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The simulation of lattice gauge theories on quantum computers necessitates digitizing gauge fields.
One approach involves substituting the continuous gauge group with a discrete subgroup, but the
implications of this approximation still need to be clarified. To gain insights, we investigate the
subduction of SU(2) and SU(3) to discrete crystal-like subgroups. Using classical lattice calculations,
we show that subduction offers valuable information based on subduced direct sums, helping us
identify additional terms to incorporate into the lattice action that can mitigate the effects of
digitization. Furthermore, we compute the static potentials of all irreducible representations of
Σ(360 × 3) at a fixed lattice spacing. Our results reveal a percent-level agreement with the Casimir
scaling of SU(3) for irreducible representations that subduce to a single Σ(360 × 3) irreducible
representation. This provides a diagnostic measure of approximation quality, as some irreducible
representations closely match the expected results while others exhibit significant deviations.

I. INTRODUCTION

Digital quantum computers offer promising opportuni-
ties for exploring lattice gauge theories (LGTs) in regimes
that classical computers struggle with due to sign prob-
lems, such as real-time dynamics or the properties of
matter at finite density [1–8]. However, these devices
also bring significant challenges, primarily the limited
availability of qubits and the shallow circuit depth before
noise overtakes the calculations. This constraint is remi-
niscent of the early days of Euclidean LGT on classical
computers, where storing floating-point representations
of SU(3) was computationally prohibitive. This led to
research on approximations [9–12] and gauge-fixing [13].

Many digitizations have been proposed to reduce this
high cost [14–64]. Each makes choices that break sym-
metries [24, 65] complicating the extrapolation back to
original theory [43, 44, 46, 53, 66–74]. Moreover, the ef-
fectiveness of the digitization can be spacetime dimension-
dependent [38, 75–78]. Further, some digitizations can
be simulated on classical computers without sign prob-
lems, allowing for nonperturbative Euclidean simulations
or stochastic state preparation [79–82]. Currently, there
is a significant gap in our understanding regarding the
resource demands, potential errors, and the feasibility of
achieving continuum limits with these techniques.

In this paper, we will consider the discrete subgroup
approximation, which uses comparatively few qubits (or
bits) and shallow circuit depth by avoiding fixed-point
arithmetic. This digitization was first studied in Euclidean
simulations for reducing classical resources [9, 83–86] in-
cluding with dynamical fermions [87, 88]. Today, this
approximation’s potential for use in quantum computing
is under investigation [22, 24–28, 49, 58, 76, 77, 89–97].

This work will focus on how the subduction of the
continuous SU(2) and SU(3) groups to their discrete sub-
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groups plays a role in the digitization error. We will use
the notation of G to represent a continuous group and G to
denote any of its discrete subgroups. Subduction provides
a mapping from irreducible representations (IR) of one
group to one or a direct sum of IRs of a subgroup. This
builds on previous work, which investigated how reducing
continuous spacetime to a cubic lattice corresponds to the
subduction of SU(2) to the binary octahedral group BO
– breaking in the rotational symmetry of LGT [98, 99].
From this understanding, it has been possible to construct
an improved operator with reduced signal-to-noise and
excited state contamination [100–103]. We extend these
ideas to gauge digitization by providing subduction tables
for crystal-like subgroups of both SU(2) and SU(3) and
use this to gain insight by analyzing two lattice observ-
ables – the lattice energy density and Casimir scaling of
the nonperturbative static potentials. This quantitative
understanding of the breaking of the continuous gauge
symmetry represents a starting point to systematically
interpret the discrete subgroups as continuous groups
broken by a Higgs mechanism [104–110].

This paper is organized as follows. Sec. II and III
summarizing key properties of, respectively, the SU(2)
and SU(3) and their crystal-like subgroups. In Sec. IV,
we determine the subductions and inductions between the
continuous and discrete groups. Following that, in Sec. V,
numerical results are presented for the lattice energy
density and Casimir scaling of the static potentials; we
then conclude in Sec. VI.

II. SU(2)

The infinite set of IRs of SU(2) are indexed by a half-
integer j, and their dimensionality is given by d = 2j + 1.
In a given IR, the character of group elements further
depends on a rotation angle θ:

χ(j)(θ) =
sin

([
j + 1

2
]

θ
)

sin
(

θ
2
) . (1)
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TABLE I. Character Table of BTa

Size 1 1 6 4 4 4 4
Order 1 2 4 6 6 3 3

A0 1 1 1 1 1 1 1
E1 1 1 1 ω ω2 ω2 ω

E2 1 1 1 ω2 ω ω ω2

H 2 −2 0 1 1 −1 −1
G1 2 −2 0 ω ω2 −ω2 −ω

G2 2 −2 0 ω2 ω −ω −ω2

T 3 3 −1 0 0 0 0
a A typo in the 7th line of [77] has been corrected here.

TABLE II. Character table of BO

Size 1 1 12 6 8 8 6 6
Ord. 1 2 4 4 6 3 8 8
A1 1 1 1 1 1 1 1 1
A2 1 1 −1 1 1 1 −1 −1
E 2 2 0 2 −1 −1 0 0
G1 2 −2 0 0 1 −1 −

√
2

√
2

G2 2 −2 0 0 1 −1
√

2 −
√

2
T1 3 3 −1 −1 0 0 1 1
T2 3 3 1 −1 0 0 −1 −1
H 4 −4 0 0 −1 1 0 0

SU(2) has three crystal-like subgroups: the 24-element
Binary Tetrahedral group (BT), the 48-element Binary
Octahedral group (BO), and the 120-element Binary Icosa-
hedral group (BI). The character tables for each group
are given by Tables I, II, and III respectively and will be
used below to derive the subduction of SU(2).

III. SU(3)

The infinite set of IRs of SU(3), χ(p,q), are indexed by
non-negative integers p, q, which correspond to the highest
weights of the representation, reflecting the symmetry

TABLE III. Character table of BI

Size 1 1 20 30 12 12 20 12 12
Ord. 1 2 3 4 5 5 6 10 10
A0 1 1 1 1 1 1 1 1 1
E1 2 -2 -1 0 −1+

√
5

2
−1−

√
5

2 1 1+
√

5
2

1−
√

5
2

E2 2 -2 -1 0 −1−
√

5
2

−1+
√

5
2 1 1−

√
5

2
1+

√
5

2
T1 3 3 0 -1 1−

√
5

2
1+

√
5

2 0 1+
√

5
2

1−
√

5
2

T2 3 3 0 -1 1+
√

5
2

1−
√

5
2 0 1−

√
5

2
1+

√
5

2
G1 4 4 1 0 -1 -1 1 -1 -1
G2 4 -4 1 0 -1 -1 -1 1 1
H 5 5 -1 1 0 0 -1 0 0
J 6 -6 0 0 1 1 0 -1 -1

TABLE IV. Character table of Σ(108) with ω = e2πi/3.
Size 1 1 1 12 12 9 9 9 9 9 9 9 9 9
Ord. 1 3 3 3 3 2 6 6 4 12 12 4 12 12
1(0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1(1) 1 1 1 1 1 -1 -1 -1 i i i -i -i -i
1(2) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
1(3) 1 1 1 1 1 -1 -1 -1 -i -i -i i i i

3(0) 3 3ω 3ω2 0 0 -1 -ω -ω2 1 ω ω2 1 ω ω2

3(1) 3 3ω 3ω2 0 0 1 ω ω2 i iω iω2 -i -iω -iω2

3(2) 3 3ω 3ω2 0 0 -1 -ω -ω2 -1 -ω -ω2 -1 -ω -ω2

3(3) 3 3ω 3ω2 0 0 1 ω ω2 -i -iω -iω2 i iω iω2

3(0)∗ 3 3ω2 3ω 0 0 -1 -ω2 -ω 1 ω2 ω 1 ω2 ω

3(1)∗
3 3ω2 3ω 0 0 1 ω2 ω -i -iω2 -iω i iω2 iω

3(2)∗ 3 3ω2 3ω 0 0 -1 -ω2 -ω -1 -ω2 -ω -1 -ω2 -ω
3(3)∗ 3 3ω2 3ω 0 0 1 ω2 ω i iω2 iω -i -iω2 -iω

4 4 4 4 1 -2 0 0 0 0 0 0 0 0 0
4′ 4 4 4 -2 1 0 0 0 0 0 0 0 0 0

properties of particle states under SU(3) transformations.
The dimensionality of χ(p,q) is d = 1

2 (p+1)(q+1)(p+q+2).
In a given IR, the character of group elements further
depends on rotation angles θ, ϕ:

χ(p,q) = ei(p+2q)θ

p+q∑
k=q

q∑
l=0

e−3i(k+l) θ
2

sin
(

[k − l + 1] ϕ
2

)
sin

(
ϕ
2

) ,

(2)
We classify the discrete subgroups of SU(3) we are in-
terested in and their associated IRs. The finite, non-
Abelian crystal-like subgroups of SU(3) with a Z3 center
are Σ(108), Σ(216), Σ(648), and Σ(1080), where the num-
ber in parentheses indicates the number of elements. We
provide the character tables for these discrete subgroups
in Tables IV, V, VI and VII, respectively.

IV. BASICS OF SUBDUCTION

Subduction in group theory refers to the decomposition
of an IR of a group into the IRs of one of its subgroups.
In the case of G subducing to G, the infinite set of IRs of
G must be subduced to the finite set of IRs of G. Conse-
quently, only a limited number of IRs can be subduced
one-to-one, with higher dimensional IRs subducing to
direct sums of increasingly large numbers of IRs. The
multiplicity of the r-th IR of G in the subduction of the
j-th G IR can be determined by computing

m
(r)
j = 1

g

∑
k

nkχ
(r)
k χ

(j)
k (3)

where g is the size of G, the sum is over all k conjugacy
classes, nk is the size in k in G, and χ

(r)
k and χ

(j)
k are the

characters of the r-th and j-th IRs, respectively, evaluated
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TABLE V. Character table of Σ(216) with ω = e2πi/3.
Size 1 1 1 24 9 9 9 18 18 18 18 18 18 18 18 18
Ord 1 3 3 3 2 6 6 4 12 12 4 12 12 12 12 4
1(0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1(1) 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1
1(2) 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
1(3) 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1
2 2 2 2 2 -2 -2 -2 0 0 0 0 0 0 0 0 0

3(0) 3 3ω 3ω2 0 -1 -ω -ω2 1 ω ω2 1 ω ω2 ω ω2 1
3(1) 3 3ω 3ω2 0 -1 -ω -ω2 -1 -ω -ω2 1 ω ω2 -ω -ω2 -1
3(2) 3 3ω 3ω2 0 -1 -ω -ω2 1 ω ω2 -1 -ω -ω2 -ω -ω2 -1
3(3) 3 3ω 3ω2 0 -1 -ω -ω2 -1 -ω -ω2 -1 -ω -ω2 ω ω2 1
3(0)∗ 3 3ω2 3ω 0 -1 -ω2 -ω 1 ω2 ω 1 ω2 ω ω2 ω 1
3(1)∗ 3 3ω2 3ω 0 -1 -ω2 -ω -1 -ω2 -ω 1 ω2 ω -ω2 -ω -1
3(2)∗ 3 3ω2 3ω 0 -1 -ω2 -ω 1 ω2 ω -1 -ω2 -ω -ω2 -ω -1
3(3)∗ 3 3ω2 3ω 0 -1 -ω2 -ω -1 -ω2 -ω -1 -ω2 -ω ω2 ω 1

6 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 0 0 0 0 0 0
6∗ 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 0 0 0 0 0 0
8 8 8 8 -1 0 0 0 0 0 0 0 0 0 0 0 0

TABLE VI. Character table of Σ(648) with ω = e2πi/3, ρ ≡ e2πi/9, σ ≡ ρ(1 + 2ω)
Size 1 1 1 24 9 9 9 54 54 54 72 72 12 12 12 12 12 12 36 36 36 36 36 36
Ord. 1 3 3 3 2 6 6 4 12 12 3 3 9 9 9 9 9 9 18 18 18 18 18 18
1(0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1(1) 1 1 1 1 1 1 1 1 1 1 ω ω2 ω ω ω ω2 ω2 ω2 ω ω ω ω2 ω2 ω2

1(2) 1 1 1 1 1 1 1 1 1 1 ω2 ω ω2 ω2 ω2 ω ω ω ω2 ω2 ω2 ω ω ω

2(0) 2 2 2 2 -2 -2 -2 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
2(1) 2 2 2 2 -2 -2 -2 0 0 0 -ω -ω2 -ω -ω -ω -ω2 -ω2 -ω2 ω ω ω ω2 ω2 ω2

2(2) 2 2 2 2 -2 -2 -2 0 0 0 -ω2 -ω -ω2 -ω2 -ω2 -ω -ω -ω ω2 ω2 ω2 ω ω ω

3(a) 3 3 3 3 3 3 3 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3(0) 3 3ω 3ω2 0 -1 -ω -ω2 1 ω ω2 0 0 ω2σ∗ σ∗ ωσ∗ σ ωσ ω2σ -ρ2 -ρ4∗ -ρ∗ -ρ2∗ -ρ -ρ4

3(1) 3 3ω 3ω2 0 -1 -ω -ω2 1 ω ω2 0 0 σ∗ ωσ∗ ω2σ∗ ω2σ σ ωσ -ρ4∗ -ρ∗ -ρ2 -ρ4 -ρ2∗ -ρ
3(2) 3 3ω 3ω2 0 -1 -ω -ω2 1 ω ω2 0 0 ωσ∗ ω2σ∗ σ∗ ωσ ω2σ σ -ρ∗ -ρ2 -ρ4∗ -ρ -ρ4 -ρ2∗

3(0)∗ 3 3ω2 3ω 0 -1 -ω2 -ω 1 ω2 ω 0 0 ωσ σ ω2σ σ∗ ω2σ∗ ωσ∗ -ρ2∗ -ρ4 -ρ -ρ2 -ρ∗ -ρ4∗

3(1)∗ 3 3ω2 3ω 0 -1 -ω2 -ω 1 ω2 ω 0 0 σ ω2σ ωσ ωσ∗ σ∗ ω2σ∗ -ρ4 -ρ -ρ2∗ -ρ4∗ -ρ2 -ρ∗

3(2)∗ 3 3ω2 3ω 0 -1 -ω2 -ω 1 ω2 ω 0 0 ω2σ ωσ σ ω2σ∗ ωσ∗ σ∗ -ρ -ρ2∗ -ρ4 -ρ∗ -ρ4∗ -ρ2

6(0) 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 0 0 -ωσ∗ -ω2σ∗ -σ∗ -ωσ -ω2σ -σ -ρ∗ -ρ2 -ρ4∗ -ρ -ρ4 -ρ2∗

6(1) 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 0 0 -ω2σ∗ -σ∗ -ωσ∗ -σ -ωσ -ω2σ -ρ2 -ρ4∗ -ρ∗ -ρ2∗ -ρ -ρ4

6(2) 6 6ω 6ω2 0 2 2ω 2ω2 0 0 0 0 0 -σ∗ -ωσ∗ -ω2σ∗ -ω2σ -σ -ωσ -ρ4∗ -ρ∗ -ρ2 -ρ4 -ρ2∗ -ρ
6(0)∗ 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 0 0 -ω2σ -ωσ -σ -ω2σ∗ -ωσ∗ -σ∗ -ρ -ρ2∗ -ρ4 -ρ∗ -ρ4∗ -ρ2

6(1)∗ 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 0 0 -ωσ -σ -ω2σ -σ∗ -ω2σ∗ -ωσ∗ -ρ2∗ -ρ4 -ρ -ρ2 -ρ∗ -ρ4∗

6(2)∗ 6 6ω2 6ω 0 2 2ω2 2ω 0 0 0 0 0 -σ -ω2σ -ωσ -ωσ∗ -σ∗ -ω2σ∗ -ρ4 -ρ -ρ2∗ -ρ4∗ -ρ2 -ρ∗

8(0) 8 8 8 -1 0 0 0 0 0 0 -1 -1 2 2 2 2 2 2 0 0 0 0 0 0
8(1) 8 8 8 -1 0 0 0 0 0 0 -ω -ω2 2ω 2ω 2ω 2ω2 2ω2 2ω2 0 0 0 0 0 0
8(2) 8 8 8 -1 0 0 0 0 0 0 -ω2 -ω 2ω2 2ω2 2ω2 2ω 2ω 2ω 0 0 0 0 0 0
9 9 9ω 9ω2 0 -3 -3ω -3ω2 -1 -ω -ω2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9∗ 9 9ω2 9ω 0 -3 -3ω2 -3ω -1 -ω2 -ω 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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TABLE VII. Character table for Σ(1080) with ω = e2πi/3, µ1 = (1 −
√

5)/2, µ2 = (1 +
√

5)/2.

Size 1 72 90 45 45 72 72 120 120 90 90 72 72 72 45 1 1
Ord 1 5 4 6 6 15 15 3 3 12 12 5 15 15 2 3 3
1(0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3(0) 3 µ2 1 -ω∗ -ω µ1ω∗ µ1ω 0 0 ω ω∗ µ1 µ2ω µ2ω∗ -1 3ω 3ω∗

3(0)∗ 3 µ2 1 -ω -ω∗ µ1ω µ1ω∗ 0 0 ω∗ ω µ1 µ2ω∗ µ2ω -1 3ω∗ 3ω

3(1) 3 µ1 1 -ω∗ -ω µ2ω∗ µ2ω 0 0 ω ω∗ µ2 µ1ω µ1ω∗ -1 3ω 3ω∗

3(1)∗ 3 µ1 1 -ω -ω∗ µ2ω µ2ω∗ 0 0 ω∗ ω µ2 µ1ω∗ µ1ω -1 3ω∗ 3ω

5(0) 5 0 -1 1 1 0 0 -1 2 -1 -1 0 0 0 1 5 5
5(0)′

5 0 -1 1 1 0 0 2 -1 -1 -1 0 0 0 1 5 5
6(0) 6 1 0 2ω 2ω∗ ω ω∗ 0 0 0 0 1 ω∗ ω 2 6ω∗ 6ω

6(0)∗ 6 1 0 2ω∗ 2ω ω∗ ω 0 0 0 0 1 ω ω∗ 2 6ω 6ω∗

8(0) 8 µ2 0 0 0 µ1 µ1 -1 -1 0 0 µ1 µ2 µ2 0 8 8
8(0)′

8 µ1 0 0 0 µ2 µ2 -1 -1 0 0 µ2 µ1 µ1 0 8 8
9(0) 9 -1 1 1 1 -1 -1 0 0 1 1 -1 -1 -1 1 9 9
9(1) 9 -1 1 ω ω∗ -ω -ω∗ 0 0 ω∗ ω -1 -ω∗ -ω 1 9ω∗ 9ω

9(1)∗ 9 -1 1 ω∗ ω -ω∗ -ω 0 0 ω ω∗ -1 -ω -ω∗ 1 9ω 9ω∗

10(0) 10 0 0 -2 -2 0 0 1 1 0 0 0 0 0 -2 10 10
15(0) 15 0 -1 -ω∗ -ω 0 0 0 0 -ω -ω∗ 0 0 0 -1 15ω 15ω∗

15(0)∗ 15 0 -1 -ω -ω∗ 0 0 0 0 -ω∗ -ω 0 0 0 -1 15ω∗ 15ω

for elements of the k-th conjugacy class. Using dr, dj to
indicate the dimension of the IRs, we have

dr =
∑

j

m
(r)
j dj (4)

The requirement that LFT observables must be gauge
invariant can be restated as saying they must be func-
tions only of characters of IRs. We therefore anticipate
that observables in IRs that subduce to direct sums corre-
spond to larger discrepancies between G and G. In what
follows, we will use the subduction for the IRs of discrete
subgroups of SU(2) and SU(3) to interrogate this idea.

IV.1. SU(2) Subduction tables

By inputting the character tables of BT, BO, BI and
Eq. 1 into Eq. 3, we derive the multiplicity of each IR of
G in the subductions of SU(2). Due to its relation to the
reduction of the continuous spacetime onto the lattice, the
subduction of BO was previously investigated in [98, 99],
and they further consider how this affects states of fixed
angular momentum in LGT. It is included alongside BT
and BI in Table VIII.

Each row of Table VIII corresponds to a specific SU(2)
IR, characterized by the quantum number j, with the
direct sum of the IRs from the finite subgroups in its
subduction. The dimension of the subduced IR must
equal the sum of the direct sum. Therefore, with only
a finite set of IRs, as j increase, the number of IRs in

the subduction and their multiplicities must grow, with
larger discrete groups growing more slowly.

The table shows that all three crystal-like subgroups
have one-to-one subductions of the lowest IRs of SU(2),
increasing from 3 for BT to 4 for BO to 6 for BI. While
the gauge-invariant spectrum does not map precisely to
the increasing dimension of IRs, it is perhaps instructive
to consider the similar example of rigid rotators [98, 99]
where the energy levels scale like j2. Taking this heuristic,
the digitization approximation might be estimated to
break down for the first j for which the subduction is
not one-to-one. This would suggest that the relative
breakdown of BT to BO and BI would be 1:1.8:4. From
Euclidean simulations in 2+1d and 3+1d, it has been
observed that the ratio of freezeout couplings for the three
groups are 1:1.6:2.8 and 1:1.4:2.6 respectively [58, 77].
Thus, the subduction to multiple IRs does not seem to
be more than qualitatively related to the freezeout.

Similar to the question asked by [98, 99]: what is the
spin content of a lattice eigenstate that transforms as a
single IR, we are interested in what IRs of the continuous
group are mixed in the discrete group. From this, one
could explore the hierarchy of states to motivate which
higher IRs should be added to the interactions to reduce
the effects of digitization. As such, we list here the induced
IRs up to j = 10 for each crystal-like group. To provide
the reader with a sense of the potential importance of
different IRs of G, we have listed their dimensionality d
as well. An IR for which h multiple copies are required
in the induction is denoted by |h.

For the 7 IRs of BT, we observe the number of IRs of
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TABLE VIII. Subduction of SU(2) to its crystal-like subgroups: BT,BO,BI

j BT BO BI

0 A0 A1 A0
1
2 H G1 E1

1 T T1 T1
3
2 G1 ⊕ G2 H G2

2 E1 ⊕ E2 ⊕ T E ⊕ T2 H
5
2 H ⊕ G1 ⊕ G2 H ⊕ G2 J

3 A0 ⊕ 2T A2 ⊕ T1 ⊕ T2 G1 ⊕ T2
7
2 2H ⊕ G1 ⊕ G2 H ⊕ G1 ⊕ G2 J ⊕ E2

4 A0 ⊕ E1 ⊕ E2 ⊕ 2T E ⊕ A1 ⊕ T1 ⊕ T2 H ⊕ G1
9
2 H ⊕ 2G1 ⊕ 2G1 2H ⊕ G1 J ⊕ G2

5 E1 ⊕ E2 ⊕ 3T E ⊕ 2T1 ⊕ T2 H ⊕ T1 ⊕ T2
11
2 2H ⊕ 2G1 ⊕ 2G2 2H ⊕ G1 ⊕ G2 J ⊕ E1 ⊕ G2

6 2A0 ⊕ E1 ⊕ E2 ⊕ 3T E ⊕ A1 ⊕ A2 ⊕ T1 ⊕ 2T2 H ⊕ A0 ⊕ G1 ⊕ T1
13
2 3H ⊕ 2G1 ⊕ 2G2 2H ⊕ G1 ⊕ 2G2 J ⊕ E1 ⊕ E2 ⊕ G2

7 A0 ⊕ E1 ⊕ E2 ⊕ 4T E ⊕ A2 ⊕ 2T1 ⊕ 2T2 H ⊕ G1 ⊕ T1 ⊕ T2
15
2 2H ⊕ 3G1 ⊕ 3G2 3H ⊕ G1 ⊕ G2 2J ⊕ E2 ⊕ G2

8 A0 ⊕ 2E1 ⊕ 2E2 ⊕ 4T 2E ⊕ A1 ⊕ 2T1 ⊕ 2T2 2H ⊕ H1 ⊕ T2
17
2 3H ⊕ 3G1 ⊕ 3G2 3H ⊕ 2G1 ⊕ G2 2J ⊕ E2 ⊕ G2

9 2A0 ⊕ E1 ⊕ E2 ⊕ 5T E ⊕ A1 ⊕ A2 ⊕ 3T1 ⊕ 2T2 H ⊕ 2G1 ⊕ T1 ⊕ T2
19
2 4H ⊕ 3G1 ⊕ 3G2 3H ⊕ 2G1 ⊕ 2G2 2J ⊕ E1 ⊕ E2 ⊕ G2

10 2A0 ⊕ 2E1 ⊕ 2E2 ⊕ 5T 2E ⊕ A1 ⊕ A2 ⊕ 2T1 ⊕ 3T2 2H ⊕ A0 ⊕ G1 ⊕ T1 ⊕ T2

SU(2) which mix into BT IRs are

(d = 1) A0 → (j = 0, 3, 4, 6|2, 7, 8, 9|2, 10, . . .)
(d = 1) E1, E2 → (j = 2, 4, 5, 6, 7, 8|2, 9, 10|2, . . .)
(d = 2) H → (j = 1

2 , 5
2 , 7

2 |2, 9
2 , 11

2 |2, 13
2 |3,

15
2 |2, 17

2 |3, 19
2 |4, . . .)

(d = 2) G1, G2 → (j = 3
2 , 5

2 , 7
2 , 9

2 |2, 11
2 |2, 13

2 |2,
15
2 |3, 17

2 |3, 19
2 |3, . . .)

(d = 3) T → (j = 1, 2, 3|2, 4|2, 5|3, 6|3, 7|4, 8|4,

9|5, 10|5, . . .)

Because SU(2) has one 1d IR, we see that E1, E2 arise
only within direct sums of IRs. Further, they always
occur as a pair. A similar behavior is observed in the 2d
IRs of BT. One of them is subduced from the j = 1/2 IR
of SU(2), while the other two only occur in pairs, first
together in the j = 3/2 IR.

Given that BT is a subgroup of BO, it is useful to
compare their IRs. In contrast to BT, BO has only two
1d IRs, an additional 3d one, and a new 4d IR that is the
induction of G1, G2 of BT. The set of BO IRs consist of
a different mixing of SU(2) IRs, with generically greater

separation in dj :

(d = 1) A1 → (j = 0, 4, 6, 8, 9, 10, . . .)
(d = 1) A2 → (j = 3, 6, 7, 9, 10, . . .)
(d = 2) E → (j = 2, 4, 5, 6, 7, 8|2, 9, 10|2, . . .)
(d = 2) G1 → (j = 1

2 , 7
2 , 9

2 , 11
2 , 13

2 , 15
2 , 17

2 |2, 19
2 |2, . . .)

(d = 2) G2 → (j = 5
2 , 7

2 , 11
2 , 13

2 |2, 15
2 , 17

2 |2, 19
2 |2, . . .)

(d = 3) T1 → (j = 1, 3, 4, 5|2, 6, 7|2, 8|2, 9|3, 10|2, . . .)
(d = 3) T2 → (j = 2, 3, 4, 5, 6|2, 7|2, 8|2, 9|2, 10|3, . . .)
(d = 4) H → (j = 3

2 , 5
2 , 7

2 , 9
2 |2, 11

2 |2, 13
2 |2,

15
2 |3, 17

2 |3, 19
2 |3, . . .)

By inspection, we see that, unlike BT, no pairs of IRs exist
in the induction. Concerning the fundamental faithful IR
used in the Wilson action, G1, we note that while it does
induce to j = 1/2 like H for BT, it mixes with the higher
dimension j = 7/2 rather than 5/2 for H. This should be
related to a larger freezeout coupling and thus a better
approximation of SU(2).

Finally, we can investigate BI, observing that for each
dj , one IR corresponds one-to-one with SU(2), and the
others occur in complex mixings. The inductions of BI
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are:

(d = 1) A0 → (j = 0, 6, 10 . . .)
(d = 2) E1 → (j = 1

2 , 11
2 , 13

2 , 19
2 , . . .)

(d = 2) E2 → (j = 7
2 , 13

2 , 17
2 , 19

2 . . .)
(d = 3) T1 → (j = 1, 5, 6, 7, 9, 10 . . .)
(d = 3) T2 → (j = 3, 5, 7, 8, 9, 10 . . .)
(d = 4) G1 → (j = 3, 4, 6, 7, 8, 9|2, 10, . . .)
(d = 4) G2 → (j = 3

2 , 9
2 , 11

2 , 13
2 , 15

2 , 17
2 , 19

2 , . . .)
(d = 5) H → (j = 2, 4, 5, 6, 7, 8|2, 9, 10|2 . . .)
(d = 6) J → (j = 5

2 , 7
2 , 9

2 , 11
2 , 13

2 , 15
2 |2, 17

2 |2, 19
2 |2, . . .)

Looking again at the 2d IR used in the Wilson action,
E1, we see the next state after j = 1/2 to mix into it
has increased further to j = 11/2. Previous results using
group space decimation suggested in [49] would suggest
and IR enter as βdj−1 in the strong-coupling expansion
and thus the subduction gives a relation to breaking
at strong coupling. A dedicated study of excited state
glueball masses should be undertaken to study how the
dynamics of strong-coupling eigenstates of a given IR of
a subgroup are affected by their mixing into multiple IRs
of SU(2), especially when mr

j > 1.

IV.2. SU(3) Subduction tables

The subduction of SU(3) IRs into those of its finite
subgroups are presented in Table IX. Each table row cor-
relates a specific SU(3) IR, characterized by the quantum
numbers (p, q), with a direct sum of the IRs of the finite
subgroups. Given that dr increases with (p, q), satisfying
Eq. 4necessitates larger direct sums. Further, in contrast
to SU(2), where there is only 1 IR of a given dimension,
SU(3) can have 0,1 or 2 IRs per dimension. To compare
to the subductions, it is useful to note that SU(3) has
one 1d and 8d IR; two 3d, 6d, 10d, 21d IRs; and four
15d IRs. Thus, looking at the character tables, we can
establish that discrete group IRs of other dimensions like
2 or 5(0) are subduced only in a direct sum.

From Table IX, we observe that while increasing the
group size generically reduces the complexity of the sub-
ductions, the number of one-to-one subductions is not al-
ways increasing. Instead, we find that Σ(216) and Σ(648)
both have six such subductions. Further, we observe that
for the smallest group Σ(108), the only nontrivial IR that
subduces one-to-one is the fundamental.

To further explore the relationship between SU(3) and
its subgroups, we again present the inductions. For the
sake of conciseness, for pairs of complex IRs we only
enumerate the induction for one, e.g. 3(0), while the
other in the pair (3(0)∗) can be computed by exchanging

p ↔ q. For Σ(108) the induction up to p + q = 5 is

1(0) → {0, 0}|1, {2, 2}|1, {1, 4}|1, {4, 1}|1, . . .

1(1), 1(3) → {0, 3}|1, {3, 0}|1, {1, 4}|1, {4, 1}|1, . . .

1(2) → {2, 2}|2, . . .

3(0) → {0, 1}|1, {1, 2}|1, {0, 4}|1, {3, 1}|2,

{2, 3}|4, {5, 0}|3, . . .

3(1), 3(3) → {2, 0}|1, {1, 2}|1, {0, 4}|2, {3, 1}|2,

{2, 3}|3, {5, 0}|1, . . .

3(2) → {1, 2}|2, {3, 1}|2, {2, 3}|4, {5, 0}|2, . . .

4(0), 4(0)′
→ {1, 1}|1, {0, 3}|1, {3, 0}|1, {2, 2}|3,

{1, 4}|4, {4, 1}|4, . . .

The Σ(108) character table in Tab. IV shows that every
dimension has more IRs than it should to match SU(3)
and that the largest pair is 4d. From the inductions,
one observes that the pairs 1(1) & 1(3), 3(1) & 3(3), and
4(0) & 4(0)′ always appear together, indication that even
when the subduction is not one-to-one that one-to-two
subductions can have residual symmetry. In particular
the pair 4(0) & 4(0)′ correspond to the subduction of
the adjoint, 8d, IR of SU(3); this IR is commonly used
in modified actions for discrete and continuous groups
because it arises first in strong-coupling and character
expansions [49, 86, 111–115]. In Sec. V, we investigate
the effect of including the 4d IRs into a modified action.

Another metric to consider is mixing between IRs of
SU(3) in the fundamental IR of Σ(108). Since this IR
is typically used in lattice actions, if its mixing under
induction represents systematic errors in approximating
SU(3) by the group. Assuming dimensionality is a proxy
for energy along with the 3d {1, 0}, the next largest con-
tributors to 3(0)∗ are the 15d {2, 1} and {4, 0} IRs.

Moving onto Σ(216), for p + q ≤ 5 the inductions are

1(0) → {0, 0}|1, {1, 4}|1, {4, 1}|1, . . .

1(1), 1(2), 1(3) → {2, 2}|1, . . .

2(0) → {0, 3}|1, {3, 0}|1, {1, 4}|1, {4, 1}|1, . . .

3(0) → {0, 1}|1, {0, 4}|1, {3, 1}|1,

{2, 3}|2, {5, 0}|2, . . .

3(1), 3(2), 3(3) → {1, 2}|1, {3, 1}|1, {2, 3}|2, {5, 0}|1, . . .

6(0) → {2, 0}|1, {1, 2}|1, {0, 4}|2, {3, 1}|2,

{2, 3}|3, {5, 0}|1, . . .

8(0) → {1, 1}|1, {0, 3}|1, {3, 0}|1, {2, 2}|3,

{1, 4}|4, {4, 1}|4, . . .

Given that Σ(108) is a subgroup of Σ(216), it is interesting
to compare their inductions. First, we observe that the
pairs of IRs have merged: 1(1) ⊕ 1(3) → 2, 3(1) ⊕ 3(3) →
6(0), and 4(0) ⊕ 4(0)′ → 8(0). We also see that triplets
of 1(1), 1(2), 1(3) and 3(1), 3(2), 3(3) have arisen. Further,
the gaps between SU(3) IRs that mix under induction
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TABLE IX. Subduction of SU(3) to crystal-like subgroups: Σ(108) , Σ(216) , Σ(648), Σ(1080)
(p, q) Σ(108) Σ(216) Σ(648) Σ(1080)
(0,0) 1(0) 1(0) 1(0) 1(0)

(1,0) 3(0)∗ 3(0)∗ 3(0)∗ 3(0)∗

(0,1) 3(0) 3(0) 3(0) 3(0)

(2,0) 3(1) ⊕ 3(3) 6(0) 6(0) 6(0)∗

(1,1) 4(0) ⊕ 4(0)′
8(0) 8(0) 8(0)

(0,2) 3(1)∗ ⊕ 3(3)∗ 6(0)∗ 6(0)∗ 6(0)

(3,0) 1(1) ⊕ 1(3) ⊕ 4(0) ⊕ 4(0)′
2(0) ⊕ 8(0) 2(2) ⊕ 8(1) 10(0)

(2,1) 3(0)∗ ⊕ 3(1)∗ ⊕ 3(3)∗ ⊕ 2 3(2)∗ 3(1)∗ ⊕ 3(2)∗ ⊕ 3(3)∗ ⊕ 6(0)∗ 6(2)∗ ⊕ 9(0)∗ 15(0)∗

(1,2) 3(0) ⊕ 3(1) ⊕ 3(3) ⊕ 2 3(2) 3(1) ⊕ 3(2) ⊕ 3(3) ⊕ 6(0) 6(2) ⊕ 9(0) 15(0)

(0,3) 1(1) ⊕ 1(3) ⊕ 4(0) ⊕ 4(0)′
2(0) ⊕ 8(0) 2(1) ⊕ 8(2) 10(0)

(4,0) 3(0)∗ ⊕ 2 3(1)∗ ⊕ 2 3(3)∗ 3(0)∗ ⊕ 2 6(0)∗ 3(2)∗ ⊕ 6(1)∗ ⊕ 6(2)∗ 6(0) ⊕ 9(1)

(3,1) 2 3(0) ⊕ 2 3(1) ⊕ 2 3(2) ⊕ 2 3(3) 3(0) ⊕ 3(1) ⊕ 3(2) ⊕ 3(3) ⊕ 2 6(0) 3(1) ⊕ 6(0) ⊕ 6(1) ⊕ 9(0) 15(0) ⊕ 9(1)∗

(2,2) 1(0) ⊕ 2 1(2) ⊕ 3 4(0) ⊕ 3 4(0)′
1(1) ⊕ 1(2) ⊕ 1(3) ⊕ 3 8(0) 3(a) ⊕ 8(0) ⊕ 8(1) ⊕ 8(2) 5(0)′

⊕ 5(0) ⊕ 8(0)′
⊕ 9(0)

(1,3) 2 3(0)∗ ⊕ 2 3(1)∗ ⊕ 2 3(2)∗ ⊕ 2 3(3)∗ 3(0)∗ ⊕ 3(1)∗ ⊕ 3(2)∗ ⊕ 3(3)∗ ⊕ 2 6(0)∗ 3(1)∗ ⊕ 6(0)∗ ⊕ 6(1)∗ ⊕ 9(0)∗ 15(0)∗ ⊕ 9(1)

(0,4) 3(0) ⊕ 2 3(1) ⊕ 2 3(3) 3(0) ⊕ 2 6(0) 3(2) ⊕ 6(1) ⊕ 6(2) 6(0)∗ ⊕ 9(1)∗

(5,0) 3(1) ⊕ 3(3) ⊕ 2 3(2) ⊕ 3 3(0) 3(1) ⊕ 3(2) ⊕ 3(3) ⊕ 6(0) ⊕ 2 3(0) 3(1) ⊕ 3(2) ⊕ 6(1) ⊕ 9(0) 15(0) ⊕ 3(0) ⊕ 3(1)

(4,1) 1(0) ⊕ 1(1) ⊕ 1(3) ⊕ 4 4(0) ⊕ 4 4(0)′
1(0) ⊕ 2(0) ⊕ 4 8(0) 1(1) ⊕ 2(0) ⊕ 8(0) ⊕ 8(2) ⊕ 2 8(1) 10(0) ⊕ 8(0)′

⊕ 8(0) ⊕ 9(0)

(3,2) 3 3(1)∗ ⊕ 3 3(3)∗ ⊕ 4 3(0)∗ ⊕ 4 3(2)∗ 2 3(0)∗ ⊕ 2 3(1)∗ ⊕ 2 3(2)∗ ⊕ 2 3(3)∗ ⊕ 3 6(0)∗ 3(0)∗ ⊕ 3(2)∗ ⊕ 6(0)∗ ⊕ 6(1)∗ ⊕ 6(2)∗ ⊕ 2 9(0)∗ 3(1)∗ ⊕ 9(1) ⊕ 2 15(0)∗

(2,3) 3 3(1) ⊕ 3 3(3) ⊕ 4 3(0) ⊕ 4 3(2) 2 3(0) ⊕ 2 3(1) ⊕ 2 3(2) ⊕ 2 3(3) ⊕ 3 6(0) 3(0) ⊕ 3(2) ⊕ 6(0) ⊕ 6(1) ⊕ 6(2) ⊕ 2 9(0) 3(1) ⊕ 9(1)∗ ⊕ 2 15(0)

(1,4) 1(0) ⊕ 1(1) ⊕ 1(3) ⊕ 4 4(0) ⊕ 4 4(0)′
1(0) ⊕ 2(0) ⊕ 4 8(0) 1(2) ⊕ 2(0) ⊕ 8(0) ⊕ 8(1) ⊕ 2 8(2) 10(0) ⊕ 8(0)′

⊕ 8(0) ⊕ 9(0)

(0,5) 3(1)∗ ⊕ 3(3)∗ ⊕ 2 3(2)∗ ⊕ 3 3(0)∗ 3(1)∗ ⊕ 3(2)∗ ⊕ 3(3)∗ ⊕ 6(0)∗ ⊕ 2 3(0)∗ 3(1)∗ ⊕ 3(2)∗ ⊕ 6(1)∗ ⊕ 9(0)∗ 15(0)∗ ⊕ 3(0)∗ ⊕ 3(1)∗

(6,0) 2 1(0) ⊕ 2 1(2) ⊕ 3 4(0) ⊕ 3 4(0)′
1(0) ⊕ 1(1) ⊕ 1(2) ⊕ 1(3) ⊕ 3 8(0) 1(2) ⊕ 3(a) ⊕ 8(1) ⊕ 2 8(2) 1(0) ⊕ 5(0)′

⊕ 5(0) ⊕ 8(0) ⊕ 9(0)

(5,1) 4 3(0)∗ ⊕ 4 3(1)∗ ⊕ 4 3(2)∗ ⊕ 4 3(3)∗ 2 3(0)∗ ⊕ 2 3(1)∗ ⊕ 2 3(2)∗ ⊕ 2 3(3)∗ ⊕ 4 6(0)∗ 3(1)∗ ⊕ 3(2)∗ ⊕ 6(0)∗ ⊕ 6(2)∗ ⊕ 2 6(1)∗ ⊕ 2 9(0)∗ 3(0)∗ ⊕ 6(0) ⊕ 9(1) ⊕ 2 15(0)∗

(4,2) 4 3(0) ⊕ 4 3(2) ⊕ 6 3(1) ⊕ 6 3(3) 2 3(0) ⊕ 2 3(1) ⊕ 2 3(2) ⊕ 2 3(3) ⊕ 6 6(0) 3(0) ⊕ 3(1) ⊕ 2 6(0) ⊕ 2 6(1) ⊕ 2 6(2) ⊕ 2 9(0) 2 15(0) ⊕ 2 6(0)∗ ⊕ 2 9(1)∗

(3,3) 2 1(0) ⊕ 2 1(1) ⊕ 2 1(2) ⊕ 2 1(3) ⊕ 7 4(0) ⊕ 7 4(0)′
1(0) ⊕ 1(1) ⊕ 1(2) ⊕ 1(3) ⊕ 2 2(0) ⊕ 7 8(0) 1(0) ⊕ 2(1) ⊕ 2(2) ⊕ 3(a) ⊕ 2 8(1) ⊕ 2 8(2) ⊕ 3 8(0) 5(0)′

⊕ 5(0) ⊕ 8(0)′
⊕ 8(0) ⊕ 2 10(0) ⊕ 2 9(0)

(2,4) 4 3(0)∗ ⊕ 4 3(2)∗ ⊕ 6 3(1)∗ ⊕ 6 3(3)∗ 2 3(0)∗ ⊕ 2 3(1)∗ ⊕ 2 3(2)∗ ⊕ 2 3(3)∗ ⊕ 6 6(0)∗ 3(0)∗ ⊕ 3(1)∗ ⊕ 2 6(0)∗ ⊕ 2 6(1)∗ ⊕ 2 6(2)∗ ⊕ 2 9(0)∗ 2 15(0)∗ ⊕ 2 6(0) ⊕ 2 9(1)

(1,5) 4 3(0) ⊕ 4 3(1) ⊕ 4 3(2) ⊕ 4 3(3) 2 3(0) ⊕ 2 3(1) ⊕ 2 3(2) ⊕ 2 3(3) ⊕ 4 6(0) 3(1) ⊕ 3(2) ⊕ 6(0) ⊕ 6(2) ⊕ 2 6(1) ⊕ 2 9(0) 3(0) ⊕ 6(0)∗ ⊕ 9(1)∗ ⊕ 2 15(0)

(0,6) 2 1(0) ⊕ 2 1(2) ⊕ 3 4(0) ⊕ 3 4(0)′
1(0) ⊕ 1(1) ⊕ 1(2) ⊕ 1(3) ⊕ 3 8(0) 1(1) ⊕ 3(a) ⊕ 8(2) ⊕ 2 8(1) 1(0) ⊕ 5(0)′

⊕ 5(0) ⊕ 8(0) ⊕ 9(0)

(7,0) 2 3(1)∗ ⊕ 2 3(3)∗ ⊕ 4 3(0)∗ ⊕ 4 3(2)∗ 2 3(0)∗ ⊕ 2 3(1)∗ ⊕ 2 3(2)∗ ⊕ 2 3(3)∗ ⊕ 2 6(0)∗ 6(0)∗ ⊕ 6(1)∗ ⊕ 2 3(1)∗ ⊕ 2 9(0)∗ 3(0)∗ ⊕ 3(1)∗ ⊕ 2 15(0)∗

(6,1) 5 3(0) ⊕ 5 3(1) ⊕ 5 3(3) ⊕ 6 3(2) 2 3(0) ⊕ 3 3(1) ⊕ 3 3(2) ⊕ 3 3(3) ⊕ 5 6(0) 6(0) ⊕ 2 3(2) ⊕ 2 6(1) ⊕ 2 6(2) ⊕ 3 9(0) 3(0) ⊕ 6(0)∗ ⊕ 9(1)∗ ⊕ 3 15(0)

(5,2) 1(0) ⊕ 2 1(2) ⊕ 3 1(1) ⊕ 3 1(3) ⊕ 9 4(0) ⊕ 9 4(0)′
1(1) ⊕ 1(2) ⊕ 1(3) ⊕ 3 2(0) ⊕ 9 8(0) 2(0) ⊕ 2(1) ⊕ 2(2) ⊕ 3(a) ⊕ 3 8(0) ⊕ 3 8(1) ⊕ 3 8(2) 5(0)′

⊕ 5(0) ⊕ 9(0) ⊕ 2 8(0)′
⊕ 2 8(0) ⊕ 3 10(0)

(4,3) 7 3(1)∗ ⊕ 7 3(3)∗ ⊕ 8 3(0)∗ ⊕ 8 3(2)∗ 4 3(0)∗ ⊕ 4 3(1)∗ ⊕ 4 3(2)∗ ⊕ 4 3(3)∗ ⊕ 7 6(0)∗ 3(1)∗ ⊕ 3(2)∗ ⊕ 6(1)∗ ⊕ 2 3(0)∗ ⊕ 3 6(0)∗ ⊕ 3 6(2)∗ ⊕ 4 9(0)∗ 3(0)∗ ⊕ 3(1)∗ ⊕ 6(0) ⊕ 2 9(1) ⊕ 4 15(0)∗

(3,4) 7 3(1) ⊕ 7 3(3) ⊕ 8 3(0) ⊕ 8 3(2) 4 3(0) ⊕ 4 3(1) ⊕ 4 3(2) ⊕ 4 3(3) ⊕ 7 6(0) 3(1) ⊕ 3(2) ⊕ 6(1) ⊕ 2 3(0) ⊕ 3 6(0) ⊕ 3 6(2) ⊕ 4 9(0) 3(0) ⊕ 3(1) ⊕ 6(0)∗ ⊕ 2 9(1)∗ ⊕ 4 15(0)

(2,5) 1(0) ⊕ 2 1(2) ⊕ 3 1(1) ⊕ 3 1(3) ⊕ 9 4(0) ⊕ 9 4(0)′
1(1) ⊕ 1(2) ⊕ 1(3) ⊕ 3 2(0) ⊕ 9 8(0) 2(0) ⊕ 2(1) ⊕ 2(2) ⊕ 3(a) ⊕ 3 8(0) ⊕ 3 8(1) ⊕ 3 8(2) 5(0)′

⊕ 5(0) ⊕ 9(0) ⊕ 2 8(0)′
⊕ 2 8(0) ⊕ 3 10(0)

(1,6) 5 3(0)∗ ⊕ 5 3(1)∗ ⊕ 5 3(3)∗ ⊕ 6 3(2)∗ 2 3(0)∗ ⊕ 3 3(1)∗ ⊕ 3 3(2)∗ ⊕ 3 3(3)∗ ⊕ 5 6(0)∗ 6(0)∗ ⊕ 2 3(2)∗ ⊕ 2 6(1)∗ ⊕ 2 6(2)∗ ⊕ 3 9(0)∗ 3(0)∗ ⊕ 6(0) ⊕ 9(1) ⊕ 3 15(0)∗

(0,7) 2 3(1) ⊕ 2 3(3) ⊕ 4 3(0) ⊕ 4 3(2) 2 3(0) ⊕ 2 3(1) ⊕ 2 3(2) ⊕ 2 3(3) ⊕ 2 6(0) 6(0) ⊕ 6(1) ⊕ 2 3(1) ⊕ 2 9(0) 3(0) ⊕ 3(1) ⊕ 2 15(0)

have grown. For 3d {1, 0} → 3(0)∗, the nearest IR is now
a single 15d one – {4, 0}.

For Σ(648) which has Σ(216) as a subgroup, the induc-
tions up to p + q = 5 are

1(0) → {0, 0}|1 . . .

1(1) → {4, 1}|1, . . .

1(2) → {1, 4}|1, . . .

2(0) → {1, 4}|1, {4, 1}|1, . . .

2(1) → {0, 3}|1 . . .

2(2) → {3, 0}|1 . . .

3(a) → {2, 2}|1, . . .

3(0) → {0, 1}|1, {2, 3}|1, . . .

3(1) → {3, 1}|1, {5, 0}|1 . . .

3(2) → {0, 4}|1, {2, 3}|1, {5, 0}|1 . . .

6(0) → {2, 0}|1, {3, 1}|1, {2, 3}|1 . . .

6(1) → {0, 4}|1, {3, 1}|1, {2, 3}|1, {5, 0}|1 . . .

6(2) → {1, 2}|1, {0, 4}|1, {2, 3}|1 . . .

8(0) → {1, 1}|1, {2, 2}|1, {1, 4}|1, {4, 1}|1, {3, 3}|3, . . .

8(1) → {3, 0}|1, {2, 2}|1, {1, 4}|1, {4, 1}|2 . . .

8(2) → {0, 3}|1, {2, 2}|1, {1, 4}|2, {4, 1}|1 . . .

9(0) → {1, 2}|1, {3, 1}|1, {2, 3}|2, {5, 0}|1 . . .

Comparing to Σ(216), we observe that some IRs have
merged in Σ(648): 1(1) ⊕ 1(2) ⊕ 1(3) → 3(a), and 3(1) ⊕
3(2) ⊕ 3(3) → 9(0). Unlike the Σ(108) case, some IRs of
Σ(216) subduce into new IRs of Σ(648) : 2(0) → 2(0) ⊕
2(1)⊕2(2), 6(0) → 6(0)⊕6(1)⊕6(2), 8(0) → 8(0)⊕8(1)⊕8(2).
The gap between the fundamental IR of SU(3) and the
next has grown, first mixing with the 42-d {3, 2}.

Finally for Σ(1080), we have up to p + q = 6:

1(0) → {0, 0}|1, {0, 6}|1, {6, 0}|1, . . .

3(0) → {0, 1}|1, {5, 0}|1, {1, 5}|1, . . .

3(1) → {2, 3}|1, {5, 0}|1, . . .

5(0), 5(0)′
→ {2, 2}|1, {0, 6}|1, {3, 3}|1, {6, 0}|1, . . .

6(0) → {0, 2}|1, {4, 0}|1, {2, 4}|2, {5, 1}|1, . . .

8(0) → {1, 1}|1, {1, 4}|1, {4, 1}|1,

{0, 6}|1, {3, 3}|1, {6, 0}|1, . . .

8(0)′
→ {2, 2}|1, {1, 4}|1, {4, 1}|1, {3, 3}|1, . . .

9(0) → {2, 2}|1, {1, 4}|1, {4, 1}|1,

{0, 6}|1, {3, 3}|2, {6, 0}|1, . . .

9(1) → {1, 3}|1, {4, 0}|1, {3, 2}|1, {2, 4}|2, {5, 1}|1, . . .

10(0) → {0, 3}|1, {3, 0}|1, {1, 4}|1, {4, 1}|1, {3, 3}|2, . . .

15(0) → {1, 2}|1, {3, 1}|1, {2, 3}|2, {5, 0}|1,

{1, 5}|2, {4, 2}|2, . . .

Since Σ(108) is a subgroup of Σ(1080), we can compare
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their inductions, and we observe some of the IRs of
Σ(108) have merged in Σ(1080): 5 1(1) ⊕ 5 1(3) → 10(0),
4(0) ⊕ 4(0)′ → 8(0), 5 3(2) → 15(0), 3(1)∗ ⊕ 3(2)∗ → 6(0).
While generically, the gaps between SU(3) IRs that mix
under induction have increased and multiplicities de-
creased compared to the smaller Σ(648), the fundamental
3d {1, 0} mixes with the 21-d {0, 5} rather than the much
larger 42-d {3, 2}. The physical consequences of the dif-
ference should be investigated.

V. NUMERICAL RESULTS

To study the extent to which discrete subgroups can
approximate continuous groups, one can compare expecta-
tion values of observables weighted by a lattice action. In
general, single-plaquette lattice actions can be constructed
from the characters of IRs ρ,

Sρ = −
∑
p,ρ

βρ Re χ(ρ)(Up), (5)

where Up is a plaquette built from group-valued links.
The commonly-used Wilson action for SU(3) depends
only on the fundamental 3d IR:

SW (β) = −β3(0)

6
∑

p

Re χ3(0)
(Up), (6)

while actions with additional IRs are referred to as modi-
fied actions. For continuous groups which are asymptoti-
cally free, there are typically two ”phases” for a lattice
action: a lattice phase for which lattice artifacts dominate
separated at βs (which in a modified action is a plane
of couplings) from a scaling regime where these effects
are sufficiently small that extrapolation to the contin-
uum can be performed. For finite subgroups, there is
an additional Higgs or so-called frozen phase at some
subgroup-dependent βf where the discrete subgroup ap-
proximation breaks down. Thus, for a lattice action of a
discrete subgroup to be useful for simulations βs < βf ,
i.e., it must support a sufficiently large scaling regime.
From the subductions, we gain a different perspective
on how these phases can arise from mixing eigenstates
of SU(3) and gain insight into which IRs of the discrete
subgroup to add to the action to attempt to improve the
agreement with the continuous group.

Using modified actions has been demonstrated to in-
troduce or enlarge the scaling regime of discrete sub-
groups [25, 49, 86, 115–117]. The most commonly con-
sidered modified action adds the 8d adjoint IR to the
Wilson action [111, 112, 114, 118], and has been demon-
strated to reduced the lattice artifacts if the couplings
are appropriately chosen.

One useful observable is the expectation value of the
plaquette, which corresponds to the average energy den-
sity,

E(β) =
〈

1 − 1
6 Re χ3(0)

(Up)
〉

. (7)
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FIG. 1. Euclidean calculations of lattice energy density ⟨E0⟩ of
Σ(108) as measured by the expectation value of the plaquette
for different modified actions as a function of fundamental IR
coupling β3(0) on 24 lattices

Comparing to the continuous group SU(3), E(β) with the
Wilson action is known to agree analytically up to O(β4)
for Σ(1080) and Σ(648), while only O(β2) for the smaller
groups Σ(648) and Σ(216), respectively [84]. If instead
of the Wilson action, an appropriately chosen modified
action could be used to improve this strong-coupling
expansion – smoothing left for future work. Instead, we
will consider the nonperturbative calculation of E(β) from
Monte Carlo simulations.

Motivated by prior experience that a modified action
with the adjoint representation can lead to better agree-
ment with the continuous group, the subgroup Σ(108),
which does not have a one-to-one subduction of the adjoint
is particularly interesting. In Fig. 1, we plot E(β) as a
function of β3(0) for different lattice actions. At any given
β3(0) , the lattice spacing a for different modified actions
vary, but the smallness of E(β) can be used as a proxy
for the discrete subgroup having a larger βf . Further, for
SU(3), E(β) ∼ 0.6 corresponds to the scaling regime, so
a good discrete subgroup approximation works to get at
least that far. The freezing transition can be recognized
by a rapid drop of E(βf ) → 0. In the thermodynamic
limit, this will turn into a finite gap at E(βf ).

For Σ(108) with the Wilson action, β4(0) = β4(0)′ = 0
we observed the freezing transition occurs when E(βf ) ≈
0.8. If we wanted to follow the wisdom of adding some-
thing like adjoint representation, we have a choice as
to how. We investigated the relative improvement from
adding only 4(0) or 4(0)′ or both of them with equal
coupling along coupling trajectories:

β4(0) = −κβ3(0) , β4(0)′ = 0 (8)
β4(0) = β4(0)′ = −κβ3(0) (9)

for κ = − 5
32 , − 5

16 . We see in Fig. 1 that for both κ
including both IRs leads to a smaller value of E(βf ). It
is particularly striking for κ = − 5

16 where including both
IRs E(βf ) never drops to zero. The mechanism for this
is related to how 4(0) and 4(0)′ give different weights to
different Σ(108) group elements.

A deeper investigation of the effects of subduction can
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be undertaken by looking at the static potentials. Given
that Σ(1080) is the best discrete approximation to SU(3),
we will focus on this subgroup. The lattice static poten-
tial V̂ρ in a representation is defined with respect to the
expectation value of the rectangular Wilson loop in the
same representation:

⟨Wρ(r, t)⟩ = cρ(r, a)exp
[
−V̂ρ(r, a)t

]
T → ∞. (10)

where r, t are the spatial and temporal extent of the
Wilson loop. The prefactor, cρ(r, a), is an additional
fitting parameter that captures aspects of the Wilson
loop’s behavior at small r that are not related to the
linear rise of the potential with r; it is extracted when
analyzing Wilson loop data to extract the potential.

The static potentials in pure gauge SU(3) theory are
expected to following Casimir scaling where they are
equal for large r up to a rescaling by their quadratic
Casimirs [119, 120]

C2(p, q) = p2 + q2 + 3p + 3q + pq

3 . (11)

Numerical results at both finite lattice spacing and the
continuum have confirmed this scaling up to violations
smaller than 5%. Here, we compute the static potentials
for all unique IRs of Σ(1080) and compare their numerical
ratios to RC = V̂ρ(r/a)/V̂3(0)(r/a) to C2(p, q)/C2(1, 0) of
SU(3). Given our subduction table, we can check to
what extent subducing to a direct sum of IRs differs from
subducing to a single IR and how the different IRs of the
direct sum behave.

In order to reach the scaling regime, we simulated
Σ(1080) using a modified action that includes both the
fundamental and adjoint IRs

Sfa = −
∑

p

(
β3(0) Re χ3(0)

(Up) + β8(0) Re χ8(0)
(Up)

)
,

(12)
With this action, we used β0 = 8.407 and β1 = −1.65
on a 324 lattice which corresponds to a = 0.085(4) fm as
determined by using the static potential V̂3(0)(r/a) with
the Sommer parameter r0 ∼ 0.49 fm defined by [121]

r2 ∂V

∂r
|r=r0 = 1.65 (13)

The extrapolation of a(Nt) in the temporal extent of the
loop N−1

t to zero is presented in Fig. 2. At this lattice
spacing, we computed the unique IR static potentials.
Because of the nuances involved in adequately accounting
for the systematics of smearing discrete subgroups, we
have opted not to smear. As a consequence, the signal-to-
noise prevents large r × t from being probed. Luckily, we
observe that similar to prior studies in SU(3) [119, 120],
RC appears to plateau rapidly. The results for temporal
extents t = 1, 2, 3 are presented in Fig. 3 for our ensemble
of 32k configurations.

For the lowest IR, clear signals were obtained for t/a
up to 7, and in Tab. X, we present RC(t) used to extract

Σ(1080)

0.0 0.1 0.2 0.3 0.4 0.5

0.10

0.15

0.20

0.25

1/Nt

a

FIG. 2. Lattice spacing extracted from the static potential as a
function of the temporal extent of the loop N−1

t . The N−1
t → 0

limit is obtained from a quadratic fit, finding a = 0.085(4) fm.

infinite limit results. For IRs where RC(t > 3) were
obtained, we extrapolated to the t → ∞ with a quadratic
fit in t. For other IRs where only 2 or 3 values were
obtained, for our estimate of RC(∞), we take the average
and include an additional systematic error, which is the
difference between the highest and lowest values.

The results for Σ(1080) can then be compared to
those of the theoretical expectations of SU(3) =
C2(p, q)/C2(1, 0). Numerical results for SU(3) in [119,
120] have bounded the violation of this scaling to be less
than 5%, which we take a metric for agreement from the
discrete group approximation. The comparison is shown
in Tab. XI, where we include the fractional deviation δR
between the expected scaling and Σ(1080). We observe
that for the four IRs of Σ(1080), which are subduced
one-to-one from SU(3) is δR < 5% with two consistent
with zero. In the {2, 2} case, which subduces into four
new IRs, we see mild tension with the 5% violations for
the 5 IRs, while the 8(0)′ and 9(0) are found to be in
agreement. At still higher IRs, we see {3, 1} and {3, 2}
subduce to direct sums of IRs that include ones for the
first time, e.g. 9(1)∗ and 3(1)∗, alongside ones that are
subduced into lower IRs. In both cases, we observe that
the new IRs are consistent with the anticipated scaling
of the SU(3) IR. Together, these results are suggestive
of how the eigenstates of SU(3) break into the IRs of
Σ(1080) – and that for the lowest IRs, good agreement
between observables should be anticipated.

VI. CONCLUSION

We provided the subduction of SU(N) groups of inter-
est in lattice gauge theory to their crystal-like subgroups
up to a high dimension. The subduction tables provide
new insight into systematically understanding the limi-
tations of the discrete subgroup approximation and give
guidance on how to improve the approximation. It was
demonstrated how the subduction patterns can be used
to determine effective modified actions and how violations
of Casimir scaling are signals for the discrete subgroup
breakdown.

For future work, examining how the subduction of con-
tinuous groups to their discrete subgroups interacts with
the Higgs mechanism could provide valuable insights into
symmetry-breaking processes in lattice gauge theories.
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FIG. 3. The ratio of static potentials of IRs of Σ(1080) to the fundamental 3(0) IR, labelled RC , for all measured representations.
The colored bands correspond to the SU(3) results for all RC < 10.

TABLE X. Ratios of static potentials of IRs of Σ(1080) to the 3(0) IR, denoted RC(τ), where τ = t/a.
ρ RC(1) RC(2) RC(3) RC(4) RC(5) RC(6) RC(7) RC(∞)

8(0) 2.2478(10) 2.2192(14) 2.2068(28) 2.205(8) 2.157(16) 2.15(7) 2.01(15) 2.186(14)
6(0)∗ 2.5045(12) 2.4856(16) 2.473(4) 2.478(11) 2.48(5) — — 2.463(26)

15(0)∗ 3.978(10) 4.004(12) 3.97(9) — — — — 3.984(30)(30)
10(0)∗ 4.1522(25) 4.457(16) — — — — — 4.305(8)(305)
5(0) 4.85(5) 5.84(31) 5.163(33) — — — — 5.28(11)(99)
8(0)′

5.82(7) 6.44(34) — — — — — 6.13(17)(62)
9(0) 5.26(9) 5.80(22) — — — — — 5.53(12)(54)
9(1) 5.89(17) 6.3(4) — — — — — 6.09(21)(40)
3(1)∗ ≲ 8.6 ≲ 9 — — — — — ≲ 9

TABLE XI. Comparison of the Casimir scaling of the static
potentials of SU(3) with to their subducted IRs in Σ(1080).
In the last column, we present the fraction deviation δR.

SU(3) Σ(1080) R
SU(3)
C R

Σ(1080)
C δR

{1,1} 8(0) 2.25 2.186(14) 0.028(6)
{2,0} 6(0)∗ 2.5 2.46(3) 0.016(12)
{2,1} 15(0)∗ 4 3.98(3)(3) 0.005(8)(8)
{3,0} 10(0) 4.5 4.305(8)(305) 0.0433(18)(700)
{2,2} 5(0) 6 5.28(11)(99) 0.120(18)(70)

5(0)′
5.28(11)(99) 0.120(18)(70)

8(0)′
6.13(17)(62) 0.022(28)(100)

9(0) 5.53(12)(54) 0.078(20)(90)
{3,1} 9(1)∗ 6.25 6.09(21)(40) 0.026(34)(60)

15(0) 3.98(3)(3)a 0.363(5)(5)
{4,0} 6(0) 7 2.46(3)a 0.649(4)

9(1) 6.09(21)(40)a 0.130(30)(60)
{3,2} 3(1)∗ 8.5 ≲ 9 ≲ 0.06

9(1) 6.09(21)(40)a 0.284(25)(50)
15(0)∗ 3.98(3)(3)a 0.5318(35)(35)

a IR present in lower subduction

Further, developing a systematic understanding of the
errors in gauge-smearing techniques optimized for dis-
crete subgroups could help reduce signal-to-noise to probe
the scaling breakdown more precisely. Additionally, a
dedicated analysis of the excited state glueball spectrum
within these approximations could provide deeper insights
into the stability and spectrum of gauge theories.
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Tudela, and E. Zohar, Photon-mediated Stroboscopic
Quantum Simulation of a Z2 Lattice Gauge Theory
(2021), arXiv:2107.13024 [quant-ph].

[29] A. Bazavov, S. Catterall, R. G. Jha, and J. Unmuth-
Yockey, Tensor renormalization group study of the non-
abelian higgs model in two dimensions, Phys. Rev. D
99, 114507 (2019).

[30] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey,
and J. Zhang, Gauge-invariant implementation of the
Abelian Higgs model on optical lattices, Phys. Rev. D92,
076003 (2015), arXiv:1503.08354 [hep-lat].

[31] J. Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov,
S. W. Tsai, and Y. Meurice, Quantum simulation of the
universal features of the Polyakov loop, Phys. Rev. Lett.
121, 223201 (2018), arXiv:1803.11166 [hep-lat].

[32] J. Unmuth-Yockey, J. Zhang, A. Bazavov, Y. Meurice,
and S.-W. Tsai, Universal features of the Abelian
Polyakov loop in 1+1 dimensions, Phys. Rev. D98,
094511 (2018), arXiv:1807.09186 [hep-lat].

[33] J. F. Unmuth-Yockey, Gauge-invariant rotor Hamilto-
nian from dual variables of 3D U(1) gauge theory, Phys.
Rev. D 99, 074502 (2019), arXiv:1811.05884 [hep-lat].

[34] M. Kreshchuk, W. M. Kirby, G. Goldstein, H. Beau-
chemin, and P. J. Love, Quantum Simulation of Quan-
tum Field Theory in the Light-Front Formulation (2020),
arXiv:2002.04016 [quant-ph].

[35] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein,

https://doi.org/10.1088/1742-6596/706/2/022004
https://doi.org/10.1088/1742-6596/706/2/022004
https://doi.org/10.1140/epjst/e2007-00376-3
https://doi.org/10.1140/epjst/e2007-00376-3
https://arxiv.org/abs/1005.0539
https://doi.org/10.1143/PTP.110.615
https://doi.org/10.1143/PTP.110.615
https://arxiv.org/abs/https://academic.oup.com/ptp/article-pdf/110/4/615/5301553/110-4-615.pdf
https://arxiv.org/abs/https://academic.oup.com/ptp/article-pdf/110/4/615/5301553/110-4-615.pdf
https://doi.org/10.1142/S0217751X16430077
https://doi.org/10.1142/S0217751X16430077
https://arxiv.org/abs/1603.09517
https://doi.org/10.1103/PhysRevLett.121.191602
https://doi.org/10.1103/PhysRevLett.121.191602
https://arxiv.org/abs/1808.09799
https://doi.org/10.1103/RevModPhys.94.015006
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.94.170201
https://arxiv.org/abs/cond-mat/0408370
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1016/0550-3213(82)90246-2
https://doi.org/10.1016/0550-3213(82)90246-2
https://doi.org/10.1016/0370-2693(82)90044-2
https://doi.org/10.1142/S0217751X01004281
https://doi.org/10.1142/S0217751X01004281
https://arxiv.org/abs/hep-lat/0104012
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.109.125302
https://arxiv.org/abs/1204.6574
https://doi.org/10.1103/PhysRevLett.110.125304
https://arxiv.org/abs/1211.2241
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://arxiv.org/abs/1303.5040
https://doi.org/10.1103/PhysRevD.91.054506
https://doi.org/10.1103/PhysRevD.91.054506
https://arxiv.org/abs/1409.3085
https://doi.org/10.1088/0034-4885/79/1/014401
https://arxiv.org/abs/1503.02312
https://doi.org/10.1103/PhysRevA.95.023604
https://arxiv.org/abs/1607.08121
https://doi.org/10.1103/PhysRevD.101.074512
https://arxiv.org/abs/1908.06935
https://arxiv.org/abs/2101.10227
https://doi.org/10.1088/1367-2630/aadb71
https://arxiv.org/abs/1804.02082
https://arxiv.org/abs/2004.13234
https://arxiv.org/abs/2004.13234
https://doi.org/10.1103/PhysRevA.99.062341
https://arxiv.org/abs/1811.03629
https://arxiv.org/abs/1811.03629
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.100.114501
https://arxiv.org/abs/1906.11213
https://doi.org/10.1093/ptep/ptaa171
https://doi.org/10.1093/ptep/ptaa171
https://arxiv.org/abs/2008.11395
https://doi.org/10.22331/q-2021-02-04-393
https://arxiv.org/abs/2006.14160
https://arxiv.org/abs/2107.13024
https://doi.org/10.1103/PhysRevD.99.114507
https://doi.org/10.1103/PhysRevD.99.114507
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1103/PhysRevD.92.076003
https://arxiv.org/abs/1503.08354
https://doi.org/10.1103/PhysRevLett.121.223201
https://doi.org/10.1103/PhysRevLett.121.223201
https://arxiv.org/abs/1803.11166
https://doi.org/10.1103/PhysRevD.98.094511
https://doi.org/10.1103/PhysRevD.98.094511
https://arxiv.org/abs/1807.09186
https://doi.org/10.1103/PhysRevD.99.074502
https://doi.org/10.1103/PhysRevD.99.074502
https://arxiv.org/abs/1811.05884
https://arxiv.org/abs/2002.04016


12

J. P. Vary, and P. J. Love, Simulating Hadronic Physics
on NISQ devices using Basis Light-Front Quantization
(2020), arXiv:2011.13443 [quant-ph].

[36] I. Raychowdhury and J. R. Stryker, Solving Gauss’s
Law on Digital Quantum Computers with Loop-String-
Hadron Digitization (2018), arXiv:1812.07554 [hep-lat].

[37] I. Raychowdhury and J. R. Stryker, Loop, String,
and Hadron Dynamics in SU(2) Hamiltonian Lattice
Gauge Theories, Phys. Rev. D 101, 114502 (2020),
arXiv:1912.06133 [hep-lat].

[38] Z. Davoudi, I. Raychowdhury, and A. Shaw, Search
for Efficient Formulations for Hamiltonian Simula-
tion of non-Abelian Lattice Gauge Theories (2020),
arXiv:2009.11802 [hep-lat].

[39] U.-J. Wiese, Towards Quantum Simulating QCD,
Proceedings, 24th International Conference on Ultra-
Relativistic Nucleus-Nucleus Collisions (Quark Matter
2014): Darmstadt, Germany, May 19-24, 2014, Nucl.
Phys. A931, 246 (2014), arXiv:1409.7414 [hep-th].

[40] D. Luo, J. Shen, M. Highman, B. K. Clark, B. DeMarco,
A. X. El-Khadra, and B. Gadway, A Framework for
Simulating Gauge Theories with Dipolar Spin Systems
(2019), arXiv:1912.11488 [quant-ph].

[41] R. C. Brower, D. Berenstein, and H. Kawai, Lattice
Gauge Theory for a Quantum Computer, PoS LAT-
TICE2019, 112 (2019), arXiv:2002.10028 [hep-lat].

[42] S. V. Mathis, G. Mazzola, and I. Tavernelli, Toward
scalable simulations of Lattice Gauge Theories on quan-
tum computers, Phys. Rev. D 102, 094501 (2020),
arXiv:2005.10271 [quant-ph].

[43] H. Singh, Qubit O(N) nonlinear sigma models (2019),
arXiv:1911.12353 [hep-lat].

[44] H. Singh and S. Chandrasekharan, Qubit regularization
of the O(3) sigma model, Phys. Rev. D 100, 054505
(2019), arXiv:1905.13204 [hep-lat].

[45] A. J. Buser, T. Bhattacharya, L. Cincio, and R. Gupta,
Quantum simulation of the qubit-regularized O(3)-sigma
model (2020), arXiv:2006.15746 [quant-ph].

[46] T. Bhattacharya, A. J. Buser, S. Chandrasekharan,
R. Gupta, and H. Singh, Qubit regularization of asymp-
totic freedom (2020), arXiv:2012.02153 [hep-lat].

[47] J. a. Barata, N. Mueller, A. Tarasov, and R. Venu-
gopalan, Single-particle digitization strategy for quan-
tum computation of a ϕ4 scalar field theory (2020),
arXiv:2012.00020 [hep-th].

[48] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein, J. P.
Vary, and P. J. Love, Light-Front Field Theory on
Current Quantum Computers (2020), arXiv:2009.07885
[quant-ph].

[49] Y. Ji, H. Lamm, and S. Zhu (NuQS), Gluon Field
Digitization via Group Space Decimation for Quan-
tum Computers, Phys. Rev. D 102, 114513 (2020),
arXiv:2005.14221 [hep-lat].

[50] C. W. Bauer and D. M. Grabowska, Efficient Repre-
sentation for Simulating U(1) Gauge Theories on Digi-
tal Quantum Computers at All Values of the Coupling
(2021), arXiv:2111.08015 [hep-ph].

[51] E. Gustafson, Prospects for Simulating a Qudit Based
Model of (1+1)d Scalar QED, Phys. Rev. D 103, 114505
(2021), arXiv:2104.10136 [quant-ph].

[52] J. C. Halimeh, H. Lang, and P. Hauke, Gauge pro-
tection in non-Abelian lattice gauge theories (2021),
arXiv:2106.09032 [cond-mat.quant-gas].

[53] T. Hartung, T. Jakobs, K. Jansen, J. Ostmeyer, and

C. Urbach, Digitising SU(2) gauge fields and the
freezing transition, Eur. Phys. J. C 82, 237 (2022),
arXiv:2201.09625 [hep-lat].

[54] J. Osborne, I. P. McCulloch, B. Yang, P. Hauke, and J. C.
Halimeh, Large-Scale 2 + 1D U(1) Gauge Theory with
Dynamical Matter in a Cold-Atom Quantum Simulator
(2022), arXiv:2211.01380 [cond-mat.quant-gas].

[55] D. M. Grabowska, C. Kane, B. Nachman, and C. W.
Bauer, Overcoming exponential scaling with system
size in Trotter-Suzuki implementations of constrained
Hamiltonians: 2+1 U(1) lattice gauge theories (2022),
arXiv:2208.03333 [quant-ph].

[56] E. M. Murairi, M. J. Cervia, H. Kumar, P. F. Bedaque,
and A. Alexandru, How many quantum gates do gauge
theories require? (2022), arXiv:2208.11789 [hep-lat].

[57] C. W. Bauer, I. D’Andrea, M. Freytsis, and D. M.
Grabowska, A new basis for Hamiltonian SU(2) sim-
ulations (2023), arXiv:2307.11829 [hep-ph].

[58] E. J. Gustafson, H. Lamm, and F. Lovelace, Prim-
itive quantum gates for an SU(2) discrete subgroup:
Binary octahedral, Phys. Rev. D 109, 054503 (2024),
arXiv:2312.10285 [hep-lat].

[59] A. Alexandru, P. F. Bedaque, A. Carosso, M. J. Cervia,
E. M. Murairi, and A. Sheng, Fuzzy Gauge Theory for
Quantum Computers (2023), arXiv:2308.05253 [hep-lat].

[60] J. C. Halimeh, L. Homeier, A. Bohrdt, and F. Grusdt,
Spin exchange-enabled quantum simulator for large-scale
non-Abelian gauge theories (2023), arXiv:2305.06373
[cond-mat.quant-gas].

[61] M. Fromm, O. Philipsen, W. Unger, and C. Winterowd,
Quantum gate sets for lattice QCD in the strong-coupling
limit: N f=1, EPJ Quant. Technol. 11, 24 (2024),
arXiv:2308.03196 [hep-lat].

[62] M. Fromm, O. Philipsen, M. Spannowsky, and C. Win-
terowd, Simulating Z 2 lattice gauge theory with the
variational quantum thermalizer, EPJ Quant. Technol.
11, 20 (2024), arXiv:2306.06057 [hep-lat].

[63] A. N. Ciavarella and C. W. Bauer, Quantum Simulation
of SU(3) Lattice Yang Mills Theory at Leading Order in
Large N (2024), arXiv:2402.10265 [hep-ph].

[64] G. Bergner, M. Hanada, E. Rinaldi, and A. Schafer,
Toward QCD on Quantum Computer: Orbifold Lattice
Approach (2024), arXiv:2401.12045 [hep-th].
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[90] D. González-Cuadra, T. V. Zache, J. Carrasco, B. Kraus,
and P. Zoller, Hardware efficient quantum simulation
of non-abelian gauge theories with qudits on Rydberg
platforms (2022), arXiv:2203.15541 [quant-ph].

[91] M. Fromm, O. Philipsen, and C. Winterowd, Dihedral
Lattice Gauge Theories on a Quantum Annealer (2022),
arXiv:2206.14679 [hep-lat].

[92] M. Carena, E. J. Gustafson, H. Lamm, Y.-Y. Li, and
W. Liu, Gauge Theory Couplings on Anisotropic Lattices
(2022), arXiv:2208.10417 [hep-lat].

[93] C. Charles, E. J. Gustafson, E. Hardt, F. Herren,
N. Hogan, H. Lamm, S. Starecheski, R. S. Van de Water,
and M. L. Wagman, Simulating Z2 lattice gauge the-
ory on a quantum computer (2023), arXiv:2305.02361
[hep-lat].

[94] E. J. Gustafson and H. Lamm, Robustness of Gauge
Digitization to Quantum Noise (2023), arXiv:2301.10207
[hep-lat].

[95] E. Ballini, G. Clemente, M. D’Elia, L. Maio, and K. Zam-
bello, Quantum computation of thermal averages for
a non-Abelian D4 lattice gauge theory via quantum
Metropolis sampling, Phys. Rev. D 109, 034510 (2024),
arXiv:2309.07090 [quant-ph].

[96] M. Carena, H. Lamm, Y.-Y. Li, and W. Liu, Quantum
error thresholds for gauge-redundant digitizations of
lattice field theories (2024), arXiv:2402.16780 [hep-lat].

[97] E. J. Gustafson, Y. Ji, H. Lamm, E. M. Murairi, and
S. Zhu, Primitive Quantum Gates for an SU(3) Discrete
Subgroup: Σ(36 × 3) (2024), arXiv:2405.05973 [hep-lat].

[98] R. C. Johnson, Angular Momentum on a Lattice, Phys.
Lett. B 114, 147 (1982).

[99] D. C. Moore and G. T. Fleming, Angular momentum
on the lattice: The Case of non-zero linear momentum,
Phys. Rev. D 73, 014504 (2006), [Erratum: Phys.Rev.D
74, 079905 (2006)], arXiv:hep-lat/0507018.

[100] S. Basak, R. G. Edwards, G. T. Fleming, K. J. Juge,
A. Lichtl, C. Morningstar, D. G. Richards, I. Sato, and
S. J. Wallace, Lattice QCD determination of patterns of
excited baryon states, Phys. Rev. D 76, 074504 (2007),
arXiv:0709.0008 [hep-lat].

[101] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J.
Wallace, Excited state baryon spectroscopy from lattice
QCD, Phys. Rev. D 84, 074508 (2011), arXiv:1104.5152
[hep-ph].

[102] C. Egerer, R. G. Edwards, C. Kallidonis, K. Orginos,
A. V. Radyushkin, D. G. Richards, E. Romero, and
S. Zafeiropoulos (HadStruc), Towards high-precision par-
ton distributions from lattice QCD via distillation, JHEP
11, 148, arXiv:2107.05199 [hep-lat].

[103] W. Detmold, W. I. Jay, G. Kanwar, P. E. Shanahan, and
M. L. Wagman, Multi-particle interpolating operators
in quantum field theories with cubic symmetry (2024),
arXiv:2403.00672 [hep-lat].

[104] D. Horn, M. Weinstein, and S. Yankielowicz, Hamilto-
nian Approach to Z(N) Lattice Gauge Theories, Phys.
Rev. D 19, 3715 (1979).

[105] J. B. Kogut, 1/n Expansions and the Phase Diagram
of Discrete Lattice Gauge Theories With Matter Fields,

https://doi.org/10.1103/PhysRevE.57.111
https://doi.org/10.1103/PhysRevE.94.022134
https://doi.org/10.1103/PhysRevE.94.022134
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.1103/PhysRevD.105.054510
https://arxiv.org/abs/2111.13780
https://arxiv.org/abs/2111.13780
https://arxiv.org/abs/2203.15766
https://doi.org/10.1140/epjc/s10052-023-11829-9
https://arxiv.org/abs/2304.02322
https://arxiv.org/abs/2106.04609
https://arxiv.org/abs/2106.04609
https://doi.org/10.1103/PhysRevD.105.114501
https://arxiv.org/abs/2108.13305
https://arxiv.org/abs/2108.13305
https://doi.org/10.1103/PhysRevD.106.114501
https://arxiv.org/abs/2208.12309
https://doi.org/10.22331/q-2023-12-20-1213
https://doi.org/10.22331/q-2023-12-20-1213
https://arxiv.org/abs/2212.14030
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://arxiv.org/abs/1806.06649
https://arxiv.org/abs/2001.11490
https://doi.org/10.1103/PhysRevD.103.054507
https://doi.org/10.1103/PhysRevD.103.054507
https://arxiv.org/abs/2011.11677
https://doi.org/10.1103/PhysRevB.108.134301
https://arxiv.org/abs/2307.14508
https://doi.org/10.1016/0550-3213(83)90220-1
https://doi.org/10.1103/PhysRevD.24.3319
https://doi.org/10.1103/PhysRevD.22.2465
https://doi.org/10.1103/PhysRevD.22.2465
https://doi.org/10.1016/0370-2693(82)91207-2
https://doi.org/10.1016/0370-2693(82)91207-2
https://doi.org/10.1016/0370-2693(81)90112-X
https://doi.org/10.1016/0370-2693(81)90112-X
https://doi.org/10.1016/0370-2693(82)90463-4
https://doi.org/10.1016/0370-2693(82)90463-4
https://arxiv.org/abs/2107.01166
https://arxiv.org/abs/2203.15541
https://arxiv.org/abs/2206.14679
https://arxiv.org/abs/2208.10417
https://arxiv.org/abs/2305.02361
https://arxiv.org/abs/2305.02361
https://arxiv.org/abs/2301.10207
https://arxiv.org/abs/2301.10207
https://doi.org/10.1103/PhysRevD.109.034510
https://arxiv.org/abs/2309.07090
https://arxiv.org/abs/2402.16780
https://arxiv.org/abs/2405.05973
https://doi.org/10.1016/0370-2693(82)90134-4
https://doi.org/10.1016/0370-2693(82)90134-4
https://doi.org/10.1103/PhysRevD.73.014504
https://arxiv.org/abs/hep-lat/0507018
https://doi.org/10.1103/PhysRevD.76.074504
https://arxiv.org/abs/0709.0008
https://doi.org/10.1103/PhysRevD.84.074508
https://arxiv.org/abs/1104.5152
https://arxiv.org/abs/1104.5152
https://doi.org/10.1007/JHEP11(2021)148
https://doi.org/10.1007/JHEP11(2021)148
https://arxiv.org/abs/2107.05199
https://arxiv.org/abs/2403.00672
https://doi.org/10.1103/PhysRevD.19.3715
https://doi.org/10.1103/PhysRevD.19.3715


14

Phys. Rev. D 21, 2316 (1980).
[106] E. H. Fradkin and S. H. Shenker, Phase Diagrams of

Lattice Gauge Theories with Higgs Fields, Phys. Rev. D
19, 3682 (1979).

[107] B. A. Ovrut, Isotropy Subgroups of SO(3) and Higgs
Potentials, J. Math. Phys. 19, 418 (1978).

[108] A. Merle and R. Zwicky, Explicit and spontaneous break-
ing of SU(3) into its finite subgroups, JHEP 02, 128,
arXiv:1110.4891 [hep-ph].

[109] C. Luhn, Spontaneous breaking of SU(3) to finite family
symmetries: a pedestrian’s approach, JHEP 03, 108,
arXiv:1101.2417 [hep-ph].

[110] V. E. Vileta, B. Gavela, R. Houtz, and P. Quilez, Discrete
Goldstone bosons, Phys. Rev. D 107, 035009 (2023),
arXiv:2205.09131 [hep-ph].

[111] U. M. Heller, SU(3) lattice gauge theory in the funda-
mental adjoint plane and scaling along the Wilson axis,
Phys. Lett. B362, 123 (1995), arXiv:hep-lat/9508009
[hep-lat].

[112] U. M. Heller, More on SU(3) lattice gauge theory in
the fundamental adjoint plane, Lattice ’95. Proceedings,
International Symposium on Lattice Field Theory, Mel-
bourne, Australia, July 11-15, 1995, Nucl. Phys. Proc.
Suppl. 47, 262 (1996), arXiv:hep-lat/9509010 [hep-lat].

[113] M. Hasenbusch and S. Necco, SU(3) lattice gauge theory
with a mixed fundamental and adjoint plaquette action:
Lattice artifacts, JHEP 08, 005, arXiv:hep-lat/0405012
[hep-lat].

[114] M. Hasenbusch and S. Necco, Lattice artefacts in SU(3)

lattice gauge theory with a mixed fundamental and ad-
joint plaquette action, Lattice field theory. Proceedings,
22nd International Symposium, Lattice 2004, Batavia,
USA, June 21-26, 2004, Nucl. Phys. Proc. Suppl. 140,
743 (2005), arXiv:hep-lat/0409067 [hep-lat].

[115] Y. Ji, H. Lamm, and S. Zhu, Gluon Digitization via
Character Expansion for Quantum Computers (2022),
arXiv:2203.02330 [hep-lat].

[116] M. Fukugita, T. Kaneko, and M. Kobayashi, Phase Struc-
ture and Duality of Z(N) Lattice Gauge Theory With
Generalized Actions in Four Space-time Dimensions,
Nucl. Phys. B215, 289 (1983).

[117] A. Alexandru, P. F. Bedaque, R. Brett, and H. Lamm,
The spectrum of qubitized QCD: glueballs in a S(1080)
gauge theory (2021), arXiv:2112.08482 [hep-lat].

[118] T. Blum, C. E. Detar, S. A. Gottlieb, K. Rummukainen,
U. M. Heller, J. E. Hetrick, D. Toussaint, R. L. Sugar,
and M. Wingate, Improving flavor symmetry in the
Kogut-Susskind hadron spectrum, Phys. Rev. D55,
R1133 (1997), arXiv:hep-lat/9609036 [hep-lat].

[119] G. S. Bali, Casimir scaling of SU(3) static potentials,
Phys. Rev. D 62, 114503 (2000), arXiv:hep-lat/0006022.

[120] S. Deldar, Static SU(3) potentials for sources in vari-
ous representations, Phys. Rev. D 62, 034509 (2000),
arXiv:hep-lat/9911008.

[121] R. Sommer, A New way to set the energy scale in lattice
gauge theories and its applications to the static force
and αs in SU(2) Yang-Mills theory, Nucl. Phys. B 411,
839 (1994), arXiv:hep-lat/9310022.

https://doi.org/10.1103/PhysRevD.21.2316
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1063/1.523660
https://doi.org/10.1007/JHEP02(2012)128
https://arxiv.org/abs/1110.4891
https://doi.org/10.1007/JHEP03(2011)108
https://arxiv.org/abs/1101.2417
https://doi.org/10.1103/PhysRevD.107.035009
https://arxiv.org/abs/2205.09131
https://doi.org/10.1016/0370-2693(95)01186-T
https://arxiv.org/abs/hep-lat/9508009
https://arxiv.org/abs/hep-lat/9508009
https://doi.org/10.1016/0920-5632(96)00052-7
https://doi.org/10.1016/0920-5632(96)00052-7
https://arxiv.org/abs/hep-lat/9509010
https://doi.org/10.1088/1126-6708/2004/08/005
https://arxiv.org/abs/hep-lat/0405012
https://arxiv.org/abs/hep-lat/0405012
https://doi.org/10.1016/j.nuclphysbps.2004.11.262
https://doi.org/10.1016/j.nuclphysbps.2004.11.262
https://arxiv.org/abs/hep-lat/0409067
https://arxiv.org/abs/2203.02330
https://doi.org/10.1016/0550-3213(83)90217-1
https://arxiv.org/abs/2112.08482
https://doi.org/10.1103/PhysRevD.55.R1133
https://doi.org/10.1103/PhysRevD.55.R1133
https://arxiv.org/abs/hep-lat/9609036
https://doi.org/10.1103/PhysRevD.62.114503
https://arxiv.org/abs/hep-lat/0006022
https://doi.org/10.1103/PhysRevD.62.034509
https://arxiv.org/abs/hep-lat/9911008
https://doi.org/10.1016/0550-3213(94)90473-1
https://doi.org/10.1016/0550-3213(94)90473-1
https://arxiv.org/abs/hep-lat/9310022



