
MIT-CTP/5658, FERMILAB-PUB-24-0014-T
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Machine-learned normalizing flows can be used in the context of lattice quantum field theory to
generate statistically correlated ensembles of lattice gauge fields at different action parameters. This
work demonstrates how these correlations can be exploited for variance reduction in the computation
of observables. Three different proof-of-concept applications are demonstrated using a novel residual
flow architecture: continuum limits of gauge theories, the mass dependence of QCD observables,
and hadronic matrix elements based on the Feynman-Hellmann approach. In all three cases, it
is shown that statistical uncertainties are significantly reduced when machine-learned flows are
incorporated as compared with the same calculations performed with uncorrelated ensembles or
direct reweighting.

I. INTRODUCTION

Understanding the strongly interacting sector of the
Standard Model of particle physics, described by the the-
ory of quantum chromodynamics (QCD), is essential for
advancing particle and nuclear physics. The numerical
framework of lattice QCD is a systematically improv-
able tool to explore the dynamics of the strong nuclear
force. This approach has enabled precise calculations
across applications spanning from hadron structure to
high-temperature QCD and nuclear physics [1, 2]. Nev-
ertheless, there is great potential to extend the reach
of lattice QCD beyond the current state of the art if
computational challenges such as critical slowing down,
topological freezing, and signal-to-noise problems can be
overcome. In this context, emerging machine learning
techniques offer a promising avenue towards mitigating
these computational obstacles [3, 4].

A growing community effort is developing at the in-
tersection of machine learning and lattice QCD—see e.g.
Refs. [5–9] for a selection of applications. In particu-
lar, generative flow models [10–12] are one of several
promising pathways which show potential to accelerate
the sampling of lattice field configurations. This line of
investigation is developing, with demonstrations in 2D
theories [9, 13–40] and first applications to 4D gauge
theories with and without fermions [41–43]. While the
field is progressing rapidly, achieving high-quality mod-
els that can be applied at the scale of state-of-the-art
calculations still requires further engineering [44]. In
addition to their promise in the context of sampling,
flow models—functioning as approximate maps between
distributions—can be used to accelerate lattice QCD cal-
culations in qualitatively different ways. For example,
flow models provide a promising new approach to deter-
mining thermodynamic observables [9, 30, 39, 45].

In this work, we explore applications which utilize flows
to map gauge field configurations between distributions

defined by different Euclidean lattice action parameters.
Such flows can be used to generate multiple statistically
correlated ensembles at different parameters. As we ex-
plore in this work, this may be particularly valuable when
the variation of some quantity with respect to the action
parameter is of physical or computational interest—see
also Refs. [46, 47]. The advantage of flows in this context
originates from correlated cancellations of uncertainties
between expectation values evaluated at different action
parameters, which leads to reductions in the number of
configurations needed to achieve a fixed statistical error.
Examples of physically relevant applications of deriva-

tives with respect to action parameters include contin-
uum and chiral extrapolations as well as the compu-
tation of matrix elements such as the chiral conden-
sate, the nucleon sigma term, or other observables, us-
ing Feynman-Hellmann techniques. Another is deriva-
tives with respect to the electromagnetic coupling for
scale setting or to compute isospin breaking corrections in
QCD+QED [48, 49]. One may also consider applications
in theories with a sign problem, e.g., to derivatives with
respect to the baryon chemical potential or the QCD θ-
term. In all of these cases, the distributions to be related
by a flow transformation are much more similar than in
applications intended to accelerate sampling, and current
flow methods can already be applied at the scale of typi-
cal lattice QCD calculations. Three selected applications
are investigated, namely the continuum extrapolation of
gradient flow scales, the computation of the gluon mo-
mentum fraction of the pion in quenched lattice QCD
using the Feynman-Hellmann approach, and the mass
dependence of observables in Nf = 2 QCD.
This paper is organized as follows. In Section II, we

discuss preliminaries on flows, their applicability in the
context of correlated ensembles, and the residual flow
architectures used in this work. The three numerical
demonstrations are presented in Section III. We conclude
in Section IV. Appendix A provides further details of the
flow models used in this work.
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II. FLOWS FOR THE GENERATION OF
CORRELATED ENSEMBLES

A. Flows for lattice QCD

This section presents an introduction to normalizing
flows [10–12], reviewing the key ideas relevant for the
present work.

A “flow” is defined as a diffeomorphism f between
probability distributions that maps samples from a base
(or prior) distribution, r(U), to a model distribution with
density

q(V ) = r(U)

∣∣∣∣det
∂f(U)

∂U

∣∣∣∣
−1

, (1)

where V = f(U). Flows can be constructed such that
they have many free, trainable parameters. These pa-
rameters may be optimized such that the model dis-
tribution approximates some target distribution p, i.e.,
q(V ) ≃ p(V ).

For the applications explored in this work, flow mod-
els are constructed in which the samples U are lat-
tice gauge-field configurations, and the probability dis-
tributions p(U) and r(U) are defined in terms of Eu-
clidean lattice actions such that r(U) ∝ exp(−S0(U)),
and p(V ) ∝ exp(−S1(V )). In most cases, it is not neces-
sary to know the normalization of p or r (the exception
being thermodynamic observables [9]).

Expressive flow transformations can be constructed in
a variety of ways, for example as the composition of n
invertible layers

f = g1 ◦ g2 ◦ ... ◦ gn . (2)

Architectures for invertible layers gi which act on lat-
tice gauge fields have been discussed in Ref. [43]. The
particular constructions used in this work are detailed
in Section IIC. Given a model, its trainable parameters
may be optimized in various ways. One choice is to min-
imize the Kullback-Leibler (KL) divergence [50] between
the model and target distributions. Approaches such as
path gradients [51], related control variate methods [43],
as well as the “REINFORCE” algorithm [52], may be
be used to improve and accelerate training dynamics by
reducing the variance associated with stochastic gradi-
ent estimates. After optimization, model quality can be
characterized using the Effective Sample Size per config-
uration (ESS),

ESS =
1

N

[∑N
i=1 w(Vi)

]2

∑N
i=1

[
w(Vi)

]2 , (3)

estimated using N gauge field configurations gener-
ated from q(V ), and where w(Vi) = p(Vi)/q(Vi) is the
reweighting factor of the ith configuration. The values of
the ESS lie in the interval ESS ∈ [1/N , 1], with ESS = 1
corresponding to a perfect model.

In practice, a learned flow is not perfect, but may
function as an approximate map between distributions.
To ensure correctness of expectation values computed on
the flowed configurations, one may use the independence
Metropolis algorithm [53–55] or simply reweighting, with
the weight of each configuration given by w(U). Expec-
tation values of observables such as plaquettes, hadronic
correlation functions, or the topological charge can be
directly reweighted as

⟨O⟩p = ⟨wO⟩q , (4)

where the notation ⟨⟩q is used to refer to expectation val-
ues with respect to the probability distribution q, and we
assume the reweighting factors have been properly nor-
malized such that ⟨w⟩q = 1. Derived quantities, such as
gradient flow scales or hadron masses, can be computed
from reweighted correlation functions.

B. Correlated ensembles and flows

While applications of flows to accelerate the generation
of field configurations continue to advance, here we de-
scribe another avenue for flow models to improve lattice
QCD calculations by reducing the variance of observables
that can be computed from differences between quanti-
ties at different action parameters. The key idea is the
following. Consider a generic parameter of the action, α.
The goal is to compute some observable O as a function
of α, and in particular the derivative

d⟨O⟩
dα

≃ ⟨O⟩α1
− ⟨O⟩α2

∆α
, (5)

where the right-hand side is a finite-difference approxi-
mation of the derivative using ∆α = α1 − α2, with ⟨⟩α
denoting the expectation under the distribution defined
by the action parameter α, i.e., pα. Higher order deriva-
tives, or derivatives of one observable with respect to
another, may be computed in a similar way.
In this work, we consider three qualitatively different

approaches to the computation of the quantity in Eq. (5).
The first two are standard tools in common use:

1. Use a very small step ∆α = ϵ, and compute the
numerator in Eq. (5) with ϵ reweighting:

⟨O⟩α1
− ⟨O⟩α1+ϵ = ⟨O − wϵO⟩α1

, (6)

where wϵ = pα1+ϵ/pα1
. The separation ϵ may be

made small without compromising signal-to-noise
due to correlated noise cancellations between the
two expectation values. As ϵ → 0 it becomes exact,
recovering an estimate statistically identical to that
obtained by applying the derivative analytically.

2. Generate independent ensembles to separately
compute expectation values at α1 and α2 in Eq. (5).
This enables use of much more widely separated α1
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and α2 than accessible with reweighting, thereby
allowing exploitation of the bias-variance trade-
off to reduce statistical uncertainties while ac-
cepting additional discretization artifacts from the
finite-difference approximation in order to improve
signal-to-noise. However, this effect must be suf-
ficiently large to compensate for the lack of corre-
lated noise cancellations.

These two methods each have different capabilities, with
each useful for different applications. Incorporating flows
provides an additional approach that combines some of
the advantages of both:

3. Use a trained flow model to map configurations
between the distributions given by α1 and α2. In-
cluding flow reweighting factors, correlated differ-
ences can be calculated as:

⟨O(U)− w(f(U))O(f(U))⟩α1
, (7)

where w(f(U)) = pα2(f(U))/q(f(U)), such that a
perfect flow would remove the reweighting factors
entirely. This approach benefits from the same
correlated cancellation of uncertainties as does ϵ
reweighting, while allowing for larger steps in ∆α
to exploit the bias-variance tradeoff as does the ap-
proach using independent ensembles.

In Section III below, we provide numerical demonstra-
tions of the advantages of this flow-based approach.

C. Architecture based on residual flows

The flow architecture used in this work is based on that
introduced in Ref. [43], with a series of improvements
that are detailed below. The flow transformation is de-
fined as the composition of trainable gauge-equivariant
layers that act directly on the gauge links. The trans-
formation of a gauge field U → U ′ through an SU(N)-
residual layer can be expressed as

U ′
µ(x) = egx(U)Uµ(x) , (8)

where gx(U) is an algebra-valued matrix which can in
principle have an arbitrary dependence on the entire
gauge-field configuration, as long as it transforms locally
under gauge transformations, gx(U) → Ω†

xgx(U)Ωx; here
Ωx denotes a gauge transformation and the subscript la-
bels the spacetime dependence. This transformation can
be inverted by fixed point iteration, with a unique solu-
tion guaranteed if the Lipschitz continuity condition is
satisfied [43].

For numerical tractability, each layer partitions the
gauge field and transforms only the active links, defined
as those with fixed direction µ on a subset of lattice sites
{xa}, conditioned on the values of the remaining frozen
links Uf . Each layer acts as

U ′
µ(xa) = egx(Uf ,Uµ(xa))Uµ(xa) , (9)

that is, gx for any given active link depends on all frozen
links but only the same active link. This separation of
variables allows efficient computation of the Jacobian of
the transformation using automatic differentiation as de-
scribed in Eq. (26) of Ref. [43]. In the present work, we
use two partitioning schemes for the site index:

1. A checkerboard or “mod 2” masking pattern, where
the active links are those with direction µ in the po-
sitions that satisfy (p+

∑
µ xµ) = 0 (mod 2) for for

p ∈ 0, 1. A stack of 8 layers is needed to trans-
form all links, i.e., 2 complementary checkerboards
in each of the 4 directions µ.

2. A “mod 4” masking pattern, where the positions
of active links satisfy (p +

∑
µ xµ) = 0 (mod 4), for

p ∈ 0, 1, 2, 3. 16 layers are thus needed to transform
every link on the lattice.

The function gx(Uf , Uµ(xa)) must be constructed in a
way that is expressive but simple to evaluate. One simple
construction utilizes 1× 1 staples,

SR
x,µν(U) = Uν(x+ µ)U †

µ(x+ ν)U †
ν (x) and

SL
x,µν(U) = U †

ν (x+ µ− ν)U †
µ(x− ν)Uν(x− ν) ,

(10)

such that the 1× 1 loops,

WR
x,µν(U) = Uµ(x)S

R
x,µν(Uf ) and

WL
x,µν(U) = Uµ(x)S

L
x,µν(Uf ) ,

(11)

have the same gauge transformation as gx. One can then
define a covariant algebra-valued object as, e.g.,

Gx,µ =
∑

ν ̸=µ

α(1)
µνP(Wx,µν(U))

+
∑

ν,ρ̸=µ

α(2)
µνρP(Wx,µν(U)Wx,µρ(U)) ,

(12)

where Wx,µν = WR
x,µν+WL

x,µν , and P(W ) is the traceless

anti-Hermitian projection of W . Moreover, α
(1)
µν and α

(2)
µνρ

are d − 1 and (d − 1)2 trainable parameters in d space-
time dimensions for fixed µ, respectively. Any polyno-
mial function of Gx,µ with coefficients that are arbitrary
function of Tr[Gx,µG

†
x,µ] is thus gauge covariant and can

be used to construct gx(U). One choice of such a con-
struction is:

gx(Uf , Uµ(xa)) = Gx,µ × f
(
Tr[Gx,µG

†
x,µ]

)
, (13)

where f(x) is e.g., a ratio of polynomials—see Ap-
pendix A for an example.
A useful modification to this construction is to con-

sider Wilson loops that are larger than 1 × 1. Sums of
such loops can be constructed iteratively, by repeatedly
adding together links and staples which transform in the
same way, and finally computing a 1 × 1 loop. This is
inspired by similar transformations used in Refs. [41, 56]
and resembles the learned smearing of Ref. [57]. This
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FIG. 1. Sketch of the recursive transformation, Eq. (14), to
build generic Wilson loops in the residual layers.

gauge-equivariant “convolution” can be written explic-
itly as the recursion

V (i+1)
µ = V (i)

µ +
∑

ρ̸=µ,
ℓ

ηℓi,ρ(R
ℓ
µρ(V

(i)) + Lℓ
µρ(V

(i))) , (14)

where

V (0)
µ (x) =

{
Uµ(x) Uµ(x) is frozen,

0 Uµ(x) is active,
(15)

ηℓi,ρ are trainable coefficients, and Lℓ and Rℓ label generic
staple-like objects that transform in the same way as the
gauge links. Here we use two explicit choices, R1

µν =

(SR
x,µν)

† in Eq. (10) and R2
µν = WR

x,µνUµ, and similarly

for Lℓ
µν ; see Figure 1. Note that in Eq. (14), these objects

are computed using the variables V (i). After iterating,
V (i) is not an element of the gauge group, but this is not
important since ultimately there is a projection to the
algebra to construct Gµ in Eq. (12).
The iterative procedure in Eq. (14) can be used to

construct expressive residual layers. After applying npt

iterations of Eq. (14) to Eq. (15), the resulting val-
ues of V (npt) can be used to construct the quantity
gx(V

(npt), Uµ(xa)) that enters in the transformation of
the residual layer defined in Eq. (9). Specifically, the
convoluted frozen links, V (npt), are used to construct the
staples in Eq. (11) in spite of Uf .

III. EXAMPLE APPLICATIONS

Physics contexts in which derivatives of the form of
Eq. (5) arise are ubiquitous; here we discuss three ex-
amples. First, derivatives with respect to the gauge
coupling β can be used to constrain continuum extrap-
olations. Second, matrix elements may be computed
using Feynman-Hellmann techniques, where derivatives
with respect to action parameters correspond to single
insertions of the corresponding operator. Second-order
derivatives using Feynman-Hellmann also access physi-
cally relevant processes, e.g., Compton scattering. Third,
derivatives with respect to the quark mass can be em-
ployed to constrain chiral extrapolations or in calcula-
tions of e.g., sigma terms. This section presents numer-
ical demonstrations using flows to improve estimates of
these three kinds of derivatives.

The flow models used in these applications are sum-
marized in Table I. All flow models have been optimized
using path gradients [51] as described in Ref. [43]. Gauge
field samples for both training and evaluation are ob-
tained using standard Markov Chain Monte Carlo meth-
ods, specifically the (pseudo-)heatbath algorithm with
overrelaxation [58–62] for Yang-Mills theory and the Hy-
brid/Hamiltonian Monte Carlo [63] (HMC) algorithm for
QCD.

A. Continuum limit of gauge theories

One application in lattice QCD for flow-correlated en-
sembles is in taking the continuum limit. For a numerical
demonstration, we consider gradient flow scales.
We use the pure-gauge SU(3) theory, with action

Sg(U) = − β

Nc
Tr Re

∑

µ>ν

Uµν , (16)

where β is the inverse squared bare gauge coupling and
Uµν is the plaquette. The continuum limit of lattice spac-
ing a → 0 corresponds to β → ∞.
One class of observables is obtained by using the gradi-

ent flow; in particular, a scale tc can be defined implicitly
from

⟨t2E(t)⟩|t=tc = c , (17)

where c is a numerical constant, and E(t) is the energy
density at flow time t, for which we use the plaquette
definition; see Ref. [64]. The choice c = 0.3 defines the
scale t0.3, often referred to as “t0”. One can compute
the ratio of two gradient flow scales t0.3/t0.35, which can
be related to the ratio of the the strong coupling at two
different energy scales [64]. The continuum limit of this
quantity takes the form

t0.3
t0.35

∣∣∣∣
lat

=
t0.3
t0.35

∣∣∣∣
cont

+ k1
a2

t0.3
+ · · · , (18)

where k1 is a dimensionless constant, the ellipsis indi-
cates higher orders in a2, the subscripts “lat” and “cont”
refer to finite-a and continuum values, and discretization
effects are parameterized by powers of a2/t0.3.
The standard approach for performing a continuum

extrapolation in lattice QCD relies on computing the de-
sired quantity at several different lattice spacings using
independent ensembles and extrapolating. This method
can be improved by additional constraints on such an
extrapolation in the form of derivatives

k(a2) =
d (t0.3/t0.35)

d(a2/t0.3)
= k1 +O(a2) . (19)

Without generating more ensembles, this derivative can
be computed using finite differences combined with ϵ
reweighting or with flows to nearby values of the lattice



5

spacing, or equivalently, values of the bare gauge coupling
β:

k(a2) ≃
t0.3
t0.35

∣∣
β+∆β

− t0.3
t0.35

∣∣
β

a2

t0.3

∣∣
β+∆β

− a2

t0.3

∣∣
β

. (20)

Note that the gradient flow scales tc are derived quan-
tities, so we use the notation “|β” to indicate that they
have been computed in a theory with the given β.

To demonstrate the advantage gained by using flows,
we compute Eq. (20) using ϵ reweighting (Eq. (6)) and the
flowed approach (Eq. (7)) and compare. For this test, we
use 96k configurations at β = 6.02 on volume L4 = 164.
For ϵ reweighting, we use a step of ∆β = 0.001, leading to
an ESS of 96% on this ensemble. For the flowed approach,
we use Model A of Table I, which maps from β = 6.02
to β = 6.03, that is ∆β = 0.01. This model achieves
an ESS of 67%, which is significantly higher than direct
reweighting, which has an ESS of 2% at the same target
parameters. Using these approaches, we find

Flow: k(a2) = −0.0167(41) ,

ϵ reweighting: k(a2) = −0.0208(63) ,
(21)

that is, the statistical uncertainly using ϵ reweighting
is 50% larger than that obtained with flows. In other
words, one needs about 2.4× fewer samples using the
flow method as compared with ϵ reweighting to achieve
the same statistical uncertainty.

Assuming that cutoff effects are already in the linear
regime at this value of the lattice spacing, one can use this
procedure to perform a simple continuum extrapolation
of the ratio of flow scales. The continuum-extrapolated
results show the same hierarchy of uncertainties as in
Eq. (21):

Flow: t0.3/t0.35|cont = 0.8539(13) ,

ϵ reweighting: t0.3/t0.35|cont = 0.8552(20) .
(22)

These results are shown in Figure 2 for the two methods.

B. Hadron structure with Feynman-Hellman
techniques

Another promising application of machine-learned
flows is in the calculation of matrix elements via the
Feynman-Hellman (FH) approach—see Refs. [65–68] for
recent applications. In this framework, a matrix element

Th = ⟨h|O|h⟩ , (23)

where h is a stable hadron at rest and O is the opera-
tor of interest projected to zero momentum, is computed
by taking derivatives with respect to a parameter in the
action. Specifically, adding the operator to the action as

S → Sλ = S + λO , (24)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

a2/t0.3

0.846

0.848

0.850

0.852

0.854

0.856

0.858

0.860

t 0
.3
0
/t

0.
35

flowed ensemble
ensemble at β = 6.02
with flowed ensemble
ε reweighting

FIG. 2. Continuum extrapolation of the ratio of two gradient
flow scales t0.3/t0.35, using the quantity in the numerator to
set the scale. Two methods are shown: ϵ reweighting (dotted
grey line), and using a flowed ensemble (solid orange band).
Statistical uncertainties are displayed as bands.

the matrix element can be obtained as

Th =
1

2Mh

dMh

dλ

∣∣∣∣
λ→0

, (25)

where Mh is the hadron mass. In practice, this can be
estimated using a finite-difference approximation of the
derivative, e.g.,

Th =
1

2Mh(0)

Mh(+λ)−Mh(−λ)

2λ
+O(λ2) . (26)

As a numerical demonstration, we consider a Feynman-
Hellman calculation of the gluon momentum fraction of
the pion in the quenched approximation of lattice QCD,
similar to Ref. [65]. In this case the operator O may be
defined as

O = − β

Nc
Tr Re


∑

i

Ui0 −
∑

i<j

Uij


 , (27)

where i, j ∈ (1, 2, 3), which is a discretization of the
Energy-Momentum-Tensor (EMT). The matrix element
can then be related to the gluon momentum fraction of
the hadron ⟨x⟩g by

dMh

dλ

∣∣∣∣
λ→0

= −3Mh

2
⟨x⟩lattg , (28)

where the superscript “latt” emphasizes that it is a bare
matrix element. When adding this operator to the gauge
action with a small parameter λ, the full action can be
seen as an anisotropic action with different couplings for
the temporal and spatial plaquettes:

Sλ =− β

Nc
(1 + λ)ReTr

∑

i

Ui0

− β

Nc
(1− λ)ReTr

∑

i<j

Uij .

(29)
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Model Prior type Parameters Target type Parameters Train ESS Eval. vol. ESS
A Pure Gauge SU(3) β = 6.02 Pure Gauge SU(3) β = 6.03 99.72% 164 67%
B1 Pure Gauge SU(3) β = 6.00 Feynman-Hellman β = 6.00, λ = +0.01 99.4% 16× 83 84%
B2 Pure Gauge SU(3) β = 6.00 Feynman-Hellman β = 6.00, λ = −0.01 99.4% 16× 83 84%
C Nf = 2 QCD β = 5.60, κ = 0.153 Nf = 2 QCD β = 5.60, κ = 0.1545 99.2% 84 48%

TABLE I. Summary of flow models used in this work. All flow models have been trained on a hypercubic lattice volume of size
44, while the evaluation lattice volume at which the flows are used (Eval. vol.) is given explicitly in the table.

It is therefore possible to use flow transformations to map
from the standard pure gauge action at λ = 0 to non-
zero values of λ. This target is referred to as “Feynman-
Hellman” in Table I.

We test the flowed approach by computing the differ-
ence in Eq. (26) using an ensemble generated at λ = 0
and flowed to non-zero ±λ values. We train two flows, B1
and B2 in Table I. The target parameters are matched to
Ref. [65], albeit at a smaller volume. The value of β = 6
corresponds to a lattice spacing of a ≃ 0.09 fm, and the
hopping parameter κ in the quenched Dirac operator—
related to the bare quark mass as κ = 1/(2m0 + 4)—is
taken to be κ = 0.132. The lattice spatial and temporal
extent are L = 8 and T = 16, such that MπL > 4. For
the purpose of this demonstration, we approximate the
pion masses using the effective mass at the center of the
lattice,

cosh aMπ =
Cπ(T/2 + 1) + Cπ(T/2− 1)

2Cπ(T/2)
, (30)

where Cπ(t) is the pion correlator.
For evaluation, 14k gauge-field configurations are gen-

erated using 1 heatbath step with 5 overrelaxation
steps between measurements for each independent en-
semble. Correlation functions are measured with four
smeared sources per configuration with point sinks, us-
ing Chroma [69]. The pion mass as a function of λ is
shown in Figure 3a, as determined using ϵ reweighting,
independent ensembles, and flowed ensembles. Since the
flow model quality at the volume of interest is very high,
uncertainties in the observables computed on flowed en-
sembles are very similar to those computed using ensem-
bles generated with heatbath.

The physical quantity of interest, ⟨x⟩lattg , depends on
the difference between the pion mass determined at dif-
ferent values of λ. When this difference is computed us-
ing independent ensembles, statistical uncertainties add
in the usual way, and the error in the correlated dif-
ference is larger than that of each Mπ(λ) estimate. In
contrast, for flowed ensembles or ϵ reweighting, cancel-
lations of correlated fluctuations significantly reduce the
variances. This can be seen in Figure 3b, which shows
⟨x⟩lattg computed following the different methods outlined
in Section II. The use of flowed ensembles reduces the un-
certainty by a factor of ≃ 7 with respect to independent
ensembles, and ≃ 5 with respect to ϵ reweighting. Thus,
incorporating flows into this calculation leads to a reduc-

tion of more than 20× in the number of configurations
necessary to achieve the same statistical error.
It is also possible to compute the second derivative of

Mπ with respect to λ, which can be approximated as

d2Mπ

dλ2

∣∣∣∣
λ=0

≃ Mh(+λ) +Mh(−λ)− 2Mh(0)

λ2
. (31)

While for the particular case of the gluon energy-
momentum tensor this derivative is not physically rel-
evant, second derivatives are related to matrix elements
of two-current insertions—see for instance Compton scat-
tering applications [70, 71]. Using the same three meth-
ods as for the first derivative, we find:

Flow:
d2Mπ

dλ2

∣∣∣∣
λ=0

= −6(15) ,

ϵ reweighting:
d2Mπ

dλ2

∣∣∣∣
λ=0

= −140(110) .

Indep. ens.:
d2Mπ

dλ2

∣∣∣∣
λ=0

= −120(150) .

(32)

All the determinations yield numbers that are zero within
two standard deviations, but the relative magnitude of
the uncertainties can nevertheless be used to assess the
advantage of the flowed approach. In particular, for the
second derivative, the error reduction when using flows is
larger than for the case of the first derivative, a factor of
7− 10 smaller than that obtained using ϵ reweighting or
independent ensembles. This, in turn, leads to requiring
one to two orders of magnitude fewer configurations to
achieve some target statistical precision.

C. Mass dependence of QCD observables

As a third example, we compute derivatives with re-
spect to the quark mass in QCD with Nf = 2 unim-
proved Wilson fermions. As a simple demonstration, we
work directly with the action including the exact fermion
determinant,

S(U) = Sg(U)− log detDw[U ]D†
w[U ] , (33)

where Sg(U) is the plaquette gauge action and Dw is
the discrete standard Wilson operator. The quark mass
enters in the action via the hopping parameter κ. This
target is referred to as “Nf = 2 QCD” in Table I.
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FIG. 3. (a) Pion mass in lattice units as a function of the coupling to the gluonic energy-momentum tensor λ. Marker shapes
denote how the ensembles were obtained: orange circles for heatbath ensembles at fixed values of λ, blue squares for ensembles
flowed from λ = 0, and red circles when using configurations generated at λ = 0 and reweighted to λ = ϵ = 10−4. The pion
mass is evaluated in quenched lattice QCD at β = 6.0, κ = 0.132, L = 8 and T = 16. (b) Bare gluon momentum fraction of the
pion from Eq. (28) using a finite-difference approximation computed using the three different methods: independent heatbath
ensembles, ϵ reweighting, and correlated flowed ensembles.
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FIG. 4. Illustration of the error reduction in derivatives of
observables with respect to the action parameter κ. Wn×n is
the average square Wilson loop of size n, Q2 is the squared
topological charge defined via the gradient flow, and tc labels
gradient flow scales, as in Eq. (17). The y-axis shows the
values of the observables and their statistical errors normal-
ized to the value obtained with flows. Results that incorpo-
rate flows are shown as blue squares, while the errors with ϵ
reweighting are denoted by red triangles.

For this test, we compute the derivative of some simple
observables (generically labelled as X) with respect to κ,
approximated via finite differences:

dX

dκ
≃ X(κ2)−X(κ1)

κ2 − κ1
. (34)

Depending on the observable, such derivatives can be
useful, e.g., to extract sigma terms or to constrain chi-
ral extrapolations. Here we specifically consider average
Wilson loops, the squared topological charge at gradient
flow time t/a2 = 2, and gradient flow scales tc.

We train a flow to map configurations from κ = 0.1530
to κ = 0.1545 at β = 5.6 (Model C in Table I). Such
parameters are close to those in Ref. [72]. 9k configura-
tions are generated using standard HMC with pseudo-
fermions. Note, however, the reweighting factor and
KL divergence for each configuration are computed with
Eq. (33); this is statistically consistent and introduces no
approximations. At the evaluation volume of 84, the flow
achieves ESS = 48%, which should be compared with the
ESS = 28% obtained using direct reweighting to the same
target parameters.

The results are given in Figure 4, which compares the
(normalized) values of several observables computed us-
ing the two methods, i.e., correlated flowed ensembles
and ϵ reweighting (with ∆κ = 1.5 · 10−4). At these
statistics and for these choices of κ, independent ensem-
bles result in statistical errors ≳ 2× larger than those
attained with flows, and we do not display them. In all
cases, the central values are consistent within a standard
deviation and flows provide a variance reduction. The
error reduction varies between observables in the range
∼ 20% − 40%. In particular, the largest reduction is
seen for the 1 × 1 plaquette loop, while the smallest is
seen for the topological charge. Thus, depending on the
observable of interest, one requires a factor of 1.5 − 2×
fewer configurations to obtain a comparable statistical
error when using flows.
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FIG. 5. Summary of the variance reduction in observables computed from derivatives with respect to the action parameters
when using flows compared with ϵ reweighting. The improvement factor is defined as the ratio of variances of the observables
computed with ϵ reweighting over flows. The label “Nf = 2 QCD” denotes derivatives of observables with respect to κ in
two-flavor QCD, the label “Pure Gauge” corresponds to the result for the continuum limit extrapolation of gradient flow scales
in the pure gauge theory, and the label “Feynman-Helmann” indicates observables computed using the Feynman-Hellmann
approach in quenched QCD.

IV. CONCLUSION

In this work, we present the application of machine-
learned flows to the computation of observables involving
derivatives. Specifically, we use flows to map ensembles
between distributions defined by different parameters in
the lattice action. By exploiting correlated cancellations
of uncertainties between these ensembles, this application
has the potential to provide a computational advantage
in the evaluation of finite-difference approximations of
derivatives.

To illustrate this idea, we showcase three numerical
demonstrations in the context of lattice QCD: continuum
limit extrapolations, matrix elements using the Feynman-
Hellman approach, and the mass dependence of observ-
ables. In all cases, flows provide a reduction of vari-
ance, which implies that fewer configurations are needed
to achieve the same statistical error. The improvement
factor for all demonstrations of this work, defined as the
variance reduction in observables computed using flows
with respect to ϵ reweighting, is summarized in Figure 5.
These values are in the range of 1.5× for observables in
QCD to more than 20× for quantities in the Feynman-
Hellmann approach. With higher-quality flow models,
these factors can be improved.

This comparison does not account for the differing
costs of the different steps in each method, namely gen-
erating the initial ensemble with heatbath, applying the
flow (in the flowed case), and measuring correlation func-
tions. Of course, the potential advantages of this ap-
proach depend sensitively on not only the model used,
but on the particular application, the cost of evaluat-
ing observables, how autocorrelations are treated, and
the precision goal. For a ballpark comparison, consider

the results for the computation of matrix elements in
the Feynman-Hellmann approach. In this application,
the cost of applying the flow is comparable to the cost
of measuring correlation functions, while the cost of a
heatbath update is less by an order of magnitude. This
amounts to a factor of ≲ 3 increase in computational
cost to achieve a variance reduction by a factor of more
than 20. This constitutes a real computational advantage
of approximately one order of magnitude, neglecting the
costs of training. Given expected further improvements
through the continued development of flow architectures,
these results are promising.
This work focuses on target actions that only depend

on the gauge fields, e.g., pure gauge SU(3), quenched
QCD, and exact-determinant QCD. To generalize these
results to state-of-the-art lattice QCD scales, where the
fermion determinant cannot be explicitly evaluated, one
must combine these flows with pseudofermion flows for
QCD, as explored in Refs. [18, 41, 42].
As flow model technology for lattice QCD continues to

advance, applications of correlated ensembles could be
extended to compute other interesting quantities, such
as sigma terms of hadrons or observables in QED+QCD.
If the success seen in the proof-of-principle applications
of this work can be achieved in such contexts, it holds
the potential to drive substantial advances in the field.
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Appendix A: Details of models

In this appendix, we provide some additional details
of the models of this work and the scheme used to train
them. It is important to stress that the hyperparame-
ters and training schemes of these models have not been
fine-tuned to be optimal, but they suffice for the present
demonstration. It is therefore likely that the model qual-

ity can be increased with further training or simple mod-
ifications of the hyperparameters.
The layers considered in this work use a ratio of poly-

nomials

f(x) =
1

1 + 2x

a0 + a1x

b0 + b1x
(A1)

to construct gx in Eq. (13), where ai and bi are trainable
parameters.
All models have npt = 6, where npt is the number of

iterations of Eq. (14) in each layer. This choice has been
found to be empirically better than lower values of npt. In
models A, B1, and B2 we alternate the masking pattern
between mod 2 or mod 4, since empirically this results in
slight improvements compared to just using the mod 2
masking at the same computational cost (a mod 4 stack
is computationally equivalent to two mod 2 stacks). The
model architectures are shown in Table II.
The models are optimized by minimizing the reverse

KL divergence, where samples from the prior distribu-
tion are generated using heatbath/overrelaxation (pure
gauge) or HMC (QCD). The training scheme consists of
a constant learning rate for a fixed number of gradient
steps with a constant batch size, summarised in Table II.
In all cases, we use path gradients.
A sufficient condition to guarantee invertibility of the

residual layers (Lipschitz condition) is

||gx(V1)− gx(V2)|| < ||V1 − V2||, (A2)

where ||·|| denotes the matrix norm. This is not explicitly
enforced in the transformations used in this work, but we
have not detected any violations in trained models. See
Appendix B of Ref. [81] for a discussion on the Lipschitz
condition.
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G. Schierholz, H. Stüben, R. D. Young, and J. M.
Zanotti Phys. Rev. D 108 no. 3, (2023) 034507,
arXiv:2305.05491 [hep-lat].

[67] QCDSF/UKQCD/CSSM, CSSM, UKQCD, QCDSF
Collaboration, M. Batelaan et al. Phys. Rev. D 107
no. 5, (2023) 054503, arXiv:2209.04141
[hep-lat].

[68] CSSM/QCDSF/UKQCD Collaboration,

A. Hannaford-Gunn, R. Horsley, H. Perlt, P. Rakow,
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[81] M. Lüscher Commun. Math. Phys. 293 (2010) 899–919,
arXiv:0907.5491 [hep-lat].

http://arxiv.org/abs/2301.02097
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://arxiv.org/abs/2308.13294
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://arxiv.org/abs/2012.12901
http://arxiv.org/abs/2103.11965
http://arxiv.org/abs/2103.11965
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1016/0370-2693(82)90696-7
http://dx.doi.org/10.1016/0370-2693(82)90696-7
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1103/PhysRevLett.58.2394
http://dx.doi.org/10.1103/PhysRevLett.58.2394
http://dx.doi.org/10.1103/PhysRevD.37.458
http://dx.doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1007/JHEP08(2010)071
http://arxiv.org/abs/1006.4518
http://arxiv.org/abs/1006.4518
http://dx.doi.org/10.1016/j.physletb.2012.07.004
http://arxiv.org/abs/1205.6410
http://arxiv.org/abs/1205.6410
http://dx.doi.org/10.1103/PhysRevD.108.034507
http://arxiv.org/abs/2305.05491
http://dx.doi.org/10.1103/PhysRevD.107.054503
http://dx.doi.org/10.1103/PhysRevD.107.054503
http://arxiv.org/abs/2209.04141
http://arxiv.org/abs/2209.04141
http://dx.doi.org/10.22323/1.396.0088
http://arxiv.org/abs/2202.03662
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://arxiv.org/abs/hep-lat/0409003
http://dx.doi.org/10.1103/PhysRevD.102.114505
http://arxiv.org/abs/2007.01523
http://dx.doi.org/10.22323/1.396.0028
http://dx.doi.org/10.22323/1.396.0028
http://arxiv.org/abs/2207.03040
http://dx.doi.org/10.1103/PhysRevD.44.3272
http://dx.doi.org/10.1103/PhysRevD.44.3272
http://dx.doi.org/10.1109/hpec.2018.8547629
http://dx.doi.org/10.1109/hpec.2018.8547629
http://dx.doi.org/10.1109/hpec.2018.8547629
http://arxiv.org/abs/1807.07814
http://dx.doi.org/10.48550/arXiv.1912.01703
http://dx.doi.org/10.48550/arXiv.1912.01703
http://arxiv.org/abs/1912.01703
http://github.com/google/jax
http://github.com/deepmind/dm-haiku
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1007/s00220-009-0953-7
http://arxiv.org/abs/0907.5491

