Low Energy Excess and New Physics Searches with MicroBooNE

Fan Gao, Lee Hagaman, Alexandra Trettin, Mark Ross-Lanergan, Erin Yandel
On behalf of the MicroBooNE Collaboration

First Full Dataset Search for a ν_e Low Energy Excess

For the first time, the full set of 1.11×10^{21} POT is used to search for the low-energy excess (LEE) observed in MiniBooNE. This search tests whether the excess is due to an increase in the number of electron neutrinos. Two models are tested: one that models the excess as a function of the neutrino energy and one that preserves the distribution of the shower kinematics in MiniBooNE. Results using the first 6.86×10^{20} POT of this dataset were published in [1].

Single Photon Searches

To search the whole photon phase-space for signs of an excess, an inclusive single photon analysis has been developed. The analysis targets any final state consistent with what would be observed as a single photon in MiniBooNE, rather than testing a particular model. A selection using Wire-Cell reconstruction tools and targeted BDTs achieves an efficiency of 70% and a purity of 40.2%.

Dark-Sector e^+e^- Solutions

In one class of such models neutrons act as a portal to the dark sector. Active neutrinos upscatter via a dark photon (Z') off an Argon nucleus to produce an unstable heavy sterile neutrino (ν). This heavy sterile neutrino then decays back to a visible e^+ and e^- pair which can be detected.

MicroBooNE Preliminary, 1.11 x 10^{21} POT

The LEE ratio model unfolded from MicroBooNE shower 2D kinematic variables.