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Dark matter (DM) with masses of order an electronvolt or below can have a non-zero coupling to
electromagnetism. In these models, the ambient DM behaves as a new classical source in Maxwell’s
equations, which can excite potentially detectable electromagnetic (EM) fields in the laboratory.
We describe a new proposal for using integrated photonics to search for such DM candidates with
masses in the 0.1 eV - few eV range. This approach offers a wide range of wavelength-scale devices
like resonators and waveguides that can enable a novel and exciting experimental program. In
particular, we show how refractive index-modulated resonators, such as grooved or periodically-
poled microrings, or patterned slabs, support EM modes with efficient coupling to DM. When
excited by the DM, these modes can be read out by coupling the resonators to a waveguide that
terminates on a micron-scale-sized single photon detector, such as a single pixel of an ultra-quiet
charge-coupled device or a superconducting nanowire. We then estimate the sensitivity of this
experimental concept in the context of axion-like particle and dark photon models of DM, showing
that the scaling and confinement advantages of nanophotonics may enable exploration of new DM
parameter space.

I. INTRODUCTION

A multitude of observations of dark matter (DM)
across many scales in the universe strongly motivates the
existence of particles beyond those contained in the Stan-
dard Model (SM) of particle physics [1]. New ultralight
bosonic fields, such as axions [2–5], axion-like particles
(ALPs) [6] and dark photons (DPs) [5, 7, 8] are particu-
larly attractive candidates for DM. This is because they
can be directly connected to ultraviolet completions of
the SM such as string theory, or they can explain impor-
tant issues within the SM, such as the apparent fine-
tuning of the neutron electric dipole moment, known
as the strong CP problem. Discovering these particles
would therefore yield unprecedented insights both into
the cosmology of our universe and fundamental physics.

Because of their non-relativistic nature and sub-
electronvolt mass, axions, ALPs and dark photons in our
galactic neighbourhood can be conveniently described by
matter waves with a macroscopic de Broglie wavelength
and a frequency set by their mass; as a result, they are
often called wave-like DM. In most cases, the rich physics
of these models can be encapsulated by a single quantity
JDM, an effective classical electromagnetic current den-
sity, which depends on the local DM density and interac-
tion strength. This is a photon source filling all of space,
and because the DM is non-relativistic it is monochro-
matic, highly uniform, and coherent. Detecting these
DM candidates amounts to monitoring any electromag-
netic system that would couple to such a background cur-
rent density. This poses an experimental challenge that
is very different from traditional particle physics experi-
ments that search for individual recoils of DM off atoms

in ultra-quiet detectors [9, 10].

A classic wave-like DM direct detection technique is
the haloscope experiment [11], originally designed to
search for axions. In this class of experiments, the DM
current density JDM resonantly excites a high-quality
cavity mode if the mode frequency is tuned to match
that of the DM wave, i.e., the DM mass. A high quality
cavity enables the build up of the signal field over the
coherence time of the cavity and/or the DM. A similar
conversion is possible for dark photon DM.

There is an intense effort to explore DM masses around
the 1-10 µeV range, corresponding to frequencies of or-
der a GHz. Cavities with these resonant frequencies are
room-sized, enabling a large exposure to the surround-
ing DM over reasonable time-scales. The Axion Dark
Matter eXperiment (ADMX) [12] is the standard bearer
in this regime. New developments in quantum sensing
(such as squeezing [13], quantum sensor networks [14],
or photon counting [15]), as well as advances in cavity
technology [16–18] are proving instrumental in hastening
and extending the search, particularly to higher masses.

The allowed mass range for axion or dark photon
DM, however is significantly broader than the GHz
regime [19]. This strongly motivates the study of de-
tection techniques complementary to traditional high-
quality radio-frequency cavity-based searches. In par-
ticular, if one tried to straightforwardly translate this
technique to much lower or higher DM masses, the cav-
ity size quickly becomes too large or too small to be ex-
perimentally viable. New developments like lumped ele-
ment experiments [20, 21], SRF cavities [22, 23], optical
reflectors [24], dielectric stacks [25–28] and other meta-
materials [29, 30] extend experimental sensitivity across
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FIG. 1: A schematic setup of an integrated/on-chip
photonic system for eV dark matter direct detection.
An array of periodically structured resonators are
coupled to bus waveguides that run into a photon

detector. For axion detection, a background magnetic is
also required. The zoom-in shows an example of a

resonator: a microring with periodic variations in its
index of refraction, which can be attained via, e.g.,

grooving or periodic poling.

an exponentially large region of light dark matter param-
eter space.

In this work we propose to use integrated, on-chip,
photonic systems to detect eV-range bosonic DM parti-
cles. Figure 1 shows a schematic setup, where DM is con-
verted to (signal) light in periodically structured optical
resonators which are designed to match the dispersion re-
lations of DM particles and photons. The signal photons
are then guided onto micron-sized detectors, such as the
Skipper charge-coupled devices (CCDs) [31] or supercon-
ducting nanowire single photon detectors (SNSPDs) [32].
Modern lithography techniques allow the fabrication and
multiplexing of a large number of compact resonators
and waveguides, and enables their assembly into an in-
tegrated system. The challenge here is twofold: to en-
sure a sizable conversion between the non-relativistic DM
to photons, and to scan a reasonable DM parameter
space. The former can be achieved by refractive index-
modulated 1D or 2D photonic structures, whereas the
latter can be aided by coupling many resonators to a
single receiver bus/waveguide.

We first review how light bosonic DM modifies
Maxwell’s equations in Section II. We then describe how
periodic photonic resonators help convert the DM to pho-
tons, and highlight examples of 1D and 2D photonic
structures that accomplish this in Section III. An experi-
ment seeking to surpass existing constraints must neces-
sarily use many such resonators, so in Sections IV and V
we discuss different strategies for combining and reading

out signal photons from large systems of resonators. We
then apply these insights to a concrete model consisting
of N resonators in series coupled to a single receiver bus
and determine the system’s response to the DM source in
Section VI. Finally, we estimate the sensitivity of these
proposed experiments to DM in Section VII. We find that
there are strong prospects for detection of DM. Through-
out this work we use particle physics (“natural”) units,
i.e., ℏ = c = ε0 = µ0 = 1.

II. AXION AND DARK PHOTON
ELECTRODYNAMICS

Axion or dark photon particles that couple to photons
modify classical electrodynamics. When these particles
are the dark matter of the universe, they provide a source
for the (in-medium) Maxwell equations:

∇ ·D ≈ 0 (1a)

∇×H − ∂tD ≈ JDM (1b)

∇ ·B = 0 (1c)

∇×E + ∂tB = 0 (1d)

where JDM is the effective DM current density source. In
the axion and dark photon models we have

JDM =

{
gaγBȧ(t, r) axion

χm2
A′A′(t, r) dark photon

(2)

where a and A′ stand for the axion (scalar) and the dark
photon (vector) field whose amplitudes depend on the
local DM density; gaγ and χ are coupling parameters en-
coding the strength of the DM-photon interaction. For
DM masses less than ∼ 10 eV, the number of DM parti-
cles per de Broglie volume is large and so the local DM
can be described by a classical Gaussian random field1

a(x, t) =

∫
d3v

(2π)3

[
â(v)e−i(ωt−mv·x) + c.c.

]
, (3)

where ω ≈ m(1 + v2/2); there is an analogous represen-
tation of the dark photon field which also includes a sum
over its polarizations σ̂A′ . In Appendix A we show that
in the classical regime the two-point correlation func-
tion is determined by the local DM density ρD ≃ 0.4
GeV/cm3 [34] and velocity distribution f(v)

⟨â(v)â(v′)∗⟩ = ρD
2m2

DM

(2π)6f(v)δ3(v − v′). (4)

The typical size of v ∼ 10−3 is determined by the
Galactic virial velocity [35], so the DM is very non-
relativistic. This has two important consequences. First,

1 There is an equivalent representation of the DM fields in terms
of a discrete superposition of plane waves [33].
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the DM source oscillates at a frequency nearly equal to
the DM mass with a coherence time tcoh ∼ 2/(mDMv

2) =
ns (eV/mDM). Second, spatial gradients of the DM
field can be neglected on length scales smaller than the
DM coherence (de Broglie) length λdB = 2/(mDMv) =
0.4 mm (eV/mDM).
The DM current density JDM can excite a signal elec-

tromagnetic field in any system that supports modes with
frequencies and spatial profiles well-matched to DM prop-
erties. Below we will make these conditions precise and
explore them in optical photonic systems. Because the
DM source is approximately monoenergetic (to one part
in 1/v2 ∼ 106), typically only a single mode is excited.
Taking this signal mode to be of the form E(x)eiωRt with
ωR ≈ mD (i.e., the mode is on-resonance with the DM
source), the average power2 that can be collected from
this mode is

Psig =
Q

m
J̄2
DM|η|2V (5)

and where we assumed critical coupling (i.e., internal and
read-out losses are equal - see Appendix A). Here J̄2

DM
parametrises the strength of the DM current JDM

3

J̄2
DM =

ρ

2m2

{
g2aγm

2B2 axion

χ2m4/3 dark photon
. (6)

The detailed properties of the detector are encoded by V ,
its volume; Q, the total/loaded quality factor of the sig-
nal mode (here assumed to be smaller than 106, the effec-
tive DM quality factor) and η, the dimensionless overlap
factor4

|η|2 ≡
∫
d3xd3x′E∗(x) · n̂E(x′) · n̂e−(x−x′)2/λ2

dB

V
∫
dx ε(x) |E|2

, (7)

where n̂ represents the direction of external B field for
axion DM, or the dark photon polarization σA′ .
The overlap factor captures two important physical ef-

fects. First, it encodes momentum conservation in the
underlying DM-to-photon conversion; in free space |η|2
vanishes since it is impossible to convert a non-relativistic
DM particle with dispersion ω ≈ m (vanishing momen-
tum) to a real photon with dispersion ω = k because
of the momentum mismatch. This necessitates the ex-
istence of a detector to “absorb” this mismatch. For
example, if the resonator size is comparable to the signal
photon wavelength (as for most GHz cavity haloscope
experiments), |η| can be as big as O(1). In contrast,

2 Here average refers to the ensemble average over the random
DM field, or equivalently, a time average of the power over many
coherence times.

3 For the dark photon this quantity includes an average over po-
larizations.

4 Below we took a Gaussian velocity distribution for the DM for
simplicity.

at optical frequencies, the resonator size is often much
larger than the signal photon wavelength, approximat-
ing the free-space limit. In this case, photon momentum
along one or more directions is almost conserved. In or-
der for |η|2 (and the DM to photon conversion rate) to
remain large, photonic structures must break translation
invariance on length scales of O(1/m). As we show be-
low, periodic photonic structures fulfill this requirement.
The second important effect encoded in the overlap

factor, Eq. (7), is the interference of the signal field pro-
duced in different parts of the detector, labelled by x and
x′. The field from detector elements within a single DM
coherence length, i.e., with |x − x′|/λdB ≲ 1 add con-
structively. On the other hand, |η|2 is suppressed if the
detector is much larger than a DM coherence length in
any direction, as a result the effective detector volume
|η|2V , is reduced. This destructive interference arises
because the DM source has a different phase in different
parts of the detector. As we discuss below, extensive scal-
ing of the total signal power is restored if the detector is
able to sum over different signal modes. For most of this
paper we will assume that each optical resonator is much
smaller than λdB in linear size, but different resonators
(whose output can be combined) can be spaced by more
than λdB.

III. PERIODIC PHOTONIC STRUCTURES

Periodic photonic structures, often referred to as pho-
tonic crystals, are designed to control the flow of light in a
manner analogous to how semiconductors manipulate the
flow of electrons. Periodic photonic structures are char-
acterized by their unique, regularly spaced arrangements
of dielectric materials, which create a photonic bandgap –
a range of frequencies where light cannot propagate. This
control over the behavior of photons has given rise to a
wide array of applications, from enhancing the efficiency
of lasers and light-emitting diodes to enabling novel, com-
pact optical devices, such as waveguides and filters. In
this work we consider optical resonators made from sim-
ple periodic structures, such as 1D periodically grooved
waveguide [36], and 2D photonic crystal slab [37].
We now specialize to detectors made of periodic pho-

tonic structures. The expression for the signal power,
Eq. (5), still holds, as the signal field can be expanded in
solutions of the source-free Maxwell equations. In an ide-
alized periodic structure of any dimension, however, the
overlap factor for the whole dielectric structure can be ex-
pressed as a sum over each unit cell. The discrete trans-
lation invariance of the dielectric dictates that modes of
the source-free version of Eq. (1), i.e., without axion or
dark photon DM, take the Bloch form:

EK = uK(r)e±iK·r , uK(r) = uK(r +R) (8)

whereK(ω) is the Bloch wavevector (in the first Brillouin
zone) and R is any lattice vector. Solving the source-
free Maxwell equations fixes the dispersion relation ω =
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ω(K). The denominator of Eq. (7) is then

∫
d3rε(r)|EK |2 = Nu

∫

u

d3rε(r)|uK(r)|2 (9)

where we made use of periodicity of both the dielectric
constant and the Bloch function uK ; Nu is the total
number of unit cells in the device and

∫
u
represents inte-

gration over a single unit cell. Similarly, the numerator
can be written as
∫
d3rEK

∗ · n̂ ≈
∫

u

d3re−iK·ruK(r)
∑

i

e−iK·Ri (10)

where Ri are the positions of each unit cell i and the DM
field is assumed to be coherent over the entire resonator
(i.e., λdB ≫ resonator size). Defining the overlap of a
single unit cell as

ηu =
1
Vu

∫
u
d3re−iK·ruK(r)

√
1
Vu

∫
u
d3rε(r)|uK(r)|2

, (11)

we can write the full overlap factor appearing in the time-
averaged signal power as

|η|2 = |ηu|2
1

N2
u

∑

i,j

e−iK·(Ri−Rj) . (12)

The detailed form of overlap factor depends on the design
of the resonator, which we discuss below. The normal-
ization factor of 1/N2

u is chosen to factor out the volume
scaling in Eq. (5). It is important to re-iterate that this
expression is valid when the DM is coherent over the en-
tire resonator; this assumption will hold in Section IIIA,
in which we discuss ring resonators. In Section III B we
will consider photonic slab resonators which can be larger
than a coherence length and Eq. (12) will need to be gen-
eralized to include the effects of a non-trivial DM velocity
distribution.

A. 1D-Periodic Resonators

First consider a structure that is periodic along a single
direction, ẑ, i.e. ε(x, y, z) = ε(x, y, z+Λ), where Λ is the
length of the unit cell. Assuming that the DM is coherent
over the entire structure (i.e., we can neglect variations
in DM field over the device) the overlap factor, Eq. (12),
simplifies to

|η|2 = |ηupNu(KΛ)|2, pNu(θ) ≡
1− e−iNuθ

Nu(1− e−iθ)
, (13)

where ηu is the overlap factor for a single unit cell. In the
limit of Nu ≫ 1, |pN (KΛ)|2 is primarily peaked atK = 0
as expected from approximate momentum conservation.

One type of 1D-periodic resonator is a microring (see
the insert in Fig. 1), which we can form from Nu unit
cells by enforcing an additional periodicity condition

ε(x, y, z) = ε(x, y, z +L) where the ring circumference is
L = NuΛ. The field modes in Eq. (8) must be similarly
periodic, which selects a discrete subset K = 2πn/L for
integer n which can be resonantly enhanced. The DM-
coupled K = 0 modes automatically satisfy this condi-
tion.
A non-zero DM signal requires ηu ̸= 0. Below we

show that this is indeed possible in a 1D-periodic dielec-
tric waveguide with transverse confinement.5 An ana-
lytic treatment is possible only for highly-symmetric ge-
ometries so we study a cylindrical periodically-varying
waveguide. Other geometries and resonator form-factors
generally must be investigated numerically.

Cylindrical Fibre Bragg Grating

By introducing large permittivity modulations period-
ically along the propagation direction, one can achieve
perfect confinement of light even in the presence of ra-
diating modes in the free space (see, e.g., Refs. [38–
42]). For simplicity, we consider a step index circular
waveguide consisting of a core of radius R and a peri-
odic ε(z) with periodicity Λ. The cladding has a con-
stant refractive index no and a radius much bigger than
R. This configuration is also known as a fibre Bragg
grating. To accurately describe the leaky fiber modes,
below we employ the Fourier modal method [43], which
handles the radiating fields analytically. Using the cylin-
drical coordinates (r, z, ϕ), let E ∼ (Er, Ez, Eϕ)e

imϕ−iωt,
H ∼ (Hr, Hz, Hϕ)e

imϕ−iωt, where m is an integer rep-
resenting the angular momentum in the plane. The
z−components of the wave equations are given by

L̂m

(
Ez

Hz

)
=

(
−(∂z

ε′

ε + ε′

ε ∂z + ω2ε)Ez

−ω2εHz

)
(14)

where L̂m ≡ ( 1r∂rr∂r − m2

r2 + ∂2z ). The solutions take the
following form:

( √
εEz

Hz

)
= eiKz

∑

n

ei2nπz/Λ

(
ψ+
n (r)

ψ−
n (r)

)
(15)

where +(−) represents TM (TE) modes, and n are inte-
gers. It can be shown that

ψσ∈{+,−}
n ∼

{ ∑
l P

σ
nlJm(λσl r), r < R

H
(1)
m (αnr), r > R

(16)

where Jm and H
(1)
m are Bessel functions and Hankel func-

tions of the first kind, and

αn =
√
ω2n2o − (K + 2nπ/Λ)2 . (17)

5 The case without transverse mode confinement corresponds to
the wide-area dielectric stack studied in [26].
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For confined modes, αn needs to be imaginary. Thus,

when K = 0, the H
(1)
m (α0r) mode is necessarily leaky.

The periodic ε(z) mixes different radial modes via the
mixing matrix Pnl. More details of ψσ

n can be found in
Appendix D.

The ϕ components of the fields can be inferred from
the z−components and will take the following form:

(
Hϕ√

ε

Eϕ

)
= eiKz

∑

n

ei2nπz/Λ

(
χ+
n (r)

χ−
n (r)

)
, (18)

where χ±
n are related to ψ±

n by Maxwell’s equations. The
solutions are obtained by demanding the continuity of
Ez, Eϕ, Hz, Hϕ at r = R. After solving the system, Er

can be obtained via

Er =
−m
εωr

Hz +
i

ωε
∂zHϕ . (19)

For an arbitrary R, ω is generally complex which deter-
mines the intrinsic quality factor of the mode:

Q = − Reω

2 Imω
. (20)

One can fine tune the radius of the core R0 to find a
corresponding real solution ω0, which will be completely
confined without considering the additional loss due to
bending or surface roughness.

For axion dark matter searches, an external magnetic
field will be imposed. If the magnetic field points in
the transverse direction of the Bragg grated fibre, say
y−direction, the modes of interest must break rota-
tional symmetry, i.e. m > 0, which will be a hybrid
mode of TE and TM polarization. Consider the case of
m = 1,K = 0. We can estimate ηu by considering the
integral V −1

∫
V
Ey which in terms of cylindrical coordi-

nates is given by
∫ 2π

0

dϕ

2π

∫ Λ

0

dz

Λ

∫ R2

0

dr2

R2
eiϕ (Er sinϕ+ Eϕ cosϕ) . (21)

Given the form of Eϕ, integrating over z will pick out
the n = 0 mode. However, n = 0 mode is generally
leaky and thus should be highly suppressed for a high
Q solution. Similarly, the form of Er implies that the
i
ωε∂zHϕ part should dominantly contribute to the overlap
integral, which becomes

1

V

∫

V

Ey ≈ 1

2

∫ Λ

0

dz

Λ

∫
dr2

R2

∂zε
−1

ω
Hϕ . (22)

For dark photon dark matter searches, m = 1,K = 0
mode would overlap with a transverse dark photon field,
whereas m = 0,K = 0 mode would overlap with a longi-
tudinal dark photon field. For the latter, ηu is determined
by V −1

∫
V
Ez.

Therefore, both the axion and dark photon dark mat-
ter dominantly couple to the TM polarization of the zero-
K modes. As an example, consider

ε(z) =

{
ε1, 0 < z < a

ε2, a < z < Λ
. (23)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

r/R0

0

1

2

3

4

5

z/
Λ

(
√

V −1
∫
V ε|E|2)−1

∫ 2π
0

dφ
2π Ey

r
R0

−0.432

−0.360

−0.288

−0.216

−0.144

−0.072

0.000

0.072

0.144

0.216

FIG. 2: Normalized profile of Ey(r, z)× r for a
fine-tuned m = 1,K = 0 confined mode in a cylindrical
fiber Bragg grating. This mode has a non-zero overlap
factor η and therefore couples to the DM source. We

took a a periodic relative permittivity
ε = 1

2 (ε1 − ε2) [1 + sin(2πz/Λ)] + ε2 with ε2 = 1, ε1 = 5
in the core and no = 1 in the cladding.

This yields an overlap factor which is approximately

ηu ∼





√
2 (ε1−ε2)
(ε1+ε2)3/2

, m = 1

ε
1/2
1 −ε

1/2
2√

2πε1ε2
sin
(
2aπ
Λ

)
, m = 0

(24)

where we assume that integrating the radial part yields
a factor ≲ 1.
To numerically verify this, we consider a toy example

with a periodic permittivity in the core given by 1
2 (ε1 −

ε2) [1 + sin(2πz/Λ)] + ε2 with ε2 = 1, ε1 = 5, and no =
1 in the cladding. We work in the basis of n = 0,±1
modes only, and fine tune the radius to obtain a confined
mode with m = 1,K = 0, which has ω̃0 ≡ ω0/(2π/Λ) =
0.649038, R0 = 0.942518/(2π/Λ) (c.f. Figure 2). Up to
an overall normalization, the solutions are given by

√
εEz = 2i cos

(
2πz

Λ

)


J1(λ
+
1 r)

J1(λ
+
1 R0)

, r < R0

H
(1)
1 (α1r)

H
(1)
1 (α1R0)

, r > R0

(25)

with λ+1 = 0.0918145(2π/Λ), and

Hz(r < R0) = − i

2ω̃2
0

[
g−2 J1(λ

−
2 r)

J1(λ
−
2 R0)

− g−3 J1(λ
−
3 r)

J1(λ
−
3 R0)

]

+
i
√

1 + 8ω̃4
0

2ω̃2
0

[
g−2 J1(λ

−
2 r)

J1(λ
−
2 R0)

+
g−3 J1(λ

−
3 r)

J1(λ
−
3 R0)

]

−2i sin

(
2πz

Λ

)[
g−2 J1(λ

−
2 r)

J1(λ
−
2 R0)

+
g−3 J1(λ

−
3 r)

J1(λ
−
3 R0)

]
,

(26)

Hz(r > R0) = −2i sin

(
2πz

Λ

)
(g−2 + g−3 )H

(1)
1 (α1r)

H
(1)
1 (α1R0)

(27)
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with λ−2 = i0.11834(2π/Λ), λ−3 = 1.24157(2π/Λ), g−2 =
0.592891, g−3 = 0.128881. Note that an accidental can-
cellation happens for the TE polarization such that

H
(1)
1 (α0r) vanishes. Using Eq. (21), this solution gives

an overlap factor of |ηu| ≈ 0.1.

B. 2D-Periodic Resonators

Dielectric ring resonators suffer from “inevitable”
losses of photons due to their curvature and due to the
sharp interfaces between domains of different indices of
refraction. Both effects limit the maximum quality fac-
tor that can be attained in practice. Despite this, current
state-of-the art resonators reach Q ∼ 106 in periodically-
poled (see Table 2 in Ref. [44]) and ∼ 104 (see, e.g.,
Refs. [45, 46]) in periodically-grooved resonators for cir-
cularly propagating modes. As shown above, DM couples
to standing wave-like modes with K ≈ 0, for which Q
values are likely lower since they lie above the light-line
ω = |K|/nair (i.e., these states can couple to continuum
radiation). Photonic structures that are periodic in 2D,
however, are known to support Bound States in Contin-
uum (BIC) which are extremely long-lived modes with
|K| ≪ ω [47]. We expect DM to couple most strongly to
these K ≈ 0 modes.

The large Q values possible in BICs arise due to ac-
cidental cancellations between different radiation modes,
or, due to a high degree of symmetry in the dielectric
arrangement. In this section we explore the latter possi-
bility by considering a dielectric slab with a square lattice
of holes – see Fig. 3. The discrete rotational symmetry
of the slab enables a categorization of all modes in terms
of its irreducible representations (irreps) of the symme-
try group; BICs and radiation modes fall into different
irreps of the group, such that they formally have 0 over-
lap leading to a (formally) infinite quality factor [48]. In
practice, the quality factor is controlled by the finite size
of the slab, and manufacturing imperfections (e.g., vari-
ations in the size and positions of the holes), leading to
realistic quality factors of 104 [37]. Even higher quality
factors ∼ 5 × 105 have been engineered by tuning slab
geometry to combine multiple BICs [49].

The device sketched in Fig. 3 consists of a square lat-
tice of holes in the center serving as the resonator. The
gaps (“line defects”) surrounding the finite lattice act as
highly effective (low loss) waveguides [50]. DM excites a
standing wave mode in the resonator which leaks out into
the gaps which guide the signal photons onto a detector.

The formalism described in Sec. II and the beginning of
Sec. III applies to 2D-periodic structures. In fact, we can
now slightly extend the previous discussion and allow for
the resonator to be larger than a DM coherence length.
This means that while individual unit cells still have a
size much smaller than λdB, their spatial separation can
be much larger than λdB. In this situation the overlap

FIG. 3: A sketch of a photonic slab resonator (the
periodic hole pattern in the middle) and the

surrounding waveguides (gaps in the periodic hole
pattern). For ease of illustration the resonator is drawn
with only 16 unit cells. Wave-like DM can excite a mode
in the resonator which sources fields in the waveguides.

factor can be written as

|η|2 = |ηu|2
1

N2
u

∑

i,j

e−iK·(Ri−Rj)e−(Ri−Rj)
2/λ2

dB , (28)

which generalizes Eq. (12). This modification means that
at a fixed K (correspondingly fixed ω), only those unit
cells with |Ri −Rj |/λdB < 1 contribute significantly to
the overlap. By approximating the double sum in Eq. 28
by a double (two-dimensional) integral, it is straightfor-
ward to show that the result scales as λ2dB/(NuAu), such
that the full signal power loses total volume scaling. In-
stead, for a fixed signal mode with Bloch momentum K,
the volume factor V = NuAuh in Eq. 5 is effectively re-
placed by λ2dBh, i.e. the signal power appears to come
from a single “coherence volume” of the detector. Exten-
sive scaling of the signal power is restored if the detector
is sensitive to a range of |K| ∼ 1/λdB values that the DM
couples to. The result is that the signal power scales with
total detector volume and Eq. 5 holds after summing over
K.6

Patterned slabs appear to have several useful features
for DM detection. First, the effective index contrast be-
tween different regions within a unit cell is large, allowing
us to maximize the overlap factor. Second, slabs feature
a larger space-filling fraction on a substrate wafer, lead-
ing to a larger instrumented volume compared to, e.g.,
ring resonators on a same-sized wafer. Finally, the pat-
terned slabs can have large areas ∼ cm2 [37] at a single
lattice spacing; alternatively, multiple slabs with differ-
ent lattice spacings can be placed on a single line-defect

6 This situation is completely analogous to the dielectric stack
which has a much larger area than λ2

dB [26]. As a result, the
stack emits photons with a range of transverse momenta k⊥ as
dictated the DM velocity distribution. The summation over these
different modes is accomplished by the lens which redirects these
photons onto a single detector. Only after this step the signal
power proportional to the total area of the stack.
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waveguide. The latter set-up is analogous to placing mul-
tiple ring resonators on a single bus. It would be interest-
ing to study whether 3D-periodic structures have further
advantages. We leave the exploration of DM signals in
these systems to future work.

2D Example: Square Lattice of Holes

In this section we discuss some details of the square
lattice photonic slab as a DM detector. Our primary aim
is to show that this structure supports low-loss modes
that couple to DM. The low loss condition implies that
the signal mode does not couple to radiation modes, while
a non-zero coupling to DM requires a non-zero overlap
integral. We can gain insight into both requirements by
considering symmetries of the slab.

The square lattice is symmetric under reflections about
z plane and the point group C4v [51], which consists
of π/2 rotations, reflections through the xz, yz planes
and through two other diagonal planes. In the ideal-
ized case of an infinite slab with perfect holes, the only
losses are due to radiation above or below the slab, where
the modes must reduce to plane waves propagating in
±z. Since there are two polarizations, these radiation
modes must correspond to two-dimensional irreps of C4v.
Therefore modes falling into one-dimensional (singlet) ir-
reps (called A1 and B1) of C4v cannot radiate to infinity.
These are the low-loss modes we are after.

Now we can apply the condition of a non-zero over-
lap. This eliminates modes which are not symmetric un-
der all reflections, leaving only A1 irreps. Typically the
mode with the largest overlap will have the fewest possi-
ble nodes, so we conclude that the lowest-energy A1 will
have the largest overlap factor. Such a mode is shown in
Fig. 4 for slab height 0.5a, hole radius 0.2a and slab di-
electric constant ε = 12 where a is the length of the unit
cell. This mode was found using MPB [52].7 Numerically
we find ηu ≈ 10−2. We leave the optimization of the
overlap factor through variations in geometry to future
work. It will also be interesting to explore other lattices.

IV. COMBINING SIGNALS

The optimal DM signal power that can be drawn from
a signal resonator is proportional to the resonator vol-
ume. This volume is generically small for resonant fre-
quencies ω ∼ eV, required to search for DM with mass
mDM ∼ eV. A large number of resonators is therefore
needed to probe weakly-coupled DM at this mass. For-
tunately, in photonic systems this is easily achieved with
modern fabrication methods. However, care must be

7 https://github.com/NanoComp/mpb
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FIG. 4: Example electric field mode (in the z = 0
plane) of the square lattice of air holes that is both
long-lived (symmetry-protected from coupling to

radiation modes) and has a non-vanishing overlap with
DM. The axes are given in units of the lattice constant
a. The fields were found using MPB for slab height 0.5a,
hole radius 0.2a and slab dielectric constant ε = 12.

The electric field amplitude is normalized to such that∫
d3rε|E|2 = 1 over one unit cell. The black circles are

the air holes in the dielectric slab. Only three periods of
the photonic structure are shown in each direction.

taken in the design to achieve the optimal combined sig-
nal. In this section we describe the basic criteria needed
to do this, and identify several practical strategies. For
a related discussion see Ref. [53].
The optimal signal power from N resonators is pro-

portional to the total volume, since the collective system
of N resonators may be equivalently considered to be a
single resonator with N distinct cells. Thus N identical
resonators have collectively an optimal power of NP0,
where P0 is the optimal power of a single resonator. One
might have thought that by combining signals in-phase
an optimal power ∝ N2 could be achieved, but this is
incorrect and it ignores the backreaction inherent in cou-
pling power from a resonator with finite loss. Conserva-
tion of energy implies that the power input to the res-
onator by the DM source, the power lost to dissipation,
and the signal power drawn from the resonator obey

Psource = Psig + Ploss. (29)

For a resonator of quality Q driven by a fixed source
current JDM, on resonance we have that the source and
loss power are determined by the resonator mode Ep and
mode amplitude ep as

Psource =
1

2
Re

[
e∗p

∫
d3x E∗

p · JDM

]
(30)

Ploss =
ω|ep|2
2Q

∫
d3x |Ep|2. (31)

https://github.com/NanoComp/mpb
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Since these two quantities scale with different powers of
ep it follows that the signal power is bounded from above,

Psig ≤ Q

8ω

(
|
∫
d3x E∗

p · JDM|2∫
d3x |Ep|2

)
≡ Pc (32)

which is saturated at a particular, critical value of the
mode excitation ecrit. This is essentially the result in
Eqs. (5) and (7), save that those expressions further con-
sider the microphysics of JDM generated by a stochas-
tic DM field. Simultaneously reading out additional res-
onators does nothing to alter this bound, so long as the
resonators are sufficiently separated that their presence
does not alter the form of Ep. Thus a system of N iden-
tical resonators can produce a signal power of at most
NPc.

A. Collective Readout

We now examine the requirements on a readout scheme
to achieve the limit NPc. Consider N identical res-
onators with no mutual interactions and assume that the
DM coherence length is larger than the resonator size,
but not necessarily larger than the distance between res-
onators. Let each resonator have a non-degenerate mode
Ep with frequency ωp and assume these modes are dis-
joint in space. Maxwell’s equation may then be consid-
ered resonator-by-resonator, and the excitation ei of the
ith resonator obeys

(
∂2t +

ωp

Q
∂t + ω2

p

)
ei Ep = −eiαi∂tJDM (33)

⇒ ei =
−iω eiαi

ω2
p − ω2 + i

ωωp

Q

(∫
Vi
d3x E∗

p · JDM∫
Vi
d3x |Ep|2

)
. (34)

Here we have taken JDM to represent the magnitude of
the oscillating harmonic DM source of frequency ω, which
is the same at each resonator location, and αi is its phase
which may vary between resonators.

The action of DM on this system of N resonators is
nicely characterized by thinking of the system collectively
as one oscillator possessing N -cells and an N -fold degen-
erate subspace of normal modes with frequency ωp. The
modes are labeled by the relative amplitude and phase
of the field in each cell. Which of these normal modes
does DM excite? It is to this mode that the readout must
couple to draw the full available power.

If the DM coherence length is larger than the collec-
tive system, then the source phases are all equal αi = α0

and DM excites the uniform “0-mode” in which all res-
onators are excited with equal amplitude and phase. In
this case we ought to couple the readout to all resonators
identically. However, now consider the opposite limit in
which the DM coherence length is smaller than the small-
est inter-resonator spacing. In this case DM still excites
one particular normal mode, that of equal amplitudes but

non-equal phases {eiαi}. As the αi are unknown, we do
not a priori know to which mode we ought couple. Fur-
ther, after a coherence time 1/(mDMv

2) ∼ ns (eV/mDM)
the relative phases αi change by O(1). In this case, the
DM-driven normal mode is a moving target. In order to
extract all of the power, we must simultaneously read-
out a complete basis of N normal modes.8 A set of such
modes acts as a net, catching all of the available DM
power.

B. Single-mode Readout

An array of resonators coupled to a single output mode
can only achieve complete coupling in the case of that
DM is coherent over the full system. An example of such
a readout is given in Fig. 6, in which one waveguide is
coupled to N identical resonators in series. In this case
the bus couples to one normal mode of the N -cell sys-
tem, that which has a relative phase between consecutive
cells matching the optical length of waveguide between
those cells. In a single-mode readout of N incoherent res-
onators, the expected power is in fact independent of N
and is equal to the power delivered by a single resonator,
as we show here.
Consider an arbitrary readout mode with electric field

bEb (r) = b
∑

i

biEp,i (r) , (35)

where Ep,i is the mode function localized to resonator i
and b is the overall mode amplitude. This mode may be
labeled by a complex N -tuple of the relative amplitudes,
|b⟩ = (b1, b2, . . . , bN ). How much power does this mode
draw from the DM source? It obeys

(
∂2t +

ωp

Q
(1 + γ)∂t + ω2

p

)
bEb = −eiα(r)∂tJDM, (36)

where we understand JDM to be spatially uniform and
α(r) is a spatially varying phase such that α(r) = αi is
a constant inside the ith resonator. Note that the qual-
ity factor of the collective system is equal to that of an
individual resonator. The coupling of power out of this
mode is parameterized by γ, which we define to be the
ratio of signal power to dissipated power. Thus

Psig =
ωγ

2Q

∫

N

d3r |bEb|2, (37)

8 In principle this does not need to be simultaneous. One could
scan modes serially to identify the excited one and re-scan every
coherence time. Such techniques are used in telecommunications,
but it is unlikely they would be of use in a DM search where the
signal is expected to be so weak that SNR ≳ 1 is only achieved
after integrating longer than the coherence time.
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where the integral is over the volumes of all N resonators.
Since the modes are spatially disjoint and of equal am-
plitude, this is

Psig =
ωγ

2Q
⟨b|b⟩ |b|2

∫

1

d3r |Ep|2 (38)

and the integral is now only over the volume of one res-
onator. The amplitude b follows from Eq. (36). Special-
ising immediately to the on-resonance case we have

b =

( −iQ
ωp (1 + γ)

) ∫
N
d3r E∗

b · JDMe
iα(r)

∫
N
d3r |Eb|2

(39)

=

(
−iQ

ωp (1 + γ)
·
∫
1
d3r E∗

p · JDM∫
1
d3r |Ep|2

)
⟨b|α⟩
⟨b|b⟩ . (40)

Here we have associated the DM source with an N -tuple
of phases, |α⟩ =

(
eiα1 , eiα2 , . . . , eiαN

)
. Note that the fac-

tor in parenthesis in Eq. (40) is the amplitude we would
have in the case of a single resonator. The final signal
power may be written

Psig = NPc
4γ

(1 + γ)
2 |χ|2 (41)

where Pc is the maximal power that can be drawn from a
single resonator, given in Eq. (32) and |χ|2 is an overlap
factor between the readout mode |b⟩ and the DM source
mode |α⟩,

|χ|2 =
1

N

|⟨b|α⟩|2
⟨b|b⟩ . (42)

The signal power is maximized for γ = 1. The overlap
χ is proportional to the projection of the DM mode onto
the readout mode, and as such its maximal value occurs
when these vectors are parallel,

|χ|2 ≤ ⟨α|α⟩
N

= 1 (43)

where ⟨α|α⟩ = N since it is a tuple of phases.
In the case of coherent DM, all αi are equal and we may

choose a single readout mode in which all bi are equal, for
example by spacing the resonators at integer multiples
of the wavelength along the bus. It follows then that
|χ|2 = 1 and the output power is optimal, Psig = NPc.
However, in the fully incoherent case, for a single readout
mode we ought to take the bi fixed and average over the
αi, which yields a suppressed overlap,

⟨|χ|2⟩α =
1

N
(44)

and thus Psig = Pc for any fixed readout mode {bi}.

C. Multi-mode Readout

In the incoherent case, the full power is recovered by
reading out a full basis of normal modes. For any possible

DM excitation mode, its overlaps with this set of read-
out modes will be sufficient to extract all of the power.
To demonstrate this, suppose that one reads out an or-
thogonal set of modes |c⟩ labeled by c = 0, 1, . . . N − 1,
and each of these is critically coupled (γ = 1) to the out-
put. Then the total output power is given by the sum of
overlap factors,

∑

c

Psig = NPc

∑

c

|χ (c) |2, (45)

and the sum of overlaps is 1, since it is a sum of projec-
tions onto an orthogonal basis, i.e.,

∑

c

|c⟩⟨c|
⟨c|c⟩ = 1 (46)

and the sum of overlaps is

∑

c

|χ|2 =
1

N

∑

c

⟨α|c⟩⟨c|α⟩
⟨c|c⟩ = 1 (47)

which follows since ⟨α|α⟩ = N . Thus the summed power
is optimal,

∑
c Psig = NPc.

V. PRACTICAL READOUT TECHNIQUES

There are many practical strategies by which the read-
out criteria discussed in Sec. IV can be achieved. A de-
tailed implementation is beyond the scope of this work,
however we will outline several techniques here to demon-
strate the feasibility of complete readout over both coher-
ent and incoherent systems. We will focus on the specific
example of optical resonators placed along an output bus,
as depicted in Fig. 6, however the techniques presented
here are applicable to any multiple resonator system.

A. Coherent Spacing

First, as long as the typical linear size of the resonators
R is smaller than λdB, and taking the minimum spacing
to be O (R), then any 2D block containing O

(
λ2dB/R

2
)

resonators is driven by a coherent DM field. We may
route an output bus through this block with path length
between any two adjacent resonators being an integer
multiple of the wavelength. For microring resonators, we
typically have R/λ ∼ 100 and so λdB/R ∼ 10. Such
blocks occupy roughly 10 µm× 10 µm on the chip.
Beyond λdB ∼ 10 µm we have incoherence in the DM

source, and we must implement a multimode readout.
To conceptualize this, we may coarse-grain over the res-
onators in one coherence block and treat them as a single
resonator coupled to the bus. The collection of such co-
herence blocks on the chip is thus equivalent to a set
of incoherently driven resonators as studied above. To
readout this system of N coherence blocks requires that
we employ N readout modes coupled to a basis of the
normal modes of the coherent blocks.
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B. Spatial Combining

A simple approach to combining incoherent res-
onators is to allocate one bus per resonator and di-
rect each of these buses to a separate detector. This
amounts to choosing a “position basis” of readout modes:
(1, 0, 0, . . . ), (0, 1, 0, . . . ), etc. This has the downside,
however, of also increasing the total detector dark count
rate by a factor of N . It is preferable to use one detec-
tor. Note that the buses cannot simply be fused before
reaching the detector, as doing so hard-codes a relative
phase between the signals from each pair of resonators
and thereby actually implements a single-mode readout.

Instead, we can terminate each bus in an open, radiat-
ing end at the edge of the chip, and then place a photon
counter close enough to the collect the radiation from all
such buses, as illustrated in Fig. 5. This technique is an
established way to couple signals off a chip [54, 55] and
when used in this manner to combine signals it is an ex-
ample of spatial or free-space power combining [56]. This
readout is inherently multimode. If the normal mode ex-
cited by DM changes, then the phase of each emitter
end will change and thus the outgoing radiation pattern
changes. If the bus ends are located sufficiently far apart,
then the radiation pattern implements a complete set of
readout modes as a function of outgoing direction. We
might imagine the signal emerging as a searchlight which
is steered about in a stochastic way every DM coherence
time. To collect the full signal power we then require a
detector covering a sufficient solid angle as to be always
intercepting this beam.

Now in reality a directed, searchlight beam is produced
only in response to particular type of DM phase pattern,
and the typical emission is a superposition of search-
lights, each with different time-varying intensities. To
see this, suppose that each bus is an integer number of
wavelengths long, so that the emitting ends radiate with
the same phase as the field in their respective resonators.
We can then consider a “Bloch basis” of normal modes,
labeled by a phase shift δ such that

|δ⟩ =
(
1, eiδ, e2iδ, . . . , ei(N−1)δ

)
, (48)

i.e., each successive resonator is read with a phase δ rela-
tive to the prior resonator. This is an orthogonal basis if
we take δc = 2πc/N for c = 0, 1, . . . , N − 1. Each mode
|δ⟩ will drive the emitters with a successive phase step of
δ between them. This is exactly the configuration of a
phased array antenna which emits a directed searchlight
beam [57], and thus different modes |δ⟩ radiate a beamed
signal with direction set by δ. If the emitters are spaced
by l in a 1D array, then |δc⟩ emits into a finite number
of lobes at directions

sin θ =
2π

kl

(
m+

c

N

)
(49)

where θ is the angle away from the transverse to the
array, k is the wavenumber of the signal radiation and m
is an integer labeling the lobes for a fixed c.

FIG. 5: Schematic depiction of spatial power combining
of three identical resonators each coupled to their own
output bus. The busses terminate with emitters and the

resulting radiation is interfered in free space and
collected on a nearby detector, resulting in complete

multimode readout. For details see Sec. VB.

Consider the case of wide spacing kl ≫ 1 and focus on
the main lobes m = 0. Then |δc⟩ radiates into a direction

θc ≈
2π

kl

( c
N

)
. (50)

The uniform mode c = 0 thus radiates forward and the
other modes at slightly oblique angles O(1/kl). There
is a series of such beams located farther off the forward
direction, one for each m allowed by Eq. (50). Note the
particular case of kl = π, for which there is exactly one
lobe per mode c and these lobes together span −π/2 <
θ < π/2.
It follows that there are many specific arrangements

of emitters that will yield an output power O(NPc) for
a detector covering an O(1) solid angle. The principle
requirement is that by scanning θ we can correspond-
ingly scan over all possible phase shifts between emitters,
which is generically achieved so long as the emitters are
spaced by roughly larger than one wavelength. Finally,
note that sufficient detector coverage is possible even for
small detector areas by simply placing the detector very
near to the emitter ends. One might be concerned that
the above discussion relied on far-field expressions like
Eq. (50) while such a detector sits in the near-field re-
gion. However, in vacuum the total outward flux must
be constant with distance, and so while the near-field ra-
diation pattern may not exhibit the clear angular struc-
ture of Eq. (50) it is nonetheless the case that the power
intercepted by the detector is O(NPc).

C. Multiple Bus Modes

A different approach is to couple each normal mode
|c⟩ to radiation in the bus with a unique wavenumber
k(c). Scanning over wavenumber may then in principle
scan over a basis of resonator modes and extract the full
power. This has the advantage of allowing many identical
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rings to share one bus and one detector, which increases
the chip area available to resonators and minimizes the
total dark count. There is one basic requirement to be
met in this setup. If a full basis of normal modes couples
to a set of bus modes spanning an interval of wavenumber
∆k, then we must have that the frequencies of these bus
modes span an interval less than the DM width ∆ω/ω ≲
10−6.

Consider an array of N identical resonators on a bus
as in Fig. 6, with the resonators uniformly spaced by a
distance d. Bus radiation of wavenumber k will couple
to a “Bloch mode” |δ⟩ as in Eq. (48) with a phase step
δ = kd. In order to encompass a full basis |c⟩ we take
wavenumbers kc = 2πc/Nd, i.e. ∆k ∼ 2π/d. We then
require

∂ω

∂k

(
2π

d

)
≲ ω v2. (51)

For close-packed incoherent resonators d > 1/mv and

∂ω

∂k
≲ v ∼ 10−3. (52)

Thus the bus must support “slow light” modes, which
precludes the use of an simple waveguide in which
∂ω/∂k ∼ 1 [58]. The necessary dispersion may be en-
gineered using periodic media or chains of coupled res-
onators [59].

For busses with relativistic dispersion ∂ω/∂k ∼ 1
we might alternately engineer the phases of the bus-
resonator couplings themselves to vary strongly with k,
which allows a smaller range ∆k to encompass a full ba-
sis. If we require ∆ω ∼ ∆k ≲ mv2, then we must have
coupling phases ϕ which vary as

∂ϕ

∂k
≳

2π

mv2
. (53)

Additionally, we can consider techniques to increase the
effective optical path length between the resonators,
which also lowers the spread δk needed. One possibility
is to couple the light into an intermediate, non-grooved
microring where it would make many round trips before
combining with the light from the subsequent rings. We
leave a detailed study and optimization among these var-
ious techniques to future work.

VI. COUPLED MODE MODEL OF N
RESONATORS IN SERIES

The most straightforward way to readout many res-
onators in a photonic system is to couple them in series
along a single waveguide, as illustrated in Fig. 6. The
outputs of these rings will interfere, and additionally the
presence of the bus necessarily couples all rings together,
violating one of the key assumptions of Sec. IV. The re-
sulting response of the entire device to the DM source
can be qualitatively different from that of non-interacting

rings. In this section we derive the signal power from
coupling N optical resonators “in series” following the
coupled mode analysis of Ref. [60]. We will study the
effects of resonator frequency and physical spacing, and
their interplay with the coherence of the DM field. This
verifies the ideas of Sec. IV in a more realistic setting, as
well as accounts for the effects of mutual coupling.
We note that coupled arrays of optical resonators are

well-studied in integrated photonics [61, 62]; in these ap-
plications the resonator array is usually excited from a
single input port (one side of the bus) and the output is
measured at the other end. For DM detection each ring
acts as a possibly incoherent source of waves in the bus
propagating in both directions, which requires a novel
reformulation of the coupled mode theory [60].
Consider the setup as sketched in Figure 6 with N

resonators of (potentially) different resonant frequencies
ωRl

coupled to a single bus. Since DM sources a stand-
ing wave in resonators with ωRl

close to the DM mass,
the signal photon can travel in either direction when it
leaks to the receiver bus, and it can potentially excite
neighbouring resonators. The field amplitudes al in this
coupled system can be described by Coupled Mode Equa-
tions, which in frequency space read (following the nota-
tion of Ref. [60])
[
i(ωRl

− ω)− τ−1
l

]
al + κ1,ls+1,l + κ2,ls+2,l = sDM,l,

(54)
where s+1,l (s+2,l) are power amplitudes in the bus ar-
riving from the left (right) at the lth resonator, κi,l are

the corresponding bus-resonator couplings, τ−1
l is the res-

onator decay rate; sDM,l = sDM(ω,xl) is the DM source
at the position of each resonator which follows from Eq. 1:

sDM,l = − ω

2ωRl

∫
d3rEl · J+

DM(ω,xl)√∫
d3rεE2

l

(55)

where El is the spatial profile of the ωRl
mode in the lth

resonator. The above system of equations, including the
source term, follow from Maxwell’s equations, Eq. (1), by
taking the Fourier components of (real) EM fields near
ω ≈ ωRl

> 0; J+
DM is the positive frequency part of the

DM source, Eq. (68). We have assumed that the DM
field is spatially-coherent over a single resonator, while
allowing for different phases at different resonators; as a
result J+

DM only depends on the position of the resonator,
xl, but not on the integration over the resonator volume.
The amplitudes al (s+i,l) are normalized such that their
time averages ⟨al(t)2⟩ (⟨s+i,l(t)

2⟩) give the energy stored
in the l’th resonator (power flowing through the bus at
the l’th resonator).
The bus power amplitudes s+i,l couple all of the res-

onators together; in the weak coupling limit energy con-
servation allows us to express these quantities in terms
of the mode amplitudes of other resonators on the bus:

s+1,l = e−iωnrd

{
s+1,l−1 − κ∗2,l−1al−1 l > 1

0 otherwise
(56)
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FIG. 6: N Resonators coupled to a single receiver bus with coupling κl, where the signal power amplitude sout is
read out at the end of the bus. The interaction between the dark matter and the resonators can be modelled as

having N dark matter sources sDM(xl) at each resonator, where xl corresponds to the lth resonator’s location. The
separation between the resonators is d and the refractive index of the bus is nr, which fix the relative phases

between the DM sources, and the contributions of the different resonators to the power amplitude.

and

s+2,l = e+iωnrd

{
s+2,l+1 − κ∗1,l+1al+1 N > l ≥ 0

0 otherwise
(57)

where nr is the effective refractive index of the receiver
bus, d is the spacial separation between the neighboring
resonators.

The symmetry of this configuration implies that the
forward and backward bus-resonator couplings are equal

κl ≡ κ1,l = κ2,l. (58)

They can be expressed in terms of an external quality
factor Qe as

|κl|2 ≡ ωRl

2Qe
. (59)

The total field amplitude decay rate τ−1
l depends on

these couplings and on the intrinsic resonator quality:

τ−1
l = τ−1

i,l + τ−1
e,l (60)

where τ−1
e,l = |κl|2 is the total partial width into bus

modes propagating in either direction and

τ−1
i,l =

ωRl

2Qi
(61)

is the intrinsic loss rate. Note that decay rate of the
mode energy al(t)

2 is 2τ−1
l . The total or loaded quality

factor includes both intrinsic and extrinsic losses

Q−1 ≡ Q−1
i +Q−1

e (62)

and determines the physical width of the bus-coupled
resonators.
We want to know the steady-state power that this sys-

tem emits through the bus to the left or the right of all
of the resonators; iterating Eq. 56 and Eq. 57 this output
power amplitude is given by

sout(ω) =
N∑

l=1

−κ∗l ale−iωnrd(l−1) ≡ −t · a (63)

where

a = (a1, a2, · · · , aN ) (64)

t =
(
κ∗1, κ

∗
2e

−iωnrd, · · · , κ∗Ne−i(N−1)ωnrd
)
. (65)

We can solve for a by inverting the linear system in
Eq. 54:

a =M−1sDM (66)

where sDM = (sDM,1, . . . , sDM,N ) and M is a symmet-
ric matrix that captures the interactions among the res-
onators:

M =




i(ω − ωR1
) + τ−1

1 κ1κ
∗
2e

−iωnrd · · · κ1κ∗Ne−i(N−1)ωnrd

κ1κ
∗
2e

−iωnrd i(ω − ωR2
) + τ−1

2 · · · κ2κ∗Ne−i(N−2)ωnrd

...
...

. . .
...

κ1κ
∗
Ne

−i(N−1)ωnrd κ2κ
∗
Ne

−i(N−2)ωnrd · · · i(ω − ωRN
) + τ−1

N




(67)
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The time-averaged power emitted at the end of the bus
is therefore

Psig =
2

T

∫ ∞

0

dω

2π
|sout(ω)|2, (68)

where

|sout(ω)|2 =
∑

ijkl

tiM
−1
ij sDM,js

∗
DM,kM

−1†
klt

∗
l . (69)

Note that this spectral distribution is for signal radiated
into one direction of the bus. If both ends of the waveg-
uide are read out, then the total signal power is doubled.

As in the case of N non-interacting resonators, solved
in Eq. (41), we have that the output power is given by the
magnitude-squared of an overlap between a readout mode
t and a DM source vector sDM. However, Eq. (69) now
includes the effects of interactions via M , and further it
is expressed in terms of the amplitude-level couplings κl
instead of the power ratios γ. The κl are more fundamen-
tal and depend only on the geometry, material properties
and mode profiles of the resonator and bus, whereas the
power drawn in a given setup will depend also on the
amount of flux in the bus preceding the resonator.

Since the resonator spacing can be larger than the
DM coherence length, the DM velocity dispersion is no
longer negligible and |sout(ω)|2 will depend on the rel-
ative phases of the DM field at the different resonators.
To obtain the expected steady-state output power we can
average |sout(ω)|2 over possible DM field realizations for
a given DM velocity distribution f(v). Treating DM as
a classical random Gaussian field, we find from Eqs. 55
and 2

⟨sDM,js
∗
DM,k⟩ =

ω2

4ωRj
ωRk

√
Vjη1,j

√
Viη

∗
1,kJ̄

2
DM

×
∫
d3vf(v) exp i [mv · (xj − yk)]

× 2πTδ(ω −m)

(70)

where ηj are the single resonator overlap factors

ηj =
V −1
j

∫
d3rEj · n̂√

V −1
j

∫
d3rεE2

j

(71)

and J̄2
DM is given in Eq. (6). Note again that the DM

field spatial dependence is taken outside of the single res-
onator overlap integral, Eq. (71), because we assume that
DM is coherent over the resonator. The velocity distri-
bution above is normalized such that

∫
d3vf(v) = 1; as

in Section II we will take a Gaussian f(v) for simplicity:

f(v) =
1

π3/2v30
e−(v+v⊙)2/v2

0 , (72)

which allows to us to evaluate the velocity integral in
Eq. 70 explicitly:

∫
d3vf(v) exp i [mv · (xj − yk)] =

exp

(
−1

4
m2v20(xj − yk)

2 − i [mv⊙ · (xj − yk)]

) (73)

For the linear arrangement of resonators depicted in
Fig. 6, (xj−yk)

2 = (d|j−k|)2. Since v0 ∼ |v⊙| ∼ 10−3c,
⟨sDM,js

∗
DM,k⟩ becomes exponentially suppressed when

ωd|j−k| ≫ 103. In this limit, the DM source correlation
matrix, Eq. (70), is proportional to the identity, corre-
sponding to each resonator being incoherent with respect
to its neighbours. However, as we will see in Section VII,
we will need to maximize the number of resonators on a
single bus while demanding that each resonator is of or-
der the coherence length of DM (to maximize its volume).
Thus we will be concerned with d ∼ 1/(mv0) and some
level of source correlation is inevitable between neigh-
bouring resonators.

In order to develop intuition for the output power in
Eqs. (69) and (70) we will apply them to N = 1 before
presenting numerical results for large N .

A. One Resonator

Evaluating Eqs. (68) to (70) for N = 1 gives the total
output power of a single resonator

P1(m) =
τ−1
e J̄2

DM|η|2V
ω2
R

m2

(m− ωR)2 + τ−2
(74)

where we used τ−1
e = |κ|2 and added power radiated into

both directions in the bus. On resonance, m ≈ ωR, this
becomes

P1,res(m) =
2Q

m

(
τ−1
e

τ−1

)
J̄2
DMV |η|2, (75)

whereQ is the loaded quality factor and τ−1
e /τ−1 encodes

the “branching fraction” of the resonator to decay into
the bus. We define the ratio β = τ−1

e /τ−1
i so that

τ−1
e

τ−1
=

Q

Qe
=

β

1 + β
(76)

Because τ−1 = τ−1
i + τ−1

e , the signal power is maximized

when τ−1
i = τ−1

e , i.e. β = 1. For this choice, Eq. (75)
agrees with Eq. 5.

We will refer to critical coupling as any choice of κl
that maximizes the power output of a given system. In
general, the critical coupling depends on the number of
resonator on the bus and their frequencies; moreover
each resonator can have a different coupling, leading to
a high-dimensional optimization problem for κl (see Ap-
pendices B and C). For simplicity we will focus on the
case where all of these couplings are the same. Note that
in general the ratio β, which is defined in terms of the
amplitude-level couplings κl, is not the same quantity as
the total power ratio γ used in Eq. (36). They coincide
in the case of a single resonator, however for N > 1 they
do not (see Appendix B).
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B. N Resonators

While the system in Eq. (54) can be solved analytically
for a few resonators, the general formulas are not enlight-
ening, even for N = 2. Instead we study the solutions
numerically and discuss special limiting cases. Our first
goal is to investigate the N scaling of the signal power.
As we will see it crucially depends on whether the res-
onators have equal resonant frequencies or not.

First, let us suppose that the ωRl
= ωR for all l. In

Fig. 7 we show the signal power as a function of relative
detuning (ωR − m)/ωR for different choices of N . The
main conclusion that we draw from this figure is that
peak power does not scale with N for generic choices of
the resonator-bus couplings. The physical reason for this
is that a signal photon produced by one resonator travel-
ling down the bus can resonantly excite any of the other
resonators and provides more opportunity for the photon
to be lost. Specifically, the probability of a bus photon to
resonantly excite a resonator and then to be lost due to
internal losses is ∼ Nτ2/(τiτe) (unless it originates close
to the end of the array, in which case, the N enhance-
ment is absent). If τi ∼ τe then in this resonant regime
N ∼ 1 already leads to an O(1) probability for losing the
signal photon! Naively, there are two ways out of this
predicament. For example, if τe ≫ τi (and so τ ≈ τi), the
loss probability is Nτi/τe; so by varying τe via the bus
resonator couplings one can try to keep this probability
small as N becomes large. This has two challenges: first,
each resonator coupling needs to be adjusted based on its
position in the array, leading to a high-dimensional opti-
mization problem; second, taking τi/τe small also shrinks
the output power of each resonator (c.f., Eq. (75)) as
1/N , so the overall N scaling is still lost, as we see in the
(ωR −m)/ωR → 0 corner of Fig. 7.
Another attempt is to consider the limit where τi ≪ τe,

i.e., internal losses are unimportant. In this regime, one
can show that the output power on resonance is exactly
that of a single resonator, see Appendix B. This has
a simple intuitive interpretation in the fact that signal
photons are trapped in the “bulk” of the array by be-
ing repeatedly re-absorbed by the different resonators;
as a result the only photons that are detected come from
resonators on either end of the array.

Both arguments about the lack of N scaling assumed
that m = ωR; away from this resonant regime, the out-
put power does grow with N , but the Q enhancement is
lost.9 Thus there appears to be no advantage of having
resonators of the same frequency coupled to a single bus
with fixed phase, as in the model of Eqs. (54) and (63).
In this setup only a single normal mode of the entire sys-
tem is read out. As discussed in Sections IV and IVC a

9 N scaling is also present if all N resonators are within a single
DM coherence length (see Appendix B); this, however, means
that each resonator has a volume that is a factor ∼ 1/N smaller
than it could be.
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FIG. 7: The power drawn from N resonators with the
same frequency on one bus (Eq. (68)), normalized by
Pres,1, the peak power from a single critically-coupled
resonator (Eq. (75)). β is the coupling ratio defined in
Eq. (76), taken to be 1 in the bottom panel, and critical
for N coherently spaced resonators in the top panel,

however these have spacing d which is beyond
coherence.

multimode read out can restore the extensive N scaling.
We now consider the case where all the resonance fre-

quencies are different, drawn from the set

ωRl
∈ {ωR(1 + δ)i−1 | i ∈ [1..N ]} (77)

where ωR is the lowest target frequency in the series and
δ is a fractional frequency change between neighbour-
ing frequencies (these frequency space neighbours do not
need to be neighbours in position space). Since we are
interested in covering a region of DM mass range with-
out gaps, we will consider δ ∼ few × Q−1. Because no
two resonators have the same resonant frequency, the re-
sponse of the coupled system is approximately the sum
of responses of N uncoupled resonators. This can be
easily seen from the structure of Eqs. (67) to (69): at a
given driving frequency ω only one of the diagonal entries
in Eq. (67) is large, so the output power approximately
decomposes into a sum over different resonators. This
decomposition is nearly exact when the resonators are
spaced by more than a de Broglie wavelength; otherwise
non-trivial source phase correlation can play a role in
determining the precise response, especially if the neigh-
bouring resonators in physical space also have similar fre-
quencies, as illustrated in Fig. 8. It is clear that the signal
bandwidth grows with N asNδωR, enabling a broadband
DM search in all three cases. The ordered arrangement
corresponds to the resonators arranged sequentially ac-
cording to frequency, i.e., ωRl

= ωR(1 + δ)l−1. For the
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FIG. 8: Power output from N = 100 resonators in series
with three different spacial arrangements of resonant

frequencies from the set in Eq. (77). Each resonator has
a quality factor of Q = 500. P1(ωR) is the peak power
from a single resonator. The total signal bandwidth is
given by ∼ NωR/Q. For comparison, P1(ω)/P1(ωR) is
shown in a gray dashed line. The spacing between

resonators is less than the coherence length, which gives
rise to the clear structure in the ordered case. When
the resonators are randomized or spaced according to

Eq. (78) this structure disappears as all resonators with
similar frequencies are then incoherent.

spaced arrangement neighbouring frequencies are sepa-
rated in space by 10 positions; this is implemented by
taking ωRl

= ωR(1 + δ)g(l)−1, where

g(l) =

{⌊
l
10

⌋
+ N

10 ((l mod 10)− 1) + 1 l mod 10 ̸= 0

(l + 9N)/10 l mod 10 = 0

(78)
assuming N is a multiple of 10. For example, the first res-
onator has ωR1

= ωR, while the next frequency appears
at l = 11, i.e., ωR11

= ωR(1 + δ). Finally, the random
arrangement allocates frequencies from (77) to the res-
onators randomly. It can be seen that the power becomes
more evenly distributed among all frequencies within the
bandwidth using a random or spaced arrangement com-
pared to an ordered arrangement. This is because a small
separation in frequencies between nearby resonators en-
ables interference effects if they are within the DM co-
herence length. Therefore, the random or variations of
the spaced arrangement of frequencies are preferred to
ensure a “smooth” detector response.

For the randomly spaced array the peak power for a
DM mass within the bandwidth of the resonator array is
simply given by Eq. (75).

VII. PROJECTED SENSITIVITY

We now use the insights developed in the previous sec-
tions to project the sensitivity of realistic experimental
setups to the axion-like particle and dark photon mod-
els. We will use the language of microring resonators,
but our estimates are valid for any other resonator form-
factor (e.g., slabs and other types of photonic crystal
cavities) only with different numerical factors that en-
code their volumes, overlap factors, filling fractions, etc.
Integrated high Q resonators have been demonstrated
across various spectral regions including the visible [63],
near-infrared [44], mid-infrared [64, 65], and long-wave
infrared [66] domains, corresponding to photon wave-
lengths from 0.4 µm to 11 µm. Therefore, we estimate
the sensitivity of photonic devices to DM with masses
from 0.11 to 3 eV. Different resonator materials and pho-
ton detectors will be required to cover this mass range.

A. Signal Rate

First let us estimate the signal rate from a single mi-
croring resonator with the target frequency ωR. The
largest overlap factors are expected to arise from the EM
modes with fewest nodes, which means that the length
of a single unit cell is approximately 2π/ωR, leading to a
resonator circumference of L = 2π/ωR ×Nu where Nu is
the number of unit cells. The cross-sectional area of the
resonator is A = tw × 2π/ωR, where tw is the thickness
of the waveguide. Using Eq. (75) with Eq. (6), the signal
rate from one critically-coupled (τ−1

e = τ−1/2) resonator
on resonance is

Γ1(ωR) ∼
10−11

sec
×





0.2
(

0.25eV
ωR

)4 (
gaγGeV
10−10

)2 (
B

9.4T

)2

109
(

0.25eV
ωR

)2 (
χ

10−10

)2

(79)
where Q = 5000, |ηu|2 ∼ 0.1, Nu = 100, tw = 10 µm.
Here the first (second) line corresponds to axion (dark
photon) DM. For both models, the coupling (gaγ or χ)
has been normalized to a value near the current experi-
mental bounds [67, 68]. Note that the signal rate for dark
photon DM is significantly higher than that of axion DM
in this mass range, due to the relatively weaker solar con-
straints at these masses. Even over one year, the number
of events in a single resonator from axion DM at currently
allowed couplings is significantly less than 1. To increase
this reach signals from a large number of resonators need
to be combined.
At a single frequency, resonator power may be summed

using the techniques discussed in Section V. For concrete-
ness we consider here the use of spatial power combining,
however the parametrics of the signal power depend only
on the number of resonators and not the adding mech-
anism. Thus in practice other techniques may be used
as well. In addition, to search a mass interval of frac-
tional width larger than 1/Q it is necessary to employ
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resonators of different frequencies, either by building dif-
ferent sets of wafers or by including multiple resonant
frequencies within one wafer. Indeed we can vary the
frequency along a single bus, as there are no strong de-
structive interference effects between signals of differing
frequency. See Fig. 8 for a study of this arrangement. We
do not optimize here the frequency coverage per wafer, as
this ought to consider various factors beyond the scope
of this work, such as the overhead of fabrication and in-
stall as well as the fact that using multiple frequencies
alleviates some of the challenges of power combining as
we have fewer common-frequency resonators to sum. We
instead consider here a reasonable example setup, de-
picted in Fig. 1, where a number of coupled resonator
series are laid out in parallel. In each series, a given reso-
nant frequency appears only once, but the same resonant
frequency appears many times over an entire wafer in dif-
ferent series. Each series is then combined with a spatial
combiner.

We will now estimate the number of resonators that
can be reasonably packed onto a single wafer and use that
to evaluate the bandwidth and sensitivity of such a de-
vice. In a wafer of diameter D, the number of resonators
that can be placed in a series is N ∼ D/d, where d is
the separation between the resonators. Parametrizing
d = l × 2π/ωR, the resonators do not overlap in space if
l > Nu/π. The resonator targeting the lowest frequency
ωR in each series has the largest size, so it determines
the number of series that can be placed in parallel on the
wafer. For a microring, the width w of a single series is
at least the sum of the width of the receiver bus and the
diameter of the microring, i.e., w ≳ (Nu/π + 1) (2π/ωR).
Thus, approximately D/w series systems can be accom-
modated on a wafer; assuming the series are identical,
D/w is also the number of resonators with any particu-
lar target frequency ωRi , Nω. The (resonant) signal rate
at each of these target frequencies is NωΓsig(ωRi) where
Γsig is given in Eq. (79). Moreover, since there are D/d
different target frequencies the bandwidth of a single de-
vice is greatly enhanced. For example, a single 150 mm
diameter wafer can accommodate D/d ∼ D/w ≳ 103

series and resonators per series for w ∼ d ∼ 100 µm.
Despite large single-wafer enhancement factors, exper-

iments seeking discover DM beyond existing constraints
must instrument larger volumes by combining multiple
wafers. For axion DM searches a major limiting factor
is the magnetic field volume. With this in mind, it is
useful to compute the total interaction volume which
will be constrained by magnet size or other practical
considerations. Since the volume of a single ring is

LA ≈ Nu

(
2π
ωR

)2
×tw, the effective interaction volume for

a single wafer targeting frequencies [ωR, ωR(1+ δ)
N−1] is

Vint ≈ LA
D2

dw
≲

D2twπ

(Nu/π + 1)
∼ D2twπ

2

Nu
, (80)

which is independent of the base frequency ωR. The in-
tegrated components form a thin layer on a wafer, so the

B (T) Bore (mm) Vact (cm3) B2Vact (PeV) References

40 34 9× 10−3 6.9× 104 [69]

21 123 0.118 2.5 × 105 [70]

9.4 800 100 4.2× 107 [71]

11.7 900 127 8.3× 107 [72]

20a 680 72.6 1.38× 108 [73]

a A future 20 Tesla MRI magnet

TABLE I: Realistic magnet parameters that can be
employed in an axion search. All entries are MRI

magnets except for the 40 Tesla magnet. Vact is the
product of the physical volume of the bore and the
active fraction ξact ∼ 0.1%, defined in Section VIIA.

“active” volume fraction is small:

ξact ≡
Vint

πD2ts/4
∼ 0.1%

(
100

Nu

)(
tw/ts
0.01

)
, (81)

where ts is the thickness of the wafer. Since ξact is inde-
pendent of the wafer size and target frequency range, the
total signal rate is enhanced by a factor corresponding to
the total number of resonators per frequency,

Γsig ≈ 4 · 107 Γ1

(
100

N

)(
Vact

100 cm3

)
×

×
( ωR

0.25 eV

)2(100

Nu

)(
10 µm

tw

)
(82)

where Γ1 is given in Eq. (79). The maximum possible
active volume Vact in any axion search is controlled by
ξact times the magnet bore volume. In Table I we list
several strong, large-bore magnets that either exist or
are being considered. It is clear that larger bore sizes
generally yield a bigger B2Vact. Given a fixed B2Vact
that covers N axion frequencies, the axion DM signal
rate becomes

Γsig(ωR) ∼
8× 10−5

sec

(
Q

5000

)( |η|2
0.1

)(
0.25 eV

ωR

)2

(
gaγGeV

10−10

)2(
B2Vact

4.2× 107 PeV

)(
100

N

)
.

(83)

B. Background

The coupling reach is enhanced if a larger active vol-
ume (i.e., larger ξact) can be obtained. This can be
achieved by decreasing the thickness of the wafer and in-
creasing the thickness of the integrated structures. One
concern in doing so is that this increases the number of
readout buses and thus the number of detector elements
needed for full spatial readout. In a given run, the de-
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tector area needed is

Ad ≈ 40 cm2

(
Vact

100 cm3

)(
10µm

tw

)(
100

Nc

)(
100

Nu

)

(84)

where Nc is the number of coherently-spaced resonators
of the same frequency along each bus.

We consider two example detector systems, Skip-
per charge-coupled device (CCD) and superconducting
nanowires (SNSPDs) [32]. The relevant properties are
listed in Table II. Over our full detector area (84) we
have a dark count timescale of

(
Vact

100 cm3

)
Γ−1
bkg ≈

{
40 sec, ω < 1.12eV (SNSPD)

60 sec, ω > 1.12eV (CCD).

(85)

C. Reach

The signal-to-noise ratio of a given run with integration
time tint is

SNR =
Γsigtint

Max [1,Γbkgtint]
1/2

(86)

where the 1 in the denominator corresponds to a
background-free run.

We consider multiple runs, each of which use a unique
set of resonators targeting a different frequency window
[ωR, ωR(1 + δ)N−1] where δ = 1/Q = 2 · 10−3 and N =
100. Therefore, the relative bandwidth in each run is
∼ Nδ = 0.2, which is significantly larger than that of
the DM source bandwidth, enabling broadband detection
(i.e., each run is sensitive to a wide range of DM masses).
Note that for simplicity we assumed N is the same in
each run; however, as the target frequency range varies,
so does the physical size of the resonators and N can in
principle be optimized to maximize the scan sensitivity
in each frequency range. The number of runs needed to
cover a frequency range (ω1, ω2) is

Nscans ≈
1

Nδ
log

(
ω1

ω2

)
. (87)

For example, as shown in Fig. 9, for Q = 500 and
N = 100 and a total integration time per photodetec-
tor technology of one year, we cover the range between
0.1 eV < ω < 1.12 eV using SNSPDs in 12 runs and
between 1.12 eV < ω < 2 eV using CCDs in 4 runs. We
let each run to integrate for

tint ≈
{
2.6 · 106 sec, ω < 1.12 eV (SNSPD)

6.4 · 106 sec, ω > 1.12 eV (CCD).
(88)

Assuming a given magnet bore can be completely in-
strumented with wafers populated by resonators as de-
scribed above, these integration times yield an axion-
photon coupling sensitivity of

g∗aγ ≈ 2ω√
ρD

√
N

B2VactQ|ηu|2

(
1

tintΓ
−1
bkg

)1/4

≈7× 10−11

GeV

( ω

0.25 eV

)(1month

tint

)1/4
(
40 sec

Γ−1
bkg

)1/4

(
4.2 · 108 PeV

B2Vact

)1/2(
500

Q

)1/2(
N

100

)1/2(
0.1

|ηu|2
)1/2

.

(89)

Note that while we expressed the reach in terms of the
total active volume, the actual volume inside the magnet
bore dedicated to a particular target frequency is Vact/N
where N is the number of different target frequencies in
every series. We assumed the 9.4 T magnet in Table I as
an example, but other large bore MRI magnets all have
similar B2Vact and would therefore result in comparable
sensitivity.
We conclude this section by discussing the sensitivity of

similar experiments to dark photon DM. Unlike searches
for axion-like particles, dark photon experiments do not
need a strong magnetic field. Therefore the key experi-
mental parameter is simply the active volume of the de-
tector. Note that this implies that the dark count is a
function of active volume, too. Unlike the background-
dominated regime in Eq. (89), dark photon dark matter
search can be quite sensitive already in a background free
regime, where the kinetic mixing sensitivity is approxi-
mately

χ∗ ≈
√

12N

QρDVacttint|ηu|2

≈ 10−13

(
104 sec

tint

)1/2(
0.1 cm3

Vact

)1/2

×
(
N

100

)1/2(
500

Q

)1/2(
0.1

|ηu|2
)1/2

.

(90)

In Fig. 10 we project the experimental reach for different
choices of Vact and tint.

VIII. CONCLUSION

The landscape of dark matter models is extremely
broad, covering many orders of magnitude in mass range.
As a result, discovering these different possibilities re-
quires a varied set of experimental techniques. In this
paper we have explored the interactions of DM with in-
tegrated photonic systems and showed that ambient DM
with couplings to electromagnetism can resonantly excite
photonic devices if they have periodic variations in their
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Detector Range (eV) DC (sec−1) Size (µm2) Refs.

SNSPD 0.1− 1.12 6 · 10−6 400× 400 [27, 74]

CCD 1.12− 3 10−9 15× 15 [75]

TABLE II: Detector technologies considered here.
Columns show the frequency range we study, dark

count rate and physical collecting area per element, and
relevant references. The threshold energy 1.12 eV is the
bandgap of silicon. Signal photons below the bandgap
must be detected with SNSPDs, while those above can

be observed with skipper CCDs.
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FIG. 9: Projected sensitivities to the axion-photon
coupling gaγ , assuming SNR=1 (86). Each scan is

represented by one of the blue, orange, green and red
lines, and requires filling the magnet bore with systems

of N = 100 resonator series, with a bandwidth
∆sig/ωR ∼ δN . The magnetic field B is provided by the

9.4 T magnet listed in Table I. ξact given by (81)
indicates the percentage of the volume inside the
magnet that contributes to the axion-photon

interaction. A total of approximately 2 years is required
to cover the mass range covered. The lighter dashed
lines take Q = 5000 for each scan and thus would
require 10 times more time to cover the same mass

range. The QCD axion is indicated by the yellow band.
Also shown are existing bounds from helioscope

searches [76], stellar evolution [77, 78], and indirect
detection [79–81].

structure. As a result, this technology can enable discov-
ery of DM with masses near the electronvolt scale. This
work is a major foray into the use of integrated photonics
for fundamental physics, and represents a promising new
avenue for DM searches.

We argued that attaining leading sensitivity to DM
models in this mass window typically requires coupling a
large number of resonators together, making integrated
photonic circuits an ideal laboratory for such searches.
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FIG. 10: Projected sensitivities to the photon-dark
photon kinetic mixing χ assuming SNR=1 (86). Each
solid (dashed) scan assumes an interaction volume of
0.1 cm3 (1cm3) and an integration time of 104 sec (105

sec). The entire volume is filled with systems of
N = 100 resonator in series targeting different

frequency ranges, each with bandwidth ∆sig/ωR ∼ δN
with δ = 1/Q. Also shown are existing limits from
searches for solar-produced dark photons with

Xenon1T [82] and the DM search LAMPOST [27].

These systems introduce unique challenges and opportu-
nities for DM experiments. For example, by solving the
coupled mode equations of the system we showed that
its response to the DM source is qualitatively different
than that of uncoupled resonators. This fact, combined
with the novel sensitivity of these detectors to the phase
of the DM field across the device suggest that the sim-
plest searches involve multiple resonators at slightly dif-
ferent frequencies, leading to a broadband sensitivity to a
range of DM masses at once. Moreover, because the sig-
nal photons are collected in wavelength-scale waveguides,
they can be counted with small, extremely low dark-
count photodetectors, like superconducting nanowires
and Skipper charge-coupled devices. Our projections
show that such a set-up can easily surpass existing limits
on DM and test theoretically-interesting parameter space
(e.g., the QCD axion mass-coupling relation). These re-
sults are summarized in Figs. 9 and 10.

While our forecasts drew on detailed results from
coupled mode theory, we have not optimized many of
the experimental specifics. For example, we have dis-
cussed only two possible implementations of photonic
resonators as (one-dimensional) periodic microrings or
(two-dimensional) photonic slabs. Moreover, we made
simplifying assumptions about the coupling of each res-
onator to the read-out bus which plays a key role in de-
termining the response of the entire system. For exam-
ple, in the microring case, the geometry of the ring-bus
coupling region can be chosen to maximize the proba-
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bility of successfully collecting a signal photon. We also
showed that the simplest implementation of the coupled
resonators idea results in a read-out that is only sensitive
to a single normal mode of the system. We can achieve
near-extensive scaling of signal-to-noise with device count
N using spatial read-out of all normal modes, however it
may be possible to achieve a fully extensive scaling by
coupling all such modes into a single read-out bus. Such
a device can be used to study a narrow range of frequen-
cies in the case of a signal from the broadband approach.
We leave these exciting considerations to future work.

Integrated photonic devices also provide novel oppor-
tunities compared to other experiments. For example,
their DM response can be experimentally characterized
by exciting the DM-coupled modes with a transverse
laser beam, which is difficult to do in other configura-
tions such as the dielectric stack. In the event of a null
result, this would enable a precise mapping of the con-
straints onto the DM parameter space. As mentioned
above, different resonators in the system are probing dif-
ferent DM phases. It would be interesting to develop
a phase-sensitive read-out scheme to extract information
about the local DM velocity distribution in the event of a
signal. Finally, the resonators can be constructed out of
non-linear materials such as lithium niobate which can
enable novel DM search channels using active/excited
resonators, such as photon up- or down-scattering. Inte-
grated photonics thus provides a very rich platform for
ultralight DM searches.

ACKNOWLEDGMENTS

Acknowledgments. We thank Yoni Kahn, Alex Mil-
lar, Masha Baryakhtar, Junwu Huang, Daniel Egana-
Ugrinovic, Asher Berlin, and Albert Stebbins for helpful
discussions. This work is supported by the DOE Quan-
tISED program through the theory consortium ”Inter-
sections of QIS and Theoretical Particle Physics” at Fer-
milab. Fermilab is operated by the Fermi Research Al-
liance, LLC under Contract DE-AC02-07CH11359 with
the U.S. Department of Energy. RH and RJ are also sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, National Quantum Information Science Research
Centers, Superconducting Quantum Materials and Sys-
tems Center (SQMS) under contract number DE-AC02-
07CH11359. CG and RH also acknowledge the Aspen
Center for Physics for its hospitality where part of this
work is done, which is supported by National Science
Foundation grant PHY-1607611.

Appendix A: Dark Matter Field and Signal
Coherence

In this Appendix we relate the (known) DM velocity
distribution to the statistical properties of the DM source
that appears in Eq. (1). We use this to derive the generic

expression for DM signal power including coherence ef-
fects that appears in Eqs. (5) and (7). Here we refer to
the DM as axions, but completely analogous reasoning
applies to dark photon DM.

1. DM as a Random Field

It is known in optics that the density operator

ρ̂ = Πiρ̂i = Πi

∑

ni

⟨ni⟩ni

(⟨ni⟩+ 1)
ni+1 |ni⟩⟨ni| (A1)

where the summation runs over all the modes, applies not
only to the thermal photon distribution but also a wide
range of excitations in which the statistical properties of
the light are suitably random [83]. Since the axion dark
matter is stochastic, (A1) could be a good description.
Given an axion field operator

ϕ̂(x, t) =
N∑

l=1

1√
2ωlV

(
âle

ix·kl−iωlt + h.c.
)
= ϕ̂+ + ϕ̂−

(A2)
where ωl ≃ m+ 1

2mv
2
l , we can compute observables using

⟨O(ϕ)⟩ = Tr (ρO(ϕ)). If n, ⟨n⟩ → ∞, the probability
P (n) approximately takes the following form

P (n) =
1

⟨n⟩+ 1

(
1− ⟨n⟩−1

)n ≈ 1

⟨n⟩e
−n/⟨n⟩. (A3)

Let us compute ⟨ϕ̂(x, t)ϕ̂(x′, t′)⟩ in the large n, ⟨n⟩ limit,
corresponding to the regime in which can think of ϕ as a
classical field:

⟨ϕ̂−(x, t)ϕ̂+(x′, t′)⟩

=
∑

l

1

2ωlV
⟨nl⟩e−ikl·(x−x′)+iωi(t−t′)

continuum−−−−−−→
∫

d3k

(2π)3
1

2ωk
⟨nk⟩e−ik·∆x+iωkδt

non-rel−−−−→m2eimδt

2

∫
d3v

(2π)3
⟨nv⟩e−imv·∆x+ i

2mv2δt

(A4)

Here we defined ∆x ≡ x − x′, δt = t − t′. To find
the normalisation of the field ϕ0, we can compute the its
energy density

ρϕ =
⟨(ϕ̇)2 + (∇ϕ)2 +m2ϕ2⟩

2
≃ m4

∫
d3v

(2π)3
⟨nv⟩

≃ 1

2
m2ϕ20

∫
d3v

2⟨nv⟩
(2π)3

m2

ϕ20
≡ 1

2
m2ϕ20

∫
d3vf(v)

(A5)

where we traded ⟨nv⟩ with the normalized velocity dis-
tribution f(v) via

⟨nv⟩ ≈
ϕ20
2m2

(2π)3f(v) . (A6)
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Therefore, (A4) can be rewritten as

⟨ϕ̂−(x, t)ϕ̂+(x′, t′)⟩ ≈ ϕ20
4
eimδt

∫
d3vf(v)e−imv·∆x+ i

2mv2δt.

(A7)

Assuming for simplicity that the dark matter velocity
follows a Gaussian distribution

f(v) =
1

π3/2v30
e−(v+v⊙)2/v2

0 , (A8)

we can compute the first order degree of coherence for
the dark matter field:

g(1)(x, t;x′, t′)

≡ ⟨ϕ̂−(x, t)ϕ̂+(x′, t′)⟩√
⟨ϕ̂−(x, t)ϕ̂+(x, t)⟩⟨ϕ̂−(x′, t′)ϕ̂+(x′, t′)⟩

=eimδt

∫
d3v

π3/2v30
e
− (v+v⊙)2

v2
0

−imv·∆x+imv2

2 δt

=e
imδt−i

ξ

 v2
⊙

v2
0

−ζ2

−mv⊙·∆x

1+ξ2
−i 3

2 tan−1 ξ e
−

ξ2
v2
⊙

v2
0

+ζ2

1+ξ2

(1 + ξ2)3/4

(A9)

where

ξ ≡ 1

2
mv20(t− t′), ζ ≡ 1

2
mv0|x− x′|. (A10)

For v⊙ ∼ v0, the norm of g(1)|x=x′ falls to e−1 when
ξ ∼ 1. Thus τa ≡ 2

mv2
0
is the coherence time for axion

dark matter field. To get coherence length, consider

g(1)|t=t′ = e−ζ2

eimv⊙·(x−x′) (A11)

Therefore, 2
mv0

can be identified as the axion field coher-
ence length λdB.

2. Signal Power in a Cavity

⟨ϕ̂−(x1, t1)ϕ̂
+(x2, t2)⟩ directly controls the outcome of

a haloscope experiment, since the power spectral density,
defined as Sϕ(ω) ≡ 1

T ⟨ϕ̃(x1, ω)ϕ̃
∗(x2, ω)⟩, can be written

as

Sϕ(ω) =
ϕ20
4T

∫
dt1dt2e

−iω(t1−t2)
(
g(1)(x1, t1;x2, t2) + h.c.

)

≈ϕ
2
0

4

sin2
(

(ω−m)T
2

)

(
(ω−m)

2

)2
T

e
− |x1−x2|2

λ2
dB + (ω → −ω)

T→∞−−−−→ ϕ20
2
π(δ(ω −m) + δ(ω +m))e

− |x1−x2|2

λ2
dB

(A12)

where we kept the leading order terms in both the oscil-
latory and non-oscillatory pieces of g(1) only.

Recall that to get the dark matter signal field in a
cavity based experiment, one needs to solve [84]

∑

n

(
ω2 − ω2

n − i
ωωn

Qn

)
En(x)ẽn(ω)

=

∫
dte−iωtgaγ∂t(B0ϕ̇(x, t)) = −ω2gaγB0ϕ̃(x, ω).

(A13)

Letting the signal field be E1 and writing B0 = B0n̂, we
have
√∫

V

|E1|2ẽ1(ω) = − gaγB0ω
2

ω2 − ω2
1 − iωω1

Q1

∫
V
E∗

1 · n̂ϕ̃(ω)√∫
V
|E1|2

.

(A14)
To read out the signal, we necessarily introduce ad-

ditional losses in addition to the intrinsic loss. For
now, let Q−1

1 → Q−1
eff = Q−1

0 + Q−1
e , where Q0 and

Qe are the intrinsic and extrinsic quality factors respec-
tively. Now the signal power after readout is Psig =
ω1

Qe

∫
V
|E1|2⟨e1(t)e1(t)⟩. Using ⟨ϕ̃(x1, ω)ϕ̃

∗(x2, ω
′)⟩ =

Sϕ(ω)2πδ(ω − ω′), and Qe = Q0/β, we find

Psig =
ω1g

2
aγB

2
0β

Q0

∫
dω

2π

ω4

(ω2 − ω2
1)

2 +
(

ωω1

Q0
(1 + β)

)2

×
∫
V

∫
V ′ E1(x

′) · n̂E∗
1(x) · n̂Sϕ(ω)∫

V
E∗

1 ·E1

(A15)

For a homogeneous and monochromatic axion field√
2ρ

m2 cos(mt), Sϕ = πρ
m2 (δ(m − ω) + δ(m + ω)), and the

above expression signal power gives the familiar result.
Taking into account DM coherence over the detector by
instead using Sϕ from Eq. (A12), Eq. (A15) yields on
resonance m = ω1

Psig =
Q0g

2
aγB

2
0ρV

ω1

β

(1 + β)2
×

×
∫
V

∫
V ′ E1(x

′) · n̂E∗
1(x) · n̂e

− |x−x′|2

λ2
dB

V
∫
V
E∗

1 ·E1
.

(A16)

This gives precisely Eqs. (5) to (7) for β = 1. Note that
if the detector size ∼ |x−x′| ≪ λdB, we recover the usual
result.

Appendix B: N Resonators of the Same Frequency
in Series

In this Appendix we consider N coupled equal-
frequency resonators to show that for minimal assump-
tions about the read-out the signal power fails to scale
with N . More general arguments about this are provided
in Section IV along with strategies for restoring this ex-
tensive scaling.
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When all resonators are identical and their resonant frequencies are equal to ωR, the coupling matrix in
Eq. (67) simplifies to

M =




i(ω − ωR) + τ−1 τ−1
e e−iωnrd · · · τ−1

e e−i(N−1)ωnrd

τ−1
e e−iωnrd i(ω − ωR) + τ−1

2 · · · τ−1
e e−i(N−2)ωnrd

...
...

. . .
...

τ−1
e e−i(N−1)ωnrd τ−1

e e−i(N−2)ωnrd · · · i(ω − ωR) + τ−1




(B1)

where we also assumed the coupling coefficients κi to
be real for simplicity. Here τ−1 = τ−1

e + τ−1
0 . τ−1

0 =
ωR/(2Q0) and τ

−1
e = ωR/(2Qe). Fig. 7 shows the signal

power from Eqs. (68) and (69). It is clear that the power
at the resonance does not grow linearly with the number
of resonators. To understand this behavior further, we
work out several simplified cases below where solutions
can be obtained analytically.

1. Case 1: No Intrinsic Loss

If there is no intrinsic loss, we can take Q−1
0 → 0. For a

single resonator, Eqs. (68) and (69) on resonance become

Psig, 1, no loss(ω = ωR) =
1

2
τeJ̄

2
DM|η|2V (B2)

Note that compared to Eq. (75) here we are considering
signal collected from one of the two directions in the bus,
leading a factor of two difference between these results.
For simplicity, let us compare this with a system of 4
resonators in series and consider the response at ω = ωR.
Letting b = e−iωRnrd, we find

sout ∝




1

b

b2

b3




T

·




1
1−b2

b
b2−1 0 0

b
b2−1

b2+1
1−b2

b
b2−1 0

0 b
b2−1

b2+1
1−b2

b
b2−1

0 0 b
b2−1

1
1−b2



·




sDM,1

sDM,2

sDM,3

sDM,4




=
(
1 0 0 0

)
·




sDM,1

sDM,2

sDM,3

sDM,4




(B3)

Therefore in the lossless limit the signal power at ω = ωR

for N = 4 is precisely equal to that of a single resonator
on resonance, Eq. (B2):

Psig, 4, no loss(ω = ωR) =
1

2
τeJ̄

2
DM|η|2V (B4)

This result is true for any number of resonators for almost
any choice of separation d, regardless of whether dark
matter sources are coherent or not.

One caveat of the derivation above is that M becomes
singular when b = 1, or ωRnrd is an integer multiple of
2π, which is exactly the choice that enables a constructive
interference in the read-out. This issue can be avoided
by keeping τ−1

0 and taking Q0 → ∞ at the end as we
show below.

2. Case 2: Coherent Sources

Next, let us consider the response when ω = ωR and
the dark matter sources are all coherent, i.e., sDM,i all
have the same phase. This means that the resonator
spacing d must be small enough such that v0ωRdN ≪ 1.
Furthermore, let us choose d such that ωRnrd is an inte-
ger multiple of 2π in order to address the caveat above.
One can show that the contribution to sout from each
resonator takes the following form

β1/2

β +N−1

(
1

N
,
1

N
,
1

N
, · · ·

)
, (B5)

where β is defined by Q = Q0/(1 + β). The total signal
power then scales as

Psig, N, coherent(ω = ωR) =
Q0

ωR

N2β

(1 +Nβ)2
J̄2
DM|η|2V

(B6)
The coupling that maximizes the output is β = 1/N .
This corresponds to a “critical coupling” for the entire
system for which the signal power becomes:

Psig, N, coherent, crit(ω = ωR) =
NQ0

ωR
J̄2
DM|η|2V. (B7)

Compared with Eq. (75) evaluated at critical coupling
(which includes an additional factor for 2 for radiation
into both directions in the bus), it is clear that the signal
power grows linearly with the number of resonators as
long as they are within the coherence length of the dark
matter.
Using Q0 = βQe, followed by taking β → ∞, Eq. (B6)

becomes

Psig, N coherent, no loss(ω = ωR) =
1

2
τeJ̄

2
DM|η|2V, (B8)

in agreement with Eqs. (B2) and (B4), addressing the
caveat mentioned in the previous subsection.
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3. Case 3: Two Resonators

When N = 2 we can write down a short, closed form
expression for the signal power as a function of resonator

spacing, read out couplings and DM frequency detuning.
Letting ω = ωR(1 + ∆), the power is given by

Psig, 2(∆, β) =
Q0J̄

2
DM|η|2V
ωR

β×
[−βρ cos(2α+ θ) + β2 + β + 4∆2Q2

0 + 1

−2β2ρ2 cos(2(α+ θ)) + β4 + ρ4
+ e−

1
4 (∆+1)2v2

0ω
2
Rd2 (1 + 4∆2Q2

0) cosα+ 4β∆Q0 sinα

−2β2ρ2 cos(2(α+ θ)) + β4 + ρ4

] (B9)
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FIG. 11: Signal power from two resonators for different
separations d as a function of the relative DM frequency
detuning. For comparison, the single resonator power

(gray) with β = 1 is plotted as well. v0 = 10−3, nr = 3.5

where

α(∆) = (∆ + 1)nrωRd (B10a)

ρ(∆, β) =
√
(β + 1)2 + 4∆2Q2

0 (B10b)

θ(∆, β) = tan−1

(
2∆Q0

β + 1

)
(B10c)

In Fig. 11 we compare the power output from two criti-
cally coupled resonators for different separations d. It is
clear that as the separation becomes comparable to the

dark matter coherence length ∼ v−1
0

π
2π
ωR

, the resonance
power deteriorates, and increasingly approaches the sin-
gle resonator power as the separation gets further.

Appendix C: Coupling Optimization

In Section VIA we noted that for a single resonator the
signal power is maximized when the intrinsic and external
loss rates are equal, τ−1

i = τ−1
e . In systems with N > 1

resonators an analogous optimization can be performed

by varying the N resonator-read-out couplings. While we
leave a general solution to this problem for future work,
in this Appendix we analytically illustrate the behaviour
of N = 2.
Let us consider two resonators coupled to a receiver.

The resonators have slightly different resonant frequen-
cies ω1 = ωR and ω2 = ωR(1 + δ) but are otherwise
identical, meaning that their intrinsic Q0 and external
Qe ≡ Q0/β quality factors are the same (so that they
both have loaded Q = Q0/(1 + β)). As a further simpli-
fication, let us choose the resonator separation d to be
such that nrωRd is a integer multiple of 2π. This sim-
ple setup allows us to study what values of the fractional
frequency difference δ and the coupling β would consti-
tute an optimal choice. Assuming that the frequency
difference δ ∼ Q−1

0 , we can write the signal power at the
resonant frequencies ω1,2 as

2J̄2
DMV |η|2Q0

ωR

1∑

i=0

f (i)(β, δ)Q−i
0 . (C1)

It turns out that f (0) is the same at ω1,2 and is given by

f (0)(β, δ) =

2β

(
e−

ω2
Rd2v2

0
4 + 2(δQ0)

2 + 1

)

(2β + 1)2 + 4(β + 1)2(δQ0)2
. (C2)

Therefore, one should pick the coupling β such that max-
imizes the leading contribution to signal power at ω1,2,

i.e., f (0). This yields the optimal coupling β∗ as a func-
tion of frequency difference δ:

β∗(δ) =
1

2

√
4(δQ0)2 + 1

(δQ0)2 + 1
∈ [

1

2
, 1] , (C3)

where the lower limit β = 1
2 occurs at δ = 0, which agrees

with a critically coupled system (see Appendix B 2). Fig-
ure 12 plots the output power from the two resonator sys-
tem at the resonant frequencies in leading order of Q0. If
δ is chosen to be a few times Q−1

0 , the optimal coupling is
approximately 1 for well separated resonators. This im-
plies that each resonator can be treated as independent
from each other when they are well separated either in
resonance frequencies or in their physical separations.
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FIG. 12: Leading order power output from two
resonator in series at their resonance frequencies as a
function of δ. Solid, dashed and dot-dashed lines

correspond to three choices of the separation between
the resonators. Also shown is the optimal coupling β∗

as a function of δ (green dotted). If δ ≡ (ω2 − ω1)/ω1 is
chosen to be a few times Q−1

0 , the optimal coupling is
approximately 1.

Appendix D: Modes of a Cylindrical Fibre Bragg
Grating

In this section we provide details of the mode cal-
culation of the 1D-periodic structure discussed in Sec-
tion IIIA. In the absence of sources and taking ε = ε(z),
µ0 = µr = 1, ε0 = 1 the Maxwell equations in Eq. (1) re-
duce to the following wave equations for harmonic fields

(∇2 + ω2ε)E = −∇
(
ε′Ez

ε

)
(D1)

(∇2 + ω2ε)H = −iω∇ε×E (D2)

We are interested in cylindrically symmetric system. Let
E ∼ Eeimϕ, H ∼ Heimϕ, the z−components of the wave
equations are given by

L̂m

(
Ez

Hz

)
=

(
−(∂z

ε′

ε + ε′

ε ∂z + ω2ε)Ez

−ω2εHz

)
(D3)

where L̂m ≡ ( 1r∂rr∂r − m2

r2 + ∂2z ).
Consider a step index circular waveguide consisting of

a core of radius R, and a periodic ε(z) with periodicity
Λ, and a cladding of constant refractive index no, and
radius much bigger than R. By writing

( √
εEz

Hz

)
= eimϕ

(
ψTM(r, z)

ψTE(r, z)

)
(D4)

we can expand ψσ(r, z) with σ = {+ : TM,− : TE} in a
Bloch series:

ψσ(r, z) = eiβz
∑

n

ψσ
n(r)e

iqnz (D5)

where q = 2π
Λ , and β(ω) is the Bloch momentum. Now

the wave equations (D3) become

∑

n

[
∂2r +

1

r
∂r −

m2

r2
− (β + qn)2 + Uσ

]
ψσ
ne

iqnz = 0

(D6)
where

UTE = ω2ε, UTM = ω2ε− 3

4

(
ε′

ε

)2

+
1

2

ε′′

ε
. (D7)

Expanding Uσ in the Bloch series yields

Uσ = ω2
∑

n

Uσ
n e

iqnz (D8)

where Uσ
n = Uσ

−n
∗ due to the reality of Uσ. Substituting

this into (D6), we find
∑

l

(
ω2Uσ

n−l − (β + qn)2δln
)
ψσ
l

= −
(
∂2r +

1

r
∂r −

m2

r2

)
ψσ
n.

(D9)

For a given polarization σ, this is a set of coupled differ-
ential equations for ψσ

n. Defining dimensionless variables

r̃ = qr, ω̃ = ω/q, matrixMσ
nn′ = ω̃2Uσ

n−n′ −(βq +n)
2δnn′ ,

vector Ψσ = {ψσ
n}, (D9) can be written as

M ·Ψ = Lm(r̃)Ψ ,−Lm(r̃) ≡ ∂2r̃ +
1

r̃
∂r̃ −

m2

r̃2
. (D10)

Suppose there exists a matrix P that diagonalizes M, i.e.

M̃ = P−1MP is diagonal. Write Ψ = P · Ψ̃, we get

M̃ · Ψ̃ = LmΨ̃. (D11)

It is clear that M̃nl = λ̃2l δnl, and Ψ̃l = Jm(λ̃lr̃) solve the
equations. The problem translates to solving for eigen-
values λ̃2l and eigenvectors cl of the matrix M. In terms

of c’s, P = {c1, c2, · · · }. Let λl ≡ λ̃lq, the radial part of
the solution can be expressed as

ψσ
n =





∑
l P

σ
nlg

σ
l

Jm(λσ
l r)

Jm(λσ
l R) , r < R

hσn
H(1)

m (αnr)

H
(1)
m (αnR)

, r > R
(D12)

where

αn =
√
ω2n2o − (β + qn)2 . (D13)

For confined modes, αn needs to be imaginary. gσl , h
σ
l

are to be solved by boundary conditions that require that
Eϕ, Ez, Hϕ, Hz are continuous at r = R.
From the two curl Maxwell equations, we have

iωHϕ = ∂zEr − ∂rEz (D14)

iωHr =
im

r
Ez − ∂zEϕ (D15)

−iωεEr =
im

r
Hz − ∂zHϕ (D16)

−iωεEϕ = ∂zHr − ∂rHz (D17)
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Therefore, after some algebra one obtains

(ω2ε+ ∂2z )Eϕ =
im

r
(−1

2

ε′

ε3/2
+
∂z√
ε
)(
√
εEz)− iω∂rHz

(D18)

(
UTM + ∂2z

) Hϕ√
ε
=
im

r
(− ε′

ε3/2
+
∂z√
ε
)Hz + iω∂r(

√
εEz)

(D19)

When m = 0, the TE and TM modes decouple. When
m ̸= 0, the solutions are hybrid modes of TE and TM.
One can write Eϕ, Hϕ in the following form:

(
Hϕ√

ε

Eϕ

)
= eiKz

∑

n

eiqnz

(
χ+
n (r)

χ−
n (r)

)
. (D20)

Inside the core, ε(z) = ε(z + Λ), where the following
Bloch series’s can be found:

ε′

qε3/2
=
∑

n

Bne
iqnz,

i√
ε
=
∑

n

Cne
iqnz . (D21)

Define matrix Sσ such that

Sσ
nn′ = Cn−n′(

β

q
+ n′)− γσBn−n′ (D22)

where γσ = 1
2 (1) for TM (TE) polarization. Therefore,

(D18) and (D19) can be further simplified as

∑

n′

M∓
nn′χ

∓
inn′ =

im

r̃

∑

n′

S±
nn′ψ

±
inn′ ∓ iω̃∂r̃ψ

∓
inn (D23)

α2
n

q2
χ∓
outn =

im

r̃no
i(
β

q
+ n)ψ±

outn ∓ iω̃∂r̃ψ
∓
outn (D24)

Now we are ready to write the boundary condi-

tions. Let matrices Dnl ≡ i(β/q+n)

(ω̃2n2
o−( β

q +n)2)no
δnl, J σ

nl ≡
J′
m(λσ

nR)
Jm(λσ

nR)δnl,Hnl ≡ 1
ω̃2n2

o−( β
q +n)2

H′
m(αnR)

Hm(αnR)δnl, where ′ =

∂r̃. The boundary conditions require that

P± · g± = h± (D25)

± m

ωR

(
S± −M∓D

)
· h± = P∓J∓ · g∓ −M∓H · h∓

(D26)

which can be rewritten as M· (g−g+,h−,h+)
T
= 0. To

have non trivial solutions, it is required that detM = 0.
This gives

det
(
T̃TE

)
det

(
T̃TM +

( m
ωR

)2
T̃21T̃

−1
TE T̃12

)
= 0 (D27)

where

T̃σ ≡ PσJ σPσ−1 −MσH, (D28)

T̃12 ≡ S+ −M−D, T̃21 ≡ S− −M+D (D29)

Indeed, when m = 0, the solutions have either TE or
TM polarizations. when m = 1, the solutions are hybrid
modes.
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[30] A. Álvarez Melcón et al., JHEP 07, 084 (2020),
arXiv:2002.07639 [hep-ex].

[31] L. Barak et al. (SENSEI), Phys. Rev. Lett. 125, 171802
(2020), arXiv:2004.11378 [astro-ph.CO].

[32] A. Chou et al. (2023) arXiv:2311.01930 [hep-ex].
[33] J. W. Foster, N. L. Rodd, and B. R. Safdi, Phys. Rev.

D 97, 123006 (2018), arXiv:1711.10489 [astro-ph.CO].
[34] P. F. de Salas and A. Widmark, Rept. Prog. Phys. 84,

104901 (2021), arXiv:2012.11477 [astro-ph.GA].
[35] N. W. Evans, C. A. J. O’Hare, and C. McCabe,

Phys. Rev. D 99, 023012 (2019), arXiv:1810.11468 [astro-
ph.GA].

[36] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-
F. Ren, G.-C. Guo, and M. Lončar, Opt. Express 25,
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los, M. Soljačić, and O. Shapira, Phys. Rev. Lett. 109,
067401 (2012).

[38] J. Li and N. Engheta, Phys. Rev. B 74, 115125 (2006).
[39] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. A 96,

013841 (2017).
[40] S. Kim, K.-H. Kim, and J. F. Cahoon, Phys. Rev. Lett.

122, 187402 (2019).
[41] X. Gao, B. Zhen, M. Soljacic, H. Chen, and C. W. Hsu,

ACS Photonics 6, 2996 (2019).
[42] M. Sidorenko, O. Sergaeva, Z. Sadrieva, C. Roques-

Carmes, P. Muraev, D. Maksimov, and A. Bogdanov,
Phys. Rev. Appl. 15, 034041 (2021).

[43] A. Armaroli, A. Morand, P. Benech, G. Bellanca, and
S. Trillo, J. Opt. Soc. Am. A 25, 667 (2008).

[44] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J.
Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari,
E. Puma, N. Sinclair, C. Reimer, M. Zhang, and
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R. Touzery, P. Védrine, A. Vignaud, and the Iseult Con-
sortium, Magnetic Resonance Materials in Physics, Biol-
ogy and Medicine 36, 175 (2023).

[73] T. F. Budinger and M. D. Bird, NeuroImage 168, 509
(2018), neuroimaging with Ultra-high Field MRI: Present
and Future.

[74] Y. Hochberg, B. V. Lehmann, I. Charaev, J. Chiles,
M. Colangelo, S. W. Nam, and K. K. Berggren, Phys.
Rev. D 106, 112005 (2022), arXiv:2110.01586 [hep-ph].

[75] P. Adari et al. (SENSEI), (2023), arXiv:2312.13342
[astro-ph.CO].

[76] V. Anastassopoulos et al. (CAST), Nature Phys. 13, 584

(2017), arXiv:1705.02290 [hep-ex].
[77] A. Ayala, I. Domı́nguez, M. Giannotti, A. Mirizzi, and

O. Straniero, Phys. Rev. Lett. 113, 191302 (2014),
arXiv:1406.6053 [astro-ph.SR].

[78] M. J. Dolan, F. J. Hiskens, and R. R. Volkas, JCAP 10,
096 (2022), arXiv:2207.03102 [hep-ph].

[79] E. Todarello, M. Regis, J. Reynoso-Cordova, M. Taoso,
D. Vaz, J. Brinchmann, M. Steinmetz, and S. L. Zou-
tendijke, (2023), arXiv:2307.07403 [astro-ph.CO].

[80] D. Grin, G. Covone, J.-P. Kneib, M. Kamionkowski,
A. Blain, and E. Jullo, Phys. Rev. D 75, 105018 (2007),
arXiv:astro-ph/0611502.

[81] R. Janish and E. Pinetti, (2023), arXiv:2310.15395 [hep-
ph].

[82] H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Rev.
D 102, 115022 (2020), arXiv:2006.13929 [hep-ph].

[83] R. Loudon, The Quantum Theory of Light, 2nd ed.
(Clarendon Press, Oxford, 1983).

[84] C. Gao and R. Harnik, JHEP 07, 053 (2021),
arXiv:2011.01350 [hep-ph].

http://dx.doi.org/10.1007/s10334-023-01063-5
http://dx.doi.org/10.1007/s10334-023-01063-5
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2017.01.067
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2017.01.067
http://dx.doi.org/ 10.1103/PhysRevD.106.112005
http://dx.doi.org/ 10.1103/PhysRevD.106.112005
http://arxiv.org/abs/2110.01586
http://arxiv.org/abs/2312.13342
http://arxiv.org/abs/2312.13342
http://dx.doi.org/10.1038/nphys4109
http://dx.doi.org/10.1038/nphys4109
http://arxiv.org/abs/1705.02290
http://dx.doi.org/10.1103/PhysRevLett.113.191302
http://arxiv.org/abs/1406.6053
http://dx.doi.org/10.1088/1475-7516/2022/10/096
http://dx.doi.org/10.1088/1475-7516/2022/10/096
http://arxiv.org/abs/2207.03102
http://arxiv.org/abs/2307.07403
http://dx.doi.org/ 10.1103/PhysRevD.75.105018
http://arxiv.org/abs/astro-ph/0611502
http://arxiv.org/abs/2310.15395
http://arxiv.org/abs/2310.15395
http://dx.doi.org/ 10.1103/PhysRevD.102.115022
http://dx.doi.org/ 10.1103/PhysRevD.102.115022
http://arxiv.org/abs/2006.13929
http://dx.doi.org/10.1007/JHEP07(2021)053
http://arxiv.org/abs/2011.01350

