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We introduce a block encoding method for mapping discrete subgroups to qubits on a quantum
computer. This method is applicable to general discrete groups, including crystal-like subgroups such
as BI of SU(2) and V of SU(3). We detail the construction of primitive gates – the inversion gate,
the group multiplication gate, the trace gate, and the group Fourier gate – utilizing this encoding
method for BT and for the first time BI group. We also provide resource estimations to extract
the gluon viscosity. The inversion gates for BT and BI are benchmarked on the Baiwang quantum
computer with estimated fidelities of 40+5

−4% and 4+5
−3% respectively.

I. INTRODUCTION

Gauge symmetries play important roles in quantum
field theories, with the SU(3) ×SU(2) ×U(1) gauge sym-
metry being particularly important as it encapsulates the
interactions in the well-established Standard Model for
particle physics. Accurate predictions in the strongly-
coupled regime of these interactions require substantial
computational resources. Over the past few decades,
Monte Carlo methods in lattice gauge theory (LGT) have
flourished, benefiting from advances in supercomputing ca-
pabilities and algorithmic innovations. Nevertheless, chal-
lenges persist, particularly in scenarios involving dynamic
processes such as transport coefficients of the quark-gluon
plasma [1–3], parton physics in hadron collisions [4–9],
and out-of-equilibrium evolution in the early universe [10–
13] due to sign problems from the complex-valued nature
of the Boltzmann sampling weight. Quantum computers
offer a promising avenue to circumvent this challenge by
enabling real-time simulations within the Hamiltonian
formalism [14–18].

The Hilbert space of LGT is infinite-dimensional, re-
quiring digitization methods to facilitate its mapping onto
a finite quantum memory (see Sec VI.b of [17] for differ-
ent digitization methods). These include the loop-string-
hadron (LSH) formulations [19–21] where the Hilbert
space is built from gauge-invariant operators, digitiza-
tions of independent Wilson loops [22–27], qubitization
formulations of gauge theories [28–30], and the focus of
this paper -the discrete subgroup approximation[31, 32].
Understanding and reducing the theoretical errors in the
digitization is an area of active research [33–39].
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TABLE I. Freezing couplings as a function of spatial dimension
d, βd+1

f , for crystal-like subgroups of SU(2). For comparison,
β2+1d

s = 3 and β2+1d
s = 2.2.

G β2+1d
f β3+1d

f

BTa 3.45(5) 2.25(5)
BOb 5.45(5) 3.25(5)
BI 9.65(5) 5.85(5)

a Numerical results from [45]
b Numerical results from [53]

LGT calculations are performed at lattice spacing
a = a(β) which approaches zero for asymptomatic free
theories as the coupling parameter β → ∞. To perform
extrapolation to the continuous spacetime limit, calcula-
tions need to be done in the scaling regime with β > βs.
For the discrete subgroup approximation, gauge links will
become “frozen” to the identity when β > βf , leading
to different behaviors from the continuous groups, which
makes the discrete subgroup approximations to be only
valid in the regime β < βf . Thus to extrapolate to the cor-
rect continuous spacetime limit as the continuous group,
the discrete subgroup approximations need to satisfy the
condition βf > βs. The discrete subgroup approximation
has been explored for the Abelian group U(1) [40, 41] and
SU(N) gauge theories [35, 36, 42–49], including fermions
[50, 51]. For the case of SU(2) which we consider in this
work, there are three crystal-like subgroups: BT, BO, and
BI with βd

f shown in Tab. I. The smallest group, BT has
β3+1

f < β3+1
s ∼ 2.2, while the other two subgroup BI,

βd
f ≫ βd

s as shown in Fig. 1 for both 2 + 1d and 3 + 1d
theories. The larger βf of BI implies that digitization
errors should be smaller in comparison to BT and BO.
Other attempts to increase βf with modified actions are
also being discussed [52].

Though reducing the uncertainties in the extrapolation
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FIG. 1. Average plaquette or lattice energy density ⟨E0⟩ of
BI as a function of Wilson coupling parameter β on 8d lattices
for (top) 2 + 1d with β2+1

f = 9.65(5) and (bottom) 3 + 1d with
β3+1

f = 5.85(5). The shaded region corresponds to the phase
where β ≤ βs.

to the continuum with larger βf , quantum simulations of
larger discrete group will be more complicated. To simu-
late the discrete subgroup theory on a quantum computer,
one need to obtain the mapping between the elements
of the discrete group and the qubits. The usual way
is to write the elements of certain discrete subgroup as
an ordered product of group generators with the expo-
nents mapped to qubits or qudits on quantum computer
[45, 53–55]. However, for the largest crystal-like BI and
V subgroups of SU(2) and SU(3) theories, the ordered
product expression is unknown yet, and may not be pos-
sible. This potential obstacle motivates the search for
other encodings of discrete groups.

In this work, we consider a new encoding – block encod-
ing – expressing groups as d-dimensional matrices over
a finite field F. According to Cayley’s theorem, any fi-
nite group of order n can be mapped by an injective
homomorphism to the general linear group GL(d,F) over
certain finite field F, with dimension d ≤ n. Each matrix
element will be sorted in its own register, and then the
register representing the group element is built from them.
This encoding methods can be applied to generic discrete
subgroups, including the largest discrete crystal-like BI
subgroup of SU(2) and V of SU(3). After reviewing the
basics of group representation in Sec. II, we introduce
the block encoding methods. In Sec. III, we review the
primary gates to implement group element operations and

basic logic quantum gates set in constructing the primary
gates. We then present the construction of primary gates
based on the block encoding for the BT, BI in Sec. IV. Re-
source requirements are estimated and compared to other
digitization methods in Sec. V. Fidelities for the block
encoding with quantum errors are analyzed in Sec. VI, fol-
lowed by the benchmarking of the inverse gates in Sec. VII.
In Sec. VIII, we present the conclusion and outlook. Ap-
pendices include an alternative constructions based on
two’s complement for block encoding.

II. DISCRETE SUBGROUP ENCODINGS

For any encoding of discrete groups, the group elements
g are mapped to at least as many integers as p = [0, |G|−1]
where |G| is the group dimension. Previous work focused
on the ordered product encoding which maps onto the
integers the integer exponents {ok} of group generators
{λk} in a particular ordering:

g{ok} =
∏

k

λok

k (1)

where 0 ≤ ok < Ok. Ok can be as large as the generator’s
order λOk

k = 1 but often lower when redundancies occur
e.g. λO1

1 = λ2. An integer mapping is then defined as

p = ok +Ok(ok−1 +Ok−1(. . .+O2(o1 +O1o0))). (2)

With this, one may consider encoding p onto quantum
memory by decomposing p via Eq. (2) where {Ok} are
replaced by the dimensionality of the qudits {Dk} avail-
able. Both BT and BO have been formulated in this
way [45, 53]. As an example, the group elements of BT
can be represented as

g = (−1)minjolp. (3)

where i, j,k are the unit quaternions and l =
−(1 + i + j + k)/2. m,n, o are 3 binary variables, while
p is tertiary, and thus can be encoded for example in a
(p = 8) quoctit and (p = 3) qutrit or in 5 qubits with
some forbidden states. A similar construction for BO
could be realized with 6 qubits, or a qutrit with either
2 quoctits (p = 4) or a qudecasexit (p = 16) [54]. The
corresponding qubit primitive gates to implement group
inverse, product, trace and Fourier transformation has
been worked out recently [45, 53]. While this encoding
can be efficient in quantum memory, it is not a given that
all finite groups can be encoding with ordered products.

Due to the potential limitations of the ordered product
encoding, we consider a different encoding, block encod-
ing, which instead maps the finite fields in the matrices
representing g to a set of qubits. This encoding relies on
the ability to represent the matrix elements themselves
as valued only over a finite field. Here, we will consider
how to encode BT and BI as examples.

The BT group is isomorphic to the special linear group
SL(2, 3) — the group of all 2 × 2 matrices with unit
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determinant over the three-element finite field F3 (which
can be defined as the ring of integers modulo 3). The
character table for BT is found at the bottom of Tab. II.
Using the isomorphism, g can be represented by

g ∈
{(

a b

c d

)∣∣∣∣ a, b, c, d ∈ F3, ad− bc ≡ 1 mod(3)
}

(4)

This leads to another way of encoding BT group elements
using four ternary variables a, b, c, d = {0, 1, 2} as |g⟩ =
|abcd⟩ with a Hilbert space of 34 − 57 = 24 states where
57 states are removed by the determinant constraints.

In this work, we encode each matrix element in Eq. (4)
as a binary integer into two qubits, e.g. the non-negtive
encoding with |0⟩ = |00⟩, |1⟩ = |01⟩, |2⟩ = |10⟩ and a
forbidden state |11⟩. Given the redundancy in this en-
coding, we can also use the two’s complement encoding
as |0⟩ = |00⟩ , |1⟩ = |01⟩ and |2⟩ = |11⟩. In the BT case,
the two’s component encoding is the same as the Gray
code [56–59]. Alternatively, the matrix elements could
each be encoding in a (p = 3) qutrit without forbidden
states. In this paper, we adopt the non-negative encoding,
resulting in a 8-qubit group register while leaving opti-
mizations of quantum resources among different encoding
to the future as considerations to noise is crucial [54].

The block encoding can be extended to other groups.
The BI group is isomorphic to the special linear group
SL(2, 5) — the group of all 2 × 2 matrices over the finite
field F5 with unit determinant. The character table for BI
is found at the bottom of Tab. II and the group element
can be represented by

g ∈
{(

a b

c d

)∣∣∣∣ a, b, c, d ∈ F5, ad− bc ≡ 1 mod(5)
}

(5)

We can encode the BI group elements with four quinary
variables a, b, c, d = {0, 1, 2, 3, 4}, and thus the matrix
elements can be represented with three qubits with forbid-
den states |101⟩ , |110⟩ , |111⟩, and the group element with
12 qubits. Alternatively, the matrix elements could be
encoding into (p = 5) ququints without forbidden states.
In this work, we derive the primitive gates of BI with a
12-qubit group register.

It is worth noting that the largest crystal-like subgroup
of SU(3) – V – is isomorphic to a subgroup of GL(3, 4)
and can be encoded with nine 9 ququarts or 18 qubits,
though further investigations are needed to implement
the quantum gates that can project the Hilbert space to
its V subspace.

III. PRIMITIVE GATE OVERVIEWS

Quantum circuits for pure gauge theories can be con-
structed out of a set of primitive gates [60] acting on one
or more group element registers. The necessary gates for
simulation and extraction of observables are:

• the inverse gate: U−1|g⟩ =
∣∣g−1〉, which computes

in-place the inverse of a group element,

• the trace gate: UTr(θ)|g⟩ = eiθ Re Tr g|g⟩, which intro-
duces a phase based on the trace of a group element
in a particular representation and weighted by a
coupling θ which can depend on the Hamiltonian
and approximation used in time evolution,

• the left multiplication gate: U×|gi⟩|gj⟩|anc⟩ =
|gi⟩|gj⟩|gigj⟩. In this work, we consider a novel
definition of U× which stores the result in an ancilla
group register. The right multiplication gate, if
desired, can be defined via the U−1, and U×,

• the group Fourier gate: UF

∑
g f(g) |g⟩ =∑

ρ f̂(ρ)ij |ρ, i, j⟩ with f̂ denoting the Fourier trans-
form of f .

For qubit-based computers, we need 8 qubits to encode
a BT register and 12 qubits for BI. We will present the
primitive gates construction using five entangling gates:
the two qubit CNOT and SWAP, the three qubit CSWAP
(known as the Fredkin gate), and the multi-controlled
phase CnP(ϕ) and CnNOT quantum gates. The special
case of C2NOT is commonly called the Toffoli gate. The
first three implement the operations:

CNOT |q1⟩ |q2⟩ = |q1⟩ |q1 ⊕ q2⟩ (6)
SWAP |q1⟩ |q2⟩ = |q2⟩ |q1⟩ (7)

CSWAP |q1⟩ |q2⟩ |q3⟩ = |q1⟩ |q3⟩ |q2⟩ . (8)

For the multi-controlled gates, which apply and operation
to one qubit based on the state of n− 1 others we have

CnP(ϕ) |q1⟩ . . . |qn⟩ = |q1⟩ . . . eiϕq1...qn−1 |qn⟩ (9)
CnNOT |q1⟩ . . . |qn⟩ = |q1⟩ . . . |qn ⊕ q1 . . . qn−1⟩ . (10)

IV. PRIMITIVE GATES FOR BT AND BI

To construct the primitive gates based on block en-
codings, we adopt the following conventions. We use
parentheses to denote operations that return values with
mod n applied for SL(2, n) group. The values of matrix
element are the remainders mod n. A feature of the block
encoding is that the primitive gates for BT and BI are
quite similar, with the difference mainly arising from the
modular arithmetic. Therefore we will consider the two
groups in parallel as we construct their gates.

IV.1. Inverse Gate

For the construction of U−1, we note that the inverse
g−1 is given in terms of the matrix elements of g by

g−1 =
(
d −b

−c a

)
, (11)
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TABLE II. Character Tables of (left) BT and (right) BI including a representative element in the given conjugacy class, where
ω = e2πi/3, τ = (1 +

√
5)/2, and σ = (1 −

√
5)/2.

BT C1 C′
1 C4 C′

4 C′′
4 C′′′

4 C6

Ord. 1 2 3 3 6 6 4
χ1 1 1 1 1 1 1 1
χ1′ 1 1 ω ω2 ω ω2 1
χ1′′ 1 1 ω2 ω ω2 ω 1
χ2 2 -2 -1 -1 1 1 0
χ2′ 2 -2 −ω −ω2 ω ω2 0
χ2′′ 2 -2 −ω2 −ω ω2 ω 0
χ3 3 3 0 0 0 0 -1

|g⟩
(

1 0

0 1

) (
2 0

0 2

) (
1 1

0 1

) (
1 2

0 1

) (
2 2

0 2

) (
2 1

0 2

) (
0 1

2 0

)

BI C1 C′
1 C30 C20 C′

20 C12 C′
12 C′′

12 C′′′
12

Ord. 1 2 4 3 6 5 10 5 10
χ1 1 1 1 1 1 1 1 1 1
χ2 2 -2 0 -1 1 −τ τ −σ σ

χ2′ 2 -2 0 -1 1 −σ σ −τ τ

χ3 3 3 -1 0 0 τ τ σ σ

χ3′ 3 3 -1 0 0 σ σ τ τ

χ4 4 4 0 1 1 -1 -1 -1 -1
χ5 5 5 1 -1 -1 0 0 0 0
χ4′ 4 -4 0 1 -1 -1 1 -1 1
χ6 6 -6 0 0 0 1 -1 1 -1
|g⟩

(
1 0

0 1

) (
4 0

0 4

) (
0 1

4 0

) (
0 1

4 4

) (
0 4

1 1

) (
1 1

0 1

) (
4 4

0 4

) (
1 2

0 1

) (
4 3

0 4

)

From this, we see that the inverse operation corresponds
to swapping the values of a, d and flipping the sign of
b, c. Using this, the U−1 circuits can be derived and are
presented in the left of Fig. 2 and Fig. 3 for BT and BI
respectively.

IV.2. Trace Gate

Our interest here is in the traces of each group elements
in the faithful representation, which are denoted by χ2
in Tab. II. With one representative element in the given
conjugacy class in Tab. II, one can determine the other
elements in the class. This enables a derivation of the
rules for obtaining Tr(g) in the blocking encoding. For
BT, these rules are

Tr(g) =



2 if (a+ d) = 2 & (c− b) = 0
1 if (a+ d) = 1 & (c− b) ̸= 0
0 if (a+ d) = 0
−1 if (a+ d) = 2 & (c− b) ̸= 0
−2 if (a+ d) = 1 & (c− b) = 0

(12)

While for BI, they are found to be

Tr(g) =



0 if (a+ d) = 0
1 if (a+ d) = 1
−1 if (a+ d) = 4
2 if (a+ d) = 2 & (c2 + b2) = 0
−τ if (a+ d) = 2 & (c2 + b2) = 1 or 2
−σ if (a+ d) = 2 & (c2 + b2) = 3 or 4
−2 if (a+ d) = 3 & (c2 + b2) = 0
τ if (a+ d) = 3 & (c2 + b2) = 1 or 2
σ if (a+ d) = 3 & (c2 + b2) = 3 or 4

. (13)

By inspecting these rules, one notices that to real-
ize UTr(θ), we first implement an addition operation

Ua |a⟩ |b⟩ = |a⟩ |b⊕ a⟩. These are constructed for BT and
BI in Fig. 4. In the case of BI, it is useful to further define
subroutines U+n for n = 1, 2 which increment the matrix
element |a⟩ to |a+ n⟩ as shown in Fig. 5. The operation
of (b − a) can be implemented using U†

a. With Ua, we
can construct UTr(θ), as shown in the right of Fig. 2 and
Fig. 3 where θ depends on couplings and approximations
in the time evolution.

IV.3. Multiplication Gate

Moving on to U×, the multiplication of two group ele-
ments gi and gj in terms of the matrix elements is(

ai bi

ci di

)(
aj bj

cj dj

)
=
(
aiaj + bicj aibj + bidj

ciaj + dicj cibj + didj

)
(14)

The multiplication of group elements can thus be built
from blocks of Ua and a new subroutine Up which calculate
the product of two elements (See Fig. 6). In order to leave
the matrix elements intact, ancillary qubits store the
product. One ancillary register will be required to store
each matrix element in Eq. (14). Nevertheless, to optimise
the parallelization, we actually introduce one ancillary
register for each product in Eq. (14), which doubles the
ancillary qubits required. The group multiplication circuit
U× is subsequently constructed as in Fig. 7.

IV.4. Fourier Gate

To reduce the quantum gates required for implmenting
Fourier gate, we can project both BT and BI group to
the subspace satisfying the determinate constraints us-
ing circuit Uproj and ancillary qubits, which will reduce
the encoding from 8 and 12 qubits to 6 and 9 qubits,
respectively. Uproj is implemented with 4 CNOT gates,
3 CSWAP gates and 8 Tofolli gates for BT group. For



5

U≠1

|aÍ

|dÍ

|bÍ

|cÍ

UTr

|aÍ

|dÍ

|bÍ

|cÍ
P (≠2◊) P (3◊) P (2◊) P (≠3◊)

Ua U†
a

U†
a Ua

FIG. 2. Inverse gate U−1 (left) and Trace gate UTr(θ) (right) for BT group.

U≠1

|aÍ

|dÍ

|bÍ

|cÍ

UTr

|aÍ

|dÍ

|bÍ

|cÍ
P (≠·◊) P (·◊ + 2◊) P (·◊ ≠ ‡◊) P (·◊) P (≠·◊ ≠ 2◊) P (≠·◊ + ‡◊) P (◊) P (≠◊)

|ancÍ

Ua U†
a

FIG. 3. Inverse gate U−1 (left) and trace gate UTr (right) for BI group.

UF

RX RY RZ CNOT
BT 186 2052 3491 1941
BI 10743 131879 223044 125919

TABLE III. UF decompositions for BT and BI group.

the BI group, Uproj requires 8 CNOT gates, 3 CSWAP
gates, 8 Toffoli gates and 2 Up gates. With such projec-
tion, transforming to the Fourier basis can be decomposed
using the Qiskit transpiler. The resource required for
Fourier gate implemented this way for both groups are
shown in Tab. III.
UF is usually the most costly primitive gate for quan-

tum simulations. Future direction should consider the
fast Fourier transformation in [61] where sub-exponential
growth exp(

√
log |G|) of the circuit depth in the group

size is possible. In particular, it should be noticed that
the Fourier transformation of BI group can be built upon
that of BT group using the following natural tower:

BI > BT > Z6 > Z3 > Z1 = {1}. (15)

which could simplify the constructions for the BI group
once the construction for BT is realized. It will be valuable
to realize such fast Fourier transformation and compare
the resources required with our brutal direct decomposi-
tion, which we will leave for the future work.

With these four primitive gates, it is possible to perform
a resource estimate and compare to other implementations
of SU(2). This will be done in Sec. V. Additionally,
the primitive gates for the two’s component encoding
are discussed in App. A. There we find that total gate
costs are similar, but given the different distribution of
qubit states, they are anticipated to have different noise
robustness.

V. RESOURCE REQUIREMENTS

As T gate counts are known to require costly encodings
for error correction, it is usually used in fault-tolerent
resource analysis [62, 63]. We estimate the T gates re-
quired for simulating both BT or BI group with the block
encoding method. The Toffoli gate requires 7 T gates
[62]; CnNOT can be constructed with (2[log2(n+ 1)] − 1)
toffoli gates and n − 2 dirty ancilla qubits for n > 2
[62]. CnSWAP require the same number of T gates as
Cn+1NOT, as it can be decomposed to Cn+1NOT and
CNOTs using the symmetric decomposition [64]. Ap-
proximating RZ gates to the precision of ϵ will require
1.15 log2(1/ϵ) T gates [53], while RX and RY can be im-
plemented with at most three RZ gates. CP(ϕ) requires
8 T gate and one RZ gate with one clean ancillary qubit
[65], and CnP(θ) can be decomposed to 2(n− 1) Toffoli
gates and one CP(θ) with n − 1 clean ancilla [66]. The
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|aÍ
|bÍ Ua

=

|a〉

|b〉

|aÍ
|bÍ Ua

=

|aÍ

|bÍ U+1 U+2 U†
+1

FIG. 4. Implementation of Ua for BT (left) and BI group(right).

U+1 U+2

|aÍ

FIG. 5. Elementary operations U+1 and U+2 that add one and
two to a single matrix element, respectively for the BI group.

gate T (BT) T (BI)
U−1 0 14
UTr 172 + 4.6 log2(1/ϵ) 666 + 9.2 log2(1/ϵ)
U× 336 3640
UF 11735.8 log2(1/ϵ) 748547 log2(1/ϵ)

TABLE IV. Number of T gates required to realize the primary
gates.

estimated number of T gates to realize each primary gates
are listed in Tab. IV.

We compare the resources required for the calculation
of the viscosity as that in [67]. The total T gate count for
certain Hamiltonian H is given by NH

T = CH
T × dLdNt

for a d spatial lattice simulated for a time t = Ntδt [53],
where CH

T is the average number of T gates require per
link per δt, and dLd is the total number of links. We
first consider the simulation of the BT group. With the
primitive gates per link per δt listed in [53], we get

CHKS
T = 2102(d− 1) + (23469.2 + 2.3d) log2

1
ϵ

(16)

CHI

T = 8994d− 7650 + (46936.1 + 6.9d) log2
1
ϵ
, (17)

using the Kogut-Susskind Hamiltonian HKS and the im-
proved Hamiltonian HI studied in [68], respectively. With
this, the total synthesis error ϵT can be estimated as the
sum of ϵ from each RZ :

ϵHKS

T = 2(10204 + d)dLdNt × ϵ (18)
ϵHI

T = 2(20407 + 3d)dLdNt × ϵ. (19)

For simulating the BI, the cost increase moderately:

CHKS
T = 22215(d− 1) + (1497090 + 4.6d) log2

1
ϵ

(20)

CHI

T = 95793d− 81205 + (2994170 + 13.8d) log2
1
ϵ
,

(21)

and total synthesis errors:

ϵHKS

T = 4(325454 + d)dLdNt × ϵ (22)
ϵHI

T = 12(216969 + d)dLdNt × ϵ. (23)

To calculate the shear viscosity with the total synthesis
error ϵT = 10−8 on a d = 3 lattice with L3 = 103 for
Nt = 50, finding NHKS

T = 2.1×1011 and NHI

T = 4.2×1011.
For the ordered product method in simulating BT group
[45], the total number of T gates are estimated as 1.1×1011

for HKS and 4.1×1011 for HI . We note that HKS is
inadequate to reach the scaling regime with BT, but for
the case of HI , the T gate cost is only ∼ 3% higher – and
in both cases dominated by UF . With only 60% higher
qubit costs, we conclude that this encoding is comparable
to ordered product on these simple metrics, and further
analysis of other metrics like noise robustness should be
undertaken. For the larger BI group – where no ordered
product encoding currently exists – the costs increase to
NHKS

T = 1.4 × 1013 and NHI

T = 2.9 × 1013 T gates using
HKS and HI , respectively. But given βf ≫ βs for BI, the
increase in gate costs may be an acceptable trade-off due
to the reduced systematic error from digitization.

We can also compare the the block encoding of discrete
subgroups to other digitization methods, such as LSH
formalism, in which the T gate counts has been estimated
for d = 1 in [69]. For comparison, we take the finite
arithmetic precision errors to be smaller than the synthesis
error ϵT = 10−8 by taking minimally n = 7 steps and m =
42 bits to evaluate the inverse-square-root functions using
Newton’s method. We choose 5 and 7 qubits to encode
one group register in LSH to match the minimal number
of qubits that can encode BT and BI group, respectively.
With L = 10, LSH will require in trotter step using
singular-value-decomposition roughly 3.9 × 107 and 4.2 ×
107 T gates for the 5 qubits and 7 qubits case, respectively,
while for the blocking encoding, BT and BI requires 1.3 ×
107 and 8.0×108 T gates. Given this similarity in resource
costs, quantifying the systematic and statistical errors in
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FIG. 6. Implementation of Up for BT (left) and BI group(right).
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FIG. 7. Multiplication gate U× for BT group and BI group.

digitization methods becomes an important concern. In
the next section, we consider the relative resilience of the
block encoding versus the ordered producted encoding.
Additionally, a comprehensive comparision to other forms
of approximating the time evolution in LGT [33, 70] are
desirable, but understanding the theoretical LGT errors
must be understood for a complete comparison.

VI. RESILIENCE TO QUANTUM ERRORS

In this section, we investigate the resilience to errors for
a single register using the block encoding and the ordered
product encoding, considering BT. Given that redundant
degrees of freedom are introduced in both encodings, one
can utilize these redundancies in QEC [54, 71–82]. In the
following, we derive the error rate threshold [82] below
which the block encoding would provide higher fidelity
than the ordered product one for a single register as more
redundancies are introduced in the block encoding. We
will take the bit-flip error as an example and consider the
fidelity as the one averaging over all group elements. Error
mitigation using post-selection remove trials affected by
detectable errors. For the error channel with only one
bit-flip error Ni affecting qubit i at an error rate of ϵ,
we count the number of Ni that transform the group
element into forbidden state, which are detectable errors.
Using the ordered product encoding, there are in total 16

detectable Ni for all 24 group elements, while for the block
encoding, 160 Ni. The lower bound for the fidelity is the
probability of no errors after removing trials affected by
these detectable one bit-flip errors:

Fps
BE ≥ (1 − ϵ)8

1 − 160/24(1 − ϵ)7ϵ
,

Fps
OPE ≥ (1 − ϵ)5

1 − 16/24(1 − ϵ)4ϵ
. (24)

For logical error rates ϵ ≲ 0.1, we found the lower bound of
the fidelity for the current encoding methods can be higher.
As post-selections require resources that are exponential
[83] in system size, we also consider correcting one bit-
flip error to reduce the effects of quantum errors. The
correctable one bit-flip errors transform the group element
to a forbidden state that cannot be transformed from
other group element via any one bit-flip error (Knill-
Laflamme condition [84]). Under this condition, when a
forbidden state is seen, the error channel can be inferred
and corrected. Using the ordered product encoding, there
are in total 0 correctable Ni for all 24 group elements,
while for the block encoding, 80 Ni. Correcting trials
affected by correctable Ni, we obtain the lower bound of
the averaged fidelity as the probability with no errors or
only correctable one bit-flip errors:

Fcor
BE ≥ (1 − ϵ)8 + 80

24(1 − ϵ)7ϵ,

Fcor
OPE ≥ (1 − ϵ)5. (25)

We observe that in this situation for ϵ ≲ 0.1, the lower
bound of the fidelity for the current encoding methods
can be mildly higher.

VII. EXPERIMENTAL RESULTS

Using the block encoding method, we benchmark the
fidelity of the inverse gate for BT and BI group on the
Quafu platform [85]. Given the availability, we used the
Baiwang quantum real machine on Quafu which has 144
qubits and 136 available. The qubits are arranged in a
12 × 12 lattice, where qubits in each row are connected
adjacently and adjacent rows are connected by only 2-4
qubit connections [85]. 8 qubits and 12 qubits are selected
for the simulation of BT and BI group, respectively, with
their positions and connectivity shown in Fig. 8. Starting
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FIG. 8. Fidelity of Utrans
−1 gate of Baiwang for each group element |g⟩ = |abcd⟩ of BT and BI, which is labeled by the lexicographic

order in the range {0, |G| − 1}. The averaged fidelity F̄ over all group elements are also shown. On the top right, the qubit
graph on Baiwang used to represent |g⟩ for (left) BT and (right) BI respectively.

from state |ψ0⟩ = |0⟩⊗nq with nq = 8(12) for BT(BI)
group, we can prepare the initial state |g⟩ with circuit
Ug: |g⟩ = Ug|ψ0⟩. For single states, Ug is simply a tensor
product of X gates used to initialize some qubits to |1⟩.
Adapting to the connectivity of the qubits chosen on
Baiwang quantum chip, U−1 requiring 12 (29) CNOT
gates1) is transpiled to Utrans

−1 with 18 (31-43) CNOTs for
BT(BI) where the number of CNOTs is counted from the
transpiled circuits. We subsequently apply Utrans

−1 to |g⟩,
resulting in the final state |g′⟩. The fidelity is defined as:

F = |⟨g−1|g′⟩|2 = |⟨g−1|Utrans
−1 Ug|ψ0⟩|2, (26)

which is the probability of measuring the correct |g−1⟩.
We show the fidelity for each g in Fig. 8 for both BT

and BI group calculated from 5 runs, with N = 5000
shots for each run. The group element are labeled by
the lexicographic order in the range {0, |G| − 1} on the
x-axis. We also present the average fidelity F̄ over all
group elements in Fig. 8. The fidelity of an X gate is
found to be ∼97% on Baiwang, and CNOT gate to be
around ∼95%. For the BT case, different X gates are
needed to prepare state, which are denoted with different
shapes in the upper plot of Fig. 8. This variance in state
preparation causes noticeable variations in F observed in
Fig. 8.

We found that for |g⟩ in BT, the error rate grows slightly
with number of X gates in Utrans

−1 . We can achieve F̄ =

1 We have decomposed the Fredkin gate to 7 CNOTs [64]

40+5
−4% for BT. Previously, the fidelity of a 5-qubit ordered

product encoding U−1 was benchmarked on ibm nairobi
with higher connectivity and Pauli twirling used for error
mitigation [45]. Despite these striking differences, a value
of F̄ = 37.0+8

−8% was found, suggesting that effective
digitizations depend on connectivity and noise channels
in nontrivial ways, and therefore should not be neglecting
in the discussion of digitization.

For BI, Utrans
−1 can require varying numbers of CNOTs

depending on the transpilation, including the orders of
mapping matrix elements to the qubits. We show the
fidelities for each group element of BI in Fig. 8 (bot-
tom) with shapes indicating the number of CNOTs in the
transpiled circuits. As more than 30 CNOT gates are in-
volved, noises from CNOT gates contribute mostly to the
quantum errors which reduce the average fidelity to only
F̄ = 4%. This low fidelity could be improved by improving
transpilation that reduces CNOT counts and implement-
ing error mitigation strategies such as Pauli twirling which
have proven effective in the past for LGT [45, 68, 86–90].

VIII. CONCLUSIONS AND OUTLOOK

In this work, we introduced the block encoding method
– a general method for digitizing discrete groups on quan-
tum computers and developed the primitive gate set for
the two important discrete subgroup of SU(2), including
the first implementation ever of BI. The realization of
quantum circuits for this largest crystal-like subgroup of
SU(2) allows simulating physics of SU(2) deep into the
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scaling regime. We have shown that the qubit and T
costs as well as robustness to noise are comparable to
other digitizations of SU(2). In particular both theoret-
ical analysis and experimental results support the idea
that the connection between number of qubits/gates and
the true performance in a noisy environment is nontriv-
ial, and such metrics should be considered in evaluating
digitization schemes.

A number of directions for research exist following
these results. Primary is that given its predominance
in the gate costs, determination of a quantum Fourier
transformation gate within the block encoding method
would be invaluable, as it could radically improve the
resources costs. Further, given the block encoding method
separates group registers into registers of finite fields, it
may greatly benefit from formulations on qudit-based
devices similar to [9, 55, 91–98]. Finally, the outstanding
goal of the discrete group approximation is the largest
crystal-like subgroup of SU(3) – V – which similar to BI
faces obstacles in the order product encoding. Given it is
isomorphic to a subgroup of GL(3, 4), the block encoding
method provides an avenue for encoding it onto nine 9
ququarts or 18 qubits.
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Appendix A: Primitive Gates for BT Group with Two’s Component Encoding

In this section, we present the primitive gates for BT group with two’s component encoding, e.g. |a = 0⟩ =
|00⟩ , |a = 1⟩ = |01⟩ and |a = −1⟩ = |11⟩. Given the addition and multiplication table below, the quantum circuit
to implement matrix element additions Ua and productions Up are shown in Fig. 9. The construction of the group
multiplication circuit U× is similar as Fig. 7 in the main text. The inverse and trace operations follow the same rules
as Eq. (11) and Eq. (12) in the main text, but with different quantum circuits given in Fig. 10.

TABLE V. Addition.
00 01 11

00 00 01 11
01 01 11 00
11 11 00 01

TABLE VI. Multiplication.
00 01 11

00 00 00 00
01 00 01 11
11 00 11 10

|aÍ
|bÍ Ua

=

Ua

|a〉

|b〉

|aÍ
|bÍ

|ancÍ Up

=

Up

|a〉

|b〉

|anc〉

FIG. 9. Quantum circuit implementing matrix element additions and productions in F5.
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a
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FIG. 10. Inverse gate U−1 and trace gate UTr for BT group with the two’s component encoding.
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