
Data-flow parallelism for high-energy and 
nuclear physics frameworks
Kyle J. Knoepfel, Marc Paterno, Saba Sehrish, Chris Green 
Fermi National Accelerator Laboratory

Data-flow parallelism
Computing workflows in high-energy and nuclear physics 
can generally be expressed as directed acyclic graphs 
according to the data dependencies among algorithms.

DUNE simulation workflow depicting data dependencies 
among algorithms (elliptical nodes), which consume and 
product data products (boxes).

The DUNE experiment is pursuing a framework that uses 
graph-based processing and higher-order functions.  

oneTBB flow-graph developers are executing Meld 
benchmarks to test new ideas.

Some challenges remain (e.g.):
• Pairing physics data with calibration information of 

independent periods of validity.
• Efficiently and safely invoking Python algorithms from 

algorithms wrapped by flow-graph nodes.
• Re-expressing existing algorithms and behaviors using 

higher-order functions.

Next steps

FERMILAB-POSTER-24-0297-CSAID

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Collaborating with Intel oneTBB developers

Proposed new flow-graph functionalities
Serializer node: sometimes thread-unsafe software must 
be invoked from multiple nodes.  It’s insufficient to specify a 
“serial” concurrency for each node as separate nodes can 
still be executed in parallel.
• Each thread-unsafe library has a dedicated node that 

sends and receives one token—the user’s algorithm is 
not invoked until it receives the token.

Processing idioms

Eventsj
f

(𝑎𝑗)

(𝑏𝑗)

• Transform: A user-provided function 𝑓 is 
applied to each data product in the sequence 

𝑎𝑗 , creating another sequence 𝑏𝑗 .

Subrunsi

Eventsi,j (𝑐𝑖,𝑗)

(𝐾𝑖)

g

• Fold: A subrun data product 𝐾𝑖 is created by 
applying a user-provided fold operation g on 
each data product in the sequence (𝑐𝑖,𝑗).

• Unfold: A sequence of data products 𝑑𝑖,𝑗  is 
produced by applying a user-provided unfold 
operation h on one subrun data product 𝐽𝑖. 

Subrunsi

Eventsi,j

(𝑑𝑖,𝑗)

( 𝐽𝑖)

h

Graph-based processing approaches are not often used in 
HENP due to implicit dependencies between algorithms, 
serialization among thread-unsafe libraries, and difficulties 
in short-circuiting processing with filters.

HENP algorithms tend to very procedural, often obscuring 
the nature of the computation being performed.  However, 
almost all algorithms can be expressed according to 
patterns using higher-order functions:

An LDRD project (Meld) explored using Intel’s 
oneTBB flow graph and higher-order functions 
to process HENP data.

EPJ Web of Conferences 295, 05014 (2024)

As a result, meetings were established between 
Fermilab developers and Intel oneTBB flow graph 
developers to find ways to better support HENP.

• Filter: A user-provided predicate 𝑝 is applied 
to each elements of the sequence (𝑐𝑗), 
creating a sequence of Boolean results (𝜙𝑗).

Eventsj

(𝑎𝑗)

(𝑎𝑘)

(𝑐𝑗)

p

(𝜙𝑗)(𝑎𝑗|𝜙𝑗)

eval
The sequences 𝑎𝑗 and (𝜙𝑗) zipped together 
and then evaluated to yield a possibly shorter 
new sequence 𝑎𝑘 .

Fold node: accepts multiple input 
messages (one per sequence element) 
and outputs one result per sequence.
• Internal atomic counters to ensure 

fold result emitted at the right time
• oneTBB created RFC to explore 

adding this to the flow-graph library Intel RFC for fold nodes

https://github.com/oneapi-src/oneTBB/pull/1526

Filtering support: oneTBB considering the addition of a 
class template tbb::optional_msg<T>, with potential short-
circuiting behavior for disengaged (“null”) objects.

Intel oneTBB flow-graph spec

Our work was presented 10 October 2024 
at the UXL oneAPI DevSummit.


	Slide 1

