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1. Introduction
After the discovery of the Higgs boson a little over ten years ago [1, 2], it is one of
the main goals of the Large Hadron Collider (LHC) as well as potential future collid-
ers [3–5] to work towards understanding the dynamics of electroweak (EW) symmetry
breaking. Besides collider experiments, gravitational wave observatories [6–11] will start
to probe the EW phase transition within the next decades. This research could provide
substantial insights into the thermal history of the Universe, which is modified in many
extensions of the Standard Model (SM) of particle physics. This, in particular, includes
extensions of the SM Higgs sector, which may lead to a first order electroweak phase
transition, which would enable the scenario of electroweak baryogenesis [12–15] or to
phenomena like vacuum trapping, inverse symmetry breaking, or EW symmetry non-
restoration (EWSNR) [16–23]. In addition to the electroweak sector, phase transitions
can also appear outside the electroweak sector in many BSM scenarios, including hidden
sectors [24–34] and high-scale models (e.g., grand-unified theories) [35–38].

For all these different areas, precise theoretical predictions are crucial to fully exploit
the available experimental data. In the context of phase transition, this in particular
means to provide an accurate prediction for the effective potential at finite temperature
using perturbation theory.

It is well known that for high temperatures large corrections occur which exacerbate
the behaviour of the perturbative expansion. To resum these large corrections, various
resummation schemes have been developed in the literature. These include schemes
employing a diagrammatic expansion — most notably the Parwani [39] and Arnold-
Espinosa [40] resummation schemes — as well as schemes which involve solving the
gap equation — the full dressing (FD) and partial dressing (PD) procedures [41–43].
Moreover, the large thermal corrections can also be resummed in an effective field theory
(EFT) framework reducing the spacetime dimensions from four to three, an approach
called dimensional reduction (DR) [44–46].

While the Parwani and Arnold-Espinosa schemes have the benefit of being easy to
implement — explaining their widespread application in the literature —, they on the
other hand suffer from several disadvantages. First, they only allow to resum the leading
thermal corrections. In many scenarios, the resummation of subleading thermal correc-
tions is, however, also important for an accurate prediction. Moreover, they intrinsically
rely on the high-temperature expansion for calculating the thermal masses and the ther-
mal counterterms (see detailed discussion below). This implies that their accuracy is
questionable in the regime where the temperature is close to the order of the relevant
masses, which is exactly the interesting region for phase transitions (see Ref. [42] for a
more detailed discussion).

Similar issues appear in the DR approach. While DR offers a conceptionally well-
defined and systematic way to resum large thermal corrections, it is technically chal-
lenging (for recent steps towards automation of the required calculation, see Ref. [47]).
Moreover, as an EFT approach, it intrinsically relies on the separation of the scales.
This means that it is difficult to go beyond the high-temperature expansion and that
each EFT is only applicable to a pre-defined hierarchy of scales. This makes DR in par-
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ticular unsuited for parameter scans in BSM models for which many different hierarchies
of the masses and the temperature occur — requiring to work a different EFT for each
hierarchy of scales.

Partial dressing promises to resolve the issues of the FD and DR approaches. It
includes subleading thermal corrections and can be easily applied beyond the high-
temperature expansion making it particularly suited for studying phase transitions. It
has been applied to the singlet-extended SM [42]. Its accuracy and perturbative conver-
gence have been studied recently in Ref. [43].

In the first part of the present work, we present a detailed comparison of partial
dressing with the Arnold-Espinosa and Parwani resummation schemes. Afterwards, we
discuss the application of PD to the phenomenon of EWSNR. EWSNR occurs if the
thermal corrections to a particle mass dominate over the tree-level mass turning the
overall thermal mass squared negative. Thus, thermal corrections are by definition large
and large differences between the FD schemes have been found in the literature [20,
21]. In this paper, we extend this comparison to the two-loop level finding unphysical
predictions originating from large imaginary contributions to the effective potential. We
demonstrate that these issues do not occur if PD is used leading to a more reliable
prediction.

In the last part of this paper, we discuss the case of mixing scalar fields. So far, the
PD approach is restricted to scenarios in which only one scalar takes a non-zero value
effectively forbidding the description of models with mixing scalars. This strongly limits
the applicability of PD for phenomenological studies. We demonstrate a new method to
extend PD for scenarios with more than one non-zero scalar field.

Our paper is structured as follows. In Section 2, we review the need for thermal
resummation. Then, we discuss resummation in non-mixing one- and two-field models
in Section 3. In Section 4, we compare the FD and PD models for a toy model for
EWSNR. In Section 5, we demonstrate the application of PD to models with mixing
scalar fields. We provide conclusions in Section 6.

2. Perturbative Breakdown & Thermal Resummation
Bosonic field theories at finite temperature suffer from various issues in the infrared, prin-
cipal among them is that the usual perturbation expansion breaks down. To demonstrate
how this breakdown comes about, consider a simple ϕ4 theory with quartic self-coupling
λ. Working in the imaginary-time formalism [48], the 1-loop correction to the bosonic
propagator corresponds to the expression

=
λ

2
I[m] ≡ λ

2
T
∑
ωn

∫
d3k

(2π)3
1

K2 +m2
, (2.1)

where K = (ωn, k⃗) is the Euclidean four-momentum and ωn = 2πnT is the bosonic
Matsubara frequency. There are two useful ways to decompose this expression. One
option would be to split I into a zero-temperature piece I0[m] and a finite-temperature
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piece IT [m] [49],

I[m] =

∫
d4k

(2π)4
1

k2 +m2︸ ︷︷ ︸
I0[m]

+

∫
d3k

(2π)3
1

Ek

1

eEk/T − 1︸ ︷︷ ︸
IT [m]

, (2.2)

where E2
k = k⃗ 2 + m2. The zero-temperature I0[m] is UV-divergent, and we choose to

regularize it using dimensional regularization1 and the MS-scheme with renormalization
scale µR. Meanwhile the finite-temperature piece IT [m] is UV-finite, but sensitive to
the IR. A more convenient decomposition to reveal this would be to split the Matsubara
sum appearing in I[m] into a “soft” zero-mode piece with ωn = 0 and a “hard” non-zero
mode piece with ωn ̸= 0,

I[m] = T

∫
d3k

(2π)3
1

k⃗ 2 +m2︸ ︷︷ ︸
Isoft[m]

+T
∑
n̸=0

∫
d3k

(2π)3
1

ω2
n + k⃗ 2 +m2︸ ︷︷ ︸

Ihard[m]

. (2.3)

Working in the high-temperature limit m/T ∼ λ ≲ 1, the zero-mode contribution can
be evaluated explicitly as [49]

Isoft[m] = − 1

4π
mT , (2.4)

while the hard modes give a contribution

Ihard[m] =
T 2

12
− m2

16π2

(
1

ϵ
+ ln

(
µ2
Re

2γE

16π2T 2

))
+

ζ(3)

128π4

m4

T 2
+O

(
m6

T 4

)
. (2.5)

Thus we see that the correction to the zero-mode mass scales like δm2
soft ∼ mT ∼ λT 2

while the mass correction for the hard modes scale like δm2
hard ∼ T 2 in the high-T limit.

Since the latter is parametrically larger, excitations of non-zero modes in the thermal
plasma will act to screen the zero mode.

The IR problem manifests when considering higher loop “daisy diagrams", like that
shown in Fig. 1. This diagram features a zero-mode inner loop (dashed line) surrounded
by N hard outer loops (solid lines). Ignoring the overall symmetry factor, the contribu-
tion to the effective potential coming from such a diagram is

V daisy
N ∼

(
T

∫
d3k

(2π)3
1

(k⃗2 +m2)N

)(
λT
∑
n̸=0

∫
d3k

(2π)3
1

ω2
n + k⃗2 +m2

)N

, (2.6)

where the quantity in the first parenthesis comes from the N soft propagators in the
inner loop and scales as m3−2NT while that in the second parenthesis comes from the N
hard external loops and scales as λNT 2N . The result is

V daisy
N ∼

(
m3−2NT

)(
λNT 2N

)
= m3T

(
λT 2

m2

)N

. (2.7)

1Note that for convenience we display all equations with ϵ → 0, such that D = 4− 2ϵ → 4.
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Figure 1: A daisy diagram featuring a zero-mode inner loop (dashed) surrounded by N
hard external loops (solid).

There are two potential issues here. First comparing with the contribution from an
(N + 1)-loop daisy diagram, we see that each new hard thermal loop comes at a cost

α ≡ V daisy
N+1

V daisy
N

=
λT 2

m2
. (2.8)

The issue is that this expansion parameter α is not parametrically small at all times. In
particular when the system exhibits a phase transition, the expansion parameter becomes
O(1) at the critical temperature, since here m2 ∼ λT 2. This signals a breakdown of
the perturbative expansion; diagrams which formally appear to be higher order may
actually contribute with a magnitude equal to formally lower-order diagrams due to the
contributions from these hard thermal loops. Intuitively, this perturbative breakdown
occurs because at high temperatures, IR bosonic modes become highly occupied, leading
to an enhanced expansion parameter [50].

The second issue occurs for fields with vanishing mass, for which daisy diagrams with
N ≥ 2 are IR divergent. Clearly this divergence is not physical, as the thermodynamic
properties of a plasma of weakly interacting massless bosons (such as photons) are
observed to be finite, and so these divergent contributions must cancel amongst one
another when all terms in the expansion are summed. This is just another way to see
that at finite temperature, the fixed-order perturbative expansion fails.

A natural solution2, then, would be to reorganize the expansion using a new parameter
in terms of which the series is convergent — thermal resummation. Consider, for exam-
ple, how one would resum the daisy diagrams of Fig. 1. Computing the contribution
from an N -loop daisy diagram while more carefully keeping track of the combinatorial
factors, we would find

V daisy
N = − T

12π

1

N !

(
λT 2

4

)N (
d

dm2

)N

m3 . (2.9)

One can check that this correctly reproduces the scaling of Eq. (2.7) by using the fact
that m3−2N = 4

√
π

3
(−1)N

(N−1)!
Γ(N)

Γ(N−3/2)

(
d

dm2

)N
m3. If we now sum over all such diagrams, we

2There are also alternative strategies to thermal resummation, such as dimensional reduction [51, 52],
which we will not review here. Another option would be to just treat the problem non-perturbatively,
using appropriate lattice techniques.
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find
∞∑

N=0

V daisy
N = − T

12π

∞∑
N=0

1

N !

(
λT 2

4

d

dm2

)N

m3

= − T

12π
exp

(
λT 2

4

d

dm2

)
m3 .

(2.10)

Finally letting x = m2 and noting that exp
(
c d
dx

)
f(x) = f(x+ c), we find

∞∑
N=0

V daisy
N = − T

12π

(
m2 +

λ

4
T 2

)3/2

. (2.11)

This is a rather significant result; after summing all contributions, we find an expression
where the limit m2 → 0 can meaningfully be taken without running into IR divergences.
It is also significant that when m2 → 0, this correction comes in at O(λ3/2) rather than
O(λ2), as would naively be expected.

The quantity appearing in parenthesis is the thermally corrected mass

M
2
(ϕ, T ) ≡ m2(ϕ) +

λ

4
T 2 , (2.12)

and to leading order, daisy resummation amounts to replacing instances of m2 in the
effective potential with the thermally corrected version M

2. Of course, daisy diagrams
are not the only problematic diagrams that appear in finite temperature field theory;
there are also so-called “super-daisy” diagrams as well as other sub-leading diagrams
which demonstrate IR-sensitivity and so should be resummed. Given the questions of
which class of diagrams to resum and how to re-order the expansion, there exist several
different prescriptions for implementing thermal resummation.

Historically, the most popular methods employing a diagrammatic approach to ther-
mal resummation are the Parwani [39] and Arnold Espinosa [40] schemes. The major
conceptual difference between these methods is that in the Parwani prescription, all
modes are resummed, while in the Arnold Espinosa prescription, only the problematic
Matsubara zero-modes are resummed. On a technical level, this is equivalent to whether
the thermally corrected mass M

2 is substituted into all terms of the effective potential
or only those non-analytic in m2, which can be shown to correspond to zero-modes.
Because the thermally corrected mass is included in different terms, when working to
fixed order in perturbation theory these methods feature different higher-order terms,
resulting in different degrees of convergence.

In addition to these diagrammatic approaches to thermal resummation, which in com-
plicated theories quickly become impractical at higher-loop order, there is also a non-
diagrammatic method which we will refer to as gap resummation [53–55]. Rather than
computing the contributions from many higher loop diagrams, which quickly becomes
impractical in complicated theories, in gap resummation one need simply compute the
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one-loop effective potential V (1)
eff and then solve the gap equation for the thermally cor-

rected mass. This gap equation includes the dominant contributions from many3 higher-
order diagrams, in particular daisy diagrams to all orders in the effective potential. In
a theory with i = 1...n bosonic species {ϕi}, the gap equation for the thermal mass of
species i reads

M2
i =

∂2

∂ϕ2
i

V
(1)
eff (M2

j ) , (2.13)

where masses appearing in the effective potential on the right-hand side are the thermally
corrected masses for all species in the plasma M2

j . Because the thermal mass appears
on both sides of this equation, it must generally be solved numerically. For convenience,
it is common to solve the truncated gap equation

M2
i

∣∣
trunc. =

∂2

∂ϕ2
i

V
(1)
eff (m2

j) , (2.14)

where now the right hand side is evaluated on the field dependent effective masses m2
j .

When combined with the high temperature expansion, this truncated treatment only
resums the leading order hard thermal loops, and results in a solution of the form
M2

i |trunc.
high-T
= m2

i + cT 2 ≡ M
2

i , with c some constant function of the couplings.
After solving the gap equation, one usually proceeds by replacing the background field

dependent masses m2
i (ϕj) with the thermally corrected versions M2

i (ϕj, T ) in the effective
potential V (1)

eff . This prescription is called full dressing (FD), or truncated full dressing
(TFD) if one uses the thermal mass obtained by solving the truncated gap equation, and
diagrammatically it corresponds to dressing both the propagator and vertex in 1-loop
tadpole diagrams.

Interestingly at the 1-loop level, the Arnold-Espinosa and Parwani prescriptions co-
incide with special cases of truncated gap resummation. As we will soon see, the 1-loop
potential can be factorized into a zero-temperature Coleman-Weinberg (CW) piece VCW

and a finite temperature piece VT . In the Parwani prescription, we replace m2
i → M

2

i in
both VCW and VT while in the Arnold-Espinosa prescription we replace m2

i → M
2

i only
in the non-analytic term appearing in the thermal piece VT , corresponding to resumming
only the Matsubara zero-modes. The former then coincides with TFD at 1-loop while
the latter corresponds to a special case of TFD.

While the FD prescription has the obvious benefit of not needing to evaluate leading
order diagrams analytically, it also faces several difficulties. Beginning at 2-loop order,
certain higher-order diagrams such as the sunset diagram are not automatically included
and need to be added by hand. More concerningly, the FD prescription has been shown
to miscount daisy and superdaisy diagrams starting at 2-loop order [56, 57]. An alterna-
tive procedure which reliably resums the dominant contributions to higher order is the
partial dressing (PD) prescription, first introduced in Ref. [41] under the name of tadpole
resummation. Rather than substituting m2

i → M2
i directly in the effective potential, the

3Notably, contributions from superdaisy diagrams and other sub-leading diagrams like the bosonic
sunset are not automatically included.
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PD prescription instructs us to perform the replacement in the first derivative of the
effective potential V ′

eff, which can then be integrated to obtain Veff as

Veff =

∫
dϕ

∂Veff

∂ϕ

∣∣∣∣
m2→M2

. (2.15)

This scheme corresponds to dressing just the propagator and has been demonstrated by
explicit calculation to 4-loop order to give the right counting of daisy and superdaisy
diagrams [41]. A variant of PD resummation proposed in [42], optimized partial dressing,
has been shown to yield an even better degree of convergence.

Despite its promise as a resummation candidate, the PD prescription is not without its
challenges. PD omits a class of subleading diagrams starting at 2-loops. These are the
lollipop diagrams (obtained from the vacuum sunset diagram by attaching one external
leg to one of the vertices). Moreover, sunset-type tadpole diagrams are miscounted
(obtained from the vacuum sunset diagram by attaching one external leg to one of the
propagators). These issues can be resolved by adding the lollipop diagrams by hand and
adjusting the gap equation to fix the miscounting of the sunset diagrams (see Refs. [42,
57] as well as Appendix C).

Another more pressing issue pointed out in [42] is that it is unclear how to imple-
ment PD in multi-field scenarios where field excursions can occur along more than one
direction. Given that this is the case in a variety of beyond the Standard Model (BSM)
extensions capable of yielding a strongly first order electroweak phase transition, it is
crucial that the formalism be extended to accommodate this situation. We propose a
multi-field generalization of PD resummation which can be applied in scenarios where
the Higgs mixes with BSM scalars and then go on to compare the convergence of this
scheme with that of other resummation techniques.

3. Resummation in ϕ4 theory
Before getting into these technicalities, we will review the various resummation prescrip-
tions in the context of a simple ϕ4 theory. We begin in Section 3.1 by computing the
effective potential at 1- and 2-loop order in the context of a single field ϕ4 theory, to later
generalize to the multi-field case (without mixing) in Sec. 3.2. In Secs. 3.3, 3.4, 3.5.1,
and 3.5.2, we resum the effective potential using the Parwani, Arnold-Espinosa, full
dressing, and partial dressing schemes, respectively. Finally in Section 3.6 we compare
for a few benchmark points and comment on the differences.

3.1. Unresummed Veff(ϕ) at 1- and 2-loops

We consider a single-field ϕ4 theory with tree-level potential

V0 =
µ2

2
ϕ2 +

λ

4
ϕ4 . (3.1)
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At 1-loop, the effective potential receives radiative and finite temperature corrections
captured by the sum-integral [58]

V1-loop = J [m] ≡ 1

2

∑∫
K

ln
(
K2 +m2

)
, (3.2)

where K = (ωn, k⃗) are Euclidean 4-momenta, ωn = 2πnT are bosonic Matsubara modes,
and the symbol ∑∫ is shorthand for Euclidean integration

∑∫
K

≡ T
∑
ωn

∫
d3k

(2π)3
. (3.3)

The mass entering into this 1-loop correction is the field-dependent effective mass

m2 =
∂2V0

∂ϕ2
= µ2 + 3λϕ2 , (3.4)

where ϕ here is understood to take its background field value. In many contexts, it
is convenient to decompose the bosonic J -function into a zero temperature Coleman-
Weinberg piece4

VCW =
m4

64π2

(
ln

(
m2

µ2
R

)
− 3

2

)
, (3.5)

and a finite temperature piece

VT =
T 4

2π2
JB

(
m2

T 2

)
, with JB(y

2) =

∫ ∞

0

dx x2 ln
(
1− e−

√
x2+y2

)
, (3.6)

such that V1-loop = VCW + VT . In the high- and low-temperature limits, JB(y2) admits
expansions given in Eqs. (A.2) and (A.3) of Appendix A. We will often have cause to
work in the high-temperature regime, in which the full 1-loop correction reads:

V1-loop = J [m] ≃ 1

24
m2T 2 − 1

12π
m3T − LR

64π2
m4 +O

(
m6

T 2

)
, (3.7)

where LR = ln (µ2
R/T

2) + 2(γE − ln 4π) and we have ignored the field-independent con-
stant. Note that the logarithmic terms have cancelled between the Coleman-Weinberg
and finite temperature contributions, such that − 1

12π
m3T is the only term originating

from the Matsubara zero-mode, as evidenced by the fact that it is non-analytic in m2.
Combining with the tree level piece, the effective potential at 1-loop V

(1)
eff = V0 + V1-loop

in the high-temperature expansion is

V
(1)
eff =

1

2
(µ2 + cϕT

2)ϕ2 +
λ

4
ϕ4 − 1

12π
m3T − LR

64π2
m4 +O

(
m6

T 2

)
, (3.8)

where we have defined cϕ = λ/4.
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Figure 2: 2-loop corrections to the effective potential in ϕ4 theory, including (A) the
figure-8 diagram, (B) the sunset diagram, (C) the 1-loop mass counterterm
diagram, and (D) the 1-loop vertex counterterm diagram. Solid circles de-
note 1-loop counterterms and x’s indicate explicit field insertions. Diagram
(E) should only be added to the effective potential upon performing thermal
resummation in the Parwani scheme and features a 1-loop thermal “countert-
erm” (solid square).

At 2-loops, the corrections to the effective potential are summarized diagramatically
in Fig. 2. The figure-8 diagram (A) corresponds to the contribution

V A
2-loop =

3λ

4
I[m]2 , (3.9)

where
I[m] ≡

∑∫
K

1

K2 +m2
. (3.10)

This sum-integral is related to the J of Eq. (3.2) as I = m−1 dJ
dm

, and so admits the
high-temperature expansion given in Eq. (A.5) of Appendix A. Using this expansion,
V A
2-loop explicitly evaluates to

V A
2-loop = − λ

32π
mT 3 +

(3− LR)λ

64π2
m2T 2 +

3LRλ

128π3
m3T +

(ζ(3) + 3L2
R)λ

1024π4
m4 . (3.11)

The sunset diagram (B) corresponds to the contribution

V B
2-loop = −3λ2ϕ2H[m,m,m] , (3.12)

where, for three arbitrary masses m1, m2, m3

H[m1,m2,m3] =
∑∫
P

∑∫
Q

1

(P 2 +m2
1)(Q

2 +m2
2)((P +Q)2 +m2

3)
. (3.13)

4We work in the MS scheme with renormalization scale µR. Note that this prescription at finite
temperature does not eliminate all factors of 4π and γE , as it does at zero temperature.
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Using the high-temperature expansion of H in Eq. (A.13), the contribution V B
2-loop is

explicitly

V B
2-loop = − 3λ2

32π2

(
ln

(
µ2
R

m2

)
− 2 ln 3 + 1

)
T 2ϕ2

+
9λ2

64π3

(
ln

(
µ2
R

m2

)
+ LR − 2 ln 2 + 2

)
mTϕ2

+
9λ2

256π4

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)
m2ϕ2 .

(3.14)

Next we have diagrams (C) and (D), which feature 1-loop mass and vertex counterterms5,
respectively. The former corresponds to an expression of the form

V C
2-loop =

3λ

32π2
µ2I[m]

1

ϵ
. (3.15)

The leading order field-dependent contribution first comes in at O(λ5/2T 4), which is
higher than the order to which we work, and so can be neglected. The vertex counterterm
diagram (D) corresponds to

V D
2-loop =

27λ2

32π2
ϕ2I[m]

1

ϵ
. (3.16)

The leading order finite contribution comes from the O(ϵ) piece of I[m] ⊃ ϵ
12
LRT

2,
leading to

V D
2-loop =

9LRλ
2

128π2
T 2ϕ2 . (3.17)

The 2-loop correction to the effective potential is the sum of Eqs. (3.11), (3.14), and
(3.17),

V2-loop = − λ

32π
mT 3 +

(12− 3LR)λ

256π2
m2T 2 +

3LRλ

128π3
m3T +

(ζ(3) + 3L2
R)λ

1024π4
m4

− 3λ2

128π2

(
4 ln

(
µ2
R

m2

)
− 3LR − 8 ln 3 + 4

)
T 2ϕ2

+
9λ2

64π3

(
ln

(
µ2
R

m2

)
+ LR − 2 ln 2 + 2

)
mTϕ2

+
9λ2

256π4

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)
m2ϕ2 .

(3.18)

Combining with the 1-loop correction of Eq. (3.7) and the tree-level potential of Eq. (3.1)
yields the 2-loop effective potential Veff in the high-temperature approximation.

5Note that due to the O(ϵ) pieces in I[m], not only do these diagrams feature divergent O(1/ϵ) pieces
that cancel against the divergences in the 2-loop diagrams, but they can also give a finite contribution
to the effective potential.
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3.2. Unresummed Veff(ϕ1, ϕ2) at 1- and 2-loops

Interesting finite-temperature effects can arise upon the addition of a second scalar field.
Consider the tree-level potential

V0 =
µ2
1

2
ϕ2
1 +

µ2
2

2
ϕ2
2 +

λ1

4
ϕ4
1 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2 . (3.19)

For now, we will restrict to the case where only one of the fields develops a vacuum
expectation value, such that we need not worry about mixing. In this case there will be
no off-diagonal terms in the field-dependent mass matrix, and the effective masses for
ϕ1 and ϕ2 are

m2
1 = µ2

1 + 3λ1ϕ
2
1 +

λ12

2
ϕ2
2 , (3.20a)

m2
2 = µ2

2 + 3λ2ϕ
2
2 +

λ12

2
ϕ2
1 . (3.20b)

The 1-loop contribution to the effective potential is

V1-loop = J [m1] + J [m2] , (3.21)

with the bosonic J -function defined in Eq. (3.2). In the high-temperature approxima-
tion, the effective potential at 1-loop is then

V
(1)
eff =

1

2
(µ2

1 + c1T
2)ϕ2

1 +
1

2
(µ2

2 + c2T
2)ϕ2

2 +
λ1

4
ϕ4
1 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2

− 1

12π
(m3

1 +m3
2)T − LR

64π2
(m4

1 +m4
2) ,

(3.22)

where we have defined the thermal mass parameters

c1 =
1

24
(6λ1 + λ12) , c2 =

1

24
(6λ2 + λ12) . (3.23)

When the mixed quartic coupling is negative, λ12 < 0, one6 of these thermal mass
parameters ci can be negative. Then at high temperatures when the thermal contribution
dominates the bare mass, one of the thermal masses

M
2

i = m2
i + ciT

2 (3.24)

may become negative — indicative of spontaneous symmetry breaking. Occasionally
in the literature (see e.g. Ref. [17]), the thermal masses are modified by inserting an
additional Boltzmann factor,

M
2

Boltzmann,i = m2
i + ciT

2e−mi/T , (3.25)

which allows for a better approximation of the full thermal loop function for low tem-
peratures.
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Figure 3: 2-loop corrections to the effective potential, including (A) figure-8 diagrams,
(B) the sunset diagrams, (C) 1-loop mass counterterm diagrams, and (D) 1-
loop vertex counterterm diagrams. Blue propagators correspond to ϕ1 while
red correspond to ϕ2. Solid circles indicate 1-loop counterterms and x’s indicate
explicit field insertions. In particular, the blue, red, and purple circles of row
(D) are λ1, λ2, and λ12 vertex counterterms, respectively. The 1-loop thermal
“counterterm” (solid square) diagrams of row (E) should be included upon
performing thermal resummation in the Parwani scheme.

The 2-loop contributions to the effective potential are summarized diagrammatically
in Fig. 3. Now in addition to figure-8, sunset, and counterterm diagrams for each species,
we must also consider mixed diagrams. The first row of figure-8 diagrams corresponds
to the expressions

V A1
2-loop =

3λ1

4
I[m1]

2 , (3.26a)

V A2
2-loop =

3λ2

4
I[m2]

2 , (3.26b)

V A3
2-loop =

λ12

4
I[m1] I[m2] , (3.26c)

which, using the high-temperature expansion of I in Eq. (A.5), may be written explicitly
in this limit as

V A1
2-loop =

λ1

32π

[
−m1T

3 +
(6− LR)

4π
m2

1T
2 +

3LR

4π2
m3

1T +
(ζ(3) + 3L2

R)

32π3
m4

1

]
, (3.27a)

6The boundedness-from-below condition on λ1 and λ2 prevents both c1 and c2 from being negative.
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V A2
2-loop =

λ2

32π

[
−m2T

3 +
(6− LR)

4π
m2

2T
2 +

3LR

4π2
m3

2T +
(ζ(3) + 3L2

R)

32π3
m4

2

]
, (3.27b)

V A3
2-loop =

λ12

64π2

[
− π

3
(m1 +m2)T

3 +m1m2T
2 − LR

12
(m2

1 +m2
2)T

2

+
LR

4π
(m1 +m2)m1m2T +

ζ(3)

96π2
(m4

1 +m4
2) +

L2
R

16π2
m2

1m
2
2

]
.

(3.27c)

The second row of sunset diagrams corresponds to expressions

V B1
2-loop = −3λ2

1ϕ
2
1H[m1,m1,m1] , (3.28a)

V B2
2-loop = −3λ2

2ϕ
2
2H[m2,m2,m2] , (3.28b)

V B3
2-loop = −λ2

12

4
ϕ2
2H[m1,m1,m2] , (3.28c)

V B4
2-loop = −λ2

12

4
ϕ2
1H[m1,m2,m2] . (3.28d)

Note that since these expressions feature external ϕi insertions, they vanish unless ϕi has
non-zero vacuum expectation value. Suppose we take ϕ1 to be the field which develops
a vacuum expectation value; then V B2

2-loop = V B3
2-loop = 0. Using the high-temperature

expansion of H in Eq. (A.13), the remaining V B1
2-loop and V B4

2-loop are explicitly

V B1
2-loop =− 3λ2

1

32π2

(
ln

(
µ2
R

9m2
1

)
+ 1

)
ϕ2
1T

2

+
9λ2

1

64π3

(
ln

(
µ2
R

m2
1

)
+ LR − 2 ln 2 + 2

)
m1ϕ

2
1T

+
9λ2

1

256π4

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)
m2

1ϕ
2
1 ,

(3.29a)

V B4
2-loop =− λ2

12

64π2

(
ln

(
µR

m1 + 2m2

)
+

1

2

)
ϕ2
1T

2

+
λ2
12

256π3

(
ln

(
µ2
R

4m2
1

)
+ LR + 2

)
m1ϕ

2
1T

+
λ2
12

128π3

(
ln

(
µ2
R

4m2
2

)
+ LR + 2

)
m2ϕ

2
1T

+
λ2
12

1024π4

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)
(m2

1 + 2m2
2)ϕ

2
1 .

(3.29b)

As in the single ϕ4 case, the leading order, field-dependent contribution from the dia-
grams of row (C) are higher order than that to which we work, and so can be neglected.
Of the diagrams of row (D), corresponding to expressions

V D1
2-loop =

3

128π2
(36λ2

1 + λ2
12)ϕ

2
1 I[m1]

1

ϵ
, (3.30a)
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V D2
2-loop =

3

128π2
(36λ2

2 + λ2
12)ϕ

2
2 I[m2]

1

ϵ
, (3.30b)

V D3
2-loop =

1

64π2

(
3(λ1 + λ2)λ12 + 2λ2

12

)
ϕ2
2 I[m1]

1

ϵ
, (3.30c)

V D4
2-loop =

1

64π2

(
3(λ1 + λ2)λ12 + 2λ2

12

)
ϕ2
1 I[m2]

1

ϵ
, (3.30d)

we need only consider V D1
2-loop and V D4

2-loop, since ϕ2’s vanishing background value means
V D2
2-loop = V D3

2-loop = 0. The explicit contributions from the non-vanishing diagrams in the
high-temperature approximation are

V D1
2-loop =

LR

512π2
(36λ2

1 + λ2
12)ϕ

2
1T

2 , (3.31a)

V D4
2-loop =

LR

768π2
(3(λ1 + λ2)λ12 + 2λ2

12)ϕ
2
1T

2 . (3.31b)

Gathering all these terms, the 2-loop contribution to the effective potential is

V2-loop = V A1
2-loop + V A2

2-loop + V A3
2-loop + V B1

2-loop + V B4
2-loop + V D1

2-loop + V D4
2-loop , (3.32)

and the effective potential at 2-loop order is

V
(2)
eff = V

(1)
eff + V2-loop , (3.33)

with V
(1)
eff in Eq. (3.22).

3.3. Parwani

The Parwani prescription [39] is a diagramatic approach to resummation in which all
modes are resummed. On a technical level, it simply amounts to replacing m2

i with the
high-temperature expanded thermal mass M

2

i = m2
i + ciT

2 everywhere and adding to
the 2-loop effective potential the “thermal counterterm” diagrams shown in row E of
Fig. 3. This has the effect of resumming the dominant parts of ring diagrams.

To see why, consider for the moment a simpler single field ϕ4 theory with tree-level
potential V0 =

µ2

2
ϕ2 + λ

4
ϕ4. As discussed in Sec. 2, resumming daisy diagrams amounts

to replacing the m2 appearing in propagators with M
2. In order to do this consistently,

we can add and subtract the thermal contribution to the mass cϕT
2 = λ

4
T 2 in a clever

way, such that the tree-level potential becomes

V0 =
1

2
(µ2 + cϕT

2)ϕ2 +
λ

4
ϕ4 − cϕ

2
T 2ϕ2 . (3.34)

This is equivalent to the original potential, but now the idea is to treat the first two
terms as defining the unperturbed theory, and the last term as a perturbation — a
“thermal counterterm”. Now order-by-order, the cϕT

2 pieces of quadratically divergent
sub-loops will cancel against new diagrams involving thermal counterterms, resulting in
a new convergent loop expansion parameter λT/M [40]. Returning to the full theory,
we see that to implement Parwani resummation we should:
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1. Replace all field dependent effective masses m2
i with leading order thermal masses

M
2

i = m2
i + ciT

2, with ci given in Eq. (3.23).

2. Include thermal counterterm diagrams in calculating Veff.

These thermal counterm diagrams do not enter until 2-loop order, so at 1-loop the
Parwani-resummed effective potential is simply V

(1)
eff,P = V

(1)
eff |m2

i→M2
i
, or explicitly

V
(1)
eff,P =

1

2
(µ2

1 + c1T
2)ϕ2

1 +
1

2
(µ2

2 + c2T
2)ϕ2

2 +
λ1

4
ϕ4
1 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2

− 1

12π
(M

3

1 +M
3

2)T − LR

64π2
(M

4

1 +M
4

2) .

(3.35)

The 2-loop diagrams featuring “thermal counterterms” are shown in row E of Fig. 3 and
correspond to expressions

V E1
2-loop = −1

2
c1T

2I[M1] , (3.36a)

V E2
2-loop = −1

2
c2T

2I[M2] . (3.36b)

Using the high-temperature expansion of I[m] in Eq. (A.5), these evaluate to

V E1
2-loop =

(
λ1

4
+

λ12

24

)[
1

8π
M1T

3 +
LR

32π2
M

2

1T
2 − ζ(3)

256π4
M

4

1

]
, (3.37a)

V E2
2-loop =

(
λ2

4
+

λ12

24

)[
1

8π
M2T

3 +
LR

32π2
M

2

2T
2 − ζ(3)

256π4
M

4

2

]
. (3.37b)

We see that these expressions have pieces which exactly cancel the IR sensitive pieces
coming from V A

2-loop|m2
i→M2

i
,

V A
2-loop|m2

i→M2
i
⊃ − λ1

32π
M1T

3 − λ2

32π
M2T

2 − λ12

192π
(M1 +M2)T

3 . (3.38)

Upon adding these contributions to V2-loop, as given in Eq. (3.32), and replacing m2
i →

]M
2

i everywhere in V2-loop, we arrive at the Parwani-resummed 2-loop effective potential

V
(2)
eff,P = V

(1)
eff,P + V2-loop(M

2

i ) + V E1
2-loop(M

2

i ) + V E2
2-loop(M

2

i ) . (3.39)

As demonstrated in the discussion above, Parwani resummation intrinsically depends
on the high-temperature expansion and also only resum the leading contributions in the
high-temperature limit.
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3.4. Arnold-Espinosa

Alternatively because only the Matsubara zero mode ω0 demonstrates problematic be-
havior in the IR, we could just resum these “soft” modes whilst leaving the hard non-zero
modes untouched. This is the basic premise behind the Arnold-Espinosa prescription
[40], another popular diagrammatic approach to resummation. Because it requires split-
ting calculations into soft and hard modes, it is in principle a bit more cumbersome to
implement. Consider for example the J -function defined in Eq. (3.2). Previously we
had taken the customary approach of separating this into a zero-temperature Coleman-
Weinberg piece and a finite temperature piece [55],

J [m] =
1

2

∫
d4k

(2π)4
ln
(
k2 +m2

)
︸ ︷︷ ︸

JCW[m]

−T

∫
d3k

(2π)3
ln
(
1∓ nB/F(Ek, T )

)
︸ ︷︷ ︸

JT [m]

, (3.40)

where nB/F(Ek, T ) = 1/
(
eEk/T ∓ 1

)
. A more useful decomposition for the purposes of

Arnold-Espinosa resummation would be to isolate the zero mode

J [m] =
T

2

∫
d3k

(2π)3
ln
(
k2 +m2

)
︸ ︷︷ ︸

Jsoft[m]

+
T

2

∑
n̸=0

∫
d3k

(2π)3
ln
(
ω2
n + k2 +m2

)
︸ ︷︷ ︸

Jhard[m]

, (3.41)

where ωn = 2πnT . Working in the high-temperature expansion, one can show that this
first zero-mode piece evaluates to

Jsoft[m] ≃ − 1

12π
m3T . (3.42)

Comparing against the full expression in Eq. (3.7), we note that the zero-mode con-
tribution is just the term non-analytic in m2. This is a more generic phenomenon; it
will turn out to be the case that all terms non-analytic in m2 contain zero-mode con-
tributions. This makes implementing Arnold-Espinosa resummation surprisingly simple
in practice when working in the high-temperature expansion, since the terms requiring
resummation are readily identifiable. At 1-loop there is only one such term (per scalar
field ϕi), and we resum it by replacing m3

i → M
3

i . The 1-loop effective potential in the
Arnold-Espinosa scheme then reads

V
(1)
eff,AE =

1

2
(µ2

1 + c1T
2)ϕ2

1 +
1

2
(µ2

2 + c2T
2)ϕ2

2 +
λ1

4
ϕ4
1 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2

− 1

12π
(M

3

1 +M
3

2)T − LR

64π2
(m4

1 +m4
2) .

(3.43)

This expression is similar to the Parwani-resummed V
(1)
eff,P but differs in the higher order

terms ∝ m4. Explicitly, the difference between the two is

V
(1)
eff,AE − V

(1)
eff,P =

LR

64π2

[
(c21 + c22)T

4 + 2(c1m
2
1 + c2m

2
2)T

2
]
. (3.44)
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Before moving on to the 2-loop effective potential, we note that often in the literature
one speaks of resumming V

(1)
eff by adding the daisy “ring improvement” term

Vdaisy = − 1

12π
(M

3 −m3)T . (3.45)

We see that the result is completely identical to that of the procedure described above.
At 2-loop order, there are many more terms with non-analytic m2 dependence. It will

be useful to define the Arnold-Espinosa resummed I-function, whose high-temperature
expansion reads

IAE[m] ≃ 1

12
T 2 − 1

4π
MT − LR

16π2
m2 +

ζ(3)

128π4

m4

T 2
. (3.46)

Then from Eqs. (3.26), the contributions to the resummed V2-loop coming from the figure-
8 diagrams are

V A1
2-loop,AE =

λ1

32π

[
−M1T

3 − LR

4π
m2

1T
2 +

3

2π
M

2

1T
2 +

3LR

4π2
m2

1M1T +
(ζ(3) + 3L2

R)

32π3
m4

1

]
,

(3.47a)

V A2
2-loop,AE =

λ2

32π

[
−M2T

3 − LR

4π
m2

2T
2 +

3

2π
M

2

2T
2 +

3LR

4π2
m2

2M2T +
(ζ(3) + 3L2

R)

32π3
m4

2

]
,

(3.47b)

V A3
2-loop,AE =

λ12

64π2

[
− π

3
(M1 +M2)T +M1M2T

2 − LR

12
(m2

1 +m2
2)T

2

+
LR

4π
(M1m

2
2 +M2m

2
1)T +

L2
R

16π2
m2

1m
2
2 +

ζ(3)

96π2
(m4

1 +m4
2)

]
.

(3.47c)
From Eq. (3.29), the contribution from the sunset diagrams are

V B1
2-loop,AE =− 3λ2

1

32π2

(
ln

(
µ2
R

9M
2

1

)
+ 1

)
ϕ2
1T

2

+
9λ2

1

64π3

(
ln

(
µ2
R

M
2

1

)
+ LR − 2 ln 2 + 2

)
M1ϕ

2
1T

+
9λ2

1

256π4

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)
m2

1ϕ
2
1 ,

(3.48a)

V B4
2-loop,AE =− λ2

12

64π2

(
ln

(
µR

M1 + 2M2

)
+

1

2

)
ϕ2
1T

2

+
λ2
12

256π3

(
ln

(
µ2
R

4M
2

1

)
+ LR + 2

)
M1ϕ

2
1T

+
λ2
12

128π3

(
ln

(
µ2
R

4M
2

2

)
+ LR + 2

)
M2ϕ

2
1T

+
λ2
12

1024π4

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)
(m2

1 + 2m2
2)ϕ

2
1 ,

(3.48b)

19



where again we are taking ϕ1 as the field which develops a vacuum expectation value.
Finally from Eq. (3.31), we see that the contributions from vertex counterterm diagrams
are unaffected by the resummation. The 2-loop effective potential resummed in the
Arnold-Espinosa scheme is then

V
(2)
eff,AE = V

(1)
eff,AE+V A1

2-loop,AE+V A2
2-loop,AE+V A3

2-loop,AE+V B1
2-loop,AE+V B4

2-loop,AE+V D1
2-loop+V D4

2-loop .
(3.49)

As for Parwani resummation, the Arnold-Espinosa resummation scheme intrinsically
depends on the high-temperature expansion and resums only the leading contributions
in the high-temperature limit.

3.5. Gap resummation

Gap resummation offers an alternative to the diagrammatic approaches to resummation
described above, which quickly become cumbersome at higher loop order. Rather than
evaluating such diagrams analytically, in gap resummation one need merely compute V (1)

eff
and then solve the so-called “gap equation” for the thermal mass. This gap equation
includes the dominant contributions from many higher-order diagrams, though admit-
tedly it does not include contributions from certain sub-leading diagrams at each order
(for example, parts of the 2-loop sunset diagram). After solving the gap equation for the
thermal mass, this is substituted into either V

(1)
eff in the full dressing (FD) prescription

or into ∂ϕV
(1)
eff in the partial dressing (PD) prescription. The latter is sometimes also

called tadpole resummation, and has been demonstrated to count daisy and superdaisy
diagrams more faithfully to higher order.

The first step in either procedure is solving the gap equation for the thermal mass,

M2
i =

∂2

∂ϕ2
i

V
(1)
eff (M2

j ) . (3.50)

Note that the thermal mass M2 appears on both the left- and right-hand sides of this
equation, which must be solved numerically. Considering for the moment single-field ϕ4

theory in the high temperature expansion — the effective potential for which given in
Eq. (3.8) — this gap equation is explicitly

M2 high-T
= m2 +

λT 2

4
− 3λMT

4π
− 3λLRM

2

16π2
− 9λ2ϕ2T

4πM
− 9λ2LRϕ

2

8π2
. (3.51)

The set of gap equations in the 2-field case is even more complicated given their coupled
nature

M2
1

high-T
= µ2

1 + 3λ1ϕ
2
1 +

λ12

2
ϕ2
2 + c1T

2 − 3λ1

4π
M1T − λ12

8π
M2T

− 3λ1

16π2
LRM

2
1 − λ12

32π2
LRM

2
2 − LR

32π2
(36λ2

1 + λ2
12)ϕ

2
1 ,

(3.52a)

M2
2

high-T
= µ2

2 + 3λ2ϕ
2
2 +

λ12

2
ϕ2
1 + c2T

2 − 3λ2

4π
M2T − λ12

8π
M1T

− 3λ2

16π2
LRM

2
2 − λ12

32π2
LRM

2
1 − LR

32π2
(36λ2

2 + λ2
12)ϕ

2
2 .

(3.52b)
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3.5.1. Full dressing

In the full dressing (FD) prescription, the thermal masses M2
i obtained by solving the

gap equations are substituted directly into the effective potential, V FD
eff = V

(1)
eff |m2

i→M2
i
,

with the result

V FD
eff =

1

2
(µ2

1 + c1T
2)ϕ2

1 +
1

2
(µ2

2 + c2T
2)ϕ2

2 +
λ1

4
ϕ4
1 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2

− 1

12π
(M3

1 +M3
2 )T − LR

64π2
(M4

1 +M4
2 ) .

(3.53)

When one uses the high-temperature expanded truncated thermal masses, this is iden-
tical to the 1-loop effective potential in the Parwani scheme V

(1)
eff,P, given in Eq. (3.35).

More generally when using the full solutions of the gap equation, however, they differ.

3.5.2. Partial dressing

One issue with the FD prescription is that it miscounts certain diagrams starting at
2-loop order [56, 57]. This shortcoming led to the introduction of the partial dressing
(PD) prescription, in which one replaces m2 → M2 on the level of the first derivative
of the effective potential ∂ϕVeff and then integrates to obtain the resummed effective
potential

V PD
eff =

∫
dϕ

(
∂V

(1)
eff (m2

i )

∂ϕ

)
m2

i→M2
i

, (3.54)

where the Mi’s are the full solution of the gap equations. The procedure can be under-
stood by thinking about Dyson resummation in zero-temperature field theory. There,
self-energy corrections are resummed into the propagator

i

p2 −m2
→ i

p2 −m2 + Σ(p2)
, (3.55)

where Σ(p2) is the self energy and p2 is the momentum. If Σ is not dependent on p2, all
corrections to the propagator can be absorbed into the mass via

m2 → M2 = m2 − Σ . (3.56)

This resummation can also be used to absorb thermal corrections since their leading part
does not depend on the momentum (see Appendix C for a discussion of the momentum-
dependent parts). Moreover, we can identify M2 as the solution of the gap equation. To
ensure proper resummation, it just needs to be ensured that this replacement is done
only for all propagators and not for vertices, which in the effective potential are, however,
expressed in terms of the mass. To avoid also dressing the vertex, the replacement is
done on the level of the tadpole for which the coupling is explicit (see below).

The PD procedure has been demonstrated to correctly count the most relevant dia-
grams up to 4-loop order [41]. To compare the two and explicitly understand why FD
leads to a miscounting while PD does not, we will consider the 1-loop tadpole diagrams
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which compute ∂ϕV1-loop (in contrast to the vacuum diagrams which compute V1-loop).
These tadpoles can be formed from the corresponding vacuum diagrams by attaching a
zero-momentum truncated external leg to each part of the vacuum diagram. By shift-
ing m2 → M2 at the level of vacuum diagrams, FD is equivalent to dressing both the
propagator and 3-point vertex c3 ≡ ∂ϕm

2 of the corresponding 1-loop tadpole diagrams.
In contrast, by shifting m2 → M2 at the tadpole level, PD dresses only the propagator.

To see explicitly that the former dressing of both vertex and propagator leads to a
miscounting, let us return for the moment to the single-field ϕ4 theory. Presuming the
hierarchy λT 2/m2 ≃ 1, λT/m < 1, and ϕ2/T 2 ≪ 1, the leading order gap equation is7

M2 high-T
= m2 +

λT 2

4
− 3λMT

4π
− 9λ2ϕ2T

4πM
. (3.57)

The solution gives the dressed propagator, and to O(λ3) reads

M
high-T≃ m+

λT 2

8m
− 3λT

8π
− λ2T 4

128m3
+

9λ2T 2

128π2m
+

λ3T 6

1024m5
− 9λ3T 4

1024π2m3
. (3.58)

Meanwhile, the dressed 3-point vertex C3 is obtained by differentiating the gap equation,
C3 = ∂ϕM

2. Working to the same order, the solution is

C3
high-T
= 6λϕ

(
1− 9λT

8πm
+

9λ2T 3

64πm3
− 27λ3T 5

1024πm5
+

81λ3T 3

1024π3m3

)
, (3.59)

In FD, both the propagator and vertex of the tadpole are improved, and so starting from
Eq. (3.7), the contribution to the derivative of the 1-loop effective potential reads

∂ϕV
FD
1-loop

high-T
=

T 2

24
(6λϕ)− MT

8π
C3 + ... (3.60)

where the first leading order term comes from the hard thermal loop, the second term
comes from the zero mode, and we suppress higher order terms. This is in contrast to
PD, for which only the propagator is dressed, leading to

∂ϕV
PD
1-loop

high-T
=

T 2

24
(6λϕ)− MT

8π
c3 + ... (3.61)

where c3 = ∂ϕm
2 = 6λϕ is the undressed 3-point vertex. Explicitly using the forms of

M and C3 above, the zero-mode piece in either case reads

−MT

8π
C3

high-T
= (6λϕ)

(
− mT

8π
− λT 3

64πm
+

3λT 2

16π2
+

λ2T 5

1024πm3
− 63λ2T 3

1024π3m

− λ3T 7

8192πm5
+

63λ3T 5

8192π3m3

)
, (3.62)

7The last term proportional to ϕ2 is formally subleading in this equation for M2. It, however, becomes
important when taking the derivative with respect to ϕ for computing the 3-point vertex.

22



−MT

8π
c3

high-T
= (6λϕ)

(
− mT

8π
− λT 3

64πm
+

3λT 2

64π2
+

λ2T 5

1024πm3
− 9λ2T 3

1024π3m

− λ3T 7

8192πm5
+

9λ3T 5

8192π3m3

)
. (3.63)

The difference between the fully dressed and partially dressed 1-loop tadpole, defined as
∆ ≡ ∂ϕV

FD
1-loop − ∂ϕV

PD
1-loop, is then

∆
high-T
= (6λϕ)

(
9λT 2

64π2
− 27λ2T 3

512π3m
+

27λ3T 5

4096π3m3

)
. (3.64)

By computing contributions from the relevant Feynman diagrams up to 4-loop order,
Ref. [41] finds an expression for ∂ϕV1-loop which precisely matches that of ∂ϕV PD

1-loop above,
and so ∆ quantifies the extraneous contribution due to miscounting in the FD procedure.
These extra terms are not present for PD, which automatically includes subleading
thermal corrections of super-daisy order. This is reflected in Fig. 7, which compares the
PD procedure with FD, Parwani, and Arnold-Espinosa resummation schemes at 1- and
2-loop level.

One shortcoming of PD is that an ambiguity arises when field excursions can proceed
along multiple directions. Namely it is unclear which field to take the derivative of
Veff with respect to, since in general V PD,1

eff ̸= V PD,2
eff , where V PD,i

eff =
∫
dϕi ∂iVeff

∣∣
M2 . In

Sec. 5.2 we propose a multi-field generalization which holds even in the case of mixing
scalar fields, making PD suitable for a wider range of applications, in particular BSM
extensions of the Higgs sector.

3.6. Numerical comparison

Single-field ϕ4 theory

For our numerical discussion of the single-field ϕ4 theory, we focus on the benchmark
point

λ = 1/3, µ = 1 TeV . (3.65)

We set the renormalisation scale equal to the temperature.
We start our numerical discussion by comparing different approximations for the ther-

mal masses as a function of the temperature in Fig. 4. The thermal masses are normalized
to the full thermal mass computed by solving the gap equation.

As expected, the high-temperature expansion of the thermal mass M
2 is close to the

full solution of the gap equation M2 for low temperatures since the overall thermal
corrections are negligible (see blue curve and Eq. (3.24)). The small ∼ 5% deviation
for temperatures close to zero is explained by loop corrections induced by the Coleman-
Weinberg potential, which are not taken into account in the high-temperature expansion.
For temperatures above 1 TeV, the ratio of the high-temperature thermal mass to the
full thermal mass increases quickly until the curve converges at ∼ 1.3 for T ≳ 10 TeV
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Figure 4: Different approximations of the thermal masses (blue: high-temperature ther-
mal mass, M2, see Eq. (3.24); blue dot-dashed: high-temperature thermal mass
with additional Boltzmann factor, M2

Boltzmann, see Eq. (3.25); orange: tree-level
mass plus full one-loop correction, M2|trunc., see Eq. (2.14)) normalized to the
thermal mass obtained by solving the gap equation M2 as a function of the
temperature.

and then stays constant for higher temperatures. The constant off-shift is caused by
temperature-dependent higher-loop contributions which are generated by solving the
gap equation but not taken into account in the high-temperature thermal mass.8

If an additional Boltzmann factor is included in the equation for the high-temperature
mass (see Eq. (3.25), blue dot-dashed curve), the ratio stays close to one for a slightly
larger temperature range than without the Boltzmann factor. The overall agreement
with the full thermal mass is, however, not substantially improved.

If instead the full one-loop correction (without any high-temperature expansion) is
used to calculate the thermal mass, M2| trunc., (see orange curve and Eq. (2.14)), the low-
temperature behaviour of the full thermal mass is very well captured (since now also the
one-loop corrections from the Coleman-Weinberg potential are taken into account). At
T ≳ 4 TeV, where temperature-dependent higher-loop order corrections start to become
relevant, however, also this approximation fails to capture the temperature dependence
of the full thermal mass.

The real parts of the effective potential are compared in Fig. 5. For low temperatures,
the thermal corrections are small and, consequently, the different resummation methods
yield almost identical results. Only for higher temperatures of T ≳ 10 TeV, differences
between the three methods become visible.

8This can for example easily be seen by solving Eq. (3.57) for ϕ = 0 without expanding in λ (as done
for Eq. (3.58)).
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Figure 5: Left: Real part of the one-loop effective potential in the one-field ϕ4 model
evaluated using different resummation methods. Right: Same as left, but two-
loop corrections are included for the full-dressing approaches.

In the left panel of Fig. 5, showing the real part of the effective potential evalu-
ated using various resummation methods at the one-loop level, very small differences
between Parwani and Arnold-Espinosa resummation are visible originating from sub-
leading thermal corrections which are partially included for Parwani resummation but
not for Arnold-Espinosa resummation. This discrepancy is completely gone in the right
panel of Fig. 5, for which the effective potential is evaluated at the two-loop level for
the Parwani and Arnold-Espinosa curves. As a consequence of explicitly including the
subleading thermal two-loop corrections, whose leading contribution is ∝ λ2m2T 2, the
curves using Parwani and Arnold-Espinosa resummation lie on top of each other. This
seemingly signals a well-behaved perturbative convergence of the subleading thermal
corrections.

The result using partial dressing lies below the Parwani and Arnold-Espinoa results for
high temperatures. Interestingly, the difference is increased when comparing the partial-
dressing result to the two-loop full-dressing results in comparison to the one-loop full-
dressing results. While in principle a difference is expected since partial dressing correctly
includes subleading thermal corrections, one would naively expect this difference to
shrink down once these subleading thermal corrections are explicitly included at the two-
loop order for the full-dressing methods. To understand why this increases the difference
between full and partial dressing, it is instructive to understand the proportionalities
of the formally leading terms missed by the full dressing method. While the formally
leading missed term is ∝ λ2m2T 2 if computing the effective potential at the one-loop
level, it is ∝ λ3mT 3 if computing the effective potential at the two-loop level. For
high temperatures, this three-loop term is larger than the respective two-loop term
demonstrating that including the full two-loop corrections in the full dressing approach
can worsen the result. Also explicitly including the term ∝ λ3mT 3 might not improve
the result since for high temperatures the four-loop term ∝ λ4T 5/m could be even
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Figure 6: Thermal masses of ϕ1 (blue) and ϕ2 (orange) in the two-field ϕ4 model. The
thermal masses are either evaluated by numerically solving the gap equations
(solid) or in the high-temperature expansion (dashed).

larger. This demonstrates the necessity of correctly resuming also subleading thermal
corrections and is in direct correspondence to the behaviour of the thermal masses at
high temperatures (see Fig. 4).

Moreover, we show in the left panel of Fig. 5 the result using full dressing (see Sec-
tion 3.5.1). As discussed in Section 3.5.2, this resummation scheme miscounts diagrams
starting at the two-loop level. This is clearly visible by the large difference to the other
resummation methods for T = 10 TeV.

Two-field ϕ4 theory

Next, we compare the different resummation methods in the two-field ϕ4 theory without
mixing. We focus on the benchmark point

λ1 = λ2 = 1/3, λ12 = 2, µ2
11 = −4 TeV2, µ2

22 = −1 TeV2 . (3.66)

The renormalisation scale is again set equal to the temperature.
Fig. 6 shows the thermal masses computed either by numerically solving the gap equa-

tion (solid lines) or by keeping only the leading term in the high-temperature expansion
(dashed lines). As expected, the full and high-temperature versions of the thermal
masses agree well for low temperatures since thermal effects are small in general. For
very high temperatures, small differences are visible originating from high-order correc-
tions induced by numerically solving the gap equations (see discussion of Fig. 4). We
observe the largest absolute differences for intermediary temperatures, for which the
temperature is similar to the tree-level masses. Here, thermal corrections are important
but the high-temperature expansion is not yet a good approximation.
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Figure 7: Left: Real part of the one-loop effective potential in the two-field ϕ4 model
without mixing evaluated using different resummation methods. Right: Same
as left, but two-loop corrections are included for the full-dressing approaches.

The real part of the effective potential is shown in Fig. 7 as a function of ϕ1 setting
ϕ2 = 0, implying that there is no mixing between the fields. As for the one-field ϕ4

theory, the Parwani, Arnold-Espinosa, and partial dressing approaches agree well for
low temperatures. For higher temperatures, larger differences are visible. In contrast to
the single-field case (see Fig. 5), the difference between the Arnold-Espinosa and Parwani
resummation methods is increasing from the one- (left panel of Fig. 7) to the two-loop
level (right panel of Fig. 7). This signals that the dominant difference between the two
approaches in the given scenario is not of two-loop order but induced by higher-order
effects. This is due to the comparably large numerical values for the λ’s as well as the
larger number of fields which enhance the significance of higher-order corrections. This
again shows the importance of resuming also subleading effects as achieved in the partial
dressing approach.

4. Toy model for symmetry non-restoration
Next, we discuss the phenomenon of EWSNR. EWSNR refers to situations in which
the EW symmetry is not only broken at low temperatures but also not restored at high
temperatures (or the restoration is delayed up to very high energies). This is particularly
interesting from the point of resuming thermal corrections. In order for EWSNR to
occur, the thermal corrections need to dominate over the tree-level mass turning the
squared thermal mass negative and thereby ensuring that the EW symmetry is broken.

We base our discussion on a toy model for symmetry non-restoration which was pre-
sented in Ref. [17]. Its potential is given by

V (0)(ϕ, χ, S) =
1

2
µ2
SS

2 +
1

2
µ2
χ

∑
i

χ2
i +

1

2
µ2
ϕϕ

2
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+
1

4
λϕϕ

4 +
1

4
λχ

∑
i

χ4
i +

1

4
λSS

4 +
1

4
λϕχϕ

2
∑
i

χ2
i +

1

4
λϕSϕ

2S2, (4.1)

where S and χi are vectors of dimension NS and Nχi
. The index i is a generation index

which runs from 1 to Ngen. We will only evaluate the potential at zero field values for
S and the χi. Therefore, all χi have the same mass mχ and we will drop the sum over i
and instead use Nχ = Nχi

Ngen. The parameters are chosen such that only ϕ develops a
non-zero vacuum expectation value. Therefore, we are only interested in the ϕ direction
and set χi and S to zero for the evaluation of the effective potential.

In the high-temperature limit, the thermal masses are given

M
2

χ = m2
χ + T 2cχ = m2

χi
+ T 2

[
1

12
(Nχ + 2)λχ +

1

24
Nϕλϕχ

]
, (4.2a)

M
2

ϕ,Boltzmann = m2
ϕ + T 2cϕ =

= m2
ϕ + T 2

[
1

12
(Nϕ + 2)λϕ +

1

24
Nχλϕχ +

1

24
NSλϕSe

−mS/T

]
, (4.2b)

M
2

S,Boltzmann = m2
S + T 2cS = m2

S + T 2

[
1

12
(NS + 2)λSe

−mS/T +
1

24
NϕλϕS

]
. (4.2c)

This also defines the coefficients {cχ, cS, cϕ}, which are used later. Since the parameters
are chosen such that mϕ ∼ mχ ≪ mS, the thermal contributions of S are multiplied by
the Boltzmann factor e−mS/T to better approximate the full thermal loop function for
T ≲ mS (see also Eq. (3.25)).

To achieve symmetry non-restoration, λϕχ is chosen to be negative such that the
thermal mass of ϕ becomes negative. For T ∼ mS, the thermal contribution of S
compensates for the negative contribution of the χi resulting in the eventual symmetry
restoration at T ≳ mS.

Since the stability of the potential at the tree level requires

λϕχ > −2

√
λϕλχ

Ngen
, (4.3)

a large number of generations is required to ensure symmetry non-restoration,9 while
still satisfying perturbative unitarity bounds.

4.1. One-loop effective potential

The one-loop effective potential is given by

V (1)(ϕ, χ, S) = J (mϕ) +NχJ (mχ) +NSJ (mS) . (4.4)

9In more realistic models, the negative BSM contributions to for instance the thermal mass of the
Higgs boson must also overcome the positive contributions of other SM particles.
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The counterterm contributions are

V (1,CT)(ϕ, χi = 0, S = 0) =
1

2
δ(1)µ2

ϕϕ
2 +

1

4
δ(1)λϕϕ

4 . (4.5)

We choose to renormalize λϕ in the MS scheme. For the renormalization of µϕ, we
include a finite piece to the counterm

δ(1)µ2
ϕ

∣∣∣
fin

= −1

2
ϕ2

[
∂2

∂ϕ2
V (1)

]O(µ2
S)

ϕ=χi=S=0,T=0

=
1

64π2
NSλϕSϕ

2µ2
S

(
1− ln

µ2
S

µ2
R

)
, (4.6)

where the superscript O(µ2
S) denotes that only the leading contribution proportional to

µ2
S is considered. This counterterm is chosen to absorb the very large zero-temperature

loop corrections to mϕ from S (due to µS ≫ |µϕ|) into the definition of µϕ.

4.2. Two-loop effective potential

The genuine two-loop corrections to the potential are given by

V (2,gen)(ϕ, χi = 0, S = 0) =
3

4

[
λϕI(mϕ)

2 +NSλSI(mS)
2 +NχI(mχi

)2
]

+
1

4

[
(N2

S −NS)λSI(mS)
2 +Nχ(Nχi

− 1)λχI(mχ)
2

+NSλϕSI(mϕ)I(mS) +NχλϕχI(mϕ)I(mχ)

]
. (4.7)

The counterterm contributions at the two-loop level are

V (2,CT)(ϕ, χi = 0, S = 0) =
1

2
δ(2)µ2

ϕϕ
2 +

1

4
δ(2)λϕϕ

4

+
1

2
δ(1)µ2

ϕI(mϕ) +
1

2
Nχδ

(1)µ2
χI(mχ) +

1

2
NSδ

(1)µ2
SI(mS)

+
3

2
δ(1)λϕϕ

2I(mϕ) +
1

4
δ(1)λϕSϕ

2I(mS)

+
1

4
δ(1)λϕχϕ

2I(mχ), (4.8)

where here we already set χi = S = 0. The first line contains the needed two-loop
counterterm; the two last lines represent the subloop renormalization. We checked an-
alytically that all UV divergencies and ϵ1 pieces of the loop integrals (with ϵ being the
UV regulator) cancel.

The thermal mass counterterms, relevant for Parwani and Arnold-Espinosa approaches,
give additional two-loop contributions:

V (2,thermal-CT)(ϕ, χ, S) = −1

2
T 2
(
cϕI(m2

ϕ) +NχcχI(m2
χ) +NScSI(m2

S)
)
. (4.9)
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Figure 8: Thermal masses of ϕ (blue) and χi (orange) in the symmetry non-restoration
toy model of Ref. [17]. The thermal masses are either evaluated by numeri-
cally solving the gap equations (solid) or in the high-temperature expansion
(dashed).

We checked explicitly that, in the high-temperature expansion, all O(T 3) terms cancel.
This cross-check was performed separately for Parwani and Arnold/Espinosa resumma-
tion in the limits mS ≪ T and mS ≫ T . The two-loop counterterm for µϕ is again
chosen such that the very large zero-temperature loop corrections to mϕ from S are
absorbed into the definition of µϕ.

4.3. Numerical comparison

For our numerical comparison, we choose the benchmark point already used in Ref. [17]:

Ngen = 12, Nχi
= 4, NS = 12,

µ2
ϕ = −0.01 TeV2, µ2

χ = 0.01 TeV2, µ2
S = 400 TeV2,

λϕ = 0.1 TeV2, λχ = 0.5, λS = 1, λϕχ = −0.1, λϕS = 1 . (4.10)

This benchmark is chosen to realize symmetry non-restoration for T ≲ 10 TeV. At
higher temperatures, the S field eventually ensures symmetry restoration.

Thermal masses

We start with a comparison of the thermal masses Mϕ and Mχ in Fig. 8. For the scalar
ϕ, the thermal mass calculated by solving the gap equation M2

ϕ is negative only for
small temperatures (T ≲ 7 TeV). If instead the high-temperature expansion is used
(see Eq. (4.2)), the squared thermal mass stays negative until much higher masses (T ∼
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19 TeV). This difference has two origins: 1) the thermal loop functions appearing in the
gap equation is not expanded in the high-temperature limit; 2) solving the gap equation
numerically effectively includes higher-order corrections (see discussions in Section 3.6).
For the scalars χ, the differences between the thermal mass obtained by solving the gap
equation and the high-temperature expansion of Eq. (4.2) is even more pronounced due
to the relatively large number of fields Nχ = 48 coupled to each other.

Effective potential

Next, we study the effective potential itself. Fig. 9 shows the dependence of the effective
potential on the value of ϕ for various temperature values.

In the upper left panel, we show the real part of Veff calculated at the one-loop level
using Arnold-Espinosa and Parwani. For both Parwani resummation (solid lines) and
Arnold-Espinosa reummation (dashed lines), electroweak symmetry non-restoration is
clearly visible for T ≲ 6 TeV. For higher temperatures, the thermal contribution of
the S triggers the eventual symmetry restoration. While for low temperatures both
methods yield very similar results, there is an increasing difference for higher tempera-
tures. As discussed in Section 3, this difference arises from subleading super daisy-like
contributions which are partially included in the Parwani approach.

One natural way to reduce the difference between both methods and thereby the
theoretical uncertainty is to explicitly include the full two-loop corrections as outlined
above. The results are shown in the upper right panel of Fig. 9. Remarkably, the differ-
ence between Parawani and Arnold/Espinosa resummation is not reduced if including
the full two-loop corrections but of similar size as at one-loop level. After including
the full two-loop corrections, the difference between the two resummation schemes is
of three-loop order. The fact that the difference is not decreased when going from the
one- to the two-loop level signals that also the three-loop difference is sizeable. This is
a consequence of the large multiplicity of fields and demonstrates that a resummation
of subleading super-daisy corrections is needed.

It is even more astonishing that some of the two-loop results feature unphysical kinks.
These kinks appear if one of the squared thermal masses crosses zero (see e.g. the scenario
of Fig. 8). For a negative mass squared, the loop functions develop an imaginary part.
While the imaginary parts of a negative tree-level mass squared cancel once large thermal
effects are resumed as shown in Ref. [59], an imaginary part remains if one of the squared
thermal masses becomes negative. We show this remaining imaginary part of the effective
potential (without normalizing the potential to zero a the origin) in the lower left panel
of Fig. 8. We see that imaginary parts already occur at the one-loop level. The size of the
imaginary parts is, however, enhanced at the two-loop level. This is due to a mismatch
between the figure-eight diagrams and the thermal counterterm contributions. While the
full thermal loop functions (without any high-temperature expansion) are considered for
the former contribution, the thermal counterterms appearing in the latter contribution
are by definition derived in the high-temperature expansion. This (unavoidably) different
treatment of the two contributions artificially enhances the imaginary part of the effective
potential and also induces kinks in the real part via products of two imaginary parts. In
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Figure 9: Upper left: Real part of the one-loop effective potential for the symmetry non-
restoration model of Ref. [17] evaluated using Arnold-Espinosa and Parawni
resummation. For the thermal resummation, we employ either the Parwani
(solid) or Arnold-Espinsa (dashed) methods. Upper right: Same as upper
left, but the effective potential is evaluated at the two-loop level. Lower left:
Imaginary part of the effective potential evaluated at the one- and two-loop
level using Parwani resummation. Lower right: Real part of the one-loop
effective potential evaluated using partial dressing.
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general, large imaginary parts also question the validity of the perturbative calculation
of the effective potential. As discussed in Ref. [60], the imaginary part of the effective
potential corresponds to a decay width of the localised ground state into a non-localised
ground state. Therefore, calculations based on a perturbatively calculated effective
potential should only be trusted if the imaginary part is small against the real part (see
also discussion in Appendix D).

The problems with the perturbative convergence and large imaginary parts are com-
pletely avoided if we use partial dressing. We show the corresponding result in the lower
right panel of Fig. 9. As discussed in Section 3.6, partial dressing does not only resum
daisy but also super-daisy contributions. Since no high-temperature expansion is applied
and all contributions are treated on the same footing, no large imaginary parts appear.
Consequently, no kinks appear in the result and calculations based on the pertubatively
calculated effective potential are trustworthy.

5. Resummation in multi-field ϕ4 theory with mixing
After discussing resummation in multi-field theories without mixing, we now turn to
the case with mixing between the scalar fields. For simplicity, we focus on a simple toy
model consisting of two real scalar fields ϕ1 and ϕ2 with tree-level potential

V0 = −µ2
1

2
ϕ2
1 −

µ2
2

2
ϕ2
2 +

λ1

4
ϕ4
1 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2 . (5.1)

We allow both fields to potentially develop a zero-temperature vacuum expectation value.
While this significantly complicates several formal aspects of the resummation procedure,
it is nonetheless important that we allow them to mix in anticipation of concrete BSM
applications.

At the tree level, the scalar mass matrix is given by

M2(ϕ1, ϕ2) ≡
(
m2

11 m2
12

m2
12 m2

22

)
=

(
−µ2

1 + 3λ1ϕ
2
1 +

λ12

2
ϕ2
2 λ12ϕ1ϕ2

λ12ϕ1ϕ2 −µ2
2 + 3λ2ϕ

2
2 +

λ12

2
ϕ2
1

)
, (5.2)

where the fields ϕ1,2 take on their background values. This matrix can be diagonalized
as R−1

θ M2Rθ = M2
diag ≡ diag(m2

+,m
2
−), with mass eigenvalues

m2
± =

1

2

(
m2

11 +m2
22 ±D

)
, with D =

√
(m2

11 −m2
22)

2 + 4m4
12 . (5.3)

It is convenient to parameterize S in terms of the tree level mixing angle θ:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, sin 2θ =

2m2
12√

(m2
11 −m2

22)
2 + 4m4

12

, (5.4)

which can then be used to relate ϕ1,2 to the mass eigenstates ϕ±:(
ϕ1

ϕ2

)
= Rθ

(
ϕ+

ϕ−

)
. (5.5)
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The background field-dependent mass eigenstates enter into the 1-loop contribution
to the effective potential as

V1-loop = J [m+] + J [m−] , (5.6)

where the J function is defined in Appendix A.

5.1. High-temperature expansion and truncated full dressing

To gain some intuition, we will first consider the high-temperature limit, in which the
field-dependent part of the one-loop effective potential reads

V1-loop ≃ T 2

24

(
m2

+ +m2
−
)
− T

12π

(
m3

+ +m3
−
)
− L

64π2

(
m4

+ +m4
−
)
, (5.7)

where L = log
(

µ2
R

T 2

)
+ 2(γE − ln π) is field independent. Considering just the leading

contribution ∼ T 2, the one-loop corrected effective potential is

V
(1)
eff

highT−−−→ 1

2

(
−µ2

1 + c1T
2
)
ϕ2
1 +

λ1

4
ϕ4
1 +

1

2

(
−µ2

2 + c2T
2
)
ϕ2
2 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
2 , (5.8)

where we have defined the coefficients

c1 =
1

24
(6λ1 + λ12) , c2 =

1

24
(6λ2 + λ12) . (5.9)

Letting M2
i (Φ, T ) = m2

i (Φ)+ δm2
i (Φ, T ) be the thermally corrected mass, the truncated

gap equation is simply

M2
i =

∂2

∂ϕ2
i

V
(1)
eff , (5.10)

which leads to the finite-temperature mass matrix

M2
T (ϕ1, ϕ2, T ) ≡

(
M2

11 M2
12

M2
12 M2

22

)
=

(
−µ2

1 + c1T
2 + 3λ1ϕ

2
1 +

λ12

2
ϕ2
2 λ12ϕ1ϕ2

λ12ϕ1ϕ2 −µ2
2 + c2T

2 + 3λ2ϕ
2
2 +

λ12

2
ϕ2
1

)
.

(5.11)

Diagonalizing M2
T yields the finite-temperature mass eigenstates M2

±(Φ, T ),

M2
± =

1

2
(M2

11 +M2
22 ±D) , with D =

√
(M2

11 −M2
22)

2 + 4M2
12 , (5.12)

as well as the finite-temperature mixing angle Θ(ϕ1, ϕ2, T ),

sin 2Θ = 2M 2
12/D . (5.13)
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With these preliminaries out of the way, we now turn to the resummation of the 1-loop
effective potential.

In the truncated full dressing (TFD) prescription, resummation amounts to simply re-
placing m2

i → M2
i |trunc. on the level of the effective potential: V TFD

eff = Veff

∣∣
M2

i |trunc.
, with

i = ± labeling the finite-temperature mass eigenstates. In the high-temperature expan-
sion, the resummed potential reduces to the one obtained with the Parwani prescription,
namely

V TFD,Parwani
eff = V0+

T 2

24

(
M

2

+ +M
2

−

)
− T

12π

(
M

3

+ +M
3

−

)
− L

64π2

(
M

4

+ +M
4

−

)
, (5.14)

or equivalently

V TFD,Parwani
eff =

1

2

(
−µ2

1 + c1T
2
)
ϕ2
1 +

λ1

4
ϕ4
1 +

1

2

(
−µ2

2 + c2T
2
)
ϕ2
2 +

λ2

4
ϕ4
2 +

λ12

4
ϕ2
1ϕ

2
1

− T

12π

(
M

3

+ +M
3

−

)
− L

64π2

(
M

4

+ +M
4

−

)
. (5.15)

Using the Arnold-Espinosa prescription, the thermal mass is only inserted in the TM
3

terms.

5.2. Partial dressing

As discussed in Sections 3 and 5, truncated dressing suffers from various issues. First,
it does not resum subleading super-daisy corrections. Second, it unavoidably relies on a
high-temperature expansion of the thermal masses, which often is not justified. Third,
mismatches between the treatment of various two-loop contributions lead to unphysical
kinks in the effective potential. As we have discussed, partial dressing avoids these
issues. One shortcoming, however, is that prior to this work it was unknown how to
apply the partial dressing prescription in the case where multiple scalar fields acquire
non-zero vacuum expectation values and mix. Here, we will demonstrate how partial
dressing can be applied to the case of mixing scalar fields.

We start with the gap equations. If we go beyond the leading term in the high-
temperature expansion, the gap equations are promoted to a matrix equation

M2
T =

[(
∂2

∂ϕ2
1

∂2

∂ϕ1∂ϕ2

∂2

∂ϕ1∂ϕ2

∂2

∂ϕ2
2

)
Veff

]
(m±,s2θ)→(M±,s2Θ)

, (5.16)

where M± and s2Θ = sin 2Θ are determined by diagonalizing M2
T . The second deriva-

tives ∂2

∂ϕi∂ϕj
Veff directly correspond to the ϕiϕj two-point functions at zero momentum.

The resulting mixing angle relates the original fields ϕ1,2 to the loop-corrected fields Φ±,(
ϕ1

ϕ2

)
= RΘ

(
Φ+

Φ−

)
. (5.17)
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These loop corrections include both zero-temperature as well as finite-temperature ef-
fects.

To solve Eq. (5.16) iteratively, it is important to express the right-hand side completely
in terms of the masses and the mixing angle. This can be done either by calculating
the second derivatives of the effective potential diagrammatically (i.e., in terms of self-
energy Feynman diagrams) or by expressing the first and second derivatives of the (field-
dependent) masses in terms of the masses and the mixing angle. For example,

∂m2
+

∂ϕ1

=
[
6λ1 sin

2 θ(ϕ1, ϕ2) + λ12 cos
2 θ(ϕ1, ϕ2)

]
ϕ1 + λ12 sin 2θ(ϕ1, ϕ2)ϕ2 . (5.18)

In the Feynman-diagrammatic approach, this angular dependence follows directly from
the Feynman rules. For example, the coupling of ϕ1 to two Φ−, which appears in the ϕ1

tadpole corrections, is given by

c(ϕ1,Φ−,Φ−) = c2Θc(ϕ1, ϕ1, ϕ1)− 2cΘsΘc(ϕ1, ϕ1, ϕ2) + s2Θc(ϕ1, ϕ2, ϕ2) =

= ϕ1λ1c
2
Θ − 2ϕ2λ12cΘsΘ + ϕ1λ12s

2
Θ (5.19)

In the diagrammatic approach, it is furthermore straightforward to also add the depen-
dence on the external momentum. In this case, the matrix Rθ becomes non-unitary and
can not be parameterized by a single mixing angle. We leave this for future work.

After the determination of the thermal masses and the thermal mixing angle, we
insert them into the first derivatives of the effective potential ∂iVeff (tadpoles). While
for the case of vanishing mixing, we only need to consider one tadpole (the one for
the non-vanishing field), which is then integrated to obtain the effective potential, an
ambiguity arises in the case of non-vanishing mixing since in general V TPD,1

eff ̸= V TPD,2
eff

(with V TPD,i
eff =

∫
dϕi ∂iVeff

∣∣
M2

j
).10

A reasonable solution would be to replace the derivative with a gradient V ′
eff → ∇Veff

and the integral over ϕ with a line integral to the position in field space (ϕ∗
1, ϕ

∗
2) where

we intend to evaluate the potential
∫
dϕ →

∫
C ds⃗. We therefore propose the following

multi-field generalization

V TPD
eff =

∫
C
ds⃗ · ∇V

(1)
eff

∣∣
(m±,θ)→(M±,Θ)

, (5.20)

where ∇Veff = ϕ̂1
∂Veff
∂ϕ1

+ ϕ̂2
∂Veff
∂ϕ2

and the curve C connects the origin to (ϕ∗
1, ϕ

∗
2). As a

consequence of Green’s theorem and the fact that the curl of a gradient is zero, the
exact form of C does not matter. For simplicity, we choose C to be a straight line, which
we parameterize as s⃗(t) = (ϕ∗

1t, ϕ
∗
2t) with t ∈ [0, 1]. The expression for the effective

potential becomes

V TPD
eff =

∫ 1

0

dt

(
ϕ∗
1

∂V
(1)
eff

∂ϕ1

∣∣∣∣
(ϕ∗

1 t, ϕ∗
2 t)

+ ϕ∗
2

∂V
(1)
eff

∂ϕ2

∣∣∣∣
(ϕ∗

1 t, ϕ
∗
2 t)

)∣∣∣∣∣
(M±,s2Θ)

, (5.21)

10V TPD,1
eff correctly captures the ϕ1-dependent part of the effective potential but not the ϕ2-dependent
part. In contrast, V TPD,2

eff correctly captures the ϕ2-dependent part of the effective potential but not
the ϕ1-dependent part.
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where the unresummed effective potential appearing on the right-hand side is V
(1)
eff =

V0 + V1-loop, with V0 in Eq. (5.1) and V1-loop in Eq. (5.7).
In the high-temperature expansion, the first derivative with respect to ϕ1 is

∂Veff

∂ϕ1

∣∣∣∣
high-T

= −µ2
1ϕ1 + λ1ϕ

3
1 +

λ12

2
ϕ1ϕ

2
2

+

(
T 2

24
− Tm+

8π
− Lm2

+

32π2

)
dm2

+

dϕ1

+

(
T 2

24
− Tm−

8π
− Lm2

−

32π2

)
dm2

−

dϕ1

,

(5.22)

where
dm2

±

dϕ1

=
[
6λ1 sin

2 θ + λ12 cos
2 θ
]
ϕ1 ± λ12 sin 2θϕ2 . (5.23)

A similar expression holds for ∂Veff/∂ϕ2 with 1 ↔ 2. Next we should replace any
instances of m2

± and θ with the thermal quantities M2
± and Θ. Finally, we evaluate at

(ϕ∗
1t, ϕ

∗
2t), multiply by ϕ∗

1,2 respectively, take the sum, and integrate over 0 ≤ t ≤ 1, in
accordance with Eq. (5.21).

Due to neglecting the momentum dependence of the self-energy insertions (see Sec-
tion 3.5.2), partial dressing fails to correctly reproduce two-loop sunset diagrams since
it can not account for the case of overlapping loop momenta. While for the non-mixing
case, one can easily correct for this by multiplying the I2-contribution to the gap equa-
tions by a factor 2/3, the correction is more subtle in the case of mixing scalar fields.
We discuss this in detail in Appendix C. As already known for the non-mixing case in
the literature, we also find this correction to be numerically of minor importance for the
case of mixing scalars.

5.3. Numerical comparison

For our numerical comparison, we choose the following parameter point:

λ1 = λ2 = 1/3, λ12 = 2, µ2
1 = −4 TeV2, µ2

2 = −1 TeV2 . (5.24)

These parameters are chosen such that both fields can develop a non-zero vacuum ex-
pectation value.

Thermal masses

We start by investigating the thermal masses as a function of the temperature (see
Fig. 10) for ϕ1 = ϕ2 = 1 TeV. While for low temperatures, the solutions of the gap
equation agree well with the thermal masses in the high-temperature masses, a sizeable
difference arises for temperatures close to the zero-temperature masses (T ∼ 5 TeV).
For larger temperatures, the differences shrink again even though a visible difference
remains. This behaviour is very similar to the results obtained in the EWSNR toy
model (see Section 4).

37



10−1 100 101

T [TeV]

0

20

40

60

th
er

m
al

m
as

se
s

[T
eV

2
]

λ1 = λ2 = 1/3, λ12 = 2, µ11 = −4 TeV2, µ22 = −1 TeV2

two mixing field φ4 theory, φ1 = φ2 = 1 TeV

M2
1

M2
2

M
2

1

M
2

2

Figure 10: Thermal masses of ϕ1 and ϕ2 in the two-field ϕ2 theory as a function of the
temperature calculated by solving the gap equations (solid) and the high-
temperature expansion (dashed).

Potential

Next, we investigate the real part of the effective potential itself in Fig. 11. For low
temperatures (see upper left panel), partial dressing and Arnold-Espinosa/Parwani re-
summation yield very similar results regardless of the values for ϕ1 and ϕ2. This is
expected since for low temperatures, the difference in the thermal masses and also
the thermal corrections to the effective potential are small. For higher temperatures
comparable to the zero-temperature masses of ϕ1 and ϕ2, visible differences between
Arnold-Espinosa/Parwani resummation and partial dressing arise. In this regime, the
high-temperature expansion for the calculation of the thermal masses is not a good
approximation (see discussion above). Moreover, partial dressing includes the resum-
mation of subleading thermal corrections, which give a sizeable contribution at the con-
sidered parameter point. This is evident from the fact that the two different Parwani
and Arnold-Espinosa resummation show visible differences indicating the importance of
subleading thermal corrections. For even larger temperatures (see bottom panel), the
differences between the various resummation methods are further increased. While the
thermal masses are in slightly better agreement, the subleading thermal corrections have
a bigger impact resulting in an overall larger difference between the three resummation
methods.

We finally note again that partial dressing fails to correctly reproduce two-loop sunset
contributions. As investigated in detail in Appendix C, the numerical impact of this
effect is significantly smaller than the difference between partial dressing and Arnold-
Espinosa/Parwani resummation.
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Figure 11: Real part of the effective potential in the two-field ϕ4 theory with mixing as a
function of ϕ1 for different values of ϕ2. The temperature is chosen to be 2 TeV
(upper left), 5 GeV (upper right), and 10 GeV (bottom). Three different re-
summation methods are compared: partial dressing (solid), Arnold-Espinosa
(dashed), and Parwani (dotted).
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6. Conclusions
Accurate predictions for phase transitions are very important for the investigation of a
wide range of physics phenomena. This necessitates a precise calculation of the effective
potential at finite temperatures implying the need to resum large thermal corrections.

In the present work, we reviewed various resummation methods focusing on partial
dressing as well as Arnold-Espinosa and Parwani resummation. Using a scalar toy model,
we discussed at the one- and two-loop level that partial dressing is advantageous since
it does not rely on the high-temperature expansion and also resums subleading thermal
corrections.

As the next, we investigated EWSNR, for which large thermal corrections are ex-
pected, implying the need to include subleading corrections. While these are automat-
ically included if using partial dressing, higher-loop corrections have to be explicitly
calculated if using Arnold-Espinosa or Parwani resummation. We, moreover, demon-
strated that the inclusion of two-loop corrections in the Arnold-Espinosa or Parwani
approaches leads to unphysical kinks in the prediction for the effective potential. These
kinks originate from the occurrence of large imaginary contributions to the effective
potential caused by negative mass squares. While these contributions largely cancel in
the partial dressing approach, the cancellation is incomplete in the Arnold-Espinosa or
Parwani resummation approaches due to the inherent high-temperature expansion in
parts of the calculation.

The discussion of EWSNR concentrates on the case in which only one of the fields takes
a non-zero value thereby implying the absence of mixing between the scalar fields. In
the next step, we focused on the case of mixing scalar fields and showed how to promote
the gap equation to a matrix equation and how to perform a path integration in the
multi-dimensional field space. This allowed us to consistently implement partial dressing
even for mixing fields, largely extending the applicability of this technique to a broader
class of problems. Of special interest are many BSM extensions of the SM Higgs sector
which are relevant for electroweak baryogenesis and the production of gravitational wave
signals.
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A. Thermal loop functions
In this Appendix, we collect the various thermal loop functions used in this paper. We
start with the bosonic thermal loop function appearing in the one-loop effective potential,
which is given by

JB(y
2) =

∫ ∞

0

dx x2 ln
(
1− e−

√
x2+y2

)
. (A.1)

In the limits of small and large argument, this admits expansions

JB(y
2 ≪ 1) ≃ −π4

45
+

π2

12
y2 − π

6
y3 − 1

32
y4 log

(
y2/aB

)
+O(y6) , (A.2)

JB(y
2 ≫ 1) ≃ −

∑
n=1

1

n2
y2K2(yn) , (A.3)

where aB = 16π2e3/2−2γE and K2 is the modified Bessel function of the second kind.
In addition to the J integral, we also need the one-loop vacuum integrals with up to

three vertices. The one-vertex integral is defined by

I[m] ≡ I1[m] ≡
∑∫
K

1

K2 +m2
. (A.4)

Its high-temperature expansion is given by

I[m] ≃ 1

12
T 2 − 1

4π
mT − LR

16π2
m2 +

ζ(3)

128π4

m4

T 2
. (A.5)

Note that we have included the O(T 2) constant as well as kept terms up to O(1/T 2),
since these lead to field-dependent contributions in V A

2-loop ∼ I[m]2 of O(T 0). There
are also terms O(1/ϵ) and O(ϵ) in this expansion, which we omit for simplicity but
which will nevertheless give a finite contribution to V A

2-loop ∼ I[m]2. See Ref. [40] for the
complete expression.

The vacuum integral with two propagators is defined via

I2[m1,m2] ≡
∑∫
K

1

K2 +m2
1

1

K2 +m2
2

. (A.6)

If both masses are different, we can write I2 in terms of I integrals

I2[m1,m2] =
I[m2]− I[m1]

m2
1 −m2

2

. (A.7)

The high-temperature expansion follows immediately,

I2[m1,m2] ≃
1

4π

T

m1 +m2

+ . . . . (A.8)
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We define the three-propagator vacuum integral via

I3[m1,m2,m3] ≡
∑∫
K

1

K2 +m2
1

1

K2 +m2
2

1

K2 +m2
3

. (A.9)

If all masses (or a subset) are different, we can write it in terms of I and I2 functions

I3[m1,m2,m3] =
I[m1]

(m2
1 −m2

2)(m
2
1 −m2

3)
− I[m2]

(m2
1 −m2

2)(m
2
2 −m2

3)

+
I[m3]

(m2
1 −m2

3)(m
2
2 −m2

3)
, (A.10)

I3[m1,m1,m2] = − I[m1]

(m2
1 −m2

2)
2
+

I[m2]

(m2
1 −m2

2)
2
− I2[m1,m1]

m2
1 −m2

2

. (A.11)

In addition to the one-loop integrals, also the two-loop bosonic sunset diagram appears.
For three arbitrary masses — m1, m2, m3 —, it is defined by

H[m1,m2,m3] =
∑∫
P

∑∫
Q

1

(P 2 +m2
1)(Q

2 +m2
2)((P +Q)2 +m2

3)
. (A.12)

The high-temperature expansion of the bosonic sunset is rather involved and has been
evaluated in Ref. [61],

H[m1,m2,m3] ≃
T 2

16π2

[
ln

(
µR

m1 +m2 +m3

)
+

1

2

]
− T

64π3

[ ∑
i=1,2,3

mi

(
ln

(
µ2
R

4m2
i

)
+ LR + 2

)]

− 1

256π4

[ ∑
i=1,2,3

m2
i

(
L2
R + LR − 2γ2

E − 4γ1 +
π2

4
+

3

2

)]
+ . . . ,

(A.13)

with γ1 ≃ −0.0728 the first Stieltjes constant.
We also need the bosonic sunset integral with one additional propagator, which we

denote by H̃,

H̃[m1,m2,m3,m4] =
∑∫
P

∑∫
Q

1

(P 2 +m2
1)(P

2 +m2
2)(Q

2 +m2
3)((P +Q)2 +m2

4)
. (A.14)

If m1 ̸= m2, it can be related to the normal sunset integral via

H̃[m1,m2,m3,m4] =
1

m2
1 −m2

2

(H[m2,m3,m4]−H[m1,m3,m4]) (A.15)

For m1 = m2, it can be derived by a derivative of the normal sunset integral

H̃[m1,m1,m3,m4] = − ∂

∂m2
1

H[m1,m3,m4] (A.16)
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The high-temperature expansion of H̃ is then given by

H̃[m1,m2,m3,m4] =
T 2

16π2

1

m2
1 −m2

2

ln

(
m1 +m3 +m4

m2 +m3 +m4

)
+ . . . , (A.17)

H̃[m1,m1,m3,m4] =
T 2

32π2

1

m1

1

m1 +m3 +m4

+ . . . . (A.18)

B. Three-loop cross-check of partial dressing with
mixing fields

In this Appendix, we explicitly cross-check up to the three-loop level that partial dressing
correctly takes into account all self-energy-like loop insertions in the presence of mixing
(i.e., daisy-chain corrections).

To better separate the loop corrections from tree-level mixing, we work in a special
basis. First, we expand the fields around the point (ϕ̂1, ϕ̂2) at which we want to evaluate
the effective potential,

ϕi = ϕ̂i + ϕ̃i (B.1)

where ϕ̃i are the new dynamical degrees of freedom, which are eventually set to zero.
We then rotate to tree-level mass eigenstates,(

ϕ̃1

ϕ̃2

)
= Rα

(
h1

h2

)
. (B.2)

The resulting potential has the form

V (h1, h2) =
1

2
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2
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1

2
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24
λ2222h

4
2 , (B.3)

where the parameters Aijk and λijkl are given in terms of the original parameters λ1,12,2,
(ϕ̂1, ϕ̂2), and the mixing angle α. Even though no tree-level mixing exists in this basis,
mixing is reintroduced at the loop level via self-energy corrections.

B.1. Feynman-diagrammatic approach

Working in the tree-level mass eigenstate basis, we can calculate the daisy-chain-like loop
corrections to the h1 tadpoles explicitly using a Feynman-diagrammatic (FD) approach.
They are given by

T
(1)
FD =

1

2
[A111I(m1) + A122I(m2)] (B.4)
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Figure 12: Daisy-chain-like self-energy corrections to the h1 tadpole. One self energy is
inserted in the upper row; two, in the lower row.

at the one-loop order,

T
(2)
FD = −1

2

[
A111Σ

(1)
11 I2(m1,m1) + A122Σ

(1)
22 I2(m2,m2) + 2A112Σ

(1)
12 I2(m1,m2)

]
(B.5)

at the two-loop order (see upper row of Fig. 12), and by

T
(3)
FD =

1

2

{
A111

[
Σ

(2)
11 I2(m1,m1) +
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)2
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]
+ 2A112

[
Σ

(2)
12 I2(m1,m2) + Σ

(1)
11 Σ

(1)
12 I3(m1,m1,m2)

+ Σ
(1)
12 Σ

(1)
22 I3(m1,m2,m2)

]}
(B.6)
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at the three-loop order (see upper and lower row of Fig. 12). Here, we neglected the
momentum dependence of the (renormalized) self energies,11

Σij = Σij(p
2 = 0) . (B.7)

The superscripts are used to denote the loop order of the respective self-energy.

B.2. Partial dressing

For partial dressing, the first step is to determine the loop-corrected masses M1,2 and
the mixing angle β relating the loop-corrected mass eigenstates (called H1,2 in the fol-
lowing) to the tree-level mass eigenstates h1,2. These can be obtained by solving the gap
equations,

M2
1,2 =

1

2

(
m2

1 − Σ11 +m2
2 − Σ22 ∓

√
(m2

1 − Σ11 −m2
2 + Σ22)2 + 4Σ2

12

)
, (B.8)

s2α =
2Σ12√

(m2
1 − Σ11 −m2

2 + Σ22)2 + 4Σ12

(B.9)

where here we again neglect the momentum dependence of the (renormalized) self ener-
gies,

Σij = Σij(p
2 = 0) . (B.10)

Furthermore, we also do not take the intrinsic dependence of the self energies on the
masses and the mixing angle into account. This dependence generates super-daisy con-
tributions, which we do not consider in the discussion here.

The one-loop tadpole diagrams with inserted loop-corrected mass and mixing angle
are then given by

T
(1)
PD =

1

2
[Ah1H1H1I(M1) + Ah1H2H2I(M2)] = (B.11)

=
1

2
(c2αA111 + s2αA112 + s2αA122)I(M1)

+
1

2
(c2αA122 − s2αA112 + s2αA111)I(M2) . (B.12)

In the last step, we rewrote the trilinear (h1, Hi, Hi) couplings in terms of the original
Aijk couplings.

Expanding the expressions for the loop-corrected masses and mixing angle (see
Eqs. (B.8) and (B.9) up to the two-loop level, we obtain,

M2
1 = m2

1 − Σ
(1)
11 − Σ

(2)
11 +

(
Σ

(1)
12

)2
m2

1 −m2
2

+ . . . , (B.13)

11See discussion in Appendix C.

45



Figure 13: sunset corrections to the h1 tadpole.
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1

+
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(1)
12
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(1)
22 − Σ

(1)
11

)
(m2

1 −m2
2)

2
+ . . . . (B.15)

Since there is no mixing at the tree level, the mixing angle α is zero at the tree level.
Inserting these loop expansions into Eq. (B.11), we recover Eqs. (B.4) to (B.6) after

applying the recursion relations in Eqs. (A.7) and (A.10). This explicitly confirms that
self-energy insertions are correctly resumed up to the three-loop level. This cross-check
can easily be extended to higher-loop order.

C. Partial dressing and overlapping momenta
As already noted in Refs. [41, 42], partial dressing miscounts two-loop sunset diagrams.
For N non-mixing scalar fields, this type of diagram is proportional to λ3ϕ2

1N
T 2

m2 and
miscounted by a factor 3/2.

The reason for this miscounting is that partial dressing ignores the momentum de-
pendence of the self-energy insertions. While there is no momentum dependence for
diagrams involving quartic scalar couplings, this is not true for diagrams with triple
scalar couplings forming a sunset diagram. For this type of diagram, the momenta of
the loop integrals overlap resulting in the miscounting. In the non-mixing case, this
miscounting can be fixed easily by inserting a factor of 2/3 into the solution of the gap
equation,

M2 = m2 +
1

4
λT 2 − 3

4π
λTM − 3

16π2
λM2L− ζ

[
9

4π
λ2ϕ2 T

M
+

9

8π2
λ2ϕ2

]
+ . . . , (C.1)

where ζ = 2/3.
In the presence of mixing scalar fields, this fix is slightly more complicated. The

general sunset contribution to the h1 tadpole (see Fig. 13) is given by (working again in
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the tree-level mass eigenstate basis)
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Using partial dressing, this contribution is generated by one self-energy insertion into the
one-loop tadpole (see upper row of Fig. 12). More specifically, it is generated by the I2

contributions to the self-energies.12 Since the momentum dependence of the self-energy
insertions is neglected, the sunset-type contribution is given by

T
(2)
PD,sunset =

1

2

[
A111I2(m1,m1)Σ11 + A122I2(m2,m2)Σ22 + 2A112I2(m1,m2)Σ12
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]
12The I contributions generate the daisy-chain-like corrections (see discussion above).
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It is clear that only for those contributions for which all internal masses are equal,
the correction factor 2/3 is valid. For the general case with multiple masses, each
contribution has to be adjusted individually. One possibility to achieve this is to replace
the I2 loop functions in the self-energies by ratios of H̃ and I2 functions. For example,
we can replace

Σ11

∣∣∣
I2-contr.

=
1

2

[
A2

111I2(m1,m1) + A2
122I2(m2,m2) + 2A2

112I2(m1,m2)
]

(C.4)

by

Σ̃11

∣∣∣
I2-contr.

=
1

2I2(m1,m1)

[
A2

111H̃(m1,m1,m1,m1) + A2
122H̃(m1,m1,m2,m2)

+ 2A2
112H̃(m1,m1,m1,m2)

]
. (C.5)

The analogous replacements have to be done for Σ12 and Σ22.
We investigate the numerical impact of this correction in Fig. 14. Choosing the same

benchmark point as in Section 5.3, we compare the partial dressing result with (dashed)
and without (solid) correcting the sunset contribution. We find the difference between
the two results to be comparably smaller (i.e., significantly smaller than the difference
between partial dressing and Arnold-Espinosa/Parwani resummation). For low temper-
atures and low field values, the difference is hardly visible, while for higher temperatures
and field values a small difference occurs. Correcting the sunset contributions shifts the
effective potential upwards slightly reducing the difference to Arnold-Espinosa/Parwani
resummation (see Fig. 11).
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Figure 14: Same as Fig. 11 but the partial dressing results without (solid) and with
corrected sunset diagrams (dashed) are shown.
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D. Cosmological constraint on the imaginary part of
effective potential

As we have seen, the perturbatively calculated finite temperature effective potential
may occasionally develop an imaginary component for some range of field values and
temperatures. One may wonder at the physical interpretation of this feature, and to what
extent an effective potential with a large imaginary part can be trusted as a calculational
tool.

It is first worth noting that the object Veff which we have been referring to as the
effective potential does not necessarily coincide with the physical effective potential,
defined formally in terms of the Legendre transform of the generating functional of
connected Green’s functions W [J ]. This physical quantity must be everywhere convex
and when evaluated on the classical ϕc must be real. In contrast, our perturbatively
calculated Veff can generically be both non-convex and complex for some range of field
values, particularly those associated with spontaneous symmetry breaking or symmetry
non-restoration behavior.

Nevertheless, this non-convex, complex Veff can still be physically meaningful. As
demonstrated by Weinberg in Ref. [60], the perturbatively calculated Veff approximates
a function whose real part corresponds to the energy density and whose imaginary part
corresponds to the decay rate per unit volume V of the vacuum,

ReVeff ∝ E

V
= ρ , (D.1)

ImVeff ∝ Γ

V
. (D.2)

A large imaginary component for the effective potential then indicates a large decay rate.
Here, the decay refers to the decay of the localised quantum state, used to perturbatively
evaluate the effective potential, to the true vacuum state. Only on time scales sufficiently
short relative to this decay rate can the perturbatively calculated Veff be reliably used
to describe the system.

With this in mind, we turn to ask how large the imaginary part of the perturbatively
calculated Veff can be, subject to constraints from cosmology. The Friedmann equation
for a flat Universe has the schematic form

H2 ∝ ρ

M2
Pl
, (D.3)

where H is the Hubble parameter and MPl is the Planck mass. If we now naively
demand13 that the lifetime τ of the vacuum is larger than the age of the Universe in our
Hubble patch,

τ ∝ 1

Γ
≫ 1

H
(D.4)

13We especially thank Seth Koren for suggesting this condition.
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we arrive at the speculative condition

ImVeff ≪ H4 ∝ ρ2

M4
pl

∝ (ReVeff)
2

M4
pl

, (D.5)

where we have set V ∝ H−3. The violation of this condition would in principle signal
a breakdown of the perturbative calculation of the effective potential. This appears
too restrictive for the typical effective potential calculations for which ReVeff ∝ T 4. We,
however, remark that this condition is sensitive to the absolute size of the vacuum energy,
which is related to one of the main open questions in physics.
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