study. Notably, we excluded the
shear ratio likelihood [73], since it is not included in our
pipeline. Shear ratios, which are galaxy-galaxy lensing
measurements at small scales, primarily constrain intrin-
sic alignment (IA) and redshift parameters. Since IA am-
plitude is correlated with 𝑆8, incorporating shear ratios
significantly enhances 𝑆8 constraints. We also adopted
the same priors for parameters 𝑛s, Ωb, ℎ100, and neu-
trino mass used in this work. For redshift uncertainties,
we used the HyperRank method [21], which was not
the standard method in [6, 76], but which is employed
in our current analysis. We also used as intrinsic align-
ment model the Non-Linear Alignment (NLA) model,
augmented with a clustering term with a fixed galaxy-
matter bias of one. We note, however, that the cluster-
ing term included in the IA model of the cosmic shear
analysis is estimated using tree-level perturbation the-
ory, whereas our implementation directly uses the clus-
tering of the simulation, which should be more accurate.
Another difference with our pipeline is that it automati-
cally excludes information on large multipoles (ℓ > 1000)
by imposing a hard cut during the map making pro-
cess. This restriction is not present in the cosmic shear
analysis, which can theoretically probe smaller scales.
Both analyses, however, have undergone the same pro-
cess of scale cuts, where small scales were excluded if
they were potentially affected by unmodelled baryonic
effects. Last, the full impact of source clustering is not
accounted for in the cosmic shear analysis, although its
impact should be negligible [33].

Fig. 5 and Tables III and IV show the remarkable
agreement between the DES cosmic shear analysis and
our work. The cosmic shear Figure of Merit (FoM) is
very similar to that from our second moments; this is
expected, as they are both Gaussian statistics applied
to the same dataset with similar analysis choices. The
FoM from our work, when all summary statistics are
combined, greatly improves over the cosmic shear one,
as expected. The constraints on intrinsic alignment and
𝑤 are also compatible. Interestingly, despite the FoM
from the combination of all statistics being almost dou-
ble that of the cosmic shear analysis, we note that not
all parameter constraints are necessarily improved (e.g.
𝐴IA in the 𝑤CDM case or 𝑆8 in the ΛCDM case). This
might be due to the limited access to small-scale informa-
tion at ℓ > 1000 not probed by our work, a non-optimal
compression of our statistics along the 𝑆8 and 𝐴IA di-
rections, or simply due to a slightly different degeneracy
direction in the 𝜎8–Ωm plane, a consequence of different
constraining power. Despite this, the significant gain
in the FoM over the fiducial DES cosmic shear analysis,
and the compatibility of the constraints obtained using a
completely different and independent pipeline, strongly
highlight the importance of a simulation-based analysis
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Figure 5. Posterior distributions of the cosmological parameters Ωm, 𝑆8, and 𝜎8, as measured in data. We compare the results
of this work to other analyses using DES data. The two-dimensional marginalised contours in these figures show the 68 percent
and 95 percent credible regions.
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Figure 6. DES Y3 and external data constraints from low and high redshift probes. The two-dimensional marginalised contours
in these figures show the 68 percent and 95 percent credible regions. We find no evidence for statistical inconsistency between
the results of this work and external data set.

using non-Gaussian statistics.

DES Y3 second and third moments. The second
study to which we compare our results is the ΛCDM
analysis of second and third moments from Gatti et
al. [31]. This analysis uses the third moments as non-

Gaussian statistics, measured in the same way as we
did in this work. However, the modelling approach was
analytical, in contrast to our pipeline. Additionally, a
MOPED compression [37] was used, in contrast to the
neural network compression used in the current study.
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As with the case of cosmic shear, we endeavoured to
align the analysis choices with our pipeline. In contrast
to the fiducial analysis choices in [31], we reran the sec-
ond and third moments analysis without including shear
ratios; furthermore, we matched the priors on the pa-
rameters 𝑛s, Ωb, and ℎ100. However, the [31] analysis
did not vary the neutrino mass, as neutrinos were not
modelled; this was an analysis choice we could not alter.
Additionally, source clustering effects were not modelled,
although their impact on third moments was mitigated
using the method explained in [33]. For the intrinsic
alignment model, we employed the NLA model, but we
were unable to include a galaxy-matter bias term. Lastly,
as in the cosmic shear analysis, no explicit cut on multi-
poles ℓ > 1000 was made, though a scale cut intended to
minimize the impact of unmodelled baryonic effects was
implemented.

Results from this revised analysis of the second and
third moments also overlap with the constraints from
our work (see Fig. 5, and Tables III and IV). The Fig-
ure of Merit (FoM) is larger than that of our second
moments, but smaller than the one from the combina-
tion of all summary statistics. The constraints are also
compatible with those obtained from our implementa-
tion of the second and third moments analysis. Given
the subtle differences between the two pipelines, we did
not expect a perfect match; however, the match is no-
tably good. This serves as further validation of the work
done here and the analytical modelling in [31], consid-
ering that the two pipelines are completely independent
and follow very different approaches.

DES Y3 Peak counts. The third study to which we
compare our results are the ΛCDM constraints from the
power spectrum plus peak counts analysis presented in
Zuercher et al. [89]. This analysis includes peak counts
as a non-Gaussian statistic and is entirely simulation-
based, though it differs from our work in several aspects.

Firstly, the analysis relied solely on the DarkGridV1
simulation suite, primarily exploring two cosmological
parameters (𝑆8 and Ωm). The dependence on other cos-
mological parameters (𝑛s, Ωb, and ℎ100) was modelled
through a Taylor expansion of the data vector, calibrated
against a limited set of N-body simulations. Neutrinos
were not varied in this analysis. To model the data vec-
tor, a three-parameter emulator was constructed for 𝑆8,
Ωm, and 𝐴IA; other nuisance parameters were modelled
by Taylor-expanding the data vector, an approach differ-
ent from ours. A Non-Linear Alignment (NLA) intrinsic
alignment (IA) model was used, without the clustering
term, and source clustering effects were not included. As
in our work, no shear ratio likelihood was incorporated
in the original analysis. No explicit cut on multipoles
ℓ > 1000 was made, although a scale cut was imple-
mented to reduce the impact of unmodelled baryonic ef-
fects. A MOPED compression was used to compress the
data vector, and a Gaussian likelihood was assumed. In
our comparison with the peaks analysis, we retained all
the fiducial choices made by [89]. We refrained from im-
posing the Gower Street prior on 𝑛s, Ωb, and ℎ100, as this

would have tightened the constraints and invalidated the
original scale cut. For the cosmic shear and second and
third moments analyses, such an adjustment was feasible
as we chose to not include shear ratios, which counter-
balanced the gain in constraining power from having a
tight prior on 𝑛s, Ωb, and ℎ100.
The results of the peak counts analysis, as displayed

in Fig. 5, are in alignment with our findings, with the
posterior largely overlapping ours. Notably, this analysis
delivers tighter constraints on 𝑆8 but is much less restric-
tive regarding Ωm and the overall Figure of Merit. The
noticeable differences in constraining power, given the
significant differences in analysis choices, are somewhat
expected. This underscores the challenges in comparing
results from the same dataset when different analysis
methods are employed.

VII. COMPARISON WITH EXTERNAL DATA

We compare our cosmological constraints with re-
sults from various external datasets. Although different
choices could be made regarding which data to compare,
we have adhered to the comparisons used in the fiducial
DES cosmic shear analysis [76]. In particular we con-
sider:

• eBOSS: we use spectroscopic baryon acoustic oscil-
lation (BAO) measurements from eBOSS [3]. The
BAO likelihood is assumed to be independent of
DES. See [1] for a detailed description of the like-
lihoods included (but note that unlike [1], we do
not include RSD constraints from eBOSS; this is
in line with the analysis choices adopted for the
DES Y3 cosmic shear analysis in [76]).

• Pantheon Supernovae: we consider the luminosity
distances from Type Ia supernovae from the Pan-
theon sample [75]; this data set includes 279 type
Ia supernovae from the PanSTARRSMedium Deep
Survey (0.03 < 𝑧 < 0.68) and samples from SDSS,
SNLS, and HST. The final Pantheon catalogue in-
cludes 1048 SNe, out to 𝑧 = 2.26.

• Planck 2018 CMB: we use the final data release
of the Planck Cosmic Microwave Background
(CMB) survey [66] including measurements of both
temperature and polarization anisotropies, in the
same way it is implemented in [76].

To perform a meaningful comparison, we recomputed the
posteriors using the priors on cosmological parameters
used in this work (Table I) for eBOSS and supernovae
data. We did not do this for the Planck data as the pri-
ors on 𝑛s, ℎ, and Ωb are partially determined by Planck
constraints. Note, though, that we are mostly interested
in testing the compatibility for the parameters 𝑆8, Ωm,
and 𝑤; our analysis does not constrain the other cos-
mological parameters, which are completely prior domi-
nated.
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A. Quantifying tension

To estimate the agreement or disagreement between
different datasets, we use the normalizing flow Monte
Carlo estimate of the probability of a parameter differ-
ence as discussed in [70]. We use the implementation of
this algorithm in tensiometer [70, 71]. In the case of
uncorrelated data sets, the probability of the parameter
difference is:

P(Δ𝜃) =
∫
𝑉𝑝

P𝐴(𝜃)P𝐵 (𝜃 − Δ𝜃)𝑑𝜃, (18)

where 𝑉𝑝 is the prior support and P𝐴 and P𝐵 are the
two posterior distributions of the parameters. The prob-
ability of an actual shift in parameter space is obtained
from the density of parameter shifts:

Δ =

∫
P(Δ𝜃 )>P(0)

P(Δ𝜃) 𝑑Δ𝜃, (19)

which is the posterior mass above the contour of
constant probability for no shift, Δ𝜃 = 0. Due to the
discrete nature of our posterior samples, the convolu-
tion integral in Eq. (18) is performed with a Monte
Carlo algorithm. To compute Eq. (19) we first train
a normalizing flow within tensiometer to model the
probability density of parameter shifts and then we
perform a Monte Carlo integral with the trained normal-
izing flow. For further details, we refer the reader to [70].

In the following, our results are always reported in
terms of effective number of standard deviations. When
considering an event with probability P, this is deter-
mined by

𝑛𝜎 ≡
√
2Erf−1 (P), (20)

where Erf−1 is the inverse error function. It represents
the number of standard deviations that an event with
the same probability would have if it were drawn from a
Gaussian distribution. This definition does not assume
a Gaussian distribution of the underlying statistics and
should be interpreted as a logarithmic scale for proba-
bilities.

1. Compatibility between this analysis and external data

In Table VI we show the estimate of the tension be-
tween the different DES observables we consider, the
Planck 2018 CMB data, and the joint BAO+SNe
dataset. As we can see DES measurements are broadly
in agreement with these measurements. In particular,
we find that no pairwise comparison exceeds 2.2𝜎. This
tells us that different DES data combinations agree with
geometric probes on the determination of Ω𝑚 and 𝑤 and
with the CMB on all three parameters.

ΛCDM Summary Statistic(s) Planck 2018 BAO+SNe

2nd moments 1.4𝜎 0.7𝜎

2nd+3rd moments 1.4𝜎 0.8𝜎

2nd moments+ST 1.7𝜎 0.9𝜎

2nd moments+WPH 1.2𝜎 0.8𝜎

2nd moments+ST+WPH 2.0𝜎 1.3𝜎

2nd+3rd moments+ST+WPH 1.8𝜎 1.1𝜎

𝑤CDM Summary Statistic(s) Planck 2018 BAO+SNe

2nd moments 1.8𝜎 0.9𝜎

2nd+3rd moments 1.6𝜎 0.7𝜎

2nd moments+ST 2.0𝜎 0.8𝜎

2nd moments+WPH 1.8𝜎 1.0𝜎

2nd moments+ST+WPH 1.6𝜎 1.0𝜎

2nd+3rd moments+ST+WPH 2.2𝜎 1.0𝜎

Table VI. Compatibility of different DES observables with
Planck and BAO + SNe results, assuming the ΛCDM and
𝑤CDM models.

In Table VII we show the results of estimating the
discrepancy between DES probes and all other joint
datasets, assuming both the ΛCDM and 𝑤CDM mod-
els. This reassures us that all DES data combinations
can be combined with all external probes. Note that (in
more than one dimension) having 𝐴 and 𝐵 in agreement,
and having both separately in agreement with 𝐶, does
not guarantee that the combination of 𝐴 and 𝐵 will be in
agreement with 𝐶. For this reason, we explicitly check
for the compatibility of all DES data combinations and
joint external data.

ΛCDM Summary Statistic(s) Planck 2018+BAO+SNe

2nd moments 1.1𝜎

2nd+3rd moments 1.1𝜎

2nd moments+ST 1.4𝜎

2nd moments+WPH 1.1𝜎

2nd moments+ST+WPH 1.7𝜎

2nd+3rd moments+ST+WPH 1.6𝜎

𝑤CDM Summary Statistic(s) Planck 2018+BAO+SNe

2nd moments 1.4𝜎

2nd+3rd moments 1.2𝜎

2nd moments+ST 1.6𝜎

2nd moments+WPH 1.5𝜎

2nd moments+ST+WPH 1.6𝜎

2nd+3rd moments+ST+WPH 1.7𝜎

Table VII. Compatibility of different DES observables with
Planck + BAO + SNe results, assuming the ΛCDM and
𝑤CDM models.
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2. Compatibility between early and late times universe

We now investigate the agreement between probes of
the early and late time universe. We select the DES
probe combining ‘2nd+3rd moments+ST+WPH’ since
it is the most constraining among the DES summary
statistics. Table VIII shows broad agreement between
these two probes for both the ΛCDM and 𝑤CDM mod-
els.

Late (DES+SNe+BAO) vs Early (Planck 2018)

ΛCDM 1.7𝜎

𝑤CDM 2.1𝜎

Table VIII. Compatibility of probes of the early and late
time universe within the ΛCDM and 𝑤CDM models. For
the early Universe, we consider CMB measurements from
Planck 2018. For the late-time Universe we use the 2nd+3rd
moments+ST+WPH combination of DES probes joined with
SNe and BAO measurements.

3. Joint constraints

Having found a good level of agreement between the
posterior probability distributions from this analysis and
those from external probes, we can be confident that they
can be combined.

As the external data and our DES Y3 observations
are independent, we can simply use the posterior prob-
ability distributions from the external data as the prior
probability for our analysis.

We have already used the Planck external data to
justify the prior probability distributions for the so-called
nuisance parameters in the Gower Street simulations
(e.g. for Ω𝑏). Avoiding double counting of information,
we simply use a new prior distribution only on the pa-
rameters of interest (i.e. 𝑆8, Ω𝑚, and 𝑤), which is given
by the posterior distribution from the external analyses.
As our original priors on the parameters of interest are
flat, this requires a simple reweighting of the existing
posterior distribution.

We do this in two ways: (i) relearning the posterior
density of the parameters of interest from both our new
DES Y3 MCMC chains and the MCMC chains from the
external probes – we then multiply the learned densi-
ties; (ii) learning the posterior density of the parameters
of interest for the external probes, and rerunning the
MCMC chains using our learned DES Y3 simulation-
based likelihood using the learned density as a prior. In
both cases we use normalizing flows implemented in the
package tensiometer to learn the densities from the ex-
isting posterior samples.

Both these methods give consistent results; we use
method (i) in all quoted results.

ΛCDM DES+SNe+BAO Planck 2018 Joint

𝑆8 0.800 ± 0.017 0.831 ± 0.016 0.810 ± 0.011

Ω𝑚 0.290+0.010−0.012 0.3206 ± 0.0096 0.3070 ± 0.0067

𝑤CDM DES+SNe+BAO Planck 2018 Joint

𝑆8 0.807 ± 0.020 0.840 ± 0.016 0.813 ± 0.010

Ω𝑚 0.285 ± 0.013 0.346+0.017−0.024 0.3106 ± 0.0085

𝑤 < −0.905 < −0.891 < −0.97

Table IX. Cosmological constraints on parameters of interest
in the ΛCDM and 𝑤CDM models. For each parameter we
report the mean and 68 percent credible interval.

As we can see from Table IX the constraining power
from late-time universe probes is comparable with that of
CMB measurements. In ΛCDM this roughly amounts to
a 2% constraint on 𝑆8 and a 3% constraint on Ω𝑚. Since
the two probes are independent the constraints add in
quadrature almost perfectly, resulting in a 1% level joint
constraint. The joint constraints are also shown in Fig.
6.

VIII. SUMMARY

We presented a cosmological analysis using a combi-
nation of Gaussian and non-Gaussian statistics applied
to the weak lensing mass (convergence) maps from the
first three years (Y3) of the Dark Energy Survey (DES).
Specifically, we considered: 1) second and third mo-
ments; 2) wavelet phase harmonics (WPH); 3) the scat-
tering transform (ST). The second moments are Gaus-
sian statistics, while the third moments probe additional
non-Gaussian information of the fields. The WPH mo-
ments are the second moments of smoothed weak lensing
mass maps that have undergone a non-linear transfor-
mation, enabling the exploration of the non-Gaussian
features of the field. The ST coefficients are generated
through a series of smoothing and modulus operations
applied to the input field, followed by averaging. Both
the WPH and ST are often linked to convolutional neu-
ral networks (CNNs) because their statistical definitions
bear similarities to the architecture of CNNs. However,
unlike CNNs, they do not require training data.

Our analysis is entirely based on simulations, span-
ning a space of seven 𝜈𝑤CDM cosmological parameters.
It forward-models the most relevant sources of system-
atic errors in the data, including masks, noise variations,
clustering of the sources, intrinsic alignments, and shear
and redshift calibration. We have implemented a neural
network to compress the summary statistics, and esti-
mated the parameter posteriors using a simulation-based
inference (SBI) approach. Our analysis setup has been
extensively validated in paper I, which includes the vali-
dation of the mocks used in the analysis, empirical cover-
age tests of the posteriors obtained via simulation-based
inference, tests on the impact of physical effects not in-
cluded in the simulations (e.g. baryonic feedback effect),
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and an end-to-end validation of the pipeline using an
independent set of simulations. We complemented the
tests from paper I with additional ones, particularly fo-
cusing on our data measurements. These include tests on
the internal consistency of the different summary statis-
tics measured in the data, assessments of goodness-of-fit,
and B-mode null tests.

We demonstrated that incorporating and integrat-
ing various non-Gaussian statistics significantly enhances
constraints compared to relying solely on Gaussian
statistics (specifically, second moments). Notably, we
achieved a 70 percent (90 percent) improvement in the
Figure of Merit FoM(𝑆8,Ωm) for the ΛCDM (𝑤CDM)
model. The improvement in the FoM(𝑆8,Ωm) is a re-
sult of significant enhancements in both 𝑆8 and Ωm. By
combining all summary statistics, we measured the am-
plitude of fluctuation parameter 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5 =

0.794±0.017 with 2 percent precision, under the assump-
tion of a ΛCDM cosmology. In the case of a 𝑤CDM cos-
mology, the measurement was 𝑆8 = 0.817±0.021. The in-
clusion of non-Gaussian statistics significantly tightened
the constraints on 𝐴IA, the amplitude of intrinsic align-
ment. Additionally, in the context of the 𝑤CDM sce-
nario, these statistics also strengthened the constraints
on the parameter 𝑤, obtaining 𝑤 < −0.72, consistent
with a ΛCDM scenario.

We compared our results with other weak lensing re-
sults from the DES Y3 data, finding good consistency.
Our constraints outperform the results from the fiducial
DES cosmic shear analysis (as expected) due to the extra
information probed by the non-Gaussian statistics. We
also find statistical agreement (< 2.2𝜎) when comparing
with results from external datasets: Planck constraints
from the Cosmic Microwave Background, constraints
from spectroscopic BAO measurements, and constraints
from Type Ia supernovae.
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Ciències de l’Espai (IEEC/CSIC), the Institut de F́ısica
d’Altes Energies, Lawrence Berkeley National Labora-
tory, the Ludwig-Maximilians Universität München and
the associated Excellence Cluster Universe, the Univer-
sity of Michigan, NSF’s NOIRLab, the University of Not-
tingham, the Ohio State University, the University of
Pennsylvania, the University of Portsmouth, SLAC Na-
tional Accelerator Laboratory, Stanford University, the
University of Sussex, Texas A&M University, and the

www.dirac.ac.uk


18

OzDES Membership Consortium.
Based in part on observations at Cerro Tololo Inter-

American Observatory at NSF’s NOIRLab (NOIRLab
Prop. ID 2012B-0001; PI: J. Frieman), which is man-
aged by the Association of Universities for Research in
Astronomy (AURA) under a cooperative agreement with
the National Science Foundation.

The DES data management system is supported by
the National Science Foundation under Grant Num-
bers AST-1138766 and AST-1536171. The DES partic-
ipants from Spanish institutions are partially supported
by MICINN under grants ESP2017-89838, PGC2018-
094773, PGC2018-102021, SEV-2016-0588, SEV-2016-
0597, and MDM-2015-0509, some of which include

ERDF funds from the European Union. IFAE is par-
tially funded by the CERCA program of the General-
itat de Catalunya. Research leading to these results
has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework
Program (FP7/2007-2013) including ERC grant agree-
ments 240672, 291329, and 306478. We acknowledge
support from the Brazilian Instituto Nacional de Ciên-
cia e Tecnologia (INCT) do e-Universo (CNPq grant
465376/2014-2).

This manuscript has been authored by Fermi Re-
search Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy, Office
of Science, Office of High Energy Physics.

[1] Abbott, T. M. C., Aguena, M., Alarcon, A., et al., 2022,
Phys. Rev. D, 105, 2, 023520, arXiv:2105.13549

[2] Ajani, V., Peel, A., Pettorino, V., Starck, J.-L., Li, Z.,
Liu, J., 2020, Phys. Rev. D, 102, 10, 103531

[3] Alam, S., Aubert, M., Avila, S., et al., 2021,
Phys. Rev. D, 103, 8, 083533, arXiv:2007.08991

[4] Allys, E., Marchand, T., Cardoso, J. F., Villaescusa-
Navarro, F., Ho, S., Mallat, S., 2020, Phys. Rev. D, 102,
10, 103506

[5] Alsing, J., Wandelt, B., Feeney, S., 2018, MNRAS, 477,
2874

[6] Amon, A., Gruen, D., Troxel, M. A., et al., 2022,
Phys. Rev. D, 105, 2, 023514

[7] Anbajagane, D., Chang, C., Banerjee, A., et al., 2023,
MNRAS, 526, 4, 5530, arXiv:2308.03863

[8] Aricò, G., Angulo, R. E., Hernández-Monteagudo, C.,
et al., 2020, MNRAS, 495, 4, 4800

[9] Asgari, M., Lin, C.-A., Joachimi, B., et al., 2021, A&A,
645, A104, arXiv:2007.15633

[10] Banerjee, A., Abel, T., 2023, MNRAS, 519, 4, 4856
[11] Barthelemy, A., Codis, S., Uhlemann, C., Bernardeau,

F., Gavazzi, R., 2020, MNRAS, 492, 3, 3420
[12] Bishop, C. M., 1994, Mixture density networks, Tech.

rep., Aston University
[13] Boruah, S. S., Lavaux, G., Hudson, M. J., 2022, MN-

RAS, 517, 3, 4529
[14] Boyle, A., Uhlemann, C., Friedrich, O., et al., 2021, MN-

RAS, 505, 2, 2886
[15] Bridle, S., King, L., 2007, New Journal of Physics, 9, 444
[16] Bruna, J., Mallat, S., 2013, arXiv e-prints,

arXiv:1311.0407
[17] Chang, C., Pujol, A., Mawdsley, B., et al., 2018, MN-

RAS, 475, 3165
[18] Cheng, S., Marques, G. A., Grandón, D., et al., 2024,

arXiv e-prints, arXiv:2404.16085, arXiv:2404.16085
[19] Cheng, S., Ting, Y.-S., Ménard, B., Bruna, J., 2020,

MNRAS, 499, 4, 5902
[20] Cohen, A., Ryan, R. D., 1995, Wavelets and multiscale

signal processing, Chapman & Hall
[21] Cordero, J. P., Harrison, I., Rollins, R. P., et al., 2022,

MNRAS, 511, 2, 2170
[22] Dalal, R., Li, X., Nicola, A., et al., 2023, Phys. Rev. D,

108, 123519
[23] Dietrich, J. P., Hartlap, J., 2010, MNRAS, 402, 2, 1049
[24] Doux, C., Baxter, E., Lemos, P., et al., 2021, MNRAS,

503, 2, 2688

[25] Feldbrugge, J., van Engelen, M., van de Weygaert, R.,
Pranav, P., Vegter, G., 2019, JCAP, 2019, 9, 052

[26] Fluri, J., Kacprzak, T., Lucchi, A., et al., 2019,
Phys. Rev. D, 100, 6, 063514

[27] Fluri, J., Kacprzak, T., Refregier, A., Amara, A., Lucchi,
A., Hofmann, T., 2018, Phys. Rev. D, 98, 12, 123518

[28] Foreman-Mackey, D., Hogg, D. W., Lang, D., Goodman,
J., 2013, PASP, 125, 306

[29] Gatti, M., Chang, C., Friedrich, O., et al., 2020, MN-
RAS, 498, 3, 4060

[30] Gatti, M., Giannini, G., Bernstein, G. M., et al., 2022,
MNRAS, 510, 1, 1223

[31] Gatti, M., Jain, B., Chang, C., et al., 2022, Phys. Rev. D,
106, 8, 083509

[32] Gatti, M., Jeffrey, N., Whiteway, L., et al., 2024, Phys.
Rev. D, 109, 063534

[33] Gatti, M., Jeffrey, N., Whiteway, L., et al., 2024, MN-
RAS, 527, 1, L115, arXiv:2307.13860

[34] Gatti, M., Sheldon, E., Amon, A., et al., 2021, MNRAS,
504, 3, 4312
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A&A, 648, A74

[40] Huff, E., Mandelbaum, R., 2017, arXiv e-prints,
1702.02600

[41] Jeffrey, N., Alsing, J., Lanusse, F., 2021, MNRAS, 501,
1, 954

[42] Jeffrey, N., Gatti, M., Chang, C., et al., 2021, MNRAS,
505, 3, 4626

[43] Jeffrey, N., Wandelt, B. D., 2020, Third Workshop on
Machine Learning and the Physical Sciences, NeurIPS
2020, arXiv:2011.05991

[44] Jeffrey, N., Whiteway, L., Gatti, M., et al., 2024, arXiv
e-prints, arXiv:2403.02314

[45] Kacprzak, T., Fluri, J., Schneider, A., Refregier, A.,
Stadel, J., 2023, JCAP, 2023, 2, 050

[46] Kacprzak, T., Kirk, D., Friedrich, O., et al., 2016, MN-
RAS, 463, 3653

[47] Kaiser, N., Squires, G., 1993, ApJ, 404, 441



19

[48] Kratochvil, J. M., Haiman, Z., May, M., 2010,
Phys. Rev. D, 81, 4, 043519

[49] Kratochvil, J. M., Lim, E. A., Wang, S., Haiman, Z.,
May, M., Huffenberger, K., 2012, Phys. Rev. D, 85, 10,
103513

[50] Li, S.-S., Hoekstra, H., Kuijken, K., et al., 2023, A&A,
679, A133, arXiv:2306.11124

[51] Li, X., Zhang, T., Sugiyama, S., et al., 2023, Phys. Rev.
D, 108, 123518

[52] Liu, J., Petri, A., Haiman, Z., Hui, L., Kratochvil, J. M.,
May, M., 2015, Phys. Rev. D, 91, 6, 063507

[53] Lu, T., Haiman, Z., Li, X., 2023, MNRAS, 521, 2, 2050
[54] MacCrann, N., Becker, M. R., McCullough, J., et al.,

2022, MNRAS, 509, 3, 3371, arXiv:2012.08567
[55] Mallat, S., 1999, A wavelet tour of signal processing,

Elsevier
[56] Mallat, S., 2011, arXiv e-prints, arXiv:1101.2286
[57] Mallat, S., et al., 2020, Information and Inference: A

Journal of the IMA, 9, 3, 721, ISSN 2049-8772
[58] Martinet, N., Schneider, P., Hildebrandt, H., et al., 2018,

MNRAS, 474, 1, 712
[59] Muir, J., Bernstein, G. M., Huterer, D., et al., 2020,

MNRAS, 494, 3, 4454
[60] Myles, J., Alarcon, A., Amon, A., et al., 2021, MNRAS,

505, 3, 4249
[61] Papamakarios, G., Pavlakou, T., Murray, I., 2017, Ad-

vances in neural information processing systems, 30
[62] Parroni, C., Cardone, V. F., Maoli, R., Scaramella, R.,

2020, A&A, 633, A71
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Appendix A: ΛCDM validation

In this Appendix we perform a number of validation
tests for the ΛCDM analysis, similar to what was done
in Paper A for the 𝑤CDM analysis. In particular, we:

• conduct a baryonic contamination test, i.e. we
verify that the scales used in the ΛCDM analysis
are not affected by potential unmodelled baryonic
feedback processes;

• test that additive biases due to PSF modelling er-
rors were negligible at the data vector level;

• check that potential errors in our model for the
source clustering effects were negligible;

• perform a coverage test to ensure that the size of
the posteriors we recover is accurate;

• carry out an end-to-end ΛCDM analysis on an in-
dependent set of simulations (CosmogridV1 sims),
demonstrating that we recover the true cosmology
of the simulations.

Beyond these tests, we also add two sets of tests where:

• we show we can recover the true cosmology of the
simulations even if the parameters describing red-
shift uncertainties and shear bias calibrations were
2𝜎 off their mean values;

• we show that our posteriors are not sensitive to the
details of the simulations used (box size, number
of particles, redshift resolution).

The initial test we conducted was the baryonic con-
tamination test. This followed the same methodology
as presented in Paper A, albeit tailored for a ΛCDM
analysis. Our analysis does not include a model for the
effects of baryons at small scales. Consequently, we need
to ensure that the scales used are not compromised by
baryonic effects. To this end, we employed a suite of sim-
ulations (CosmoGridV1) that have been post-processed
to include baryonic feedback using the baryonic correc-
tion model [8, 74]. Each simulation is available in two
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versions: one with baryonification and one without. We
generate multiple instances of the DES maps using both
versions to calculate our summary statistics. We then
test whether the posteriors of cosmological parameters
derived from data vectors including baryonic feedback
do not exhibit significant bias when compared to those
from data vectors without baryonic effects. We follow
the criterion adopted by the DES Y3 cosmological anal-
ysis (Amon et al. 6; Secco & Samuroff et al. 76; Abbott
et al. 1), which requires that the peak of the marginal-
ized two-dimensional posterior of Ωm and 𝑆8 from the
analysis of baryon-contaminated data must fall within
0.3𝜎 of that from clean data. Table X reports the con-
tamination levels obtained using all available scales of
our analyses, for all the individual summary statistics
and certain combinations of them. Notably, all the sum-
mary statistics stayed within our pre-established limits
for contamination, thereby showing the robustness of our
analysis against potential baryonic feedback effects.

For the tests addressing potential PSF contamination,
we emulated the methodology from paper I and analyzed
two sets of mock data from the CosmoGridV1 suite, i.e.
with and without added contributions from PSF mod-
elling errors as estimated in [34]. We confirmed that,
even when focusing on a ΛCDM analysis, none of our
summary statistic combinations showed a bias in the
𝑆8–Ωm plane larger than 0.10𝜎. This indicates that PSF
modelling errors are insignificant for the scale range con-
sidered in our study.

Regarding the tests for potential errors in modelling
source clustering, we analyzed two sets of maps with
assumed galaxy-matter biases of 𝑏 = 0.5 and 𝑏 = 1.5,
diverging from the standard value of unity used in our
analysis. We found that for all our summary statistics
combinations, the bias in the 𝑆8–Ωm plane was under
0.10𝜎. Thus, the influence on cosmological parameters
is minimal, confirming that our source clustering model
is accurate enough for our analysis.

The next test aimed at ensuring that the confidence
levels from simulation-based inference were correctly es-
timated. This involved carrying out an empirical cov-
erage test. In such tests, the inference process is re-
peated multiple times to confirm that the estimated pos-
teriors accurately reflect the true parameter probabili-
ties. For our purposes, we ran the inference multiple
(100) times, each time omitting one mock data vector
(chosen at random) from the neural likelihood estima-
tion. We specifically omitted mocks with 𝑤 = −1, corre-
sponding to the ΛCDM scenario, from the DarkGridV1
simulation set. The likelihood for the excluded data
vector was then calculated, the posterior determined,
and its accuracy verified against the known parameter
values. We assessed coverage probabilities within the
three-dimensional parameter space of Ωm, 𝑆8, 𝐴IA using
the tarp package, which applies the ‘Tests of Accuracy
with Random Points’ (TARP) method for estimating the
coverage probabilities of generative posterior estimators.
The outcomes, illustrated in Fig. 7, reveal that the ex-
pected coverage corresponds with the credibility levels

at 5 percent, signifying that our posterior estimates are
properly calibrated.

We then confirm our pipeline’s ability to accurately
recover the actual cosmology from a set of simulations
not previously used in its construction. For this pur-
pose, we use 400 independent DES Y3 mock catalogues,
generated by the CosmoGridV1 simulations, identical to
those employed for the 𝑤CDM analysis validation in pa-
per I. None of these CosmoGridV1 simulations are used
during the training of our inference pipeline (i.e. during
the compression or when training the NDEs), but they
are rather used as a ‘target’ data vector. Each mock
has the same cosmology; we further assume no intrin-
sic alignment, while for the other nuisance parameters
(shear calibration and redshift uncertainties) we assume
values at the centre of the priors. By measuring all sum-
mary statistics across the mocks and taking their aver-
age, we mitigate the influence of noise. The resulting
posterior distributions for the cosmological parameters
Ωm and 𝑆8, derived from the second moments and the
combination of all summary statistics, are depicted in
Fig. 8. The simulated analysis recovers the true cosmo-
logical parameters of the simulations, underscoring the
reliability of our analytical framework.

In the final series of tests, we evaluate our ability to
accurately recover the cosmological parameters of simu-
lations under various conditions. Specifically, we assess
whether the correct cosmology can be identified when:
1) the simulation includes shear biases that deviate by
2𝜎 from the average values of their prior distributions; 2)
the redshift mean values diverge by 2𝜎 from their prior
averages; 3) the simulations use double the number of
particles; 4) the simulations have been produced with
double the box size; and 5) the simulations feature twice
the redshift resolution. For these latter three scenarios,
we used benchmark simulations from the CosmoGridV1
suite. The results, depicted in Fig. 10, confirm that in
every instance we successfully retrieved the true cosmo-
logical values of the simulations.

Appendix B: B-modes test

At first order, weak lensing is not expected to pro-
duce B-modes. Consequently, B-modes serve as a null
test for identifying potential systematic effects not ac-
counted for in the analysis. However, due to our map-
making procedure using the Kaiser-Squires algorithm,
B-modes can emerge as a result of masking effects, as
noted [31]. This occurs because a small fraction of the E-
mode power leaks into the B-mode map, predominantly
at large scales. In our data vector, we included the
second moments and WHPG of the B-mode maps, al-
though their contribution to the cosmological constraints
is small. We opted not to include other summary statis-
tics for B-modes, as this would double the length of the
data vector, complicating the data compression with-
out significantly improving our constraints. Neverthe-
less, we conducted a comparison of B-modes in our data
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Figure 7. Expected coverage probability of posteriors de-
rived from the simulation-based inference pipeline, using var-
ious summary statistics, with respect to the credibility level.
The grey shaded areas represent the precision of the test,
constrained by the finite number of posteriors used in this
analysis.

Table X. Bias in the parameter posteriors assessed by con-
trasting the results from an analysis that simulated mocks
with baryonic feedback against one using mocks with no
such feedback. The impact on various summary statistics are
quantified by measuring the separation between the peaks of
the posterior distributions in the 𝑆8–Ωm plane. We found
that all biases are well below the 0.3𝜎 threshold (the upper
limit of bias tolerated in our analysis).

Summary Statistic(s) Contamination

𝑆8 −Ωm

2nd moments 0.06𝜎

WPHG 0.05𝜎

3rd moments 0.05𝜎

WPH S00 0.01𝜎

WPH S01+C01 0.05𝜎

WPH S00+S01+C01 0.11𝜎

ST1 0.05𝜎

ST2 0.03𝜎

ST1+ST2 0.04𝜎

2nd+3rd moments 0.10𝜎

2nd moments+WPH 0.05𝜎

2nd moments+ST1 0.08𝜎

2nd+3rd moments+ST+WPH 0.15𝜎
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Figure 8. Posterior distributions of the cosmological param-
eters Ωm and 𝑆8 for different second moments and for the
combinations of all the summary statistics considered in this
work, as measured in CosmoGridV1 simulations. The dotted
black lines indicate the values of the cosmological parame-
ters in the simulations. The two-dimensional marginalised
contours in these figures show the 68 percent and 95 percent
credible regions.

against those measured in simulations for the summary
statistics beyond second moments and WHPG. Such a
comparison is illustrated in Figure 9. Specifically, we
compared against measurements from the CosmoGridV1
simulations, which were performed at a fixed cosmology.
The measurements from our data and the simulations
show good agreement. We did not make a significant
detection of B-modes for third moments and WHP S01.
These results on third moments corroborate the findings
of [31]. For other statistics (ST1, ST2, and WPH S00),
both data and simulations indicate a slight, non-null B-
mode signal at large scales, likely attributable to E-mode
leakage caused by masking effects. Given the strong cor-
respondence between simulations and data, we conclude
that our B-mode analysis reveals no evidence of unac-
counted systematics in our simulations.

Appendix C: NDEs and parameters posterior

In this work we used four different neural density es-
timators (NDEs) to estimate the posteriors. In partic-
ular, we used two different Gaussian Mixture Density
Networks (MDNs) and two different Masked Autoen-
coders for Distribution Estimation (MADEs). When-
ever we showed a posterior or reported the constraints
on some parameters in this work, we always obtained
these by stacking the four different NDEs. Assuming all
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Figure 9. Comparison of the measured summary statistics of
B-mode convergence maps in our data with those obtained
from the CosmoGridV1 simulations. We did not include mea-
surements for second moments and WPHG in this compari-
son, as these statistics are already incorporated into the data
vectors used for the cosmological analysis.

the NDEs are flexible enough to describe our likelihood
surface, they should all agree in the limit in which the
number of simulations used for training becomes large.
Fig. 11 shows the posteriors obtained by each individual
NDE for our most constraining case (i.e. the combina-
tion of all summary statistics); the posteriors are very
similar, indicating that our posteriors estimates are ro-
bust and stable.

Appendix D: Impact of the DarkGridV1 simulation suite

Our analysis uses simulations in two distinct ways:
for training the compression algorithm and for learning
the likelihood surface with the NDEs. In this work, we
have expanded the simulation suite used in our validation
study (paper I), by including simulations from the Dark-
GridV1 suite. These additional simulations are specific
to the ΛCDM model, meaning they do not vary the pa-

rameter 𝑤. Furthermore, they do not vary other param-
eters such as ℎ100, 𝑛𝑠m, Ωb, or the neutrino mass (un-
like those in the Gower Street suite). Our NDEs do not
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Figure 10. Posterior distributions of the cosmological param-
eters Ωm and 𝑆8 for different combinations of all the summary
statistics considered in this work, as measured in a number
of different CosmoGridV1 simulations.

explicitly learn the dependence on these latter parame-
ters; instead, these parameters are effectively marginal-
ized over according to the distribution followed by the
simulations. Incorporating the DarkGridV1 suite simu-
lations thus modifies the distribution of mocks, which
could impact the posterior. Figure 12 shows a compari-
son of our posterior on the data for the ΛCDM case, with
and without including the DarkGridV1 suite in learning
the likelihood surface. The posteriors are very similar,
indicating that the impact of the differing parameter dis-
tribution is negligible.

Appendix E: Cosmological constraints of individual statistics

We show in this Appendix the posteriors forΩm and 𝑆8
obtained from individual statistics, i.e. second moments,
third moments, WPHG, WPH S01, WPH S00, ST1, and
ST2, and their combination. The posteriors are shown
in Fig. 13, for both 𝑤CDM (left) and ΛCDM (right).
Constraints from individual probes are largely overlap-
ping and consistent with each other. Third moments
and WPH S01 are the less constraining statistic among
all those explored here; this is partially because all the
other non-Gaussian statistics (ST1, ST2 and WPH S00)
also probe part of the Gaussian information of the field,
and hence are more constraining.
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Figure 11. Posterior distributions of the cosmological parameters Ωm and 𝜎8 for the combination of all the summary statistics
considered in this work, as measured in data, for the ΛCDM (right) and 𝑤CDM (left) analyses. We show the different posteriors
as estimated by the different NDEs used in this work; we also show their stacked combination (the fiducial setup used in the
other Figures of this paper). The dotted black lines indicate the values of the cosmological parameters in the simulations. The
two-dimensional marginalised contours in these figures show the 68 percent and 95 percent credible regions.
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Figure 12. Posterior distributions of the cosmological pa-
rameters Ωm and 𝑆8 obtained including or not DarkGridV1

simulations into our analysis setup. The posteriors are shown
for the ΛCDM scenario, and for the case where all the sum-
mary statistics are combined together.
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Figure 13. Posterior distributions of the cosmological parameters Ωm and 𝑆8 from individual statistics and their combination,
for both 𝑤CDM (right) and ΛCDM (left).


