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We introduce the Alaric parton shower for simulating QCD radiation at hadron colliders and
present numerical results from an implementation in the event generator Sherpa. Alaric provides
a consistent framework to quantify certain systematic uncertainties which cannot be eliminated by
comparing the parton shower with analytic resummation. In particular, it allows to study recoil
effects away from the soft and collinear limits without the need to change the evolution variable or
the splitting functions. We assess the performance of Alaric in Drell-Yan lepton pair and QCD jet
production, and present the first multi-jet merging for the new algorithm.

I. INTRODUCTION

Experiments at high-energy hadron colliders such as the CERN Large Hadron Collider (LHC) have been the
source of much of our understanding of the smallest building blocks of matter. While they often do not reach the
same precision as lepton colliders, proton-(anti)proton machines offer unprecedented reach in available center-of-mass
energy, and thus open a pathway to the observation of hitherto unknown particles as well as new interactions [1–
3]. Quite naturally, opportunity comes at a cost. The composite nature of the beam particles, and the complex
phenomenology of QCD at low and high scales hinder the extraction of rare hadron-level signals from large and
often poorly understood backgrounds. Computer simulations in the form of Monte-Carlo event generators have so far
proven the only effective approach to this problem [4, 5]. Among the many components of these event generators, the
approximation of QCD radiative corrections to all orders in perturbation theory is one of the most important. This
component is implemented by parton showers.

The discovery of the gluon at Petra about forty years ago spurred the development of the first parton showers [6–9].
Since then, the increasing center-of-mass energy of the experiments mandated a corresponding increase in precision of
the simulations, which led to the development of spin correlation algorithms [10–13], matching to next-to-leading order
fixed-order calculations [14–20] and the merging of calculations for varying jet multiplicity [21–31]. Color coherent
parton evolution, manifesting itself through angular ordering for global observables [32–37], became a guiding principle
for the construction of many early parton shower algorithms [38, 39] and remains a powerful computational tool.
However, for observables sensitive to certain correlations among partons and jets, angular ordering does not capture
all details of QCD radiative effects [40]. This class of observables can be better described by algorithms based on the
color dipole picture, first proposed and implemented in [41–43], and later extended to a more efficient and precise
simulation framework [44–48]. Algorithms based on the dipole picture were also supplemented by a matching to
single parton evolution in the collinear limit [49–55]. Most parton showers currently used by the LHC experiments
are based on this paradigm [5]. Recently, they have again been revised, in order to achieve consistency with analytic
resummation in the limit of large center-of-mass energies [56]. The resulting improvements concern kinematic recoil
effects [57–65], and an improved simulation of color coherence [44, 66–79].

In this publication we will report on the extension of one of the new dipole-like parton shower algorithms, called
Alaric [63, 64], to initial-state radiation. A unique aspect of the Alaric method is the non-trivial dependence
of splitting functions on the azimuthal emission angle, even when spin correlations are not included. This allows
to simulate the complete one-loop soft radiation pattern without the need for angular ordering. At the same time,
the choice of recoil momentum necessary to implement four-momentum conservation and on-shell conditions is left
arbitrary, enabling an easy matching of the parton-shower to analytic calculations for specific observables. The
new method satisfies the stringent criteria for next-to-leading logarithmic (NLL) precision at leading color [56] for
all recursively infrared safe observables [63]. Here we will discuss specifically the treatment of the collinear splitting
functions in the context of different kinematics mappings, focusing on terms which are not determined by the matching
to a soft eikonal. Sub-leading power corrections to these terms vanish in the NLL limit, but can play a significant
role at finite transverse momentum [80] and must therefore be implemented as faithful as possible. They are often
important at hadron colliders due to the enhanced gluon distribution at high energies and small x [81, 82].

The manuscript is structured as follows. Section II introduces the collinear splitting functions and presents a
kinematics-independent definition of the purely collinear terms for final- and initial-state evolution. Section III
introduces the kinematic mappings used in our algorithm and discusses an extension of the proposal in Ref. [63].
Section VI presents some first example phenomenological predictions in comparison to experimental data from the
Large Hadron Collider. Finally, Sec. VII discusses further directions of development.
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II. SPLITTING FUNCTIONS

The precise form of the splitting functions is one of the main systematic uncertainties in any parton-shower sim-
ulation. Stringent criteria exist only for the leading terms in gluon energy in the soft gluon limit, and for the
leading terms in transverse momentum in the collinear limit. These terms are determined by the known soft [83]
and collinear [84–89] factorization properties of QCD amplitudes. It is often assumed that away from the limits, the
splitting function can be used as is, without the need to account for the precise definition of the splitting variable.
While it is certainly true that changes in its definition only induce sub-leading corrections (of higher power in the
soft or collinear expansion parameter), the precise definition of the splitting kernels plays an important role and can
be used to capture non-leading effects. A prominent example is the sub-leading power correction to the soft splitting
function [90–92], which originates in classical radiative effects [93] and extends the naive soft limit to a physically
more meaningful result. Corrections of this type should clearly be included due to their importance for the physics
performance of the Monte-Carlo simulation. A similarly important point is that the collinear splitting functions can
be computed as off-shell matrix elements in a physical gauge [94], which implies that they contain information on the
structure of QCD amplitudes beyond the collinear limit. If this structure is to be retained, it is necessary that the
splitting functions be evaluated with the exact same definition of splitting variable that was used in their derivation.
A change in the kinematics parametrization must lead to identical physics predictions, but it may require a different
form of the splitting functions, including power suppressed terms. In the following, we will recall how to derive the
collinear splitting functions, using the algorithm of [94]. In Secs. III A and III B we will then determine their correct
arguments in terms of the kinematical parameters used in the parton-shower.

A. Purely collinear splitting functions

If two partons, i and j, of an n-parton QCD amplitude become collinear, the squared amplitude factorizes as

n⟨1, . . . , n|1, . . . , n⟩n =
∑

λ,λ′=±
n−1

〈
1, . . . , i\(ij), . . . , j\, . . . , n

∣∣∣8παs P
λλ′

(ij)i(z)

2pipj

∣∣∣1, . . . , i\(ij), . . . , j\, . . . , n〉
n−1

, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor

of partons i and j. The Pλλ′

ab (z) are the spin-dependent DGLAP splitting functions, which depend on the momentum
fraction z of parton i with respect to the mother parton, (ij), and on the helicities λ [84–89].

These splitting functions can be derived using the following Sudakov parametrization of the momenta of the splitting
products

pµi = zip̂
µ
ij +

−k2t
zi 2pij n̄

n̄µ + kµt , pµj = zj p̂
µ
ij +

−k2t
zj 2pij n̄

n̄µ − kµt . (2)

In this context, p̂µij = pµij − p2ij/(2pij n̄)n̄
µ, and n̄µ is a light-like auxiliary vector, linearly independent of p̂µij and kµt .

Equation (2) implies that we can compute the light-cone momentum fractions, zi and zj as

zi =
pin̄

pij n̄
, and zj =

pj n̄

pij n̄
. (3)

The tree-level g → qq̄ and g → gg collinear splitting functions are obtained by projecting the O(αs) expression
for the discontinuity of the gluon propagator onto the physical degrees of freedom of the gluon field, using the
polarization sum in a physical gauge [94]. Gauge invariance of the underlying Born matrix element and the relation
k2t = −2pipj zizj , derived from Eq. (2), result in the familiar expressions

Pµν
gq (pi, pj , n̄) = TR

[
− gµν + 4zizj

kµt k
ν
t

k2t

]
,

Pµν
gg (pi, pj , n̄) = CA

[
− gµν

(
zi
zj

+
zj
zi

)
− 2(1− ε) zizj

kµt k
ν
t

k2t

]
.

(4)

The spin-averaged quark splitting function in the collinear limit can be obtained by projecting the vertex function
onto the collinear direction [94], leading to

Pqq(pi, pj , n̄) = CF

[
2zi
zj

+ (1− ε)(1− zi)

]
. (5)
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We define the difference of the full splitting functions of Eqs. (4) and (5) and their eikonal limit as the purely collinear
splitting function, P∥(pi, pj). Using the known spin dependence of the quark splitting function, we obtain the following
spin-dependent and spin-averaged expressions for final-state splittings (denoted by a superscript (F ))

P
ss′ (F)
qq ∥ (pi, pj , n̄) = δss

′
CF (1− ε)(1− zi) , P

(F)
qq ∥ (pi, pj , n̄) = CF (1− ε)(1− zi) ,

P
µν (F)
gg ∥ (pi, pj , n̄) = − 2CA (1− ε) zizj

kµt k
ν
t

k2t
, P

(F)
gg ∥(pi, pj , n̄) = 2CA zizj ,

P
µν (F)
gq ∥ (pi, pj , n̄) = Pµν

gq (pi, pj) , P
(F)
gq ∥(pi, pj , n̄) = TR

[
1− 2 zizj

1− ε

]
.

(6)

At this point we would like to stress that zi and zj depend on the precise form of the momentum mapping, and
that they are not necessarily identical to the parton-shower splitting variables z and 1 − z. This has implications in
particular for the splitting functions in initial-state evolution and will be discussed in Secs. IIIA and III B.

Crossing parton i into the initial state, we obtain the following collinear factorization formula

n⟨1, . . . , n|1, . . . , n⟩n =
∑

λ,λ′=±
n−1

〈
1, . . . , i\(ij), . . . , j\, . . . , n

∣∣∣8παs P
λλ′

(ij)i(x)

2pipj x

∣∣∣1, . . . , i\(ij), . . . , j\, . . . , n〉
n−1

, (7)

where x = 1/z is the momentum fraction of parton (ij) with respect to the initial-state parton i. Equation (1) is

obtained from Eq. (1) via the crossing relation Pab(1/x) = −Pab(x)/x [85, 95]. The splitting functions Pλλ′

ab (x) are
therefore determined by Eqs. (4) and (5). However, the matching to the soft radiation pattern differs for initial-state
splittings, because an initial-state particle of vanishing energy will lead to a vanishing cross section (see for example
Sec.5.4 in [96]). This leads to the following expressions for the flavor-diagonal splitting functions in the initial state
(denoted by a superscript (I))

P
(I)
qq ∥(pi, pj , n̄) = Pqq(pi, pj , n̄) , P

(I)
gg ∥(pi, pj , n̄) = CA

[
− gµνxixj + 2(1− ε)

xj

xi

kµt k
ν
t

k2t

]
. (8)

All other purely collinear splitting functions remain the same. We have simplified the notation by defining xi = 1/zi
and xj = −xizj . We stress again that differences in the purely collinear components of the spin-averaged DGLAP
splitting functions can arise from the fact that xi may not be equal to x, where x is the initial-state parton shower
splitting variable. In practical applications, this typically leads to a suppression of 1/x enhanced parton splittings at
large transverse momenta. We will return to this question in Secs. IIIA and III B, see in particular the discussion
following Eq. (20).

B. Soft limit and soft-collinear matching

In the limit that gluon j becomes soft, the squared amplitude factorizes as [83]

n⟨1, . . . , n|1, . . . , n⟩n = −8παs

∑
i,k ̸=i,j

n−1

〈
1, . . . , j\, . . . , n

∣∣TiTk wik,j

∣∣1, . . . , j\, . . . , n〉
n−1

, (9)

where Ti and Tk are the color insertion operators defined in [83, 96]. In the Alaric parton-shower algorithm [63],
the eikonal factor wik,j is split into an angular radiator Wik,j and the gluon energy according to wik,j = Wik,j/E

2
j .

The angular radiator function

Wik,j =
1− cos θik

(1− cos θij)(1− cos θjk)
(10)

is matched to the collinear splitting functions by partial fractioning:

Wik,j = W̄ i
ik,j + W̄ k

ki,j , where W̄ i
ik,j =

1− cos θjk
2− cos θij − cos θjk

Wik,j . (11)

In the collinear limit for partons i and j, the eikonal factor wik,j can be identified with the eikonal term of the
DGLAP splitting functions Paa(z). Matching the soft to the collinear splitting functions in the improved large-Nc

limit is achieved by replacing

P
(F)
(ij)i(pi, pj , n̄)

2pipj
→

T2
ij

Nspec

Nspec∑
k∈specs

[
δ(ij)i

W̄ i
ik,j

E2
j

+ δ(ij)j
W̄ j

jk,i

E2
i

]
+

P
(F)
(ij)i ∥(pi, pj , n̄)

2pipj
, (12)
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K̃ p̃ij

p̃k

φ

n pi

pk~kT pj

K−~kT

FIG. 1. Sketch of the momentum mapping for soft radiation and initial-state splittings. All momenta are considered outgoing.
Note that pk only acts as a reference for the definition of the azimuthal angle ϕ. See the main text for details.

where the sum runs over all color-connected partons, and Nspec stands for the number of color spectators. While
initial-state parton evolution must respect Gribov-Lipatov reciprocity [85, 95], we need to take into account that the
amplitude cannot develop a soft singularity in the initial-state momentum. Therefore,

P
(I)
i(ij)(pi, pj , n̄)

2pipj x
→ δi(ij)

T2
ij

Nspec

Nspec∑
k∈specs

W̄ i
ik,j

E2
j

+
P

(I)
i(ij) ∥(pi, pj , n̄)

2pipj x
. (13)

The two soft contributions to the gluon splitting function are treated as two different radiators [54]. The soft matching
introduces a dependence of the splitting functions on the color spectators, k, and their momenta define directions
independent of p̂ij [63].

III. MOMENTUM MAPPING

Parton shower algorithms are based on the notion of adding additional partons to an already existing ensemble of
particles, while maintaining four-momentum conservation and on-shell conditions. This procedure requires a method
to map the momenta of the Born process to a kinematical configuration after emission. The mappings are linked
to the factorization of the differential phase-space element for a multi-parton configuration. Collinear safety a basic
requirement for their construction. In addition, a mapping is NLL-safe if it preserves the topological features of
previous radiation [56, 57]. Since the momentum mapping in most modern parton showers has been identified as the
main stumbling block to achieving next-to-leading logarithmic precision, we will begin the description of Alaric’s
initial-state evolution algorithm by discussing the kinematics.

A. Soft radiation kinematics

This section details the algorithm for the construction of momenta in soft emissions. The momentum mapping
is sketched in Fig. 1. We identify the splitter momentum, p̃i, and define a recoil momentum, K̃. In contrast
to conventional dipole-like parton showers where the recoil momentum is usually given by the color spectator, in
Alaric this momentum can be chosen freely, with the condition that it must provide a hard scale. In most practical
applications we will define K̃ as the sum of all final-state momenta (in the case of final-state branchings also including

the momentum of the splitting particle). Together, the momenta K̃ and p̃i define the reference frame of the splitting.
The momentum of the color spectator, p̃k, defines an additional direction, and provides the reference for the azimuthal
angle, ϕ. To obtain the momenta after emission, the emitter is scaled by a factor z, and the emitted momentum, pj ,

is constructed with transverse momentum component k⃗T and suitable light-cone momenta. The recoil is absorbed by
all particles that constitute the recoil momentum K̃. To parametrize the splitting kinematics, we make use of some
of the notation in [63, 96], in particular

v =
pipj

p̃iK̃
and z =

piK̃

p̃iK̃
. (14)

The momentum mapping for emitter p̃i and recoil momentum K̃ is fixed by

pi = z p̃i ,

pj = (1− z) p̃i + v
(
K̃ − (1− z + 2κ) p̃i

)
− k⊥ ,

K = K̃ − v
(
K̃ − (1− z + 2κ) p̃i

)
+ k⊥ ,

(15)
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φ

K
pj

~kT

pi

pij −~kTK̃ p̃ij

FIG. 2. Sketch of the momentum mapping for collinear radiation. All momenta are considered outgoing. Note that, again, pk
only acts as a reference for the definition of the azimuthal angle ϕ. See the main text for details.

with the absolute value of the transverse momentum given by

k2⊥ = v(1− v)(1− z) 2p̃iK̃ − v2K̃2 . (16)

For initial-state splitters, the energy fraction z is replaced by 1/x. If the momentum K̃ is composed of the two
initial-state momenta, all final-state momenta are subjected to a Lorentz transformation

pµl → Λµ
ν(K, K̃) pνl , where Λµ

ν(K̃,K) = gµν − 2(K + K̃)µ(K + K̃)ν

(K + K̃)2
+

2KµK̃ν

K̃2
. (17)

If the momentum K̃ is composed of final-state momenta, those momenta are subjected to a Lorentz transformation
pµl → Λµ

ν(K̃,K) pνl , with Λµ
ν(K̃,K) given by Eq. (17).

It remains to determine the variables zi and zj in Sec. II, which are needed to evaluate the purely collinear splitting
functions. Expanding Eq. (15) in terms of the large forward light-cone momentum, p̂µij = pµij − p2ij/(2pij n̄)n̄

µ, the
small transverse components, and the very small anti-collinear components, we obtain

pi =
z

1− v(1− z + κ)
p̂ij +

z

1− v(1− z + κ)
k⊥ +O

(
k2⊥

2p̃iK̃

)
,

pj =
(1− z)(1− v)− vκ

1− v(1− z + κ)
p̂ij −

z

1− v(1− z + κ)
k⊥ +O

(
k2⊥

2p̃iK̃

)
.

(18)

Having obtained an expression equivalent to Eq. (2), it is apparent that the momentum fractions that appear in the
purely collinear splitting functions, Eqs. (6) and (8) are given by

zi =
z

1− v(1− z + κ)
, zj = 1− z

1− v(1− z + κ)
. (19)

In initial-state evolution, the replacements z → 1/x, zi → 1/xi and zj → −xj/xi change Eq. (19) to

xi = x+ v − v x (1 + κ) , xj = 1− x− v + v x (1 + κ) . (20)

In addition, the transverse momentum kµt appearing in the Sudakov decomposition Eq. (2), and hence in the spin-
dependent splitting functions in Sec. II, is expressed in terms of the radiation kinematics variables appearing in
Eq. (15) as zi k

µ
⊥ [96]. Note that for initial-state emissions with the spectator being the complete final state, Eq. (20)

simplifies to xi = x + v and xj = 1 − x − v. This relation has been used in the context of a Catani-Seymour dipole
shower in Refs. [81, 82] to obtain an improved approximation of the splitting functions and generally leads to a
reduction of emission probabilities from terms in the splitting functions that are proportional to 1/xi.

B. Collinear splitting kinematics

As discussed in Sec. (II), collinear parton evolution is easier understood in a phase-space parametrization where the
splitting products compensate each others transverse recoil with respect to the direction of the progenitor. For the
implementation of the purely collinear components of final-state splitting functions we therefore choose a kinematics
mapping that is closely related to [60, 76]. It has been shown [60] that this type of mapping satisfies the criteria for
NLL precision if it is applied to the purely collinear splitting functions only. The proof rests on similar arguments as
the proof of accuracy for the radiation kinematics of Sec. III A [63].
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The momentum mapping is sketched in Fig. 2. We identify the splitter momentum, p̃i, and define a longitudinal
recoil momentum, K̃. Again, this recoil momentum can be freely defined. In most practical applications we use
the sum of final-state momenta, excluding the momentum of the splitter. Together, the momenta K̃ and p̃i define
the reference frame of the splitting. And, as before, the momentum of the color spectator, p̃k, defines an additional
direction, which provides the reference for the azimuthal angle, ϕ. To obtain the momenta after emission, we invoke
the massive splitting kinematics of [89], in which the emitter is scaled and the momentum K absorbs the longitudinal
recoil, while the transverse recoil is compensated locally between the splitting products. We make use of some of the
notation in [96], in particular

y =
pipj

pipj + (pi + pj)K
and z =

piK

(pi + pj)K
, (21)

and we define κ = K2/(2p̃ijK̃). In terms of the additional variables

ζ =
1 + y −

√
(1− y)2 − 4yκ

2y(1 + κ)
, z̄ =

z
(
1− y

)
ζ(1− ζy)− ζ2yκ

(1− ζy)2 − ζ2yκ
, (22)

the momenta after the splitting are given by

pµi = z̄
p̃µij
ζ

+ (1− z̄) yζ
(
K̃µ − κ p̃µij

)
+ kµ⊥ ,

pµj = (1− z̄)
p̃µij
ζ

+ z̄ yζ
(
K̃µ − κ p̃µij

)
− kµ⊥ ,

Kµ =

(
1− 1− yκζ2

ζ

)
p̃µij + (1− yζ)K̃µ .

(23)

The transverse momentum squared is given by

k2⊥ = yz̄(1− z̄) 2p̃ijK̃ . (24)

This particular scheme cannot be used in initial-state splittings, because the momentum of the splitter and at least one
of the splitting products must be aligned. We therefore use the soft radiation kinematics also for the purely collinear
initial-state splittings. If the momentum K̃ was constructed from multiple final-state momenta, those momenta are
subjected to a Lorentz transformation pµl → Λµ

ν(K̃,K) pνl , with Λµ
ν(K̃,K) given by Eq. (17).

Equation (23) has the form of Eq. (2), and we can read off the momentum fractions that appear in the purely
collinear splitting functions, Eqs. (6) and (8):

zi = z̄ and zj = 1− z̄ (25)

with the transverse momentum squared, k2t , in collinear splitting kinematics given by Eq. (24). Note that this relation
differs from the definition zi = z in a Catani-Seymour dipole like final state parton shower only due to the mass of
the recoil momentum. In particular, it is identical if κ = 0, as for example in the first emission in e+e− →hadrons, or
in pure jet production at hadron colliders.

IV. THE EVOLUTION ALGORITHM

For initial-state evolution, we use the original definition of the evolution variable in [63]. It is related to the energies
and polar angle in the rest frame of n, where we have the simple relations

Ei = z
p̃iK̃√
n2

, Ej = Ei
1− z

z
, and n2 = 2p̃iK̃ (1− z + κ) . (26)

The polar angle, θj , of the emission is given by

1− cos θ i
j = 2v

1− z + κ

1− z
. (27)

In terms of these quantities, the initial-state evolution variable is defined as (see Eq. (41) of [63])

t(n) = 2E2
j (1− cos θ i

j ) = v (1− z) 2p̃iK̃ . (28)
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The same definition can also be used for final-state evolution. However, we also introduce a variant of the original
proposal, which will become our default choice: We determine the evolution variable using energies and angles in the
rest frame of the recoil momentum, K, after the emission. In the soft limit, pj → 0, this frame coincides with the
frame defined by n. The energies of particles i and j in the K-frame are given by

Ei = (1− v)
z p̃iK̃√

K̃2
, Ej =

Ei

1− v

1− z

z
. (29)

The polar angle θ i
j of the emission is determined by

1− cos θ i
j =

2κ

1− z

v

1− v
. (30)

The final-state evolution variable of the parton shower in this scheme is defined as

t(K) = 2E2
j (1− cos θ i

j ) =
v

1− v
(1− z) 2p̃iK̃ . (31)

The advantage of the redefinition is a simplified determination of the upper bound on the evolution variable. For

example, in color singlet decays one has t(K) ≤
√
K̃2. The Jacobian factor for the transformation ln v → ln t is given

by (1− z)/(1− z+ τ). We will investigate the numerical effect of different choices for the evolution scheme in Sec. VI.

V. MULTI-JET MERGING

The physics modeling of parton-shower simulations can be improved systematically with the help of multi-jet
merging [21–31]. This is achieved by including higher multiplicity tree-level fixed order calculations with well separated
parton-level jets, while maintaining both the logarithmic accuracy of the parton shower and the fixed order accuracy.
Here, we implement the leading-order merging method described in [25], which can be described as follows:

1. The phase space of parton-shower emissions is restricted to the complement of the phase space of the fixed-order
calculations. For example, in the combination of pp → Z and pp → Zj, with pT,j ≥ pT,cut, the phase space of
the first parton-shower emission would be restricted to p⊥ < p⊥,cut. This is called the jet veto, the variable used
to separate the phase space is called the jet criterion, and the separation scale is called the merging scale, Qcut.

2. The fixed-order result is modified to include higher-order corrections as resummed in the parton-shower approach.
This procedure consists of multiple steps:

(a) Re-interpreting the final-state configuration of the fixed-order calculation as having originated from a
parton cascade [97]. This is called clustering, and the representations of the final-state configuration in
terms of parton branchings are called parton-shower histories.

(b) Choosing appropriate scales for evaluating the strong coupling at each branch point in the cascade, thereby
resumming higher-order corrections to soft-gluon radiation [98, 99]. This procedure is called αs-reweighting.

(c) Weighting by appropriate no-emission probabilities, representing the resummed unresolved real and virtual
corrections [21]. This procedure is called Sudakov reweighting. It is implemented using pseudo showers [22].

The jet clustering procedure for the Alaric parton shower requires extra care, because multiple histories (soft and
collinear) may exist for each combination of external partons. Due to the difference between radiation and splitting
kinematics, they differ not only in their associated weight, but also in the kinematics of the underlying Born state.

VI. NUMERICAL RESULTS

In this section we present first numerical results obtained with the Alaric parton shower for hadron colliders, as
implemented in the event generation framework Sherpa [100–102]. We set CF = (N2

c − 1)/(2Nc) = 4/3 and CA = 3,
all quarks are considered as massless, but we implement flavor thresholds at mc = 1.42 GeV and mb = 4.92 GeV.
The running coupling is evaluated at two loop accuracy with αs(mz) = 0.118. Following standard practice to improve
the logarithmic accuracy of the parton shower, we employ the CMW scheme [99], i.e. the soft eikonal contribution to
the flavor conserving splitting functions is rescaled by 1 + αs(t)/(2π)K, with K = (67/18 − π2/6)CA − 10/9TR nf .
Where appropriate, our results include multi-jet merging at leading-order accuracy. All analyses are performed with
Rivet [103].
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FIG. 3. Alaric ME+PS merged predictions with up to three jets for ϕ∗
η (left) and the Z-boson pT (right), inclusive over all

accessible Z-boson rapidities (upper panel), or in different bins of |yZ |. Uncertainties related to the choice of merging cut Qcut

are indicated with the light-blue band around the central value; the main plots show the overall prediction in comparison to
the ATLAS data at 7 TeV c.m.-energy from [104] and [105], while respective lower panels show deviations.

A. Drell-Yan lepton pair production

Figure 3 shows the transverse momentum spectrum of the Drell-Yan lepton pair, and the angular variable ϕ∗ [106],
as predicted by a multi-jet merged calculation with Alaric, in comparison to experimental data from the ATLAS
collaboration [104, 105]. In this analysis, leptons are required to have |η| < 2.4 and pT > 20 GeV, in addition to the
invariant mass constraint 66 GeV≤ mll ≤116 GeV. The leptons are dressed, i.e., they are combined with photons
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FIG. 4. Systematic uncertainties of parton-shower predictions from Alaric due to different maximal number, nj,max of jet
from leading-order matrix elements (left) and due to different choices of the recoil momentum K̃ (right). See Fig. 3 and the
main text for details.
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FIG. 5. Alaric ME+PS merged predictions in comparison to ATLAS data from [107].

within a cone of radius R = 0.1 . The uncertainty band in Fig. 3 corresponds to the variation of the merging cut
between 5 GeV and 20 GeV. In general, we find agreement with experimental data to the level that it can be expected
from a parton-shower simulation without NLO multi-jet merging, see for example [28]. Apart from very forward
regions in Z-boson rapidity, the deviations from data reach at most five to ten percent.
We include up to three jets in this simulation, but we note that the prediction stabilizes upon including the second

jet, cf. the left panel of Fig. 4. There, we display a variation of results with the highest jet multiplicity, nj max, the
maximal number of jets described by fixed-order calculations in the multi-jet merging. We find that with increasing
nj max the high transverse momentum region is better described by the simulation. This effect has been discussed in
great detail in the original literature on multi-jet merging [21–24]. The saturation of this effect at nj max = 2 can be
understood by noticing that the addition of a first and second jet adds new partonic initial state channels.

The right panel of Fig. 4 shows some of the systematic uncertainties associated with the parton-shower prediction
itself. We compare two different definitions of K, one where the recoil is absorbed by the Drell-Yan lepton pair (labeled
K = pz), and one where the recoil is absorbed by the complete final state (our default choice, labeled K =

∑
p).

While the first definition leads to a somewhat better description of the transverse momentum spectrum in the bulk
of the distribution, it fails in the high-pT tails. This is expected, because in the high transverse momentum region,
the invariant mass of the Drell-Yan lepton pair no longer provides the highest scale in the process. We also compare
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FIG. 6. Multi-jet merged predictions from Alaric in comparison to ATLAS measurements at 7 TeV [108], again in dependence
on nj max. See the main text for details.

to a simulation where the momentum fractions zi defined in Eq. (2) are replaced by the splitting variable z (labeled
K =

∑
p, zi → z). The differences compared to the default simulation are small, because the observable is largely

insensitive to 1/x enhanced terms in the parton-shower splitting functions. Finally, we compare to a simulation where

the new evolution scheme, described in Sec. IV, is replaced by the original proposal in [63] (labeled K = Σp, t
(n)
FS .

Again, the differences between the two options are small.

Figure 5 displays predictions from Alaric in comparison to experimental data at 13 TeV c.m.-energy from the
ATLAS collaboration reported in [107]. In this analysis, leptons are required to satisfy slightly different cuts, i.e.
|η| < 2.5 and pT > 27 GeV, in addition to the invariant mass constraint 66 GeV≤ mll ≤116 GeV. As before, the
leptons have been dressed with a cone of radius R = 0.1. By far and large we observe similar features as in the
comparison to 7 TeV data in the upper panel of Fig. 4.

Figure 6 displays jet-multiplicity spectra in Z+ jets multi-jet merged predictions from Alaric in comparison to
measurements from the ATLAS collaboration [108]. There, electrons are required to have |η| < 1.37 or 1.52 < |η| <
2.47 and muons must be within |η| < 2.4. Both electrons and muons must have pT > 20 GeV and are required to
satisfy the invariant mass constraint 66 GeV≤ mll ≤116 GeV. The leptons are dressed by photons within a cone
of radius R = 0.1 and must satisfy ∆Rll > 0.2. Jets are reconstructed using the anti-kT algorithm [110] with a
radius of R = 0.4 and are required to have |η| < 4.4 and pT > 30 GeV. In addition, they must be separated from
leptons by ∆R > 0.5. The left panel shows the inclusive jet multiplicity distribution, and the right panel displays
the ratio of consecutive jet rates. We present Monte-Carlo results with increasing number of nj max to exemplify
that the correct modeling of these distributions depends on the appropriate coverage of the multi-jet phase space and
the incorporation of the tree-level matrix elements at sufficiently high final-state multiplicity. A computation with
nj max = 1 fails to describe the experimental data, while the calculations with nj max = 2 and nj max = 3 are fairly
similar. In particular, the result with nj max = 3 is in good agreement with the jet multiplicity ratio measurement
above Njet = 1. The uncertainty bands shown in the figure represent the envelope of the statistical uncertainties and
the merging cut variations, with the merging cut varied between 5 GeV and 20 GeV. We attribute the rate mismatch
in the jet multiplicity distribution above Njet = 0 and the corresponding mismatch at Njet = 1 in the jet rate ratio to
the missing higher-order corrections, which are larger for the one-jet rate and the subsequent jet rates than for the
inclusive process [28, 111].

Figure 7 shows predictions from a Z+jets multi-jet merged computation with nj max = 2 in comparison with
experimental measurements at 7 TeV c.m.-energy from CMS [109]. The upper left panel shows the transverse thrust
distribution [112], and the upper right panel displays the same in the boosted region, where pT,Z > 150 GeV. The
lower left panel shows the azimuthal decorrelation between the Drell-Yan lepton pair and the leading jet, ∆ϕ(Z, J1),
and the lower right panel shows the same in the boosted region, where pT,Z > 150 GeV. The Monte-Carlo predictions
have been obtained with the same settings as in Fig. 4. The difference between the individual results is small, except
for the azimuthal decorrelation in the boosted regime, where the recoil definition using only the di-lepton pair fails
to describe the small-∆ϕ region. This is expected, because in the boosted regime the Drell-Yan invariant mass does
not provide the largest scale in the process.
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FIG. 7. Multi-jet merged predictions from Alaric in comparison to CMS measurements [109]. See the main text for details.

B. Inclusive jet and di-jet production

In this sub-section we compare results from a pure parton-shower simulation, without applying any multi-jet merg-
ing, with Alaric against inclusive jet and dijet measurements from the ATLAS and CMS collaborations. The
renormalization and factorization scales are chosen as µR = µF = HT /4, where HT denotes the scalar sum of the
final state transverse momenta. The resummation scale (i.e. the parton shower starting scale) is defined as µQ = p⊥,
with p⊥ the transverse momentum of the leading jet. We compare to data measured at the LHC at

√
s = 7 TeV

and
√
s = 13 TeV. Hadronization corrections are included using the Lund model via an interface to Pythia 8 [114].

We use the string fragmentation parameters a = 0.4, b = 0.36 and σ = 0.3. To simulate the underlying event we
rely Sherpa’s default module [101], based on the Sjöstrand–Zijl multiple-parton interaction (MPI) model [115]. It
is worth noting that so far we have not produced a dedicated tune of hadronization or underlying event parameters
specifically for the Alaric parton shower.

We start our discussion by firstly comparing, in Fig. 8, Alaric results to inclusive jet rates in dependence on the
transverse momentum of the leading jet, in several bins of the leading jet rapidity. The data were taken by the CMS
collaboration at

√
s = 13 TeV [113] and reach energy scales up to p⊥ ∼ 2 TeV and rapidity values of up to |y| = 4.7.

Our predictions are in good agreement with data, which motivates us to investigate the details of the radiation pattern
in more detail.

We continue by comparing to the inclusive rates of jets produced in the shower to data measured by ATLAS [116]
at

√
s = 7 TeV. The analysis constructs anti-kt jets with a radius parameter of R = 0.4, and requires at least one

jet with a transverse momentum of p⊥ > 80 GeV, while additional jets are required to have p⊥ > 60 GeV. All jets
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FIG. 8. Transverse momentum spectrum of inclusive jets in different rapidity regions in proton-proton collisions at a center of
mass energy of 13 TeV. Alaric predictions compared to data measured by CMS [113]. The left plot shows the full distributions
while the panels on the right are the ratio to data.

must satisfy a rapidity requirement of |y| < 2.8. The comparison of the cross sections for inclusive jet is presented
in Fig. 9, starting from Njet = 2 and going up to Njet = 6. The Alaric predictions slightly overestimate the central
value of the overall cross section for lower multiplicities and tend to drop off somewhat faster for higher jet rates
than seen in data. However, the predictions are consistent with the data within the statistical uncertainties over the
full range. The ratio plot in the middle of the upper left panel of Fig. 9 shows that the central value of the 3-jet
rate (although within the data uncertainty) is overestimated slightly more than the inclusive 2-jet rate. This effect
is echoed in the bottom of the upper left panel, where we plot the ratios of inclusive Njet versus Njet − 1 rate. In
the upper right panel of Fig. 9 we compare to data for the ratio of the 3- to 2-jet rate, differential in the transverse
momentum of the leading jet, with different minimal requirements on the hardness of the included jets. We can see
that the relative enhancement is mostly constant over the full range of leading jet p⊥. A similar dataset is available

casting the 3-to-2-jet ratio as a function of the scalar sum of the transverse momenta of the two leading jets, H
(2)
T ,

or all jets, HT . We compare with 7 TeV data from ATLAS [116], binned in H
(2)
T in the lower left panel of Fig. 9,

while the lower right plot compares the shower with a similar measurement by the CMS collaboration [117] binned
in HT . The CMS measurement, likewise performed at

√
s = 7 TeV, uses anti-kt jets with an radius of R = 0.5 and

requires a transverse momentum of at least pjets⊥ > 50 GeV. The Alaric predictions reproduce the data remarkably
well, with practically no discrepancy to either ATLAS or CMS data within the uncertainty of the measurements. This
emphasizes that the Alaric algorithm can predict jet multiplicities and the 2-to-3 jet rate with excellent quality from
the parton shower alone.

We now turn to more differential measurements of jet properties. The upper panel of Fig. 10 shows the transverse
momentum spectra of the four leading jets (according to their p⊥), as predicted by Alaric, and compares the results
to 7 TeV measurements from ATLAS [116], providing data for transverse momenta of the jets between 90 GeV and
up to 800 GeV for the leading and sub-leading jet(s). The data are also available differential in the HT observable,
in the range 180 GeV < HT < 1600 GeV, separately for events containing at least 2, 3 and 4 jets. The comparison in
the lower panel of Fig. 10 presents a similar picture as the transverse momentum data, the parton-shower result from
Alaric compares very well over the entire range and for all considered multiplicities. We again observe excellent
agreement between our results and experimental data, independent of the jet selection and over the full range of
transverse momentum studied.
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FIG. 9. Inclusive jet multiplicity in inclusive jet production at
√
s = 7 TeV (upper left panel) with cross sections (top), the

ratio of simulation and data (middle) and ratios between Njet to Njet − 1 jet rate (bottom). The Njet = 3 to Njet = 2 rates
(right) differential in the transverse momentum of the leading jet (upper right panel); both sets of data are taken from [116].
Ratio of inclusive 3 jet over 2 jet rate R32 at

√
s = 7 TeV, as predicted by Alaric and compared to measurements from

ATLAS [116] (lower left) and CMS [117] (lower right).

While so far we have considered the transverse momenta and multiplicity distributions of leading jets in the events,
we next analyze a class of observables sensitive to additional radiation in the event. To this end we consider non-
global observables called gap fractions, i.e. the fraction of events with no jets harder than a cutoff Q0 in the rapidity
interval of size ∆y between the two leading jets of a dijet system. We compare our results to data measured by the
ATLAS experiment [118] at

√
s = 7 TeV in Fig. 11. This analysis uses anti-kt jets with a radius of R = 0.6, and the

measurement is presented in several ∆y bins starting from 0∆y < 1 ranging up to 7 < ∆y < 8. We observe excellent
agreement of the data at larger Q0 for the full range of ∆y. Only for the smallest Q0 values we find a slight excess of
our parton-shower predictions over the data.

Finally, we highlight Alaric’s performance in describing the intra-jet dynamics by presenting a comparison to a
jet substructure observable, in Fig. 12. The CMS collaboration has measured several variants of angularities [119]
in dijet events at 13 TeV. This measurement has been studied extensively using Sherpa in the past [120, 121]. For
brevity we restrict ourselves to showcasing the case of the so-called Les Houches angularity [122, 123] measured on
charged particles in anti-kt jets with radius R = 0.8. We observe a similar level of agreement to the data as these
earlier studies, describing the general trend of the data but tentatively producing somewhat narrower distributions
than seen in data.
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(right) of the two leading jets in dijet events.
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VII. CONCLUSIONS

In this publication we introduced the novel Alaric parton-shower for simulating QCD radiation at hadron colliders,
in particular the LHC. We emphasized the importance of a correct identification of the momentum fractions entering
the purely collinear components of the splitting functions. We introduced a new evolution variable, which is defined in
the frame of the recoil momentum after the emission. This frame coincides with the event frame in e+e− →hadrons.
We also presented the first multi-jet merging for the Alaric parton shower.

We quantified the systematic uncertainties of the parton-shower predictions due to various choices of recoil scheme,
evolution and splitting parameters. In a detailed comparison with experimental data from Drell-Yan lepton-pair
production at the LHC we find that systematic uncertainties are relatively small. The only exception arises from the
choice of recoil momentum, leading to sizable uncertainties in some regions of phase space. Driven by the comparison
with data, we argue that for generic LHC Drell-Yan plus multi-jet events, the appropriate choice is a recoil vector
that includes all final-state particles.

We further highlighted the capabilities of the Alaric algorithm by comparing its predictions with an indicative
range of relevant observables, in particular the jet multiplicities in Drell-Yan lepton pair production at the LHC. We
also presented the first predictions for inclusive jet and di-jet production. We find that the quality of the description
of experimental data from the LHC is in line with the current formal precision of the simulation.

In the near future, we will implement a next-to-leading order matching procedure, and extend the leading-order
merging to next-to-leading order precision. This will allow us to obtain state-of-the art predictions for LHC measure-
ments using the Alaric algorithm.
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[18] S. Höche, F. Krauss, M. Schönherr, and F. Siegert, JHEP 04, 024 (2011), arXiv:1008.5399 [hep-ph].
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