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Spatial variations in the cosmic electron density after reionization generate cosmic microwave
background anisotropies via Thomson scattering, a process known as the “patchy screening” effect.
In this paper, we propose a new estimator for the patchy screening effect that is designed to mitigate
biases from the dominant foreground signals. We use it to measure the cross-correlation between
unWISE galaxies and patchy screening, the latter measured by the Atacama Cosmology Telescope
and Planck satellite. We report the first detection of the patchy screening effect, with the statistical
significance of the cross-correlation exceeding 7σ. This measurement directly probes the distribution
of electrons around these galaxies and provides strong evidence that gas is more extended than
the underlying dark matter. By comparing our measurements to electron profiles extracted from
simulations, we demonstrate the power of these observations to constrain galaxy evolution models.
Requiring only the 2D positions of objects and no individual redshifts or velocity estimates, this
approach is complementary to existing gas probes, such as those based on the kinetic Sunyaev-
Zeldovich effect.

INTRODUCTION

The distribution of gas throughout the Universe con-
tains a wealth of information on the astrophysical pro-
cesses governing the thermodynamics of the circumgalac-
tic and intracluster media (ICM)[1–5]. It is also a key in-
gredient in cosmological analyses, especially galaxy weak
lensing analyses as highlighted in e.g., Refs. [6, 7]. Whilst
the properties of this gas in the centers of massive clus-
ters have been well characterized by X-ray and thermal
Sunyaev-Zeldovich (tSZ) measurements [e.g., 3, 8–13],
the gas distribution in cluster outskirts and lower mass
systems is less well understood. Recent measurements
of the kinetic Sunyaev-Zeldovich (kSZ) effect offer one
means of studying this gas [14–18]. In this work we ex-
plore a complementary approach based on the “patchy
screening” effect which, like the “projected fields” kSZ
estimator [19–21], does not require spectroscopic data.

Cosmic microwave background (CMB) photons are
Thomson scattered by electrons encountered on their
path from the surface of last scattering to the observer.
This scattering damps the primary CMB anisotropies.
The isotropic component scales with the optical depth
to reionization and is one of the six ΛCDM parameters
[22–25]. However, the damping is anisotropic as lines of
sight with more (fewer) electrons will be more (less) sup-
pressed, and thereby spatially modulates the underlying
CMB anisotropies [26–33]. This effect is known as the
“patchy screening” effect and, on small scales (θ ≲ 1◦),
the new anisotropies are

∆T patchy screen(n) = −δτ(n)∆T primary(n), (1)

where δτ(n) is the fluctuation in the optical depth to last
scattering in direction n and ∆T primary(n) is from the
primordial CMB anisotropy in that direction. The phys-
ical intuition is that on small scales the primary CMB
has no power, so patchy screening is simply the damping
of the larger scale CMB fluctuations by the small scale

variations in τ . See Ref. [32, 33] or the Supplementary
Material for more details.

Patchy screening is important during two epochs of
the Universe: 1) during the reionization of the Universe,
when the Universe has large spatial fluctuations in the
cosmic ionization fraction, and 2) in the late-time Uni-
verse, when excesses in the density of electrons occur
around gravitationally collapsed objects [e.g. 34–37]. The
observational signature from the latter epoch is damp-
ing of the primary CMB anisotropies at a scale of a few
arminutes. These anisotropies are well suited to study-
ing the distribution of gas in the Universe as the damp-
ing is linearly proportional to the excess of electrons (for
the typical small values of optical depths encountered).
Thus, the angular size and damping amplitude charac-
terize the projected gas profile. Patchy screening is com-
plementary to the kinetic Sunyaev-Zeldovich (kSZ) ef-
fect, which arises from Thomson scattering of CMB pho-
tons off moving electrons. Both effects probe the optical
depth, but with different weightings: patchy screening
depends on the background primary CMB anisotropies
whilst the kSZ effect depends on the line-of-sight veloc-
ity.

Measuring the late-time patchy screening signal re-
quires two components: a precise measurement of the
large scale CMB anisotropies, as a measure of the CMB
before damping, and low-noise measurements of the
new small scale anisotropies. Ground based CMB ex-
periments, such as the Atacama Cosmology Telescope
(ACT), South Pole Telescope, the Simons Observatory,
CMB-HD, and CMB-S4 [38–42], are designed for the sen-
sitivities and resolution necessary to provide the latter
component. These experiments are complemented by the
precise measures of large scale CMB anisotropies made
by the Planck and WMAP satellites [43, 44]. Exploit-
ing this synergy, we use data from Planck and ACT to
measure patchy screening at small scales.

CMB experiments are only sensitive to the patchy
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screening signal integrated along the line of sight. To
understand the host mass and redshift dependence of
the signal, we cross-correlate the CMB data with an-
other tracer of the gas distribution [37]. If the second
tracer is measured at high precision, then cross correla-
tion based methods also provide a means of boosting the
detectability of the patchy screening effect. In this work
we cross correlate the ACT-Planck CMB measurements
with galaxies in the unWISE catalog, using a stacking-
based approach [45–47]. The unWISE galaxy catalog
contains over 500 million galaxies as obtained from the
extended observations of the Wide-field Infrared Survey
Explorer (WISE) satellite [48, 49]. The high source num-
ber density of this catalog makes it ideal for studying the
patchy screening signal.

CROSS-CORRELATION METHODOLOGY

A key challenge to detecting patchy screening is the
host of other small-scale millimeter sky signals. These
include emission from high redshift star-forming galax-
ies and radio galaxies, as well as CMB secondaries such
as gravitational lensing, and the thermal and kinetic
Sunyaev-Zeldovich effects [see e.g., 50, for a review].
These foreground signals are expected to be at least 30
times larger than the patchy screening signal and are
spatially correlated with it. To avoid potential biases,
we combine well-tested component-separation methods
with a new estimator called the “sign estimator.”

The sign estimator uses two parts to isolate the patchy
screening effect: the first part is a map of the large scale
CMB anisotropies, which quantifies how much damping
can occur. Current multifrequency measurements, such
as those from the Planck satellite, can be combined to
produce a map of the large-scale anisotropies that is dom-
inated by the primary CMB. The sign operation, a non-
linear function which sets all pixels to ±1, is applied to
this map. This operation isolates the primary CMB, and
eliminates contaminating signals, as the sign of each pixel
of the map is set by the dominant component. The sec-
ond part is to multiply this map by a map of the small
scale CMB anisotropies. Except for the patchy screen-
ing effect, the sign of the primary CMB anisotropies is
uncorrelated with the small scale sky signals; thus the
foreground contribution will average to zero and leave
the patchy screening. This robustness to foregrounds
means that we can apply our estimator to maps con-
taining bright contaminants without biases. The sign es-
timator trades optimality for increased immunity to fore-
ground biases. This is one of several conservative choices
made to ensure a robust detection. In the Supplemen-
tary Material we show how this approach is motivated by
the squeezed limit of the standard quadratic estimator.
An in-depth comparison of different patchy screening es-
timators, along with forecasts for current and future ex-

periments, is given in Ref. [51].
We detect patchy screening via its correlation with the

distribution of galaxies. Specifically, we apply the sign
estimator to cutouts of the CMB data extracted at the
location of known galaxies. These cutouts are then aver-
aged together in a 2D stack. A detailed description of our
methodology is provided in the Supplementary Material.

DATA SETS

The CMB data used in this work are the component-
separated CMB maps obtained from combining data
from the Planck satellite with data from ACT, as detailed
in Ref. [52]. Here we briefly review the key products and
refer the reader to Ref. [52] for more details.
The Planck satellite observed the full sky over four

years with an angular resolution of 7.22′ at 143GHz [43].
The component-separated maps are constructed from the
NPIPE Planck data release [53] and use data between
30GHz and 545GHz. These maps provide the large-scale
CMBmeasurement; the small scales come from high reso-
lution measurements of the millimeter sky by ACT. ACT
observed around one third of the sky over the course of
15 years [54–62]. This work uses data from Data Re-
lease 4 (DR4) and Data Release 6 (DR6), which con-
tains data from 2013-2023. It comprises observations at
three frequencies: 98, 148, and 225 GHz (known as f090,
f150, f220). At 148GHz the ACT beam full-width-half-
maximum (FWHM) is 1.4′. Typical noise levels in the
ACT maps are 13/12/48 µK arcmin at f090/f150/f220.
Atmospheric noise, primarily from the vibrational and
rotational modes of water vapor, has a red spatial power
spectrum and inhibits ACT from making observations of
the large scale CMB anisotropies [63]. Thus the combi-
nation of Planck and ACT data is well suited to studying
the patchy screening signal.
The ACT and Planck multifrequency observations

are combined using a needlet internal linear combi-
nation (NILC) to produce a map isolating the CMB
anisotropies. This CMB map is dominated by the pri-
mary CMB anisotropies on angular scales ranging from
full-sky to a few arcminutes. The resulting map is con-
volved to a 1.6′ FWHM Gaussian beam. The NILC map
we use here was optimized to produce an unbiased CMB
map with minimal “noise” variance, with noise defined
to be all signals (sky or instrumental) that are not the
component of interest [64, 65]. As discussed further in
the Supplementary Material, the robustness of our mea-
surement can be tested by making variants of the NILC
maps. These variants are produced by either using only
subsets of the data during the NILC process (if only one
frequency is used the NILC method can be thought of
as a means of coadding data) or by applying constraints
to ensure that a known contaminant signal does not con-
tribute to the map “noise.” To achieve this latter goal,
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Sample Mean Redshift Mean Halo Mass Source density
(M⊙/h) (arcmin−2 )

Blue 0.6 1.4× 1013 0.58

Green 1.1 1.3× 1013 0.32

Red 1.5 1.6× 1013 0.018

TABLE I. The key properties of the unWISE galaxies as mea-
sured by Refs [46, 68, 69]. The source density is computed
after our catalog cuts (see Supplementary Material).
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FIG. 1. High-pass filtered 2D stacked optical depth map,
obtained by running the “sign” estimator on ACT data, at
the positions of the unWISE blue sample. The optical depth
map is convolved with the filter of Eq. (13), on top of the
1.6′ FWHM Gaussian ACT beam convolution. The visible
excess in the center comes from the gas around the unWISE
galaxies.

we use the constrained NILC method [66, 67].

The galaxy catalogs used in our cross correlation anal-
ysis come from the Wide-field Infrared Survey Explorer
(WISE) satellite [48]. The WISE satellite observed the
sky from 2010 to 2011 and then again from 2013 to the
present. We use the “blue,” “green” and “red” galaxy
samples from Ref. [46] and refer the reader to Ref. [46]
for details on the selection criteria. These samples, whose
properties are summarized in Table I, are obtained from
the deep 3.4 and 4.6 micron unWISE catalogs [49, 70, 71],
with Gaia data used to help remove contaminant stars
[72]. The high source densities and large overlap with
ACT are the key reasons for using the unWISE catalogs
– note that the patchy screening cross-correlation only
needs the galaxy positions and not their redshifts.

In the Supplementary Materials we describe the sim-
ulations used to validate our analysis and to construct
the covariance matrices used to interpret our results. We
also detail a data-based test of the covariance matrix.
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FIG. 2. Stacked 1D profiles of the optical depth, obtained
from the sign estimator, Eq. (14), applied to filtered CMB
data stacked at the locations of galaxies. The points show
the measurements of the unWISE red, green, blue and com-
bined blue-green samples. These are obtained by azimuthally
averaging the 2D stacks. After accounting for the covariance
of the points, the combined sample rejects the null hypothesis
of no signal at 7.9σ (see Table II). The dot-dashed line is the
signal for a point source and the dotted line is a Gaussian
electron density profile, with parameters fit to the combined
blue-green sample. The point-source and Gaussian profiles
are convolved to the beam (1.6′ FWHM) and filtered in the
same manner as the data. The error bars are computed from
Monte-Carlo simulations as described in the Supplementary
Material.

RESULTS

In Fig. 1 we present the 2D stack of the sign-weighted
CMB data on the unWISE blue galaxies, where the
patchy screening signal can be clearly seen. We show
the azimuthally averaged 1D profiles of optical depth,
computed with Eq. (14), for the three unWISE samples
in Fig. 2. Whilst the highest redshift stack (red) is con-
sistent with zero, we detect signals in the blue and green
samples at high signal-to-noise ratio (SNR). This differ-
ence is expected given that the red catalog has an order
of magnitude fewer members than either of the other cat-
alogs. Note that the shape of the profiles, especially the
“ringing” structure, arises from the filtering of the CMB
map.

We compute the covariance of the data points, includ-
ing the covariance between the green and blue samples,
using Monte-Carlo simulations, described in the Supple-
mentary Material. In Fig. 3 we show the correlation
matrix for the blue and green samples. The strong ra-
dial correlations induced by the filtering can clearly be
seen. These correlations are not due to the signal –
the simulations do not include the patchy screening sig-
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FIG. 3. The correlation matrices of the τ measurements from
the unWISE blue and green samples, computed from 150 in-
dependent simulations that do not include the patchy screen-
ing signal. The lower left corner of the plot is the blue sample,
the upper right is the green sample and the diagonals are the
cross terms. Significant off-diagonal correlations arise from
the high-pass filtering. No strong correlations are detected
between the two samples.

nal – and arise from the primary CMB, noise and other
sky components. These signal-free simulations quantify
the expected noise-induced variance in the profiles. The
comparison of our measurement to this noise quantifies
the detection significance. The correlations between the
two samples are consistent with noise. We combine the
blue and green data points – with an inverse covariance
weighting– to obtain a higher SNR sample, also shown in
Fig. 2.

Table II provides χ2 and p-values estimated from the
data for two cases: the null hypothesis, and a two-
parameter model described below. The large χ2 values
and low p-values for the null hypothesis demonstrate the
high significance of the detection. The final column of
Table II translates the p-values to the equivalent num-
ber of Gaussian sigmas, showing that the profile from
the combination of the blue and green samples for the
nine radial bins of Fig. 2 is inconsistent with the null
hypothesis at 7.9σ. However, quantifying the detection
significance from just the null hypothesis is non-trivial as
the χ2 values will clearly depend on the maximum radius
used in the measurement. Note that if we just use three
radial points we still reject the null hypothesis by more
than 7σ.

We fit the data to a two-parameter model in order
to perform a model comparison test to better assess the
detection significance. In this phenomenological model
the optical depth around the unWISE galaxies is modeled
as a 2D symmetric Gaussian distribution. To this model
we apply the CMB beam, filter in an identical manner
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Gaussian Model Samples
ACT & Planck x unWISE Blue (z∼ 0.6)

FIG. 4. A qualitative comparison of the measured pro-
file from the blue sample to a set of theoretical models of the
electron distribution: the Illustris (red), Illustris-TNG (green)
and the SIMBA (purple) simulations, and the best-fit Gen-
eralized Navarro Frenk White profile from the kSZ analysis
of BOSS galaxies[16] (orange). The dark matter profile from
Illustris-TNG is shown in dot-dashed grey, re-normalized to
match the integrated electron density. Each of the theoret-
ical profiles has been filtered in a manner equivalent to the
data. The black lines are samples from the fit to the Gaussian
model. Perfect agreement between the data and simulations
comparison is not expected as this comparison does not ac-
count for the observational selection function. The qualitative
comparison already suggests that the gas does not follow the
dark matter, and that future measurements will contain use-
ful information about feedback and numerical simulations of
galaxy formation [5].

to the data and compute the 1D azimuthal average; then
we fit for the amplitude and width. The best fit profile
is plotted in Fig. 2, and its χ2 statistics are in Table II.
We consider two statistical tests to compare the Gaus-

sian model to the null hypothesis: the Akaike Informa-
tion Criterion (AIC) and an F-test [73–75]. Given the
small size of data vector (9 elements), the Bayesian Infor-
mation Criterion (a third commonly used model compar-
ison metric) is effectively the same as the AIC discussed
here and hence we only consider the AIC. We find AIC
values of −39, −43 and −71 for the green, blue and com-
bined samples respectively. These values correspond to
strong evidence for the Gaussian model and hence strong
evidence of a non zero signal. With the F-test we find
p-values of p = 0.003, 0.013 and 0.0018, which also shows
evidence for a non-zero signal model.

Discussion

Performing a quantitative interpretation of the mea-
sured gas profiles, in the vein of Ref. [16, 76], is challeng-
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Rejection of null hypothesis

Sample χ2
null p-value Nσ

Blue 67 6.8× 10−11 6.4

Green 53 2.2× 10−8 5.5

Red 3.5 0.93 -1.5

Combined blue and green 90 1.4× 10−15 7.9

Goodness of fit for the 2 parameter Gaussian model

Sample χ2
best fit p-value

Blue 19 0.007

Green 11 0.16

Combined blue and green 15 0.04

TABLE II. The χ2, p-values and equivalent Gaussian sigma
significance ( Nσ) of our measurements (top), and of fits with
a Gaussian profile (bottom). Note that the statistics above
used the full data covariance for the nine radial bins in each
data set.

ing due to the large measurement errors and large uncer-
tainties in the properties of the unWISE galaxies. We
leave this challenge to future work, and restrict our anal-
ysis to qualitative comparisons. We contrast our mea-
surements with a theoretical model and three state-of-
the-art cosmological hydrodynamical simulations: Illus-
tris [77], IllustrisTNG [78] and SIMBA[79]. Each simula-
tion models the unresolved small-scale physics differently
and the range provides some measure on the diversity
of current theoretical predictions. For each simulation
we follow the method of [80, 81] to compute the pro-
files. We use the unWISE properties from Ref. [68, 69]
to perform the comparisons, with the mean redshifts
and halo masses listed in Table I. For the simulations,
we use the nearest redshift snapshot and a mass bin of
1.5× 1013M⊙/h ≤ Mhalo < 2.4× 1013M⊙/h. We do not
attempt to reproduce the unWISE sample selections, nor
the impact of satellite galaxies, and therefore do not ex-
pect a perfect agreement.

First, we compare the measured profiles to the profile
from a point source. Fig. 2 shows that our data strongly
favours a more extended source for the signal. The elec-
trons are not expected to be distributed as a point source.
This comparison demonstrates that our measurements
can probe the spatial distribution of the gas and provides
a check on potential point source contamination. We
then compare the measurements of the blue and green
samples. From the fits to the samples’ profiles, Fig. 2,
we find that the green and blue sample profiles are fit
by Gaussian models of widths θFWHM = 5.3 ± 0.5 and
θFWHM = 5.7 ± 0.5 arcmin. Note that without evolu-
tion of profiles, the angular size of the green sample is
expected to be smaller due to its higher redshift. These
results highlight the potential of future, higher SNR mea-
surements to characterize the redshift evolution of the
distribution of gas.

Next we compare our measurements to the expected
distribution of dark matter. As can be seen in Fig. 4,
the measured gas profiles do not follow the dark mat-
ter (grey). Note that we show the dark matter from
the Illustris-TNG simulation, but similar results are ob-
tained from all three simulations. These results repro-
duce those seen in Refs [14–16, 76], which used kSZ
measurements stacked on BOSS galaxies to demonstrate
that the gas is significantly more extended than the dark
matter. The best-fit generalized Navarro Frenk White
(GNFW)[82] profile obtained from Ref. [16] is shown
in orange. Our measurements are more consistent with
[16] than the dark matter; however, our results appear
to have a higher gas density and slightly more extended
profile. The unWISE galaxies used in this work are dif-
ferent from the BOSS galaxies: the unWISE galaxies are
infrared selected objects and trace star forming galax-
ies, whilst the BOSS galaxies are a constant stellar mass
population and contain both star forming and quiescent
galaxies [83]. Of particular relevance to this analysis is
the proportion of galaxies that are central versus satellite
members of their halos. The GNFW and simulation pro-
files do not account for the miscentering of the measured
profiles that arises when we stack on satellite galaxies,
which are offset from the center of the halo. The mea-
surements from [68, 69, 84] suggest that the fraction of
unWISE galaxies that are satellites is larger than in the
BOSS sample. The impact of the satellite fraction on
the observed profile is complex as it couples with the
selection effects (see Ref. [85]) and can either broaden
or sharpen the profile. These small-scale measurements
of the gas around the unWISE galaxies complement the
larger-scale kSZ-based measurements by [17] and future
comparisons between screening and kSZ measurements
will be a powerful astrophysical and cosmological probe.

Finally, we compare to electron density profiles from
three state-of-the-art simulations. This qualitative com-
parison of the profiles, Fig. 4, shows that our measure-
ments are broadly similar to all of the simulation suites.
Better agreement is found with the SIMBA and Illustris-
TNG simulations, which are known to have less heating
and redistribution of the ICM than Illustris. Future mea-
surements, with well-characterized galaxy samples, will
enable quantitative comparisons and be highly informa-
tive for the next generation of hydrodynamical simula-
tions.

In summary, CMB anisotropy data have reached the
precision necessary to study the patchy screening effect.
In this paper and Ref. [51], we introduce a new estimator
that is robust to foreground biases, enabling the use of
arcminue-scale temperature anisotropies with significant
foreground contributions. A key feature of this analy-
sis technique is that it relies only on the sky positions
of galaxies, and thus complements existing methods of
probing the gas distribution which also require galaxy
distance estimates [14, 15, 76]. Our results already show
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that patchy screening measurements provide a powerful
method to characterize the physics governing the cosmic
gas distribution. In Ref. [51], we show that future CMB
observations with the Simons Observatory [40] and CMB-
S4 [42] will allow the precision of these measurements
to rapidly increase and greatly improve differentiation
among galaxy formation models.
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Supplementary Material

I. Overview of Patchy Screening Estimators

In this Section we first review the standard estimator as derived in Ref. [33] before presenting our new method.
We refer the reader to Ref.[51] for a detailed analysis of the relative merits of the different estimators.

In the screening effect, free electrons along a given line of sight (LOS) Thomson scatter a fraction 1 − e−τ of
the CMB photons from this LOS away from the observer. At the same time, Thomson scattering by the same free
electrons deflects other CMB photons (which would not otherwise reach the observer) into the observer’s LOS. Because
Thomson scattering is a time-reversible process, the probability for a LOS photon to be deflected out of the LOS is
the same as the probability for any photon to be deflected into the LOS. Thus screening is simply replacing a fraction
1−e−τ of LOS photon flux at T̃ (n̂) with an equal fraction 1−e−τ of all other photons incident on the electron, whose
average temperature is T̄CMB[33]:

T (n̂) = T̃ (n̂)e−τ + T̄CMB

[
1− e−τ(n̂)

]
. (2)

This gives the observed temperature fluctuation:

∆T (n̂) ≡ T (n̂)− T̄CMB

= ∆T̃ (n̂)e−τ(n̂) with ∆T̃ (n̂) ≡ T̃ (n̂)− T̄CMB,

= ∆T̃ (n̂)e−τ̄e−δτ(n̂) with τ(n̂) = τ̄ + δτ(n̂),

= ∆T primary(n̂)e−δτ(n̂) with ∆T primary(n̂) ≡ ∆T̃ (n̂)e−τ̄ ,

≃ ∆T primary(n̂) [1− δτ(n̂)] .

(3)

Here we have introduced the average optical depth τ̄ to Thomson scattering, through which the primary fluctuations
are observed (∆T primary(n̂) versus the temperature fluctuations at the surface of last scattering ∆T̃ (n̂)). While this
mean optical depth is not negligible (τ̄ ∼ 5− 6% from Planck [22–25]) the fluctuations δτ(n̂) in the optical depth are
much smaller, of order 10−5 − 10−3 for galaxy/cluster halos, justifying the linear expansion in the last line above.

Screening of the CMB also occurs in polarization. The equations above remain exact when replacing the temperature
T by the Stokes parameters Q and U . In terms of E and B instead, the multiplication of Q and U with a scalar
function 1− δτ(n̂) mixes E and B modes, thus leading to the generation of B-modes from E-modes [32–34, 86–89].

The quadratic estimator

As described in Ref. [33], we can construct a quadratic estimator for δτ as

δτ̃(L) =

∫
d2ℓ1

(2π)
2

d2ℓ2

(2π)
2 g(ℓ1, ℓ2)T (ℓ1)T (ℓ2)(2π)

2δ(2)(L− ℓ1 − ℓ2) (4)

where T (ℓ) are the 2D Fourier modes of the observed CMB temperature fluctuation map, as the intuition is clearer
in the flat-sky approximation, and g(ℓ1, ℓ2) are a set of weights. The weights are found by searching for the minimum
variance unbiased estimator giving

δτ̃(L) = − 1

NL

∫
d2ℓ1

(2π)
2

d2ℓ2

(2π)
2 (2π)

2δ(2)(L− ℓ1 − ℓ2)(C
TT
ℓ1 )

T (ℓ1)T (ℓ2)

Ctot
ℓ1

Ctot
ℓ2

, (5)

where CTT
ℓ is the power spectrum of the T̃ (n)e−τ̄ field, i.e. the standard CMB power spectrum, Ctot

ℓ is the total
power spectrum including foregrounds and instrumental noise and NL is a normalization constant given by

NL = 2

∫
d2ℓ1

(2π)
2

d2ℓ2

(2π)
2 (2π)

2δ(2)(L− ℓ1 − ℓ2)
CTT

ℓ1

2

Ctot
ℓ1

Ctot
ℓ2

. (6)
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General small-scale τ estimator

For small scale reconstructions, L ≳ 2000, on data sets with noise and foregrounds, this can be approximated as

δτ̃(L) ≈−
∫

d2nein·LTlarge−scales(n)
[
C−1Tsmall−scales

]
(n)Ctot

L

[∫
ℓsmall−scales

d2ℓ

(2π)2
CTT

ℓ

]−1

, (7)

where Tlarge−scales(n) is a map that contains only the large-scale modes of the map,
[
C−1Tsmall−scales

]
(n) is an inverse

variance filtered map of small-scale modes and ℓsmall−scales are the modes that contribute to the small-scale map. This
estimator arises from two parts: first the filter CTT

ℓ /Ctot
ℓ in Eq. (5) selects only modes where the CMB dominates.

This filtering results in a map containing only large-scale modes. Second, the Dirac delta function in Eq. (5) forces
the second part of the estimator to only select small-scale modes. Finally, we have approximated Ctot

ℓ+L ≈ Ctot
L , which

is valid on small scales where the power spectrum varies slowly. For the small-scale regime, these approximations will
not significantly lose information compared to the full quadratic estimator or Bayesian estimators [90].

The key challenge on small scales is separating out this signal from other non-Gaussian sky components such as
gravitational lensing, the thermal and kinetic Sunyaev-Zeldovich effects and the cosmic infrared background (CIB).
These signals all produce quadratic couplings that will contribute to this estimator and can bias measurements of
δτ . In a manner analogous to lensing these can be removed by bias hardening the estimator [36, 91] and by using
component separation techniques to remove signals with different spectral signatures (e.g. the tSZ and CIB)[69]. This
approach will suppress these biases at the cost of reduced signal to noise. The difficulty for patchy screening is that
the biases are much larger than the signal and so need to be suppressed to a very high degree. Fully removing similar
biases to lensing estimators is very challenging [92–96] and it has yet to be demonstrated that such bias mitigation
methods are sufficient for patchy screening analyses. This motivates the consideration of alternative estimators that
are naturally robust to foreground biases.

By examining the structure of the small scale patchy screening effect

T (n) ≈ −Tlarge−scale(n)δτ(n), (8)

it can be seen that an estimator for patchy screening can be obtained by replacing the Tlarge−scale term in Eq. (7)
with just the sign of the large scale mode and changing the normalization of the estimator. This gives the following
estimator

δτ̃(L) ≈−
∫

d2nein·L Sign [Tlarge−scales(n)]
[
C−1Tsmall−scales

]
(n)Ctot

L [⟨|Tlarge−scales|⟩]−1
, (9)

where ⟨|Tlarge−scales|⟩ is the expectation of the modulus of the large scale field. It is straightforward to show that
this estimator provides an unbiased estimator of the filtered τ field. Modes with wavelengths significantly larger than
those in the small-scale field will not be recovered. Further, for small scale reconstructions the variance of this new
estimator is only a factor of ⟨T 2

large−scales⟩/⟨|Tlarge−scales|⟩2 = π/2 larger. This result is obtained by evaluating the two
expectations using a Gaussian distribution and using the relation

⟨|T |⟩ =
∞∫

−∞

dT |T |p(T ) = 2

∞∫
0

dT Tp(T ), (10)

where p(T ) is the probability distribution of the temperature anisotropies. At the cost of this extra noise, this
estimator suppresses all foreground biases. To understand why, note that the large scales of the CMB are dominated
by the primary CMB anisotropies. By taking the sign of this fluctuation we isolate the primary CMB from the other
contributions to the large scale CMB. This simple method removes almost all possible biases: biases such as the tSZ,
CIB and kSZ are not correlated with the primary CMB so average to zero. A subtle bias could arise from correlations
with the integrated Sachs-Wolfe (ISW) effect, which give a non-trivial contribution to the large scale modes. These
can be removed by also removing the largest scale CMB modes (ℓ ≲ 20) or subtracting a map of the ISW field from
the large scale leg. The latter approach is discussed in Section IV of the Supplementary Material.
Lensing is correlated with the large scale primary CMB; however this term also does not contribute to the estimator.

To see this we first examine the effect of lensing on the small scales. This is given by

T (n) = T̃ (n+∇ϕ(n)) ≈ T̃ (n) +∇ϕ(n)∇T̃ (n) , (11)
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where ϕ(n) is the lensing potential. As in the patchy screening case, the small scale lensing is given by the modulation
of a large scale primary CMB term (∇T̃ ) by the small scale term (for lensing ∇ϕ). However lensing depends on the
gradient of the large-scale CMB anisotropies, which is not correlated with the sign of the CMB anisotropy. Thus
lensing also does not contribute to this estimator.

There are similarities between our estimator and the ‘gradient inversion’ lensing estimators [e.g. 97, 98]. However
the gradient-inversion estimator generally increases the SNR of lensing reconstruction when lensing is dominant. This
regime generally does not exist for the patchy screening estimator so we do not consider further dividing out the
specific large scale mode, which would lead to the equivalent of the ’gradient inversion’ estimator for patchy screening.
Rather our estimator can be thought of as an analogy to the shear-only lensing estimators [93, 99]. We consider only
part of the signal at the cost of signal to noise, but gain robustness to foreground emission. A detailed comparison of
these different estimators is available in Ref. [51].

Implementation of the cross correlation estimator

To apply Eq. (9), we first need to create two filtered maps: one of the large-scale CMB anisotropies, and one of the

small-scale CMB. For the low-pass maps we apply the following harmonic space filter, f low−pass
ℓ ,

f low−pass
ℓ =


1, if ℓ < 2000

cos
(

(ℓ−2000)π
300

)
otherwise

0 if ℓ > 2150.

(12)

For the high-pass filter we use the following filter, fhigh−pass
ℓ ,

fhigh−pass
ℓ =


0 if ℓ < 2350

sin
(

(ℓ−2350)π
300

)
otherwise

1 if ℓ > 2500.

(13)

The structure of the high- and low-pass filters was chosen to satisfy the following criteria. First, the low-pass map
needs to contain enough modes to preserve the large scale sign. The fact that the CMB power spectrum is red means
that this is satisfied providing the transition is above ℓ ∼ 1000. The location of the high-pass filter was chosen such
that the power spectrum of the maps is approximately white (i.e. flat). When the power spectrum is white, Eq. (9)
further simplifies as the harmonic-space, inverse-variance filter is just a constant and factorizes out. The smooth
tapering of the filters prevents excess ringing from the harmonic space filtering. A separation between the two filters
is used to prevent correlations between the high- and low-pass filtered maps. Moving the location, and width, of these
filters by ±250 was found to have minimal effect on the analysis. It is left to future work to optimize location of the
filters, and widths of the transitions, which could be further optimized to maximize signal to noise.

Note that we do not deconvolve the beam from the scale-scale temperature map and instead include the beam and
the impact of the filtering in our theory models. However, we do deconvolve the pixel window function, which would
be difficult to account for in the theory model.

After the cuts described below, we extract a 20′ x 20′ cutout from the small scale map at the location of each unWISE
galaxy. To account for sky curvature we use the tangent plane projection and interpolation methods described in Ref.
[15]. We stack these cutouts, weighted by the sign of the large scale mode, as

δ̂τ
stacked

(n) =

−
∑

Sign[T large−scale(no + n)]T small−scale(no + n)

Nobjects⟨|T large−scale|⟩
, (14)

where the sum is over objects at locations no and Nobjects is the number of objects in the stack. We stack on tens of
millions of galaxies for the blue and green samples; see Table I for source number densities. The sign of the large-scale
field is consistent over ∼ 1/2 deg2 patches. A 1D azimuthally averaged profile is computed from the stacks.
The non-linearity introduced by the sign operation suppresses foreground biases in the large scale map as the sign is

determined by the primary CMB anisotropies. The immunity to foregrounds provided by the sign operation means we
can include small scale temperature measurements, which are dominated by foregrounds, without becoming biased.
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We do not stack on all the objects in the input catalog. Instead we perform a series of cuts to ensure that our
results are robust. Whilst the foregrounds will average to zero over many objects, due to the sign weighting, for a
finite number there can be a non-trivial residual [15]. To minimize the impact of especially bright objects skewing
the average, we exclude regions from our maps where there are known point sources or clusters. Specifically we avoid
stacking on objects that are within 6′ of a detected SZ cluster (those in the updated Ref. [100] cluster catalog ), 6′

of a subtracted point source (those detected in any of the input maps with SNR> 5), 10′ of the edge of the map
and 12′ of sources that are inpainted. The latter are a set of especially bright objects that are inpainted during the
construction of the NILC maps and are described in Ref. [101].

Next, we ensure that in the stack there are exactly equal numbers of positively and negatively weighted regions.
This helps further suppress the foreground emission and is implemented by selecting a random subsample. A heuristic
of this can be understood by splitting the sky into two regions: areas where Sign[T large−scale(no)] is positive and areas
where it is negative. Within each region foregrounds will not average down, and so contribute a bias given by the
size of the average source present in the map, e.g., the average amplitude of a dusty galaxy or thermal SZ cluster.
The average is obtained from many objects (∼ 106) and so will be similar in the positive and negative regions of the
sky. Thus, the degree to which these foregrounds cancel in the final estimate is set by the difference in number of
sources in the positive and negative regions of the sky. The large scale CMB has a large coherence scale (∼ 1◦) so
in any single sky realization there will be O(10000) independent positive and negative regions. The Poissionian-like
scatter means we expect ∼1 % more sources in one region than the other. Without explicitly balancing the number
of sources in each region, the degree of cancellation will leave a ∼1 % residual of the mean foreground signal. If we
instead manually force the same number of sources in each region, the cancellation will only depend on the difference
in the average residual in each region. This will be approximately 1/

√
Nobjects and in our case this is expected to

reduce the residual by more than an order of magnitude.

Finally we can apply cuts based on the amplitude of the large-scale field. The argument that the sign operation
removes contaminants works only when the large scale is dominated by the CMB. Whilst this is generally true, there
are regions of the sky where the primary CMB anisotropies are small and these patches could be dominated by
foreground emission. To mitigate this as a source of potential contamination we exclude the regions of the sky where
the large-scale temperature fluctuation is ≤ 40µK, where tSZ and CIB emissions could potentially change the sign
of the large-scale temperature. This threshold was based on the typical large scale variance of the tSZ and CIB in
simulated maps.[102]

II. Validation with Simulations

To validate this approach we apply the method to non-Gaussian CMB sky simulations. The goal is to verify both
that the other sky signals do not bias the estimator and that the estimator is able to recover the input signal. These
tests are structured to approximate the sky as observed by ACT and Planck satellite so that they serve as a validation
of the data analysis presented in the main text.

Simulation Properties

We consider two non-Gaussian sky simulations: the Websky [103] and the Sehgal et al. [104] simulations. Each
simulation contains a range of correlated and non-Gaussian CMB secondary anisotropies including: the tSZ, kSZ,
CIB, lensing and radio galaxies. Both simulations are dark matter only simulations with the secondary anisotropies
then ‘painted’ on in post processing. As the two simulations use distinct methods and models for this painting
procedure, they provide some measure of the theoretical uncertainty on the properties of the CMB secondaries. We
use the rescaled Sehgal et al. simulations presented in Ref. [40] that have been adjusted to be consistent with recent
measurements.

Using these simulations of the sky, we construct simulated observations that match the properties of the ACT and
Planck data sets used in this work (see the main text for further details). These simulations match the instrumental
properties including map noise, beams, and observation frequencies. We refer the reader to Ref. [105] and Appendix
B of Ref. [52] for a thorough description of these simulations. We use the Needlet Internal Linear Combination
(NILC) component separation pipeline, described in Ref. [52], to combine simulations of the individual observations
into a map of the CMB anisotropies. Through this procedure we obtain maps with the appropriate levels of residual
foregrounds that are present in the observations.



13

2 4 6 8
θ (arcmin)

0

2

4

6

Fi
lte

re
d 

Ta
u 

(×
10

4
)

No Signal
With Signal
Input Signal

(a) Websky simulations
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(b) Sehgal et al. simulations

FIG. 5. An application of our stacked estimator to mock ACT & Planck observations constructed from the Websky and Sehgal
et al. simulations. The cross and circle points correspond to the two realizations. We apply the estimator to simulations that
contain foregrounds but no patchy screening signal (blue lines). These are consistent with zero (see Table III) and demonstrate
that our method is immune to foreground biases. We also show that the estimator is unbiased, as the measurements on
simulations with a τ signal (orange) match the input signal when filtered in the same manner (green).

The Websky and Sehgal et al. simulations do not include any patchy screening signal. To validate that our
method provides an unbiased measurement of non-zero signals, we created an additional version of the simulations
that contain an approximate patchy screening signal. We first construct an approximate τ map, by rescaling the
Compton-y map from each simulation by a constant factor to “convert” from Compton-y to optical depth. This
factor is an approximation to the mean gas temperature of the halos and is chosen to give an average τ similar to
the expected value (∼ 5 × 10−4). With this approximate τ map we create the patchy screening effect by using it to
screen the primary CMB anisotropies, via Eq. (1).

The catalogs used in the stacking analysis are the halo catalogs of the two simulations. For the Websky simulations
we use all halos with mass Mh > 1.8× 1013 and in Sehgal et al. simulations we stack on all the available halos. Like
the processing of the data, we avoid stacking on objects that are close to point sources, clusters or the edge of the
mask. For the data the sources are identified in the maps using point source and cluster finders [e.g., 100, 106–108],
however for the simulations we instead use the true source catalogs. The cut thresholds are set to approximately
match the point source and cluster thresholds of the ACT data: CIB sources with amplitudes ≳ 350µK (> 30mJy)
at 217GHz, radio sources with amplitudes ≳ 150µK (> 9mJy) at 90 GHz and clusters with M200 ≳ 5× 1014 M⊙/h.

Analysis of the Simulations

In Fig. 5a and Fig. 5b we apply the method to the Websky and Sehgal et al. simulations. As can be seen
when applied to the default simulations, those without any patchy screening signal, the estimator measurements are
consistent with zero. This demonstrates that our method is not biased by the foregrounds present in these simulations.
When applied to the simulations with a mock screening signal, we recover measurements that are consistent with
the input τ signal. The oscillatory structure seen in the signal arises from the high-pass filtering performed on the
small-scale CMB map.

These two tests provide evidence that our pipeline is able to provide robust and unbiased measurements of a patchy
screening signal.
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FIG. 6. A summary of the null and consistency tests performed to validate our result. The two null tests, stacking on random
location and randomizing the sign used in the stack, are both consistent with zero and provide a data based check of our method
(see Table III). The two foreground tests, which are labeled “Deproj CIB and tSZ” and “ISW removed”, explicitly remove
contamination from the tSZ, CIB and ISW effect. These demonstrate that our result likely contains no significant biases from
these effects. The final tests, using only data from 93GHz or 148GHz, are consistent with anisotropies that have a blackbody
spectrum, as expected for the patchy screening effect.

III. Uncertainty quantification

To compute the errors we generate a set of Gaussian simulations of the sky that match the properties of the sky.
As the signal is highly subdominant to all the sky signals, we can simply treat the NILC map as a map of “noise.”
This is used as the input to the tiled noise model, described in Ref. [105]. With this formalism we can accurately
capture the variation in the “noise” properties in both scale and location across the map. From these we generate an
ensemble of 150 simulations. For each simulation we perform the same filtering as the data and then apply the stacked
sign estimator at the locations of the unWISE galaxies. The weighting is given by the sign of a simulated large-scale
CMB map. This is repeated over the ensemble of simulations to obtain an estimate of the covariance matrix.

As a cross check of this approach, we compute an approximate covariance matrix from the data themselves by
computing the covariance matrix of the individual τ measurements from each galaxy. If each galaxy’s profile were
independent the covariance matrix of the stack would be 1/

√
Nobjects times the single galaxy covariance matrix. In

practice the galaxies are not completely independent and thus this covariance matrix would slightly underestimate
the true variance. We found that this approximate covariance matrix was in reasonable agreement with our simulated
covariance matrix (∼ 15% agreement between the diagonal elements of the two matrices), providing a mild validation
of our simulations.

IV. Robustness Tests

To validate our results we performed a series of data based robustness and null tests.

As a test of potential foreground biases, and of the computation of the covariance matrices, we performed two null
tests. First we repeated our stacking analysis on random locations. Our estimator, Eq. (14), is not sensitive to the
mean optical depth and so it is expected that if we stack on random locations we should see a signal consistent with
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Equivalent

χ2 p-value Gaussian σ

Random positions 12 0.19 0.89

Random signs 13 0.16 0.98

TABLE III. The χ2, p-values and equivalent Gaussian σ for two of the null tests.

zero. The number of locations is the same as the number in the original catalog, for which we use the largest sample,
the blue sample. As seen in Fig. 6, when random locations are used, we find no signal. The χ2 of this null test
compared to zero, reported in Table III, is consistent with no signal. This tests both our estimator and the covariance
matrices.

Second we repeat our stacking analysis, but randomize the sign used to weight each profile. This is a test of residual
foreground components. Foregrounds are expected to average to zero in our standard estimator. However, if there
are any anomalously large values they may average down very slowly and bias our result. This “random sign” test
should identify such cases as randomizing the sign will remove the patchy screening signal. As seen in Fig. 6 and
Table III, this null test is also consistent with no signal.

Next we perform tests aimed at identifying contamination in our measurement from two known sources: the thermal
Sunyaev-Zeldovich effect (tSZ) and the cosmic infrared background (CIB). To test for biases from the tSZ and CIB,
we make a constrained NILC map that explicitly removes the tSZ and CIB effects as described in Ref. [66, 67]. This
map is referred to as the CIB and tSZ deprojected map and we refer the reader to [52] for a detailed description of
our implementation. This operation results in a significant increase in the noise in the component-separated CMB
map. We could deproject the tSZ and CIB separately. However as shown in [94, 109] removing only one component
often increases the other component and so it is hard to predict how our results would change. However, on large
scales the map is still dominated by CMB modes. To remove any biases from our measurement we note that we only
need to ensure that the contamination is removed from one of the maps used in our estimator. In this case we can
use the tSZ and CIB deprojected map as the low-pass filtered map for the sign operation. We make this choice as
the scales relevant for the large-scale sign are largely unaffected by the increased noise in the deprojected map. The
small scale noise is increased to such an extent that the signal to noise is too low for a useful consistency test. The
resulting measurement, shown in Fig. 6, is consistent with our baseline measurement. This provides further support
that our measurement is not contaminated by the tSZ or CIB.

We also check for contamination from the ISW effect, which leads to a bias that is not removed from our estimator.
This is because the ISW contributes a significant amount of power to the CMB map and cannot be removed by
multifrequency cleaning. This means that there may be regions where the sign is set by the ISW effect, not the CMB.
The ISW effect traces the large scale potential field and so is correlated with other cosmic structures, such as the tSZ,
CIB and unWISE galaxies, and thus could produce a signal in our analysis. It is expected that any bias from the
ISW effect will be small as, even with optimal estimators, it is difficult to detect the ISW effect at high significance
[110, 111]. To test for this we subtract the Planck collaboration’s map of the ISW effect (see Ref. [112] for details
of the construction of this map) from our component-separated CMB map. We then repeat our stacking analysis.
By explicitly removing the ISW effect we should mitigate any potential bias. As shown in Fig. 6, our measurement
is largely unchanged. This suggests that our measurement is not dominated by bias from the ISW effect. This null
test has two limitations: first, it is difficult to produce a map of the ISW anisotropies. The map produced in Ref.
[112] is noisy and not a perfect tracer of the true ISW effect. Thus our subtraction will not perfectly and noiselessly
remove any biases. The ISW effect is only likely to bias our measurement on the largest scales, where it may impact
the measured sign, and these are the scales where the ISW effect is best measured. Second, the ISW map has a
slightly different mask compared to our fiducial analysis (see Fig. 20. of Ref. [112]). This will introduce some noise
and scatter in our measurements. Given the very small impact of subtracting the ISW map, we expect both of these
effects to be minor. An alternative method would be to filter out the largest scales. We do not consider that approach
here as the filtering adds large amounts of noise to the sign measurement.

The final test performed is aimed at characterizing the spectral response of the observed signature signal. The
frequency dependence of the patchy screening signal is expected to be the same as the primary CMB anisotropies.
In the differential thermodynamic units used in this analysis, the anisotropies are expected to be the same size at all
frequencies. We test this by generating maps that contain only observations at 93GHz or 148GHz. These maps are
then high-pass filtered and used in the estimator. These two measurements will be consistent if the observed signal
has no frequency dependence. We choose these two frequencies as they have sufficiently low noise and high resolution
to obtain a high SNR measurement. Fig. 6 shows that these two measurements are consistent and thereby provides
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FIG. 7. Constraints on the central optical depth and Full-Width-Half-Maximum of the Gaussian profiles for the blue and green
samples.

evidence that our observed signal has the expected frequency dependence.

V. Gaussian Profile Parameter Posteriors

In the main text, we use a Gaussian model to aid the quantification of the detection significance. We parameterized
the Gaussian via the central amplitude τ and the FWHM. The Gaussian is then convolved with the beam and filtered
in a manner identical to the data. In Fig. 7 we show the 2D contour plot for the best fit parameters of the Gaussian
model fit to the green and blue samples. Whilst the exact degeneracy direction depends on the parameterization
(instead of central optical depth, we could have considered the integrated optical depth), we find that both the
amplitude and width are constrained. Note that the filtering leads to a complex interplay between the amplitude and
width parameters. Filtering reduces the observed amplitude more significantly for wider profiles - a profile that is
wider than the filtering scale is completely removed. This is discussed in detail in [51].




