

Why v_uCC Zero Mesons?

Solving open questions in neutrino physics requires understanding their **interactions**. Some typical muon neutrino charged-current (CC) interactions, from closer-to-elastic to more inelastic:

More elastic interactions are easier to fully reconstruct. However, the **nuclear environment** often blurs the underlying interactions:

- Only partially known initial state
- Scattering off multiple, correlated nucleons
- Intranuclear re-scattering

Alternatively, we can measure a **final state**:

v_uCC Zero Mesons

- Especially sensitive to quasielastic and multinucleon interactions
- Probes weak-interaction structure of nucleons
- Handle for constraining nuclear models
- The deliverable: differential cross section with respect muon kinematics.
- The future: cross section ratios; dissecting the hadronic component (e.g. proton multiplicity)

APS April Meeting 2024

"Quarks to Cosmos" - April 3-6, Sacramento, CA

Status of the muon neutrino charged-current zero mesons cross section measurement in the NOvA near detector

Sebastian Sanchez-Falero¹ on behalf of the NOvA collaboration

Why at the NOvA Near Detector?

- NOvA is a long-baseline accelerator neutrino experiment at Fermilab, comprising **two functionally** identical liquid scintillator tracking calorimeters (77%) hydrocarbon, **16%** Chlorine, **6%** TiO₂)
- The Near Detector receives a high intensity, high purity beam in a dynamic energy region with several interaction modes, making it an excellent laboratory for interaction cross sections.
- Great potential to contribute to joint fits with experiments at other neutrino energies and atomic number ranges

What does v_uCC Zero Mesons look like?

- NOvA reconstructs particles using prongs: directional energy deposits
- Muons make long, clean prongs
- Protons and pions make shorter prongs
- Proton prongs usually end with a Bragg peak

ProngCVN

Neutral Pion Analysis Selection

Reversed, to reject neutral pions.

Work supported by US DOE grant DE-SC0015684

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

How to select v_u CC Zero Mesons?

Convolutional Neural

Network: Takes pictures of prongs and applies convolution layers to extractfeatures

Training: individual uniformly simulated particles of 5 classes: muon, proton, pion, electron and photon

Application: for each prong in the event, provides five particle ID scores

Selection Highlights

ProngCVN MuonID ProtonID PionID ElectronII PhotonID

defined experimentally and is valuable for studying nuclear effects and reducing systematic

In progress: Template Fitting

The signal is finally extracted by fitting a linear combination of simulated signal and background **templates** to the selected data events. Templates in a Michel Electron ID variable display shape differences due to charged pions

Fitis done simultaneously over all of the muon kinematics bins

sfsanche@iastate.edu