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ABSTRACT
We present simulation-based cosmological𝑤CDM inference using Dark Energy Survey Year 3 weak-lensing maps, via neural data
compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference
with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference,
we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows
all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks,
non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy
alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our
inference results. This paper also describes the Gower Street simulation suite: 791 full-sky pkdgrav3 dark matter simulations,
with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock
DES lensing data sets. For 𝑤CDM inference, for which we allow −1 < 𝑤 < − 1

3 , our most constraining result uses power
spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives
Ωm = 0.283+0.020

−0.027, 𝑆8 = 0.804+0.025
−0.017, and 𝑤 < −0.80 (with a 68 per cent credible interval); compared to the power spectrum

inference, this is more than a factor of two improvement in dark energy parameter (ΩDE, 𝑤) precision.

Key words: gravitational lensing: weak – cosmology: large-scale structure of Universe

1 INTRODUCTION

Weak gravitational lensing induces a pattern in the observed shapes
of galaxies; we may use this to infer the distribution of foreground
matter, including visible matter and (invisible) dark matter. The lens-
ing effect is sensitive both to large scale structure formation and to
geometric effects that probe the expansion history of the Universe.

Cosmological inference is typically performed using two-point
correlation functions (e.g. power spectra) of the lensing signal. The
currently most up-to-date analyses of this type are from the Dark
Energy Survey (DES, Amon et al. 2021; Secco & Samuroff et al.
2022), the Kilo-Degree Survey (KiDS, Asgari et al. 2021; Li et al.
2023b), and Hyper Suprime-Cam (HSC, Li et al. 2023a). Two-
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point statistics capture only some of the cosmologically relevant
information and so are limited in discovery potential, in comparison
to the information encoded in the full lensing mass map; for DES
Year 3 such lensing mass maps were presented in Jeffrey & Gatti
et al. (2021b).

This paper has two scientific aims: (i) to use map-level inference to
better constrain the cosmological parameters of the ‘𝑤-Cold-Dark-
Matter’ (𝑤CDM) model, and (ii) to use simulation-based inference
(also known as likelihood-free inference) methods to ensure realistic
data modelling and reliable inference.

Deep learning methods (see Goodfellow et al. 2016 for an intro-
duction) are used in two distinct ways in this analysis:

(i) Compression: we perform neural compression of high-
dimensional data or summary statistics of the data; in our case we
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2 N. Jeffrey et al.

compress the map itself (using convolutional neural networks), the
power spectra, and the peak counts from the map.

(ii) Neural likelihood estimation and validation: we use neural
density estimation (as is typical with simulation-based inference) to
learn the form of the likelihood from simulated mock data. We then
validate the resulting posterior probability distributions.

This paper also serves as the public release of the Gower Street
simulation suite, consisting of 791 (so far – the suite may grow in fu-
ture) full-sky cosmological simulations that vary seven cosmological
parameters of the 𝑤CDM model: the cosmological density param-
eter Ωm, the amplitude parameter 𝜎8, the scalar spectral index 𝑛𝑠 ,
the Hubble parameter ℎ = 𝐻0/(100 km s−1 Mpc−1), the physical
baryon density Ωbℎ

2, the dark energy equation of state 𝑤, and the
neutrino mass 𝑚𝜈 (the sum of the masses of the three neutrino mass
eigenstates, quoted in electron volts). For the analysis in this paper,
each full sky simulation can be split into four DES sky footprints, giv-
ing over 3000 quasi-independent mock DES surveys. Using multiple
noise realizations we augment this suite to over 104 non-independent
mock DES surveys; these are used to train data compression and to
perform simulation-based inference and posterior probability valida-
tion.

One novel aspect of this work is the combination of simulation-
based inference and map-level inference for an application with state-
of-the-art weak gravitational lensing data. Fluri et al. (2022) recently
pioneered the use of deep learning for map-level weak lensing in-
ference with KiDS data; this paper assumed a Gaussian likelihood.
Other works have used machine learning methods to extract cosmo-
logical information, but without characterising the likelihood with
simulation-based inference (Peel et al. 2019; Fluri et al. 2018; Ri-
bli et al. 2019; Fluri et al. 2019). Jeffrey et al. (2021a) used both
simulation-based inference and deep learning for cosmological fea-
ture extraction, but this work used only the DES Science Verification
data and so did not produce a competitive cosmological result.

In a companion DES analysis, we are developing a simulation-
based inference pipeline that uses wavelet scattering representations
instead of convolutional neural networks, of which Gatti et al. (2023)
is an initial description. In further analyses we will also try to under-
stand the physical origin or environmental dependence of our map-
level (deep learning) inference. These are all DES Year 3 analyses,
awaiting the final full DES Year 6 data.

In section 2 we introduce simulation-based inference, describing
in turn the use of neural likelihood estimation to learn the form of
the likelihood from realistic mock data (section 2.2), the principle
of data compression (section 2.3), validation of the resulting poste-
rior probability densities (section 2.4), and parameter sampling and
marginalization (section 2.5).

In section 3 we give an overview of weak gravitational lensing and
in section 4 we describe the Gower Street suite of simulations.

In section 5 we describe the DES Year 3 weak gravitational lensing
data. We also describe how we generate mock DES data from the
Gower Street simulations in a way that matches survey properties,
noise, and forward modelling contributions to systematic uncertainty
(e.g. intrinsic alignments of galaxies and photometric redshift uncer-
tainty).

In section 6 we describe each of the chosen summary statistics
of the data and the data compression methods. The summary statis-
tics described are the weak-lensing map itself (we describe how we
construct convolutional neural networks to extract the cosmologi-
cal information), the power spectra, and the counts of peaks in the
lensing map.

We present the cosmological inference results in section 7 and
conclude in section 8.

2 SIMULATION-BASED INFERENCE

2.1 Motivation

For parameter inference from complex physical systems, the likeli-
hood, i.e. the conditional probability density 𝑝(𝑥 |𝜃) of the data 𝑥

given the model parameters 𝜃, is typically not known exactly or is
too complex to be tractable. For these problems, simulation-based
inference (also known as ‘likelihood-free inference’ or ‘implicit in-
ference’) provides a solution.

For weak gravitational lensing data, the exact form of the like-
lihood is typically not known. This is due both to the non-linear
evolution of the cosmological density field and to several compli-
cated observational effects (survey masks, various systematic biases,
non-Gaussian noise contributions, etc.). Even if we assume that the
underlying density field is Gaussian, the two-point statistics in weak
lensing can have a significantly non-Gaussian distribution, especially
if realistic observational effects are included (Alsing et al. 2017; Sel-
lentin & Heavens 2018; Sellentin et al. 2018; Taylor et al. 2019).

For higher-order statistics, there is typically no closed-form ex-
pression for the likelihood. Even the expectation values of 𝑝(𝑥 |𝜃)
for many higher-order statistics (e.g. peak counts) must be estimated
from simulated mock data. We cannot expect the probability den-
sity 𝑝(𝑥 |𝜃) for these statistics to be Gaussian, as there are multiple
sources of non-Gaussianity in the data model.

Even if the likelihood were known to be Gaussian, for observables
that used simulated predictions (e.g. peak counts or map-level deep
learning) the covariance matrix also has to be estimated from a
significant number of simulations, typically run with fixed input
parameters. The simulation-based inference approach avoids this, and
hence can still be highly applicable even in the Gaussian likelihood
case.

Furthermore, even if the likelihood is known, simulation-based
inference methods allow implicit marginalization over nuisance pa-
rameters. As discussed in Jeffrey & Wandelt (2020), traditional meth-
ods fail with large parameter spaces, whereas with simulation-based
inference methods we can sidestep intractable high-dimensional in-
ference and focus only on the selected parameters of interest. This
implicit marginalization over nuisance parameters is central to the
analyses presented in this paper, as we vary both unconstrained cos-
mological parameters and nuisance parameters (including 𝑛(𝑧) red-
shift distributions with ∼ 103 dimensions). This is discussed further
in section 2.5.

2.2 Neural likelihood estimation

This work uses the neural likelihood estimation technique from the
field of simulation-based inference; in this technique, the form of
𝑝(𝑥 |𝜃) is learned from mock data realizations (Alsing et al. 2018b;
Papamakarios et al. 2019). By generating simulated mock data 𝑥𝑖 ,
we are in fact drawing samples according to

𝑥𝑖 ∼ 𝑝(𝑥 |𝜃𝑖) (1)

where 𝜃𝑖 are the input parameters to the simulation with index 𝑖.
From a set of simulated mock data labelled by their parameter val-
ues {𝑥𝑖 , 𝜃𝑖}, we can then learn a density 𝑞 that approximates the
underlying probability density 𝑝, such that 𝑝(𝑥 |𝜃) ≈ 𝑞(𝑥 |𝜃).

In our case, 𝜃 is a chosen subset of the 𝑤CDM model parameters
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coupled with nuisance parameters corresponding to observational
effects (e.g. intrinsic alignment amplitude).

Given parameters of interest 𝜃 and given some data 𝑥 (e.g. the
lensing map or its power spectrum), our first step is to estimate
𝑝(𝑥 |𝜃). This estimated likelihood is then evaluated for the observed
data 𝑥𝑂 , from which as usual the posterior probability density of the
parameters can be related to the likelihood via Bayes’ theorem:

𝑝(𝜃 |𝑥𝑂) = 𝑝(𝑥𝑂 |𝜃) 𝑝(𝜃)
𝑝(𝑥𝑂) . (2)

To estimate the conditional distribution 𝑝(𝑥 |𝜃), we use the py-
DELFI (Alsing et al. 2019) package1 with an ensemble of neural
density estimators (NDEs). NDEs use neural networks to parameter-
ize densities, including (as here) conditional probability densities.

An NDE gives an estimate 𝑞(𝑥 |𝜃, 𝜑) by varying the 𝜑 neural
network parameters (e.g. weights and biases) to minimize the loss
function

𝑈 (𝜑) = −
𝑁∑︁
𝑖=1

log 𝑞(𝑥𝑖 |𝜃𝑖 ; 𝜑) (3)

over the 𝑁 forward-modelled mock data 𝑥𝑖 . This loss corresponds
to minimizing the Kullback-Leibler divergence (Kullback & Leibler
1951), a measure of change from the estimate 𝑞 to the target 𝑝.

We have available two types of NDEs: Gaussian Mixture Density
Networks (MDN; Bishop 1994) and Masked Autoregressive Flows
(MAF; Papamakarios et al. 2017). An MDN represents the condi-
tional density as a sum of several Gaussian components. A MAF is
a type of Normalizing Flow i.e. it uses a series of bĳective transfor-
mations from simple known densities (e.g. standard Gaussian) to the
target density (Jimenez Rezende & Mohamed 2015; Kingma et al.
2016; Papamakarios et al. 2019).

For further details see Jeffrey et al. (2021a) (in which a similar
neural likelihood estimation setup was used, and in which may be
found a more technical introduction to these NDE methods).

However, unlike Jeffrey et al. (2021a), the results presented in this
paper use only MAFs, as these were found to perform better at hard
prior boundary edges (e.g. for 𝑤 ≈ −1). The MDNs were used only
for validation with simulated data analyses. For the presented results
(section 7) we use an ensemble of four MAFs: each had either three,
five, or six transformations (Masked Autoencoder for Distribution
Estimation, i.e. MADE) with each using a neural network with two
hidden layers (with widths of either 40 or 50).

2.3 Principle of data compression

Density estimation of 𝑝(𝑥 |𝜃) rapidly increases in difficulty as the
dimensionality dim(𝑥) of the data vector 𝑥 increases (the ‘curse of
dimensionality’). In this DES weak-lensing analysis, the data dimen-
sionality is ∼ 107 for the case of map-level inference and ∼ 103 for
inference using power spectra and peak counts. Direct estimation of
𝑝(𝑥 |𝜃) is intractable.

We take the (now standard) approach of data compression: apply
some function F to the data to return compressed data 𝑡 = F (𝑥),
while trying to preserve information about the parameters 𝜃.

A poor compression (i.e. one that loses information) will not lead
to biased inference. Because the same compression is applied con-
sistently to both the simulated data and the observed data, a less-
informative summary statistic 𝑡lossy will lead to inflated posterior

1 https://github.com/justinalsing/pydelfi

distributions on 𝜃. In the limit of uninformative compression, any
posterior distribution 𝑝(𝜃 |𝑡lossy) will merely be equal to the prior
𝑝(𝜃).

Although we do not have to worry about poor compression lead-
ing to incorrect inference, we clearly want to find a compression
scheme that is maximally informative with respect to the parame-
ters of interest 𝜃. Different techniques are available for compression,
all of which aim to maximize the information content of 𝑡 while
dramatically reducing the dimensionality.

Under certain conditions it is possible to find F for which the
dimension of 𝑡 equals the number of inferred parameters, dim(𝑡) =
dim(𝜃), and which also is lossless with respect to the Fisher infor-
mation (e.g. Heavens et al. 2000; Alsing & Wandelt 2018).

Neural compression, which we use in this DES analysis, takes ad-
vantage of the flexibility of neural networks to parameterize F . The
neural network is trained using simulated mock data. Existing meth-
ods include the Information Maximizing Neural Network (IMNN;
Charnock et al. 2018), which maximizes the Fisher information, and
Variational Mutual Information Maximization (VMIM; Jeffrey et al.
2021a), which maximizes the mutual information between the com-
pressed data and the target parameters.

Instead of these methods we use a mean-square error (MSE) loss
function to compress the data. This corresponds to an estimate of the
mean of the posterior distribution for each parameter. Such a point
estimate is clearly informative about the target parameters, and can be
contrasted with the maximum likelihood parameter estimate, which
corresponds to an optimal score compression (with some caveats:
Alsing & Wandelt 2018). We do not expect this MSE compression to
be optimal (e.g. compared to VMIM), but it is simple to implement.

The network architecture for the compression used in this work
is described in detail in section 6. As the MSE only depends on the
marginal posterior per parameter, we train a different network per
parameter. Multiple noise realizations serve as data augmentation
in our training data for compression. Throughout this analysis, the
neural compression is learned from different noise realizations of the
mock data to those that are used for neural likelihood estimation –
this is to avoid over-fitting.

2.4 Posterior probability validation

2.4.1 Coverage tests

Coverage tests in Bayesian analysis check whether credible inter-
vals have the expected probabilities. Looking at one-dimensional
marginalized posteriors, we define a particular credible interval to
be the narrowest interval containing (say) 90% of the probability
weight; other credible intervals would work equally well. (This can
be generalized e.g. Lemos et al. 2023). View the inference process as
a procedure which, given observed data 𝑥𝑂 , yields a posterior distri-
bution 𝑝(𝜃 |𝑥𝑂) and hence a credible interval for 𝜃. In the coverage
test we use a parameter 𝜃test, selected from the prior 𝑝(𝜃), as input to
a simulation yielding output data 𝑥test, from which we derive a poste-
rior 𝑝(𝜃 |𝑥test) and hence a credible interval; if the inference process
is correctly implemented then the true test parameter value 𝜃test will
fall in this credible interval 90% of the time. By repeating with many
such 𝜃test we are able to gain confidence that our estimated posterior
distributions are indeed correct (Prangle et al. 2014; Hermans et al.
2021).

This test is relatively straightforward for this type of simulation-
based inference, for which we have a number of existing mock data
simulations and where the inference scheme is amortized (and so fast
to evaluate probabilities for new data). Coverage testing is a useful
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4 N. Jeffrey et al.

aspect of inference, ensuring that the results are reliable, which is
often unfeasible with traditional statistical approaches.

Given the computational expense of each simulation giving us a
limited supply of mock data realisations, the biggest risk of failure is
that we have insufficient simulations to robustly estimate the likeli-
hood. Coverage tests can reassure us that we have sufficient numbers
of simulations for this task; a successful coverage test implies there
were enough simulations to accurately estimate the likelihood.

In this analysis we show successful coverage tests for inference
using our learned likelihoods; this serves as one validation of the
posterior distribution obtained for the actual observed data 𝑝(𝜃 |𝑥𝑂).

2.4.2 Neural density ensemble convergence

The individual likelihood estimates from the neural density ensem-
ble can be used as a further validation step. The individual density
estimates will converge to a common value as the number of simu-
lations increases; therefore, if the posterior distributions from each
independent density estimation are in disagreement, this would be
evidence that we had an insufficient number of simulated mock data
realizations.

2.5 Parameter sampling & marginalization

The main strength of neural likelihood estimation (learning 𝑝(𝑥 |𝜃))
rather than the neural posterior estimation (learning 𝑝(𝜃 |𝑥)) is that
the parameters 𝜃 in the training data (the simulations) do not have to
be drawn from the prior 𝑝(𝜃).

This has two benefits. The first is that the prior can be changed
at will after the simulations have been run (for example, to take
new external information into account). The second, of particular
importance to this work, is that additional simulations can be run
in regions of parameter space that are most useful for the neural
density estimation; this is known as active learning. One can choose
the parameter values for the new simulation from some acquisition
function, which may be based on the existing posterior estimates, to
improve robustness. In this DES analysis, this was implemented in
two stages: (1) most 𝜎8 and Ωm parameters were at first distributed
according to the existing DES analysis constraints, and (2) after
an initial simple blind power spectrum analysis, new simulations
were run with 𝜎8 and Ωm values (known only to the computer) in
regions of parameter space with high NDE ensemble variance (see
section 2.4.2). Our sampling scheme is discussed further in section 4.

For the parameters that are not part of the active learning scheme,
we can still choose to distribute them according to a prior. If any
set of parameters 𝜃marginal is distributed according to the chosen
prior 𝑝(𝜃marginal), and if these parameters are excluded from the
parameter set 𝜃 used for neural likelihood estimation, then these
𝜃marginal parameters will be implicitly marginalized during inference.
This is explained via marginal posterior density estimation in Jeffrey
& Wandelt (2020). The uncertainty in these parameters 𝜃marginal
is still accounted for in the resulting posterior distributions, as the
parameters are varied in each simulated mock data realization, but the
parameters are implicitly marginalized, which avoids explicit (and
intractable) high-dimensional density estimation and unnecessary
marginalization integration.

In the Gower Street simulations, all parameters other than 𝜎8 and
Ωm are drawn from their prior distributions (with some caveats; sec-
tion 4). All observational nuisance parameters (e.g. intrinsic align-
ment and redshift) are also drawn from their priors in the mock DES
lensing map generation (section 5). This allows implicit marginal-
ization if necessary.

Φ

𝛿 𝜙

𝜅 𝛾

Poisson (4) Lens (5)

(7)(6)
Induced Lens (8) (9)

Figure 1. The relationships among weak-lensing fields Φ (gravitational po-
tential), 𝛿 (overdensity), 𝜙 (weak-lensing potential), 𝜅 (convergence), and
𝛾 (shear); these relationships allow us to link observations to cosmological
theory and simulations. Arrows represent spatial second derivatives; the line
between 𝜅 and 𝛾 is a relationship of harmonic coefficients. Numbers refer to
the corresponding equations in section 3.1, where further details are given.

3 WEAK GRAVITATIONAL LENSING

Weak gravitational lensing (WL) (Bartelmann & Schneider 2001)
is the coherent slight alteration (for us, primarily shearing) of the
shapes of distant ‘source’ galaxies by the gravitational influence of
intervening matter (mostly dark). The unlensed shapes are unknown,
and thus act as a noise term in WL analysis; the large surface density
of galaxies visible in modern surveys allows the WL convergence
signal (a weighted average of the overdensity along the line-of-sight,
convolved with the redshift density of source galaxies) to be measured
despite this noise. The two-point correlation functions of the signal
may be estimated from observed data and compared to theoretical
predictions from a cosmological model, thereby constraining the
parameters of the model. Alternatively, convergence maps may be
constructed. The convergence field is not a Gaussian random field,
and so the power spectrum is not the full story; there is further
information in various beyond-two-point statistics from these maps.
Alas, theoretical model predictions for these so-called non-Gaussian
statistics are generally not available; results derived from simulations
must be used instead.

This section describes briefly the theory required to link the WL
shear observables to results obtained from theory or simulations.

3.1 Theory

We follow Jeffrey & Gatti et al. (2021b) section 2; see that paper for
full details. See Figure 1 for a schematic diagram of the relationships
between the fields discussed.

The gravitational potential Φ and the matter overdensity field 𝛿 ≡
𝜌/�̄� − 1 are related by the Poisson equation

∇2
𝑟Φ(𝑡, 𝒓) =

3Ωm𝐻2
0

2𝑎(𝑡) 𝛿(𝑡, 𝒓) . (4)

Here 𝒓 is a comoving spatial coordinate and 𝑎 is the scale factor.
The weak-lensing potential 𝜙 is defined via the lens equation;

𝜙 is sourced by the gravitational potential, together with a lensing
efficiency factor (written here assuming a flat Universe), all integrated
along the line of sight to a source galaxy at comoving distance 𝜒 (here
we use the Born approximation), and then further integrated over the
redshift distribution 𝑛(𝑧) of source galaxies:

𝜙(𝜃, 𝜑) = 2
𝑐2

∫ ∞

0
d𝜒 𝑛(𝑧(𝜒))

∫ 𝜒

0
d𝜒′

(𝜒 − 𝜒′)
𝜒𝜒′

Φ(𝜒′, 𝜃, 𝜑). (5)

The weak lensing potential is defined on the celestial sphere, so it
is convenient to use the formalism of spin-weight functions on the
sphere; see Castro et al. (2005) for details and see also Sellentin et al.
(2023) Appendix A for geometrical comments. Let ð and ð̄ denote
the spin-weight covariant derivative and its adjoint. Let 𝜅 and 𝛾 be
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the weak-lensing convergence (spin-weight 0) and shear (spin-weight
2); they are second derivatives of the weak-lensing potential:

𝜅 =
1
4
(ðð̄ + ð̄ð)𝜙 (6) and 𝛾 =

1
2
ðð𝜙. (7)

Eqs 4, 5, and 6 yield an induced lens equation linking 𝛿 and 𝜅:

𝜅(𝜃, 𝜙) =
3Ωm𝐻2

0
2𝑐2

∫ ∞

0
d𝜒𝑛(𝑧(𝜒))

∫ 𝜒

0
d𝜒′

𝜒′ (𝜒 − 𝜒′)
𝜒

𝛿(𝜒′, 𝜃, 𝜙)
𝑎(𝜒′) .

(8)

Finally we move to harmonic space, representing an arbitrary field
𝑏 by its coefficients 𝑏ℓ𝑚 with respect to the basis of spherical har-
monic functions of the appropriate spin-weight. Now ð and ð̄ behave
in a simple fashion in this basis, and so Eqs 6 and 7 yield

𝛾ℓ𝑚 = −

√︄
(ℓ − 1) (ℓ + 2)

ℓ(ℓ + 1) 𝜅ℓ𝑚. (9)

Using 𝜅 as a link, Eqs 8 and 9 together connect 𝛾 (which may be
measured using the shapes of source galaxies – taking into account
shape noise and other sources of noise, partial sky coverage, and
systematic effects such as intrinsic alignments) with 𝛿 (which may be
treated theoretically – at least up to two-point statistics – or modelled
via simulations). We thus have the desired link between theory (or
simulations) and observations.

4 GOWER STREET SIMULATIONS

4.1 Simulation configuration

The Gower Street suite of simulations consists of 791 gravity-only
full-sky 𝑁-body simulations, produced using the pkdgrav3 code
(Potter et al. 2017), spanning a seven-dimensional parameter space
in 𝑤CDM (Ωm, 𝜎8, 𝑛𝑠 , ℎ, Ωbℎ

2, 𝑤, 𝑚𝜈).
For reviews of the theory of simulations, see Efstathiou et al.

(1985) and Angulo & Hahn (2022). In common with other 𝑁-body
simulation codes, pkdgrav3 uses a box of side 𝐿, filled with 𝑁3

particles. At a start time, corresponding to redshift 𝑧0, the particles
are arranged in phase space (positions and velocities) so as to match
desired initial conditions; for this, pkdgrav3 uses second-order La-
grangian Perturbation Theory (2LPT). The positions/velocities of
the particles are then updated (under the influence of gravity – mod-
elled as Newtonian – against the backdrop of Universe expanding
according to specified cosmological parameters) to yield snapshots
of positions/velocities at various discrete times.

From this four-dimensional dataset, pkdgrav3 extracts lightcone
data i.e. it restricts the dataset to events currently visible to the
theoretical observer at the centre of the simulation. Specifically,
the code estimates each particle’s worldline (by interpolating be-
tween the particle’s known positions at each time slice) and calcu-
lates, in four-dimensional space, the intersection of this worldline
(a one-dimensional curve) with the observer’s lightcone (a three-
dimensional cone). This gives, for each particle, what event (redshift
and position) on its worldline is currently visible. These data are
then binned, by redshift (a bin corresponds to the redshift interval
between two snapshots) and by position on the sky (into HEALPix
(Górski et al. 2005) pixels). The results (particle count per pixel per
redshift bin) are then output, with one file per redshift bin. For higher
redshifts the comoving distance to the redshift will exceed the box
side 𝐿; to avoid this, the simulation box is replicated 𝑀 times in

each direction (a total of (2𝑀)3 replications, with the observer at the
centre of this ‘super-box’).

The Gower Street simulations use 𝐿 = 1250 ℎ−1 Mpc and 𝑁 =

1080. We set the initial redshift to 𝑧0 = 49, and we produce 101
snapshots (and hence 100 lightcone files), equally spaced in proper
time between 𝑧0 and redshift zero. For the HEALPix pixelization
we set nside = 2048. The simulation box is replicated 𝑀 = 10
times2, although the bulk of our redshift distributions (𝑧 < 1.5) can
be covered by only three replications.

Fig. 2 presents an example of such a simulation; the map shows
the matter overdensity as derived from the pkdgrav3 particle count.

To validate the output of our simulations, we saved the three-
dimensional particle positions as a final redshift snapshot at 𝑧 = 0
for a single simulation run whose parameters were Ωm = 0.3001,
𝜎8 = 0.7894, 𝑛𝑠 = 0.95, ℎ = 0.687, Ωbℎ

2 = 0.02243, 𝑤 = −0.95,
𝑚𝜈 = 0.065. Limits on computation time and disk space prevented
us from generating these for multiple simulations. From this snap-
shot we measured the matter power spectrum using the nbodykit
(Hand et al. 2018) code. Fig. 3 compares a) the measured power
spectrum from this simulation to b) the theoretical power spectrum
calculated using the Euclid emulator (Knabenhans et al. 2021) code.
At small scales, where the finite resolution of the simulation would
be expected to cause inaccuracies, the difference between the mea-
sured and theoretical power spectrum remains below 2 per cent. This
is within the relative error between different non-linear power spec-
trum prescriptions and other modelling choices, such as choice of
neutrino model or astrophysical feedback model. Baryon feedback
effects are not included in the simulation suite, but their effects are
tested in section 7.

This paper serves as the formal release of these simulations, which
are available at www.star.ucl.ac.uk/GowerStreetSims/.

4.2 Cosmological parameters

A total of 791 simulations were performed. The first 192 of these
were ‘verification’ runs, done to test the software pipeline; they had
a naive handling of neutrinos. For these runs, the initial conditions
were specified to pkdgrav3 via a transfer function generated using
nbodykit (Hand et al. 2018); in all of these runs the neutrino mass
was fixed to 0.06. Neutrinos played no role beyond this in these initial
simulations. Further simulations, beyond these initial verification
runs, had a more sophisticated handling of neutrinos, done via the
concept software (see Tram et al. 2019).

Each simulation was given its own values for seven cosmologi-
cal parameters within 𝑤CDM: Ωm, 𝜎8, 𝑛𝑠 , ℎ, Ωbℎ

2, 𝑤, and 𝑚𝜈 ; in
addition, each simulation had a different value for the random seed
used when generating initial conditions (so that the simulations also
display a range of behaviours arising from cosmic variance). The two
parameters for which weak-lensing observations are most constrain-
ing, Ωm and 𝜎8, were chosen via active learning: during later runs,
values for these parameters were chosen so to maximize the incre-
mental constraining power of the simulation suite (i.e. concentrated
in regions of parameter space that were both important and under-
represented). For simplicity, this was done simply by sampling these
parameters from the posterior distribution of the parameters (both
from the existing published DES results and as calculated using the
simulations so far – see Alsing et al. 2018a), but with a hard exclusion
zone around already-used parameter combinations.

2 We thank Janis Fluri for code amendments allowing an increase from the
default 𝑀 = 3 value.
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Figure 2. Example dark matter simulation from the Gower Street simulation suite. This map on the celestial sphere (Mollweide projection) uses the average
overdensity 𝛿 from all shells up to a redshift 𝑧 = 0.15. Such simulations form the basis of the mock DES Y3 weak lensing maps used in the inference pipeline.
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Figure 3. Comparing the matter power spectrum 𝑃 (𝑘, 𝑧 = 0) of a simulation
to that from theory. The theory prediction for the power spectrum 𝑃theory (𝑘 )
combines camb for linear theory (Lewis et al. 2000) and the Euclid emula-
tor (Knabenhans et al. 2021) for the non-linear contribution. At small scales,
where the finite resolution of the simulation is expected to cause inaccuracies,
the systematic error remains below 2 per cent.

The remaining parameters were chosen (independently) as follows:

• 𝑛𝑠 ∼ N(0.9649, 0.0063); from Planck (Planck Collaboration
2021) but with the standard deviation boosted by a factor of 1.5.

• ℎ ∼ N(0.7022, 0.0245); consistent with SH0ES (Riess et al.

2022) and Planck (Planck Collaboration 2021), as its mean is mid-
way between the means of these experiments, and its one standard
deviation contour encompasses the two standard deviation contours
of both experiments.

• Ωbℎ
2 ∼ N(0.02237, 0.00015); from Planck (Planck Collabo-

ration 2021).
• 𝑤 ∼ N(−1, 1/3), but with values less than −1 or greater than

−1/3 then discarded. However, for the first 128 runs (part of the
‘science verification’ runs), this discarding was not done (resulting
in approximately 64 runs with 𝑤 < −1). These runs have been kept
as they help to smooth what would otherwise be the discontinuity at
𝑤 = −1.

This choice of 𝑤 > −1 excludes phantom dark energy. This has
some theoretical justification for an N-body simulation on an expand-
ing background, but is also motivated by computational limitations
with low values of Ωm when using pkdgrav3 and concept.

• 𝑚𝜈 : As described in more detail above, fixed at 0.06 for the
initial 192 simulations and with log(𝑚𝜈) ∼ U[log(0.06), log(0.14)]
thereafter.

In the above, N(𝜇, 𝜎) denotes a normal distribution with the indi-
cated mean and standard deviation and U[𝑎, 𝑏] denotes a uniform
distribution with the indicated limits.

The parameter values are not sampled through i.i.d. draws from
their respective distributions. Instead, to avoid similar parameter
combinations arising due to random chance, we sample a multi-
variate uniform distribution using a mixture of Sobol and Halton
sequences (and then transform where necessary from uniform to
Gaussian by applying the inverse function of the Gaussian cumula-
tive distribution function).

Fig. 4 displays the parameter values for pairs of parameters used in
the Gower Street simulations. We only show the parameter combina-
tions for the simulations not included in the initial 192 ’verification’
runs, so that we can include the neutrino mass in the figure.
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Figure 4. Parameter values used in the Gower Street simulations. The cosmological parameters span variations the in 𝜈𝑤CDM model. We exclude the initial
192 ’verification’ runs to simplify the presentation of the neutrino mass distribution. For all parameters other than Ωm and 𝑆8, these parameters are distributed
according to their prior probability distributions. For Ωm and 𝑆8, we always use neural likelihood estimation to condition on these parameters, removing the
dependence on their simulated distribution.

5 DARK ENERGY SURVEY DATA AND MOCK DATA
MODELLING

5.1 DES Year 3 weak lensing data

DES is a photometric galaxy survey that covers ∼ 5000 deg2 of the
South Galactic cap. Mounted on the Cerro Tololo Inter-American
Observatory four metre Blanco telescope in Chile, the 570 megapixel
Dark Energy Camera (DECam, Flaugher et al. 2015) images the field
in 𝑔𝑟𝑖𝑧𝑌 filters. We use data from the first three years of the survey
(DES Y3).

The simulated galaxy catalogues are created so as to match DES
Y3 for known properties. For example, the sky mask is known but the
intrinsic alignment model parameters are not, so we simulate with
fixed sky mask but vary the intrinsic alignment amplitude in each
simulation.

The DES Y3 shear catalogue (Gatti & Sheldon et al. 2021), built
upon the Y3 Gold catalogue (Sevilla-Noarbe et al. 2021), uses the
METACALIBRATION algorithm (Huff & Mandelbaum 2017; Sheldon

& Huff 2017) to measure galaxy ellipticities from noisy images. The
raw images were processed by the DES Data Management (DESDM)
team (Sevilla et al. 2011; Morganson et al. 2018; Abbott et al. 2018).

METACALIBRATION provides an estimate of the shear field using a
self-calibration framework that uses the data itself to correct for selec-
tion effects in the response of the estimate to shear. Inverse variance
weights are assigned to galaxies. The DES Y3 shear catalogue has
100,204,026 objects, with a weighted 𝑛eff = 5.59 galaxies arcmin−2.
The METACALIBRATION self-correction accounts for most of the mul-
tiplicative bias, but there is a remaining multiplicative bias of 2 to
3 per cent (MacCrann et al. 2020). This multiplicative factor is left
uncalibrated but is parameterized and its uncertainty accounted for
in our inference framework.

The shear catalogue has also been tested for additive biases (e.g.
due to point spread function residuals; see Gatti & Sheldon et al.
2021). The catalogue is characterized by a non-zero mean shear
which is subtracted at the catalogue level before performing any

MNRAS 000, 1–19 (2024)
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analysis. The shear catalogue is divided into four tomographic bins,
selected so as to have roughly equal number density.

The catalogue is used to create shear maps with a HEALPix pix-
elization of nside = 512. This relatively low resolution removes
small scales that we cannot confidently model. This is tested and
discussed further in section 7. The estimated value of the shear field
in the map pixels is given by:

𝛾𝜈obs =

∑
𝑗 𝜖

𝜈
𝑗
𝑤 𝑗

�̄�
∑

𝑗 𝑤 𝑗

, 𝜈 = 1, 2, (10)

where 𝜈 refers to the two shear field components, 𝑤 𝑗 is the per-
galaxy inverse variance weight, �̄� is the average METACALIBRATION
response of the sample, and the summations are taken over the galax-
ies lying in a particular pixel.

5.2 Simulation map raytracing

For each simulation, lens planes 𝛿shell (n̂, 𝜒) are provided at ∼ 100
redshifts from 𝑧 = 49 to 𝑧 = 0.0, equally spaced in proper time. The
lens planes are provided as HEALPix maps and are obtained from
the raw number particle counts:

𝛿shell (𝜙, 𝑠) =
𝑛part (𝜙, 𝑠)

⟨𝑛part (𝜙, 𝑠)⟩𝜙
− 1 , (11)

where 𝑛part (𝜙, 𝑠) is the number of particles in pixel 𝜙 for shell 𝑠 and
⟨⟩𝜙 denotes an average over pixels.

The lens planes are converted into convergence planes 𝜅shell (𝜙, 𝜒)
under the Born approximation using the BornRaytrace code3. The
shear planes 𝛾shell (n̂, 𝜒) are obtained from the convergence maps
using Eq. 9, the inverse Kaiser & Squires (1993) algorithm. We down-
sample from the original resolution of nside = 2048 to nside = 512
(with pixel size ≈ 7.2 arcmin).

These convergence 𝜅 and shear 𝛾 maps are the true shear and
convergence fields in thin redshift shells. To generate mock lensing
maps as they would be observed, we must a) integrate over a mock
redshift distribution 𝑛(𝑧) (see Eq. 8), b) simulate the effect of intrinsic
alignment of galaxies, and c) add the effect of galaxy shape noise
and missing data (i.e. sky masks).

5.3 Intrinsic alignments of galaxies

We model the intrinsic alignment of galaxies using a density-
weighted Non-Linear Alignment (NLA) model.

Using the NLA model (Hirata & Seljak 2004; Bridle & King 2007),
we relate the convergence signal that would result from pure intrinsic
alignments (with no lensing), 𝜅IA, linearly to the local density field:

𝜅IA (𝜙, 𝑧) = −𝐴IA𝐶1𝜌crit
Ω𝑀

𝐷 (𝑧)

( 1 + 𝑧

1 + 𝑧0

) 𝜂IA
𝛿(𝜙, 𝑧) (12)

in a pixel 𝜙 and for some shell redshift 𝑧. We use the standard value
of 𝑧0 = 0.62 and set 𝐶1 = 5 × 10−14𝑀⊙ℎ−2Mpc2 (as per Bridle &
King 2007).

The density-weighting in our forward model modulates the stan-
dard NLA model, because the source galaxies trace the underlying
density field, and so are preferentially observed in higher density
regions. This effect is the same as the clustering term in the tidal-
torque alignment (TATT) model for intrinsic alignments (Blazek
et al. 2019). The implementation of the source clustering effect is
discussed in section 5.4.

3 https://github.com/NiallJeffrey/BornRaytrace

The amplitude of intrinsic alignments 𝐴IA and the redshift evolu-
tion parameter 𝜂IA are allowed to vary in our analysis as nuisance
parameters. By sampling each of these parameters from a prior, they
will be implicitly marginalized as part of our simulation-based infer-
ence procedure (see section 2.5). We choose the following (weakly
informative) priors for these parameters:

• 𝐴IA ∼ U(−3, 3).
• 𝜂IA ∼ U(−5, 5).

The 𝜅IA maps are generated with the BornRaytrace code using the
simulated overdensity maps 𝛿. From these we generate shear maps
that contain only intrinsic alignment signal (i.e. no lensing).

5.4 Realistic mock shear maps

5.4.1 Source clustering

Due to the effect of clustering of source galaxies, known as source
clustering (described and detected in Gatti et al. 2024), it would be
insufficient to assume a single galaxy redshift distribution 𝑛(𝑧) that
is constant across the sky. Instead, our model 𝑛(𝑧, 𝜙) of the galaxy
redshift distribution depends on sky position via an input HEALPix
pixel 𝜙.

When constructing shear maps from observed data catalogues,
each HEALPix pixel is assigned an average shear, the average taken
over all galaxies that are within that pixel and that are in the correct
tomographic redshift bin. Since these source galaxies trace the un-
derlying large-scale structure, higher-order correlations between the
number of galaxies in pixels and the weak lensing signal encoded in
the shear become important.

In our forward model for generating mock data, we model a per-
pixel redshift distribution via the sky-averaged redshift distribution
�̄�(𝑧), then modulated by the density of galaxies:

𝑛(𝑧) ∝ �̄�(𝑧) (1 + 𝑏𝑔𝛿). (13)

The modulation factor assumes a linear galaxy biasing model with
bias parameter 𝑏𝑔; here 𝛿 is the matter overdensity as before. This
modulation is combined with an overall rescaling of the shape noise
contribution to preserve the expected overall noise variance. We
follow the procedure of Gatti et al. (2024), which contains further
details.

5.4.2 Shape noise & mask

This procedure also uses the randomly rotated shapes of the observed
DES catalogue galaxies to implicitly generate the average intrinsic
shapes in our mock observations, contributing shape noise to our
mock shear maps.

The sky mask does not have to be treated separately; it is simply the
set of pixels that contain no source galaxies. Because the same sky
mask is present in both the mock simulated data and the observed
DES data, it will be implicitly taken into account as part of our
inference pipeline.

5.4.3 Multiplicative shear bias

To account for the residual errors in the shape measurement, we
include a multiplicative shear bias in the forward model of the mock
data. For a multiplicative shear bias 𝑚, associated with the particular
tomographic bin, we rescale the shear by a factor of 1 + 𝑚.

MNRAS 000, 1–19 (2024)
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Figure 5. An example set of samples from the hyperrank probability dis-
tribution 𝑝 (�̄�(𝑧) |𝑥phot ) of the sky-averaged redshift distribution �̄�(𝑧) given
the data used by hyperrank.

Using the results from image simulations as presented in Mac-
Crann et al. (2020), we use the following priors on 𝑚 for the various
tomographic bins:

• 𝑚1 ∼ N(−0.0063, 0.0091).
• 𝑚2 ∼ N(−0.0198, 0.0078).
• 𝑚3 ∼ N(−0.0241, 0.0076).
• 𝑚4 ∼ N(−0.0369, 0.0076).

5.4.4 Photometric redshift uncertainty

In the above discussion of source clustering, we used a fixed sky-
averaged redshift distribution �̄�(𝑧). In fact, we sample realizations of
possible distributions that are consistent with the data, based on the
hyperrank methodology (see Cordero et al. 2021) using photomet-
ric redshift data 𝑥phot.

The four tomographic bins are constructed to have roughly equal
number density (Myles & Alarcon et al. 2021) and the initial redshift
distributions are provided by the SOMPZ method (Myles & Alarcon
et al. 2021) in combination with clustering redshift constraints (Gatti
& Giannini et al. 2022) and correction due to the redshift-dependent
effects of blending (MacCrann et al. 2020). Rather than using the
best-guess �̄�(𝑧), hyperrank generates realizations of possible �̄�(𝑧)
samples in a way that marginalizes over redshift uncertainty.

Fig. 5 shows a random selection of �̄�(𝑧) samples. Each mock re-
alization uses a different randomly sampled �̄�(𝑧); this contributes
uncertainty in the photometric redshift distributions through our for-
ward model, so that this uncertainty is taken into account in the
inference pipeline.

5.4.5 Mock shear map summary

In summary (following Gatti et al. 2024), the mock shear signal at
HEALPix pixel 𝜙 in a thin simulated shell labelled with its redshift
𝑧 is generated according to

𝛾(𝜙) =
∑

𝑧 �̄�(𝑧) [1 + 𝑏𝑔𝛿(𝜙, 𝑧)] (1 + 𝑚) [𝛾(𝜙, 𝑧) + 𝛾IA (𝜙, 𝑧)]∑
𝑧 �̄�(𝑧) [1 + 𝑏𝑔𝛿(𝜙, 𝑧)]

+( ∑
𝑧 �̄�(𝑧)∑

𝑧 �̄�(𝑧)
[
1 + 𝑏𝑔𝛿(𝜙, 𝑧)

] )1/2

𝐹 (𝜙)
∑

𝑔 𝑤𝑔𝑒𝑔∑
𝑔 𝑤𝑔

.

(14)

where �̄�(𝑧) is a hyperrank sample that varies between each mock
simulation.

The 𝐹 (𝜙) factor provides the overall rescaling of the noise; we use
𝐹 (𝜙) = 𝐴(1 − 𝐵𝜎2

𝑒 (𝜙))1/2 where 𝐴 = [0.97, 0.985, 0.990, 0.995]
and 𝐵 = [0.1, 0.05, 0.035, 0.035] for the four tomographic bins, and
where 𝜎2

𝑒 (𝜙) is the shape noise pixel variance.

6 SUMMARY STATISTICS & COMPRESSION

6.1 Map making & scale cuts

The mock data is prepared using DES Y3 footprints in HEALPix
format, as described in 5.4. These shear maps are degraded to nside =

512, corresponding to a scale cut of 6.9 arcmin. Such a hard cut
in pixel space corresponds to a smooth suppression of power in
harmonic space (around 30 per cent by ℓ = 1024); for completeness,
we also apply a hard cut at ℓ = 1024.

The maps are converted from the shear fields to convergence fields
using the Kaiser-Squires reconstruction, described by Eq. 9, where
both E and B-mode convergence maps are retained.

6.2 Power spectra, peaks & neural compression

Power spectra: The power spectrum 𝐶 (ℓ) of a field on the celestial
sphere is defined via

⟨𝑎
ℓ𝑚

𝑎∗
ℓ′𝑚′ ⟩ = 𝐶 (ℓ)𝛿𝑚𝑚′𝛿ℓℓ′ . (15)

Here 𝑎ℓ𝑚 are the spherical harmonic coefficients of the field, 𝛿 is
the Kronecker delta, and the expectation ⟨⟩ is with respect to random
realizations. An unbiased estimate of this power spectrum is

�̂� (ℓ) = 1
2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎
ℓ𝑚

|2 . (16)

It is the power spectrum of the shear field (not the convergence field)
that we measure. We decompose the shear field into 𝐸- and 𝐵-modes
(curl-free and divergence-free components, respectively), yielding
shear power spectra 𝐶𝐸𝐸

ℓ
, 𝐶𝐸𝐵

ℓ
, and 𝐶𝐵𝐵

ℓ
. As with previous DES

power spectra analysis, we use a pseudo-𝐶ℓ estimator that corrects
for the effect of the sky mask. See Doux et al. (2022) for details. This
correction is not actually necessary to give unbiased results, as the
correction (or lack thereof) would be applied equally to the simulated
and observed data. Following the pseudo-𝐶ℓ correction, we obtain
𝐶𝐸𝐸
ℓ

and 𝐶𝐵𝐵
ℓ

to use as our observed data vectors.
Fig. 6 shows the measured𝐶𝐸𝐸

ℓ
−𝐶𝐵𝐵

ℓ
spectra for all tomographic

bins, along with simulated spectra (discussed in section 2.4).
Peaks: A peak is a map pixel whose value exceeds that of its neigh-
bouring pixels (typically there are eight such neighbours). For a given
convergence map we create a histogram of the values of the conver-
gence field at the peak pixels. Our histograms use 14 equally spaced
bins and the range covered by these bins is chosen in advance so that
each bin has at least ten peaks at a fiducial cosmology. We repeat
this procedure on smoothed versions of our maps. This smoothing
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Figure 6. Power spectra 𝐶ℓ (and cross-spectra between tomographic bins) of the baryonified simulation, the simulation without baryons, and the DES Y3 data.
The theoretical power spectra, calculated with the same cosmological parameters as the two simulations, is shown for reference.

uses a top-hat filter; recall that in harmonic space the effect of such
smoothing is to multiply the harmonic coefficients by

𝑊ℓ (𝜃0) =
𝑃ℓ−1 (cos(𝜃0)) − 𝑃ℓ+1 (cos(𝜃0))

(2ℓ + 1) (1 − cos(𝜃0))
, (17)

where 𝑃ℓ is the Legendre polynomial of order ℓ, 𝜃0 the smoothing
angle, and ℓ the multipole. We consider eight smoothing angles 𝜃0
equally (logarithmically) spaced from 8.2 to 221 arcmin. We count
the peaks for the convergence maps from each of the four tomographic
maps of the DES Y3 weak lensing sample. In addition, we account for
cross-correlation between bins by following Zürcher et al. (2022) and
introducing ‘cross-maps’ 𝜅𝑖 𝑗 (𝜃, 𝜙). These are new maps obtained by
combining two original convergence maps for different tomographic
bins 𝑖 and 𝑗 (with 𝑖 > 𝑗):

𝜅𝑖 𝑗 (𝜃, 𝜙) =
ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝜅𝑖
ℓ𝑚

𝜅
𝑗

ℓ𝑚
𝑌
ℓ𝑚

(𝜃, 𝜙), (18)

We compute the peak function in each of the resulting six new cross
maps. Finally, before compressing the peak function, we adjust the
peak counts of the noisy maps by subtracting the peak counts from a
noise-only version of the maps.
Compression: The power spectra compression uses an ensemble
of 12 multi-layer perceptron (MLP) networks. As discussed in sec-
tion 2.3, we use an MSE loss function. All final fully-connected layer

outputs use the sigmoid activation function; as a result, compressed
statistics are confined to a sensible domain. This choice of activation
function therefore requires a rescaling of our parameters (so that their
prior ranges lie well within the bounds of the sigmoid activation).

Each MLP has an input size of 560 (= 10×28×2), corresponding
to the ten cross correlations of the four tomographic bins, in 28 mul-
tipole (ℓ) bins, over the two components (EE and BB) of shear maps.
The MLP network has ten hidden layers, each with 256 nodes, with
an embedded layer normalisation and a ReLU activation function at
each layer output. The last layer reduces the output size to a sin-
gle node corresponding to the selected parameter being compressed.
Similarly to the CNN ensemble, there is a final sigmoid activation
function on the output of the final layer. This MLP network is trained
12 times, each using the same data but different random network
parameter initializations, and the resulting 12 predictions are aver-
aged to yield an ensemble prediction. (We trained 12 times because
this was clearly superior to training just once, and because it was
convenient for the computer hardware being used; we do not claim
optimality.)

The training input data is augmented using additive random Gaus-
sian noise as a regularization measure. The noise added to each input
bin ℓ𝑖 is sampled from N(𝜇𝑖 , 𝜎𝑖 × 10−3), where 𝜇𝑖 and 𝜎𝑖 are the
mean and standard deviation of the values in each multipole bin ℓ𝑖
observed across the training dataset. Each network is optimized using
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Figure 7. Peak count histograms from the DES Y3 data (solid circular markers) for each tomographic bin (rightmost plot on each row) and for the cross-maps.
Each plot shows the observed peak counts for eight smoothing scales of the lensing map 𝜅 . For reference, we also show (dashed lines) histograms for a simulation
that was chosen for its similarity with the actual observed data; it has Ωm = 0.29, 𝑆8 = 0.82, 𝑤 = −0.83, and randomly sampled nuisance parameter values.
The cross maps have small 𝜅 values because Eq. 18 is not normalised.

the stochastic gradient decent Adam’s optimizer with a mean squared
error (MSE) as the loss metric. The learning rate was initially set at
1× 10−4 and decays exponentially with a decay rate of 0.1 per train-
ing step. The training is performed for up to 200 epochs with an early
stopping criterion; this is described in more detail in 6.3.

Compression of the peak counts is done similarly; the only differ-
ence is that the MLP has an input size of 1120 (= 10 × 14 × 8).

6.3 Map-level (CNN) compression

This approach aims to infer cosmology directly from the map data.
Here we implement a Convolutional Neural Network (CNN) as a
higher order statistic, using deep learning to compress relevant fea-
tures directly from pixels; CNNs can be optimized to compress these
features to a lower dimension in an informative way. We make no
claim that our map-level compression is optimal (in the sense that
the resulting parameter constraints are the best possible), but it is
practical and does lead to significantly improved results.

Planar CNNs take flat two-dimensional images as input whereas
our data (via the HEALPix pixelization) are embedded on the sphere.
There exist neural networks adapted to the geometry of the sphere
(e.g. Defferrard et al. 2020; Ocampo et al. 2022). For practicality,

however, we have decided instead to perform separate analyses of
several nearly-flat rectangular patches on the sky. By using patches we
lose large-angle correlation information, but this can be mitigated by
combining (via concatenation of compressed data vectors) the CNN
output with the compressed power spectrum output (as described
in section 6) – on large-angle scales we expect the signal to be
near-Gaussian (and hence for these scales the power spectra are
already maximally informative). We will refer to this combination as
𝐶ℓ×CNN.

For our CNN approach we use patches from the sphere, flattened
to two-dimensional images of 512 × 512 pixels. The ‘nested’ format
for HEALPix pixel ordering offers a natural method for extract-
ing new patches; we form a patch by taking all the nside = 512
resolution pixels that lie within a single superpixel defined by the
minimum HEALPix resolution nside = 1, as shown in Fig. 8. This
projection distorts the spherical geometry, which for traditional pa-
rameter estimation approaches would bias the inference. However, in
our simulation-based method this transformation will also be applied
consistently to the DES Y3 data, and therefore projection distortion
will not bias any parameter estimation. Nevertheless, projection dis-
tortion makes the compression potentially suboptimal. Our chosen
patch size is a compromise between loss of large-scale information
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Figure 8. A demonstration of the CNN patching scheme for map-level compression, showing an example mock convergence (𝜅) HEALPix map (in orange)
with nside = 512. The pixels of the convergence map are split into patches 𝐴, 𝐵, 𝐶 based on the respective nside = 1 pixel (in green). This produces the square
patches seen to the right of the figure to be that are used to train the CNN ensemble. This patching scheme is lossless: there is a one-to-one match between the
HEALPix map pixels and the patch pixels.

(from having small patches) and projection distortion (from having
large patches). The chosen scheme leads to the DES footprint being
split into three patches (labelled 𝐴, 𝐵, 𝐶; a small subsection of the
footprint is discarded).

To complement this patching scheme we construct an ensemble of
weak learning CNNs. Each patch has four dedicated networks, trained
on the same data but with different network parameter initialization.
Compressing each patch individually has the advantage of allowing
each network to become familiar with the footprint of each patch.
The resulting compression will be the weighted average of all 12
CNN networks (four per patch for three patches) for a single chosen
parameter (with weights given by the sky fraction of each patch – see
Fig. 8). This ensemble approach of averaging many simple CNNs
has been shown to be a robust way to train networks that generalise
well with smaller datasets to avoid over-fitting;

such an approach is advantageous considering the computational
expense of constructing mocks.

The network is fed eight channels (E- and B-modes of the conver-
gence maps for each of four tomographic bins); each channel supplies
a patch of 512 × 512 pixels. The input maps are augmented during
training by the same procedure described previously in 6.2, where
the means and standard deviations are calculated for each individual
pixel. The same setup for loss metric and optimisation function are
applied identically to the CNN networks as in 6.2.

The ensemble CNN was trained on 9264 DES Y3 mock data sets
(three independent noise realizations of our 3088 original simulated
convergence maps; see section 5.4). Each individual CNN network
in the ensemble was trained for up to 200 epochs, with early stopping
to prevent over-fitting. The stopping criterion is based on the MSE
loss of a set of 3088 data with a different noise realisation, which
acts as a validation data set. We also use this validation data set when
performing the neural density estimation task and this dual use of
the validation data set has the potential to introduce bias. We have
ruled out this possibility by checking that our inferred posteriors do
not shift when using an additional different data set (to which the
CNN is entirely blind during training) in place of the validation data

Table 1. Prior and hierarchical probability distributions.

Parameter Prior probability distribution
Ωm U(0.15, 0.52)
𝑆8 U(0.5, 1.0)
𝑤 U(−1, 1

3 )
𝑛𝑠 N(0.9649, 0.0063)
ℎ N(0.7022, 0.0245)

Ωbℎ
2 𝑁 (0.02237, 0.00015)

log(𝑚𝜈 ) U[log(0.06) , log(0.14) ]
𝐴IA U[−3, 3]
𝜂IA U[−5, 5]
𝑚1 N(−0.0063, 0.0091)
𝑚2 N(−0.0198, 0.0078)
𝑚3 N(−0.0241, 0.0076)
𝑚4 N(−0.0369, 0.0076)

�̄�𝑖 (𝑧) 𝑝hyperrank (�̄�𝑖 (𝑧) |𝑥phot )

when performing the neural density estimation task. This procedure
attempts to mitigate any over-fitting in two different ways.

The ensemble CNN trains in just under one hour per parameter on
12 Nvidia A100 GPUs using the NERSC Perlmutter cluster.

As a final step in the algorithm, the CNN output and the com-
pressed power spectrum data vector are concatenated.

7 RESULTS

7.1 Prior probabilities

Table 1 summarizes the priors used in our cosmological inference.
The first (top) group includes the three target parameters. In our

mock data these parameters are not distributed according to our
chosen prior. The parameters 𝑆8 and Ωm were sampled with active
learning and have a particularly strange distribution in Fig. 4. The
prior, therefore, must always be set explicitly when combining with
the learned likelihood; furthermore, we must always include these
parameters in our learned likelihood (unlike the parameters with
implicit priors described below).
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Figure 9. Inference with the mean mock data (combining mock power spectra
and map-level CNN compressed data). The values for 𝑆8 and Ωm denoted by
dashed lines are the average of the true parameter values from the same mock
data. This is analogous to using noise-free data for inference when using a
Gaussian likelihood.

The middle group of parameters in Table 1 have implicit priors,
i.e. the Gower Street simulations have these parameter distributions
(see section 4 for caveats). Even if these parameters are not explicitly
included in the learned likelihood, they will be implicitly marginal-
ized during inference and the uncertainty in these parameters will
be propagated to the final constraints on other parameters (see sec-
tion 2.5).

The final (bottom) group in Table 1 are the nuisance parameters,
which are varied according to these prior distributions during mock
shear map generation. Again, the uncertainty in these parameters
is propagated through forward modelling in this simulation-based
inference framework.

7.2 Simulation validation with Gower Street sims

7.2.1 Inference from mean mock data

We test that we can recover the correct ‘input’ parameter values from
averaged data. This test is an analogue of the standard ‘noise-free’
inference, which is typically performed to demonstrate recovery of
the input parameters. Instead, we take the average data vector from
a set of mock simulations, perform inference, and validate that we
recover the average parameter values from the same set of mock
simulations.

The data vector used for this inference is the per-element mean of
all compressed mock data vectors: 𝑡 𝑗 = 1

𝑁

∑𝑁−1
𝑖=0 (𝑡 𝑗 )𝑖 where the 𝑖

index denotes individual mock data vectors (over the full parameter
space for the Gower Street sims) and 𝑗 indexes the elements of the
data vector. This mean data vector uses all mock compressed data
vectors that were used for the density estimation.

Fig. 9 shows the result of this test for the combination of mock
power spectra 𝐶ℓ and the map-level (CNN) compression. The mean
parameter values are clearly recovered. We can confirm this test is
also passed for the other combinations of data.
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Figure 10. Coverage test result (using tarp) to validate the inference pipeline.
Using repeated mock data parameter inference, the fraction of true values in
the appropriate credible intervals matches the expected fraction. The figure
shows the result for the map-level CNN patch compression; similar coverage
tests were successful for the other observables. DRP is the ‘Distance to
Random Point’ (see Lemos et al. 2023).

7.2.2 Coverage test results

As introduced and described in section 2.4.1, coverage tests repeat
the parameter inference procedure to test that the estimated posterior
describes the correct probability for the parameters. We repeat the
inference procedure, each time excluding one mock data vector from
the neural likelihood estimation step. The likelihood is then evalu-
ated using that held-out data vector, with the posterior then being
evaluated and compared to the true parameter value.

We use the tarp package to estimate the coverage probabilities
in the three-dimensional parameter space {Ωm, 𝑆8, 𝑤} (rather than
on the marginal posteriors individually). This code implements the
‘Tests of Accuracy with Random Points’ (TARP) algorithm, which
estimates coverage probabilities of generative posterior estimators.
We repeat the neural likelihood estimation technique 50 times, we
draw 9 × 103 samples from the learned posterior conditioned on the
held-out data vector, and we perform coverage testing using these
Markov chain Monte Carlo (MCMC) samples as an input to tarp.

Fig. 10 shows the result of this procedure applied to the map-
level CNN patch data (plots for the other observables show similar
results). The expected coverage does indeed match the credibility
level. This validates our neural likelihood estimation, showing that
the posterior distribution (i.e. parameter uncertainties) truly represent
the probabilities that the Universe has some true parameter value.

7.3 Robustness to mismodelling & residual systematic errors

7.3.1 Systematic error injection

We describe tests each of which confirms that the variation of some
source of systematic error does not affect our results. In the language
of machine learning statistics, these are robustness tests for (a specific
type of) distributional shift — a mismatch between the training data
and the deployment data.

The tests use the CosmoGridV1 simulations suite (Kacprzak et al.
2023). We chose a set of one hundred simulations at the fiducial
cosmology 𝜎8 = 0.84, Ωm = 0.26, 𝑤 = −1, 𝐻0 = 67.36, Ωb =

0.0493, 𝑛s = 0.9649. The CosmoGridV1 simulations, like the Gower
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Street simulations, were created using the pkdgrav3 code (Potter
et al. 2017); they were created independently, however, and hence can
serve as a further test that the correct input cosmology is recovered.

For each source of systematic error we generate two sets of mock
data with different levels of systematic error included. We then apply
our inference pipeline to each of these mock data sets and compare
the resulting posterior probability distributions of the cosmological
parameters.

To test for any overall shifts in the resulting posterior distributions,
we use the average compressed data as the input to the neural like-
lihood estimation. For example, for the fiducial result, we measure
each summary statistic for each of our selected mock CosmoGridV1

data sets, then compress each separately, then average the resulting
compressed statistic. This averaging mitigates the intrinsic variability
that is expected between different data realizations.

Two sources of systematic error are tested: baryon feedback and
source clustering bias variation.

• Baryonic feedback – Feedback effects can lead to suppression of
structure on small cosmological scales. The Gower Street sims are N-
body (dark matter only) simulations and do not include any baryonic
astrophysics. In line with the standard DES weak lensing analyses,
we cut scales that we think are likely to be affected by baryons and
then test for the effect of possible baryonic contamination (e.g. Amon
et al. 2021; Secco & Samuroff et al. 2022; Zürcher et al. 2022).

Hydrodynamical simulations are unfortunately too computation-
ally expensive to generate a sufficient quantity of realistic mock data
that include baryons. We therefore use the CosmoGridV1 maps, as
these include a baryon correction model; this model (Kacprzak et al.
2023) changes the density fields (in a post-processing step) to emulate
baryon feedback.

The effect of baryons on the simulated power spectra can be seen
in Fig. 6, which shows the measured power spectra from data in the
fiducial set (‘Sim. no baryon’) and from data with baryon feedback
included (‘Sim. baryon’). The suppression can be seen at small scales
(high ℓ).

• Source clustering bias variation – Although we expect the effect to
be small, it is possible that a different value for galaxy bias of the
source galaxies could change our results. This is due to source galaxy
clustering, which is known to change the predicted observations
(section 5.4). We use a fixed value of galaxy bias 𝑏 = 1 in our
forward model, and hence we need to test that our results are not
sensitive to a different true value in the observed data.

We generated two sets of simulated mock data, in addition to our
fiducial mock data: one with a high galaxy bias (𝑏 = 1.5) and one
with a low galaxy bias (𝑏 = 0.5).

Test results are shown in Fig. 11, which plots the posterior dis-
tribution for 𝐶ℓ×CNN (power spectrum combined with map-level
compression). Each of the two effects tested has a relatively small im-
pact on the posterior. For the change in the 𝑆8-Ωm marginal posterior
we use the standard DES criterion: we measure the shift in marginal
posterior distribution relative to the standard deviation, finding that
each of these systematic effects induces a shift below 0.3𝜎 (the max-
imum level set by DES analyses). This test is also passed for 𝐶ℓ

(power spectra alone) and for 𝐶ℓ×Peaks (power spectrum combined
with peak counts).

Note that the true value of the input data𝑤 = −1 is on the boundary
of the prior. We test the shift of the mean of the marginal posterior
for 𝑤, finding that both systematic effects induce a shift of less than
0.3𝜎.
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Figure 11. The marginal posterior distributions with independent Cosmo-
GridV1 simulated data with two sources of systematic error in the mock
data: baryon feedback and varying source galaxy bias. Both of these are
found to induce changes in the posterior below 0.3 𝜎 in the marginal 𝑆8-Ωm
plane (the standard Dark Energy Survey test). This test also shows that our
pipeline recovers the true parameter values (straight dashed lines) with inde-
pendent mock data. The shifts in the mean of marginal posterior distribution
of 𝑤 are all below 0.3𝜎.

7.3.2 Further systematic errors in lensing maps

A potential source of contamination in the observed data is the mis-
estimation of the point spread function (PSF). Failures in PSF mod-
elling can cause errors in the measured shapes of galaxies, charac-
terized by an additional ellipticity component 𝛿𝜖sys

PSF.
Jarvis et al. (2016) and Gatti & Sheldon et al. (2021) provide

a model to describe 𝛿𝜖
sys
PSF that can be calibrated using reserved

stars, i.e. those stars not used to train the original PSF model. We
therefore could, following the procedure described in Gatti et al.
(2023), generate a map of 𝛿𝜖sys

PSF per tomographic bin to be added to
the fiducial shear maps; this could serve as a high, but in principle
possible, contamination due to PSF errors. However, if we inject this
PSF contamination at map level, we are overwhelmed by shot noise
from our finite sample of reserved stars and this particularly affects
small scales. We therefore do not use this approach (while we await
further work that could accurately forward model PSF errors into our
mock lensing maps).

We instead rely on alternative tests. In Gatti & Sheldon et al. 2021,
the DES Y3 shear catalogue tests showed no evidence of additive
biases due to PSF mismodelling. Furthermore, tests of reconstructed
mass maps in Jeffrey & Gatti et al. (2021b) showed no evidence of
PSF residual errors.

7.4 Blinded data likelihood ensemble validation

To test the convergence of the neural density estimation (i.e. the likeli-
hood learned from simulated data), we compare the different density
estimates that comprise the ensemble. As described in section 2.4.2,
an insufficient number of simulated data realizations typically leads
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Figure 12. Neural density estimator ensemble convergence test using power
spectrum 𝐶ℓ data. Although using the real observed DES Y3 data, this was
a blind test, which was achieved by shifting the posterior mean to a fiducial
value (Ωm = 0.3 and 𝑆8 = 0.8).

to significant differences between the neural likelihood estimates.
With more simulations, the predictions from the ensemble converge.

Unlike the previous test on simulations, this test can be applied to
the estimated likelihood evaluated for the actual observed data. This
test was therefore done blind, as described in section 7.5, and we
confirmed that the test was passed before the full unblinded results
were seen (section 7.7).

Fig. 12 shows the posterior distributions from each likelihood in
the ensemble for the observed DES data. In this example the data are
the power spectra 𝐶ℓ . This test was performed (and passed) before
unblinding any of our results on data (including peaks and CNN
map-level inference).

7.5 Blinding Strategy

We used a blinding strategy (described below) to reduce the impact
of confirmation bias. Blinding has been used by many DES analyses
(Muir et al. 2020), but note that the approach of this paper made
necessary some deviations from the standard DES blinding strategy.

• Some simulations used input cosmological parameters obtained
from ‘active learning’ (see section 4.2), and this required estimat-
ing the posterior distribution of the cosmological parameters using
the simulations available at that point. These estimations were held
within the computer code and were not revealed to the experimenters.

• All training of the neural networks for compression and for den-
sity estimation was finalized without evaluation on any real observed
data. The entire pipeline was run using a simulation (as if it were
real data); results were checked for reasonableness and the neural
network parameters were then frozen.

• The uncompressed statistics from real data (the measured power
spectra and peak counts) were checked for reasonableness.

• The compressed statistics from real data were confirmed to be
well within the convex hull of the scatterplot of compressed statistics
obtained from the simulations.

• The posterior distribution of cosmological parameters was in-
ferred from observed data; this posterior was then shifted (by an
amount that was kept within the computer code and was not available
to the experimenters) to have a fiducial mean value. This shifted pos-
terior was used in the likelihood ensemble validation of section 7.4.
It was also used to confirm that the posterior distribution had a figure
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Figure 13. Marginal posterior distribution of the amplitude of intrinsic align-
ment 𝐴IA for the three DES Y3 combinations: power spectra 𝐶ℓ , peaks with
power spectra 𝐶ℓ×Peaks, and map-level inference 𝐶ℓ×CNN. These con-
straints use additional data and a different 𝑤 prior compared to our main
cosmological results (see section 7.6 for discussion), to show that the inferred
intrinsic alignments are reasonable from this analysis.

of merit similar to that derived in a similar way from simulations
(note that the figure of merit is sensitive to the width of the posterior
but not to its mean).

• Finally the shift to the posterior mean was removed, revealing
the unblinded posterior.

7.6 Intrinsic alignments

7.6.1 Discussion

Our 𝑆8 compression is not optimal. We find that including an addi-
tional compression of the map to informative summaries of 𝐴IA (the
intrinsic alignment amplitude) improves our posterior constraints on
𝑆8. This shows that the original 𝑆8 compression was missing in-
formation; this was to some extent expected (see section 6.3 for a
discussion).

This does not mean the intrinsic alignment nuisance parameters
are incorrectly marginalised when using only the sub-optimal 𝑆8
summary, 𝑡𝑆8 . That is, the following desired property still holds:

𝑝(𝑡𝑆8 |𝑆8) =
∫

𝑝(𝑡𝑆8 |𝑆8, 𝐴IA) 𝑝(𝐴IA) d𝐴IA , (19)

where 𝑝(𝑡𝑆8 |𝑆8) is a learned likelihood for 𝑆8. What is true is that
the posterior 𝑝(𝑆8 |𝑡𝑆8 , 𝑡𝐴IA ) is tighter than 𝑝(𝑆8 |𝑡𝑆8 ); this is because
𝑡𝑆8 is a sub-optimal summary statistic.

Despite the possibility of improved cosmological constraints, we
nevertheless do not include in our main analysis the compressed 𝐴IA
summary statistic, 𝑡𝐴IA . The primary reason for this choice is that
including this statistic results in a posterior distribution so tight that
the NDE ensemble test fails; the density of simulations in that region
of parameter space becomes too low.

Even if this test had not failed, there would be further reasons to
not include this additional information. The intrinsic alignment NLA
model has been tested with direct two-point correlation measure-
ments only down to scales of ∼ 5ℎ−1Mpc (e.g. Johnston et al. 2019;
Singh et al. 2023); at smaller scales linear galaxy bias modelling is
insufficient. At the peak of our redshift distribution of source galax-
ies, around 𝑧 ∼ 0.6, our angular scale cuts correspond to a physical
scale of ∼ 3ℎ−1Mpc. We may have some confidence that the NLA
model continues to hold at such small scales (unless there are un-
expected higher-order contributions); nevertheless, if the constraints
on 𝑆8 are strongly affected by 𝑡𝐴IA then it is prudent to exclude this
additional information.
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7.6.2 Results

Although we do not include the 𝑡𝐴IA compressed statistics in our
analysis for cosmological constraints (section 7.7), here we present
the marginal posteriors for 𝐴IA using the 𝑡𝐴IA statistics as a ‘sanity
check’, i.e. to confirm that the inferred 𝐴IA values are reasonable.

Fig. 13 shows the marginal posteriors for the intrinsic alignment
amplitude 𝐴IA for each of our standard data combinations: power
spectra, peaks with power spectra, and map-level inference. To reduce
the NDE dimension, we implicitly marginalize 𝑤, so that the 𝑤 prior
is given byN(−1, 1/3) for values of −1 < 𝑤 < −1/3 (see section 2.5
for discussion). This change does not particularly impact intrinsic
alignment inference, and, furthermore, the aim of this inference is
just to confirm that the 𝐴IA values are reasonable.

The results for 𝐴IA are all consistent, with a slight preference for
low positive values, but still consistent with 𝐴IA = 0. This result is
also consistent with the results from existing DES two-point analyses
(e.g. Amon et al. 2021; Secco et al. 2022; Doux et al. 2022).

7.7 DES Y3: Cosmological constraints

We present results using the three data combinations previously de-
scribed: power spectra (𝐶ℓ ), peaks and power spectra (𝐶ℓ×Peaks),
and map-level inference (𝐶ℓ×CNN).

As described in section 2.3, these data (summary statistics) 𝑥

are compressed to lower-dimensional summary statistics 𝑡 = F (𝑥).
In each case the compression function F is a neural network (or
ensemble of networks), optimized for the given summary statistic.

We target the parameters Ωm, 𝑆8 (≡ 𝜎8 (Ωm/0.3)1/2), and 𝑤, and
thus the compressed data for a given summary statistic has three
elements. When we combine the data (e.g.𝐶ℓ×Peaks) we concatenate
the compressed data vectors (e.g. 𝑡 = concat[𝑡𝐶ℓ

, 𝑡Peaks]), giving a
compressed data vector with six elements. All other parameters,
including cosmological and nuisance parameters, are implicitly (and
correctly) marginalized; see section 2.5 for details.

Fig. 14 shows the marginal two-dimensional posterior distribution
for the three data combinations. Credible intervals derived from the
one-dimensional marginals were calculated using the GetDist pack-
age (Lewis 2019) and are listed in Table 2. This figure and table show
the main result of this paper.

All of these results use a full simulation-based (likelihood-free)
inference pipeline to infer cosmological parameters.

We can also compare our most constraining result, that from
𝐶ℓ×CNN (map-level inference combined with power spectrum), to
existing data and likelihoods. We compare to the Planck cosmic mi-
crowave background (CMB) data; here we use the Planck likelihood
code with model priors amended to match our analysis choices (ex-
cept for Ωb, as our prior here was motivated by Planck). We also
compare to the DES Y3 likelihood for real-space weak lensing two-
point correlation functions; here also we have matched the analysis
choices and priors (where appropriate).

Fig. 15 compares our analysis with these two alternative cosmo-
logical inference pipelines. We find our results to be consistent with
these existing data and analysis pipelines (i.e. the Planck and the DES
Y3 weak lensing likelihoods). We recover values lower than Planck
not only for 𝑆8 (such a tension between CMB and weak-lensing re-
sults is already well-known, e.g. Amon & Efstathiou 2022) but also
for Ωm.

Table 3 presents credible intervals derived from the one-
dimensional marginals in Fig. 15.

The Planck reanalysis uses the 2018 TTTEEE-lowE likeli-
hood Planck Collaboration (2021) with settings matching those used
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Figure 14. Posterior probability distribution for {Ωm, 𝑆8, 𝑤} obtained from
simulation-based inference using three DES Y3 data combinations: power
spectra 𝐶ℓ , peaks with power spectra 𝐶ℓ×Peaks, and map-level inference
𝐶ℓ×CNN.

Power spectrum Peaks & power Map-level DES Y3
(this work): 𝐶ℓ (this work): 𝐶ℓ×Peaks (this work): 𝐶ℓ×CNN

Ωm 0.352+0.035
−0.053 0.340+0.030

−0.042 0.283+0.020
−0.027

𝑆8 0.807+0.027
−0.025 0.807 ± 0.023 0.804+0.025

−0.017

𝑤 < −0.661 < −0.740 < −0.803

Table 2. Comparison of summary statistics used in this analysis (power
spectrum, peaks, and map-level inference): 68 per cent credible intervals
from the marginal posterior probability distributions of Ωm, 𝑆8, and 𝑤.

in Abbott et al. (2023). All priors, except for Ωb, were matched to
our analysis (Table 1). As our choice of Ωb prior was informed by
Planck, for the Planck reanalysis we use a prior matching Abbott
et al. (2023).

We do not include shear ratio information (e.g. Sánchez et al.
2021) for the DES Year 3 weak lensing reanalysis.

We sample the posterior using the Planck and the DES Y3 weak
lensing likelihoods with PolyChord (Handley et al. 2015). For the
parameters ℎ, Ωb, 𝑛𝑠 , and Ωm, we use a flat prior during the MCMC
sampling and then importance re-weight to the desired prior as a
post-processing step.
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Map-level DES Y3 DES Y3 lensing Planck (CMB)
(this work): 𝐶ℓ×CNN likelihood∗ likelihood∗

Ωm 0.283+0.020
−0.027 0.303+0.040

−0.051 0.328+0.009
−0.013

𝑆8 0.804+0.025
−0.017 0.813+0.020

−0.029 0.831+0.014
−0.015

𝑤 < −0.803 < −0.707 < −0.954
∗ reanalysed

Table 3. Comparison with existing analyses: 68 per cent credible intervals
from the marginal posterior probability distributions of Ωm, 𝑆8, and 𝑤. We
compare the 𝐶ℓ×CNN result (map-level compression) with the results from
both the standard DES weak gravitational lensing (2-point correlation func-
tion) likelihood and the Planck CMB data. The standard DES likelihood and
Planck likelihood results have used prior choices matched to our analysis to
allow comparison.

8 CONCLUSION

We have presented the DES Y3 simulation-based inference results,
in which we have used power spectra, peak counts, and map-level
compression/inference to constrain parameters of the wCDM model.

Our approach seeks to improve both accuracy and precision.
For improved accuracy we use simulation-based inference as this

allows us to forward model realistic effects in our simulated data. For
those effects about which there is uncertainty (measurement biases,
photometric redshift uncertainties, effects of neutrinos, and intrinsic
alignments of galaxies), we randomly vary the effect in our mock data
according to our prior probability. This is relatively straightforward
in this inference framework; for example, the marginalization over
possible redshift distributions 𝑛(𝑧) amounts to the marginalization
of approximately one thousand nuisance parameters.

We have tested that our results are robust to certain types of model
misspecification (namely source galaxy biasing and baryon feed-
back). We have also tested that our recovered posterior distributions
have the correct coverage; this is made possible by our fast (almost
amortized) inference pipeline.

For improved precision we include weak lensing statistics beyond
standard two-point statistics. In particular, we directly compress the
weak lensing mass map (i.e. dark matter map, Kaiser & Squires
1993), and then use simulation-based inference to construct a like-
lihood for the compressed map. Combining this compressed mass
map and the compressed power spectra yields improved constraints
on the parameters of the wCDM model (compared to our results
using compressed power spectra alone). Table 2 lists the 68 per cent
credible intervals of the marginal posteriors per parameter.

These improvements are often quoted in terms of the Figure of
Merit, given by FoM = (detΣ)−1/2 for posterior covariance Σ; this
is a measure of inverse volume (i.e. tightness) of the posterior prob-
ability. For the weak lensing parameter combination {𝑆8, Ωm} we
improve the FoM by a factor of 2.26, while for the dark energy pa-
rameter combination {ΩDE, 𝑤} we improve the FoM by a factor
of 2.48. (In this latter parameter combination we included neutri-
nos in Ωm and neglected the small photon radiation contribution, so
ΩDE = 1 −Ωm for a flat Universe.)

The improvements in precision bring an increased responsibility
to maintain accuracy. The principal challenge presented by this ap-
proach is achieving sufficiently realistic data modelling, which, if
accomplished, will substantially increase the potential for discovery.
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Figure 15. Comparison of the 𝐶ℓ×CNN result (map-level compression)
with results both from the Planck CMB likelihood and from the standard
DES weak gravitational lensing (two-point correlation function) likelihood
(both of which have been subject to reanalysis to match prior choices).
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will be made available upon publication of the accepted paper.

ACKNOWLEDGEMENTS

We thank F. Lanusse and B. Wandelt for helpful comments and
discussions at many points during this project.

NJ is supported by STFC Consolidated Grant ST/V000780/1
and by the Simons Collaboration on Learning the Universe. The
Gower Street simulations were generated under the DiRAC project
p153 ‘Likelihood-free inference with the Dark Energy Survey’
(ACSP255/ACSC1) using DiRAC (STFC) HPC facilities (www.
dirac.ac.uk).

JP has been supported by the Eric and Wendy Schmidt AI in
Science Postdoctoral Fellowship, a Schmidt Futures program. JA
has been supported by funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programmes (grant agreement no. 101018897 Cosmic-
Explorer).

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of En-
ergy Office of Science User Facility located at Lawrence Berke-
ley National Laboratory, operated under Contract No. DE-AC02-
05CH11231 using NERSC award HEP-ERCAP-0027266.

Funding for the DES Projects has been provided by the U.S. De-
partment of Energy, the U.S. National Science Foundation, the Min-
istry of Science and Education of Spain, the Science and Technology
Facilities Council of the United Kingdom, the Higher Education

MNRAS 000, 1–19 (2024)

www.star.ucl.ac.uk/GowerStreetSims/
www.star.ucl.ac.uk/GowerStreetSims/
https://des.ncsa.illinois.edu
www.dirac.ac.uk
www.dirac.ac.uk


18 N. Jeffrey et al.

Funding Council for England, the National Center for Supercomput-
ing Applications at the University of Illinois at Urbana-Champaign,
the Kavli Institute of Cosmological Physics at the University of
Chicago, the Center for Cosmology and Astro-Particle Physics at
the Ohio State University, the Mitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora de
Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à
Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desen-
volvimento Científico e Tecnológico and the Ministério da Ciência,
Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and
the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory,
the University of California at Santa Cruz, the University of Cam-
bridge, Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas-Madrid, the University of Chicago, University Col-
lege London, the DES-Brazil Consortium, the University of Edin-
burgh, the Eidgenössische Technische Hochschule (ETH) Zürich,
Fermi National Accelerator Laboratory, the University of Illinois at
Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC),
the Institut de Física d’Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universität München and the
associated Excellence Cluster Universe, the University of Michigan,
NFS’s NOIRLab, the University of Nottingham, the Ohio State Uni-
versity, the University of Pennsylvania, the University of Portsmouth,
SLAC National Accelerator Laboratory, Stanford University, the Uni-
versity of Sussex, Texas A&M University, and the OzDES Member-
ship Consortium.

Based in part on observations at Cerro Tololo Inter-American
Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001;
PI: J. Frieman), which is managed by the Association of Universities
for Research in Astronomy (AURA) under a cooperative agreement
with the National Science Foundation.

The DES data management system is supported by the Na-
tional Science Foundation under Grant Numbers AST-1138766
and AST-1536171. The DES participants from Spanish institutions
are partially supported by MICINN under grants ESP2017-89838,
PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-
0597, and MDM-2015-0509, some of which include ERDF funds
from the European Union. IFAE is partially funded by the CERCA
program of the Generalitat de Catalunya. Research leading to these re-
sults has received funding from the European Research Council under
the European Union’s Seventh Framework Program (FP7/2007-2013)
including ERC grant agreements 240672, 291329, and 306478. We
acknowledge support from the Brazilian Instituto Nacional de Ciên-
cia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-
2).

This manuscript has been authored by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S. De-
partment of Energy, Office of Science, Office of High Energy Physics.

REFERENCES

Abbott T. M. C., et al. 2018, ApJS, 239, 18
Abbott T. M. C., et al. 2023, Phys. Rev. D, 107
Alsing J., Wandelt B., 2018, MNRAS, 476, L60
Alsing J., Heavens A., Jaffe A. H., 2017, MNRAS, 466, 3272
Alsing J., Wandelt B. D., Feeney S. M., 2018a, arXiv e-prints, p.

arXiv:1808.06040
Alsing J., Wandelt B., Feeney S., 2018b, MNRAS, 477, 2874
Alsing J., et al. 2019, MNRAS, 488, 4440
Amon A., Efstathiou G., 2022, MNRAS, 516, 5355
Amon A., et al. 2021, arXiv e-prints, p. arXiv:2105.13543

Angulo R. E., Hahn O., 2022, Living Reviews in Computational Astrophysics,
8, 1

Asgari M., et al. 2021, A&A, 645, A104
Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Bishop C., 1994, Working paper, Mixture density networks. Aston University
Blazek J. A., et al. 2019, Phys. Rev. D, 100, 103506
Bridle S., King L., 2007, New Journal of Physics, 9, 444
Castro P. G., Heavens A. F., Kitching T. D., 2005, Phys. Rev. D, 72, 023516
Charnock T., Lavaux G., Wandelt B. D., 2018, Phys. Rev. D, 97, 083004
Cordero J. P., et al. 2021, arXiv e-prints, p. arXiv:2109.09636
Defferrard M., et al. 2020, arXiv e-prints, p. arXiv:2012.15000
Doux C., et al. 2022, MNRAS, 515, 1942
Efstathiou G., et al. 1985, ApJS, 57, 241
Flaugher B., et al. 2015, AJ, 150, 150
Fluri J., et al. 2018, Phys. Rev. D, 98, 123518
Fluri J., et al. 2019, Phys. Rev. D, 100, 063514
Fluri J., et al. 2022, Phys. Rev. D, 105, 083518
Gatti M., et al. 2021, MNRAS, 504, 4312
Gatti M., et al. 2022, MNRAS, 510, 1223
Gatti M., et al. 2023, arXiv e-prints, p. arXiv:2310.17557
Gatti M., et al. 2024, MNRAS, 527, L115
Goodfellow I. J., Bengio Y., Courville A., 2016, Deep Learning. MIT Press,

Cambridge, MA, USA
Górski K. M., et al. 2005, ApJ, 622, 759
Hand N., et al. 2018, AJ, 156, 160
Handley W. J., Hobson M. P., Lasenby A. N., 2015, MNRAS, 453, 4384
Heavens A. F., Jimenez R., Lahav O., 2000, MNRAS, 317, 965
Hermans J., et al. 2021, arXiv e-prints, p. arXiv:2110.06581
Hirata C. M., Seljak U., 2004, Phys. Rev. D, 70, 063526
Huff E., Mandelbaum R., 2017, arXiv e-prints, p. 1702.02600
Jarvis M., et al. 2016, MNRAS, 460, 2245
Jeffrey N., Wandelt B. D., 2020, Third Workshop on Machine Learning and

the Physical Sciences, NeurIPS 2020, p. arXiv:2011.05991
Jeffrey N., Alsing J., Lanusse F., 2021a, MNRAS, 501, 954
Jeffrey N., et al. 2021b, MNRAS, 505, 4626
Jimenez Rezende D., Mohamed S., 2015, arXiv e-prints, p. arXiv:1505.05770
Johnston H., et al. 2019, A&A, 624, A30
Kacprzak T., et al. 2023, Journal of Cosmology and Astroparticle Physics,

2023, 050
Kaiser N., Squires G., 1993, ApJ, 404, 441
Kingma D. P., et al. 2016, in Advances in neural information processing

systems. pp 4743–4751
Knabenhans M., et al. 2021, MNRAS, 505, 2840
Kullback S., Leibler R. A., 1951, Ann. Math. Statist., 22, 79
Lemos P., et al. 2023, 40th International Conference on Machine Learning,

202, 19256
Lewis A., 2019, arXiv e-prints, p. arXiv:1910.13970
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Li X., et al. 2023a, arXiv e-prints, p. arXiv:2304.00702
Li S.-S., et al. 2023b, A&A, 679, A133
MacCrann N., et al. 2020, arXiv e-prints, p. arXiv:2012.08567
Morganson E., et al. 2018, PASP, 130, 074501
Muir J., et al. 2020, MNRAS, 494, 4454
Myles J., et al. 2021, MNRAS, 505, 4249
Ocampo J., Price M. A., McEwen J. D., 2022, arXiv e-prints, p.

arXiv:2209.13603
Papamakarios G., Pavlakou T., Murray I., 2017, Advances in neural informa-

tion processing systems, 30
Papamakarios G., Sterratt D., Murray I., 2019, in Chaudhuri K., Sugiyama

M., eds, Proceedings of Machine Learning Research Vol. 89, Proceed-
ings of the Twenty-Second International Conference on Artificial Intel-
ligence and Statistics. PMLR, pp 837–848, https://proceedings.
mlr.press/v89/papamakarios19a.html

Peel A., et al. 2019, Phys. Rev. D, 100, 023508
Planck Collaboration 2021, A&A, 652, C4
Potter D., Stadel J., Teyssier R., 2017, Computational Astrophysics and Cos-

mology, 4, 2

MNRAS 000, 1–19 (2024)

http://dx.doi.org/10.3847/1538-4365/aae9f0
https://ui.adsabs.harvard.edu/abs/2018ApJS..239...18A
http://dx.doi.org/10.1103/physrevd.107.083504
http://dx.doi.org/10.1093/mnrasl/sly029
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476L..60A
http://dx.doi.org/10.1093/mnras/stw3161
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466.3272A
http://dx.doi.org/10.48550/arXiv.1808.06040
https://ui.adsabs.harvard.edu/abs/2018arXiv180806040A
https://ui.adsabs.harvard.edu/abs/2018arXiv180806040A
http://dx.doi.org/10.1093/mnras/sty819
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.2874A
http://dx.doi.org/10.1093/mnras/stz1960
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.4440A
http://dx.doi.org/10.1093/mnras/stac2429
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.5355A
https://ui.adsabs.harvard.edu/abs/2021arXiv210513543A
http://dx.doi.org/10.1007/s41115-021-00013-z
https://ui.adsabs.harvard.edu/abs/2022LRCA....8....1A
http://dx.doi.org/10.1051/0004-6361/202039070
https://ui.adsabs.harvard.edu/abs/2021A&A...645A.104A
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://adsabs.harvard.edu/abs/2001PhR...340..291B
http://dx.doi.org/10.1103/PhysRevD.100.103506
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100j3506B
http://dx.doi.org/10.1088/1367-2630/9/12/444
http://adsabs.harvard.edu/abs/2007NJPh....9..444B
http://dx.doi.org/10.1103/PhysRevD.72.023516
https://ui.adsabs.harvard.edu/abs/2005PhRvD..72b3516C
http://dx.doi.org/10.1103/PhysRevD.97.083004
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97h3004C
https://ui.adsabs.harvard.edu/abs/2021arXiv210909636C
http://dx.doi.org/10.48550/arXiv.2012.15000
https://ui.adsabs.harvard.edu/abs/2020arXiv201215000D
http://dx.doi.org/10.1093/mnras/stac1826
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.1942D
http://dx.doi.org/10.1086/191003
https://ui.adsabs.harvard.edu/abs/1985ApJS...57..241E
http://dx.doi.org/10.1088/0004-6256/150/5/150
http://adsabs.harvard.edu/abs/2015AJ....150..150F
http://dx.doi.org/10.1103/PhysRevD.98.123518
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98l3518F
http://dx.doi.org/10.1103/PhysRevD.100.063514
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100f3514F
http://dx.doi.org/10.1103/PhysRevD.105.083518
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105h3518F
http://dx.doi.org/10.1093/mnras/stab918
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.4312G
http://dx.doi.org/10.1093/mnras/stab3311
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.1223G
http://dx.doi.org/10.48550/arXiv.2310.17557
https://ui.adsabs.harvard.edu/abs/2023arXiv231017557G
http://dx.doi.org/10.1093/mnrasl/slad143
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527L.115G
http://dx.doi.org/10.1086/427976
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..759G
http://dx.doi.org/10.3847/1538-3881/aadae0
https://ui.adsabs.harvard.edu/abs/2018AJ....156..160H
http://dx.doi.org/10.1093/mnras/stv1911
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.4384H
http://dx.doi.org/10.1046/j.1365-8711.2000.03692.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.317..965H
http://dx.doi.org/10.48550/arXiv.2110.06581
https://ui.adsabs.harvard.edu/abs/2021arXiv211006581H
http://dx.doi.org/10.1103/PhysRevD.70.063526
https://ui.adsabs.harvard.edu/abs/2004PhRvD..70f3526H
http://adsabs.harvard.edu/abs/2017arXiv170202600H
http://dx.doi.org/10.1093/mnras/stw990
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.2245J
http://dx.doi.org/10.48550/arXiv.2011.05991
http://dx.doi.org/10.48550/arXiv.2011.05991
https://ui.adsabs.harvard.edu/abs/2020arXiv201105991J
http://dx.doi.org/10.1093/mnras/staa3594
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501..954J
http://dx.doi.org/10.1093/mnras/stab1495
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4626J
https://ui.adsabs.harvard.edu/abs/2015arXiv150505770J
http://dx.doi.org/10.1051/0004-6361/201834714
https://ui.adsabs.harvard.edu/abs/2019A&A...624A..30J
http://dx.doi.org/10.1088/1475-7516/2023/02/050
http://dx.doi.org/10.1086/172297
https://ui.adsabs.harvard.edu/abs/1993ApJ...404..441K
http://dx.doi.org/10.1093/mnras/stab1366
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.48550/arXiv.2302.03026
https://ui.adsabs.harvard.edu/abs/2023PMLR..20219256L
http://dx.doi.org/10.48550/arXiv.1910.13970
https://ui.adsabs.harvard.edu/abs/2019arXiv191013970L
http://dx.doi.org/10.1086/309179
https://ui.adsabs.harvard.edu/abs/2000ApJ...538..473L
http://dx.doi.org/10.48550/arXiv.2304.00702
https://ui.adsabs.harvard.edu/abs/2023arXiv230400702L
http://dx.doi.org/10.1051/0004-6361/202347236
https://ui.adsabs.harvard.edu/abs/2023A&A...679A.133L
https://ui.adsabs.harvard.edu/abs/2020arXiv201208567M
http://dx.doi.org/10.1088/1538-3873/aab4ef
https://ui.adsabs.harvard.edu/abs/2018PASP..130g4501M
http://dx.doi.org/10.1093/mnras/staa965
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.4454M
http://dx.doi.org/10.1093/mnras/stab1515
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4249M
http://dx.doi.org/10.48550/arXiv.2209.13603
https://ui.adsabs.harvard.edu/abs/2022arXiv220913603O
https://ui.adsabs.harvard.edu/abs/2022arXiv220913603O
http://dx.doi.org/10.48550/arXiv.1705.07057
http://dx.doi.org/10.48550/arXiv.1705.07057
https://proceedings.mlr.press/v89/papamakarios19a.html
https://proceedings.mlr.press/v89/papamakarios19a.html
http://dx.doi.org/10.1103/PhysRevD.100.023508
http://dx.doi.org/10.1051/0004-6361/201833910e
https://ui.adsabs.harvard.edu/abs/2021A&A...652C...4P
http://dx.doi.org/10.1186/s40668-017-0021-1
http://dx.doi.org/10.1186/s40668-017-0021-1
https://ui.adsabs.harvard.edu/abs/2017ComAC...4....2P


DES Year 3: simulation-based 𝑤CDM inference 19

Prangle D., et al. 2014, Australian & New Zealand Journal of Statistics, 56,
309

Ribli D., et al. 2019, MNRAS, 490, 1843
Riess A. G., et al. 2022, ApJ, 934, L7
Sánchez C., et al. 2021, arXiv e-prints, p. arXiv:2105.13542
Secco L. F., et al. 2022, Phys. Rev. D, 105, 023515
Sellentin E., Heavens A. F., 2018, MNRAS, 473, 2355
Sellentin E., Heymans C., Harnois-Déraps J., 2018, MNRAS, 477, 4879
Sellentin E., et al. 2023, The Open Journal of Astrophysics, 6, 31
Sevilla-Noarbe I., et al. 2021, ApJS, 254, 24
Sevilla I., et al., 2011, in Meeting of the APS Division of Particles and Fields.
Sheldon E. S., Huff E. M., 2017, ApJ, 841, 24
Singh S., et al. 2023, arXiv e-prints, p. arXiv:2307.02545
Taylor P. L., et al. 2019, Phys. Rev. D, 100, 023519
Tram T., et al. 2019, J. Cosmology Astropart. Phys., 2019, 022
Zürcher D., et al. 2022, MNRAS, 511, 2075

APPENDIX A: AUTHOR AFFILIATIONS
1 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E
6BT, UK
2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
3 Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, Stockholm SE-106 91,
Sweden
4 Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute, German Centre
for Cosmological Lensing, 44780 Bochum, Germany
5 Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12,
SE-10691 Stockholm, Sweden
6 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
7 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
8 Université Grenoble Alpes, CNRS, LPSC-IN2P3, 38000 Grenoble, France
9 Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
10 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
11 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193
Barcelona, Spain
12 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
13 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA,
UK
14 Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University
Avenue Madison, WI 53706-1390, USA
15 Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15312, USA
16 Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife, Spain
17 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro,
RJ - 20921-400, Brazil
18 Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
19 Department of Physics, Duke University Durham, NC 27708, USA
20 NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
21 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
22 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
23 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA
91109, USA
24 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
25 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679
Munich, Germany
26 Center for Astrophysical Surveys, National Center for Supercomputing Applications, 1205 West
Clark St., Urbana, IL 61801, USA
27 Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street,
Urbana, IL 61801, USA
28 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University,
Stanford, CA 94305, USA
29 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544,
USA
30 Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP,
Brazil
31 Department of Physics, University of Genova and INFN, Via Dodecaneso 33, 16146, Genova, Italy
32 Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK
33 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid,
Spain
34 Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA
35 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
36 Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, CNRS,
UPS, CNES, 14 Av. Edouard Belin, 31400 Toulouse, France
37 Excellence Cluster Origins, Boltzmannstr. 2, 85748 Garching, Germany
38 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany
39 Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München,
Scheinerstr. 1, 81679 München, Germany
40 Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
41 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

42 Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
43 School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
44 Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
45 Institute of Theoretical Astrophysics, University of Oslo. P.O. Box 1029 Blindern, NO-0315 Oslo,
Norway
46 Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
47 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
48 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,
Campus UAB, 08193 Bellaterra (Barcelona) Spain
49 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
50 Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH
43210, USA
51 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
52 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
53 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
54 LPSC Grenoble - 53, Avenue des Martyrs 38026 Grenoble, France
55 Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
56 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
57 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
58 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN
37831, USA

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–19 (2024)

http://dx.doi.org/10.1093/mnras/stz2610
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.1843R
http://dx.doi.org/10.3847/2041-8213/ac5c5b
https://ui.adsabs.harvard.edu/abs/2022ApJ...934L...7R
https://ui.adsabs.harvard.edu/abs/2021arXiv210513542S
http://dx.doi.org/10.1103/PhysRevD.105.023515
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105b3515S
http://dx.doi.org/10.1093/mnras/stx2491
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.2355S
http://dx.doi.org/10.1093/mnras/sty988
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.4879S
http://dx.doi.org/10.21105/astro.2305.16134
https://ui.adsabs.harvard.edu/abs/2023OJAp....6E..31S
http://dx.doi.org/10.3847/1538-4365/abeb66
https://ui.adsabs.harvard.edu/abs/2021ApJS..254...24S
http://dx.doi.org/10.3847/1538-4357/aa704b
http://adsabs.harvard.edu/abs/2017ApJ...841...24S
http://dx.doi.org/10.48550/arXiv.2307.02545
https://ui.adsabs.harvard.edu/abs/2023arXiv230702545S
http://dx.doi.org/10.1103/PhysRevD.100.023519
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100b3519T
http://dx.doi.org/10.1088/1475-7516/2019/03/022
https://ui.adsabs.harvard.edu/abs/2019JCAP...03..022T
http://dx.doi.org/10.1093/mnras/stac078



