Why Muons?

By replacing the electron with a muon, we can bring nuclei closer together and facilitate fusion!

Muons and electrons only differ by mass. Muons are around 200 times heavier.

Previous Experimental Data

Muonic vs. Thermonuclear Fusion

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smaller atomic radius</td>
<td>Need muons</td>
</tr>
<tr>
<td>Can be achieved at room temperature or lower</td>
<td>Short average muon lifetime (2.2μs)</td>
</tr>
<tr>
<td>No need for plasma</td>
<td>Loss of muons due to sticking factor</td>
</tr>
</tbody>
</table>

1. (a) Normalized cycling rates vs. temperature for gaseous D/T mixture at 33% Tritium Concentration (Cₜ) and different densities.

1. (b) Normalized cycling rates vs. density for gaseous D/T mixture at Cₜ ≈ 33% and different temperatures.

References & Acknowledgements:

3. A. Knaian, Diamond Anvil Measurement of Muon Catalyzed Fusion Kinetics, Open CHRSIP User Meeting BVR 55, January 2024, Villigen, Switzerland

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WSDTS) under the Science Undergraduate Laboratory Internships Program (SULI).