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This work presents preliminary results of the first determination of the energy-momentum tensor
form factors of the scalar glueball, referred to as gravitational form factors (GFFs). The calculation
has been carried out in lattice Yang-Mills theory at a single lattice spacing. Using variationally
optimized operators, the matrix elements are extracted from ratios of three-point functions to
two-point functions. The glueball GFFs and their kinematic dependence are compared to those of
other hadrons from previous calculations.
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1. Introduction

The potential existence of glueballs—hadronic states with purely gluonic degrees of freedom—
has been speculated since the inception of quantum chromodynamics (QCD) [1]. Nowadays, there
are multiple experimental candidates for various glueball states with allowed quantum numbers
𝐽𝑃𝐶 = 0++, 0−+, 1++, 1+−, 1−−, 2++, etc. [2–7]. Lattice QCD calculations of the glueball spectrum
have provided indispensable inputs to this search [8]—see Ref. [9] for a review. However, conclusive
identification of observed hadrons as glueballs or glueball-like remains challenging, calling for
further theory predictions of the properties of these states to compare against.

Information about the internal structure of hadrons may allow classification of observed hadron
states as glueball-like objects. Features like their radius, or the momentum fraction carried by gluons,
could serve as smoking-gun evidence of a hadron having predominantly gluonic degrees of freedom.
Both of these quantities, as well as additional information like the energy distribution, are contained
in their gravitational form factors (GFFs), which are defined from the matrix elements of the
energy-momentum tensor (EMT) 𝑇 𝜇𝜈 of QCD [10–13]. These matrix elements, and consequently
the glueball GFFs, can in principle be determined using lattice QCD.

In this work, we take a step in this direction by studying the GFFs of the scalar glueball
𝐺 [0++] in 𝑆𝑈 (3) Yang-Mills theory.1 With a pure gauge action, the EMT contains only a gluonic
contribution 𝑇 𝜇𝜈 = 2 Tr[−𝐹𝜇

𝛼𝐹
𝛼𝜈 + 1

4𝑔
𝜇𝜈𝐹𝛼𝛽𝐹𝛼𝛽], where 𝐹𝜇𝜈 is the gluon strength tensor. A

scalar glueball has two GFFs, 𝐴(𝑡) and 𝐷 (𝑡), defined in the EMT matrix element decomposition as〈
𝐺 [0++] (𝑝′)

��𝑇 𝜇𝜈
��𝐺 [0++] (𝑝)

〉
= 2𝑃𝜇𝑃𝜈𝐴(𝑡) + Δ𝜇Δ𝜈 − 𝑔𝜇𝜈Δ2

2
𝐷 (𝑡) , (1)

where 𝑝 and 𝑝′ are the four-momenta of the incoming and outgoing states, 𝑃 = (𝑝 + 𝑝′)/2,
Δ = 𝑝′ − 𝑝, and 𝑡 = Δ2. The momentum sum rule dictates that 𝐴(0) = 1, while 𝐷 (0), also known
as the 𝐷-term, is unconstrained.

2. Lattice setup

The results in this work are obtained from a single lattice ensemble on volume 𝐿3×𝑇 = 243×48
for the purely gluonic theory defined with the 𝑆𝑈 (3) Wilson gauge action with 𝛽 = 5.95. Setting the
scale with the Sommer parameter gives 𝑎 = 0.098 fm [15, 16]. We generate O(107) configurations
using O(105) independent streams of heatbath and overrelaxation [17–21]. On each configuration,
we measure correlation functions constructed using two interpolating operators:

𝜒1(𝑥) =
1
4

∑︁
𝜇≠𝜈

ReTr𝑈2
𝜇𝜈 (𝑥), 𝜒2(𝑥) =

1
4

∑︁
𝜇≠𝜈

ReTr𝑈7
𝜇𝜈 (𝑥) , (2)

where 𝜇, 𝜈 ∈ {𝑥, 𝑦, 𝑧}, and𝑈𝑛
𝜇𝜈 is an 𝑛×𝑛Wilson loop constructed from links stout-smeared [22] by

3 steps in spatial directions only. The absence of fermionic fields in the operators allows computing
and working directly with interpolators of definite three-momentum ®𝑝, defined from Eq. (2) with

1There is one previous attempt in literature to obtain form factors of a𝐺 [0++] state, using an 𝑆𝑈 (2) pure gauge action
and a plaquette as the probe [14].
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their vacuum expectations subtracted as

𝜒𝑖 ( ®𝑝, 𝑡) =
∑︁
®𝑥
𝑒−𝑖 ®𝑝 · ®𝑥 [𝜒𝑖 (®𝑥, 𝑡) − ⟨𝜒𝑖 (®𝑥, 𝑡)⟩] . (3)

The summations over 𝜇, 𝜈 in Eq. (2) project to the 𝐴+
1 (rest frame) or 𝐴1 (moving frames) irreducible

representation (irrep) of the finite-volume symmetry group, and taking the real part projects to posi-
tive charge conjugation quantum numbers. The lowest-energy state excited by these interpolators is
the positive parity 0++ glueball. However, above the 0++ ground state, the spectrum may also include
glueballs with other quantum numbers, e.g. tensor or pseudoscalar glueballs, or multi-glueball or
ditorelon states, depending on the momentum frame.

We use the clover definition of 𝐹𝜇𝜈 ,

𝐹𝜇𝜈 (𝑥) =
𝑖

8𝑔0
(𝑄𝜇𝜈 (𝑥) −𝑄†

𝜇𝜈 (𝑥)) , (4)

where

𝑄𝜇𝜈 (𝑥) =𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + �̂�)𝑈†
𝜇 (𝑥 + �̂�)𝑈†

𝜈 (𝑥)
+𝑈𝜈 (𝑥)𝑈†

𝜇 (𝑥 − �̂� + �̂�)𝑈†
𝜈 (𝑥 − �̂�)𝑈𝜇 (𝑥 − �̂�)

+𝑈†
𝜇 (𝑥 − �̂�)𝑈†

𝜈 (𝑥 − �̂� − �̂�)𝑈𝜇 (𝑥 − �̂� − �̂�)𝑈𝜈 (𝑥 − �̂�)
+𝑈†

𝜈 (𝑥 − �̂�)𝑈𝜇 (𝑥 − �̂�)𝑈𝜈 (𝑥 − �̂� + �̂�)𝑈†
𝜇 (𝑥)

(5)

to construct the EMT, and compute it from links stout-smeared in all directions by 3 steps. Vacuum-
subtracted and projected to definite three-momentum ®Δ, the operators of interest are

𝑇Rℓ ( ®Δ, 𝜏) =
∑︁
®𝑦
𝑒𝑖

®Δ· ®𝑦 [𝑇Rℓ (®𝑦, 𝜏) − ⟨𝑇Rℓ (®𝑦, 𝜏)⟩] (6)

where R ∈ {𝜏 (3)1 , 𝜏
(6)
3 } denotes the irrep of the hypercubic group that the symmetric traceless

𝑇𝜇𝜈 is subduced to in Euclidean space and ℓ indexes the irrep bases. We use the same complete
orthonormal irrep bases [23] as in previous works on GFFs, e.g., Refs. [24–29], i.e.,

𝑇
𝜏
(3)
1,1

=
1
2
(𝑇00 + 𝑇11 − 𝑇33 + 𝑇00),

𝑇
𝜏
(3)
1,2

=
1
√

2
(𝑇11 − 𝑇22), 𝑇𝜏 (3)

1,3
=

1
√

2
(𝑇33 + 𝑇00) ,

(7)

for 𝜏 (3)1 and

𝑇
𝜏
(6)
3,1

=
1
√

2
(𝑇12 + 𝑇21), 𝑇𝜏 (6)

3,2
=

1
√

2
(𝑇13 + 𝑇31) ,

𝑇
𝜏
(6)
3,3

=
−𝑖
√

2
(𝑇10 + 𝑇01), 𝑇𝜏 (6)

3,4
=

1
√

2
(𝑇23 + 𝑇32) ,

𝑇
𝜏
(6)
3,5

=
−𝑖
√

2
(𝑇20 + 𝑇02), 𝑇𝜏 (6)

3,6
=

−𝑖
√

2
(𝑇30 + 𝑇03) ,

(8)

for 𝜏 (6)3 , both written in Minkowski space.
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Figure 1: Effective energies 𝐸eff (𝑡) = log(𝐶2pt (𝑡)/𝐶2pt (𝑡 + 1)) as a function of sink time 𝑡 for the different
boost momenta, comparing the diagonal correlators 𝐶2pt

𝑖𝑖
of Eq. (9) computed with single interpolators from

the basis Eq. (2) with the GEVP-optimized one of Eq. (11) defined with the composite interpolator Eq. (10)

3. Glueball spectrum

The analysis begins by determining the spectrum and constructing optimized ground-state
interpolating operators. To proceed, we compute 2 × 2 matrices of momentum-projected, vacuum-
subtracted two-point functions averaged over all timeslices

𝐶
2pt
𝑖 𝑗

( ®𝑝, 𝑡) = 1
𝑇

∑︁
𝑡0

⟨𝜒𝑖 ( ®𝑝, 𝑡 + 𝑡0) 𝜒 𝑗 ( ®𝑝, 𝑡0)†⟩ (9)

for all | ®𝑝 |2 ≤ 6(2𝜋/𝐿)2 on 200 bootstrap ensembles after binning the O(107) configurations into
groups of 1000. We average over equivalent momenta to obtain two-point functions for the 7 distinct
| ®𝑝 |2. For each | ®𝑝 |2, we then solve the generalized eigenvalue problem (GEVP) to extract the ground
state, which we identify as the scalar glueball. Employed in a “fixed pivot” mode with 𝑡0 = 1 and
diagonalization time 𝑡𝑑 = 3, the GEVP provides 7 sets of weights 𝑤𝑖 𝑗 ( | ®𝑝 |2), one for each distinct
| ®𝑝 |2, which we use to construct optimized interpolators

𝜒0( ®𝑝, 𝑡) =
∑︁
𝑖

𝑤0𝑖 ( | ®𝑝 |2)𝜒𝑖 ( ®𝑝, 𝑡). (10)

From these, two-point functions are obtained as

𝐶
2pt
0++ ( ®𝑝, 𝑡) =

1
𝑇

∑︁
𝑡0

⟨𝜒0( ®𝑝, 𝑡 + 𝑡0) 𝜒0( ®𝑝, 𝑡0)†⟩ =
∑︁
𝑖, 𝑗

𝑤0𝑖 ( | ®𝑝 |2) 𝐶2pt
𝑖 𝑗

( ®𝑝, 𝑡) 𝑤∗
0 𝑗 ( | ®𝑝 |

2), (11)

labeled by the quantum numbers of the scalar glueball. Figure 1 compares the ground-state energies
extracted using GEVP-optimized interpolators versus the individual interpolators in the basis.
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Figure 2: Example ratios of three- and two-point functions at different sink times 𝑡𝑠 , expected to be
proportional to the matrix elements of Eq. (1) up to known kinematic factors. Deviation from a constant
value (i.e., curvature) is an indication of excited-state contamination effects. The bands correspond to model
averages over fits to different time ranges. The two rows show examples from each of the two irreps, and the
three columns to different momentum transfers 𝑡.

4. Matrix elements

To obtain the matrix elements defined in Eq. (1), we use the GEVP-optimized interpolators 𝜒0

to compute vacuum-subtracted three-point functions [30]

𝐶
3pt
0++,Rℓ ( ®𝑝′, ®Δ, 𝑡𝑠, 𝜏) =

1
𝑇

∑︁
𝑡0

⟨𝜒0( ®𝑝′, 𝑡𝑠 + 𝑡0) 𝑇Rℓ ( ®Δ, 𝜏 + 𝑡0) 𝜒0( ®𝑝′, 𝑡0)†⟩ (12)

for all | ®𝑝′ |2 ≤ 6(2𝜋/𝐿)2 and
���®Δ���2 ≤ 10(2𝜋/𝐿)2. To isolate the ground-state matrix element, we

form the standard ratios to cancel the leading overlap factors and time dependence

𝑅0++,Rℓ ( ®𝑝′, ®Δ, 𝑡𝑠, 𝜏) =
𝐶

3pt
0++,Rℓ ( ®𝑝′, ®Δ, 𝑡𝑠, 𝜏)

𝐶
2pt
0++ ( ®𝑝′, 𝑡𝑠)

√√√
𝐶

2pt
0++ ( ®𝑝, 𝑡𝑠 − 𝜏)

𝐶
2pt
0++ ( ®𝑝′, 𝑡𝑠 − 𝜏)

𝐶
2pt
0++ ( ®𝑝′, 𝑡𝑠)

𝐶
2pt
0++ ( ®𝑝, 𝑡𝑠)

𝐶
2pt
0++ ( ®𝑝′, 𝜏)

𝐶
2pt
0++ ( ®𝑝, 𝜏)

. (13)

The resulting quantities are proportional to the matrix elements of interest up to known kinematic
factors and excited state effects. Thus, to extract the matrix elements, we fit a constant to all possible
(𝑡𝑠,𝜏) time ranges with at least 8 data points within the constraints that 𝑡𝑠min ≥ 5, 𝑡𝑠max ≤ 15, 𝜏 ≥ 2,
𝜏 ≤ 𝑡𝑠 − 2 of each ratio and model-average over the resulting set of fits with AIC weights [31].
Example ratios and fits thereof are shown in Fig. 2.

5. Gravitational form factors

The GFFs are obtained by first grouping the data for each irrep separately into 12 bins using
k-means clustering [32] on the momentum transfer squared 𝑡 = Δ2, then solving the overconstrained
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Figure 3: Comparison between the 𝐺 [0++] glueball GFFs in Yang-Mills theory obtained in this work, and
the gluon GFFs of four other hadrons—the pion, 𝜌 meson, nucleon, and Δ baryon, indicated with their 𝐽𝑃

quantum numbers—obtained with an 𝑁 𝑓 = 2 + 1 QCD ensemble with 𝑚𝜋 = 450 MeV [33]. The latter have
been normalized to match the values of the glueball 𝐴(0) and 𝐷 (0).

systems of linear equations dictated by Eq. (1) to obtain the bare GFFs 𝐴R (𝑡) and 𝐷R (𝑡) for each
bin and irrep. These may be renormalized by imposing the sum rule 𝐴(0) = 1. The renormalization
factors 1/𝐴bare

R (0) are obtained from a fit of a dipole model 𝛼/(1 + 𝑡/Λ2)2 to the bare GFF 𝐴R (𝑡),
where 𝛼 and Λ are fitted parameters, identifying 𝛼 = 𝐴bare

R (0). The bare GFFs in each momentum
bin for each irrep are then multiplied by these factors, averaged together, and fit again with dipoles
to obtain the results shown in Fig. 3.

Figure 3 compares the results for 𝐴(𝑡) and 𝐷 (𝑡) of the 0++ glueball against the gluon GFFs
obtained for four hadrons with quantum numbers 𝐽𝑃 = 0−, 1−, 1/2+, and 3/2+, corresponding
to the pion, 𝜌 meson, nucleon, and Δ baryon, computed for a single lattice QCD ensemble with
𝑎 ≈ 0.12 fm and𝑚𝜋 ≈ 450 MeV [33]. This previous work used an ensemble with 𝑁 𝑓 = 2+1 clover-
improved dynamical quark flavors, for which the hadron GFFs receive both a quark and a gluon
contribution; only the gluon one was constrained, neglecting its mixing with the quark one. The
comparison of the overall normalization between those and the gluon GFFs in this work—which
coincide with the total GFFs in a theory with only gluonic degrees of freedom, as investigated
here—is not meaningful. We thus rescale the results of Ref. [33] to match each glueball GFF in
the forward limit, i.e., such that 𝐴𝑔 (𝑡 = 0) = 1 and 𝐷𝑔 (𝑡 = 0) = 𝐷0++ (𝑡 = 0) for all hadrons. We
can then compare the 𝑡-dependence of the form factors. The glueball 𝐴(𝑡) form factor decays more
slowly than that of the pion, corresponding to a smaller mass radius contribution. The uncertainty
of 𝐷 (𝑡) is very large; however, the form factor shows a 𝑡-dependence more similar to that of the
meson 𝐷 (𝑡) form factors than of the baryonic ones.

6. Conclusion

These preliminary results constitute the first time the internal structure of glueballs has been
investigated in an 𝑆𝑈 (3) lattice gauge theory, representing a promising first step towards under-
standing the internal structure of potential glueball-like hadrons in nature, and towards an analogous
computation in QCD. The next steps towards finalizing the calculation include expanding the vari-
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ational basis of operators to better control excited state effects, comparing results computed with
different choices of EMT smearing to assess contamination by operator-source and operator-sink
contact terms, and extending the study to heavier glueball states with different quantum numbers.
Looking forwards, it will also be interesting to investigate whether several recent methods devel-
opments can improve the determination of these quantities. In particular, the Lanczos analysis
formalism provides more robust treatment of excited states while resolving signal-to-noise issues
for both spectroscopy and matrix elements [34, 35]. Separately, multi-level algorithms have been
shown to provide substantially improved signals in calculations of the glueball spectrum [36], and
the same technology may be applied to matrix element calculations.

Acknowledgements

The authors thank Julian Urban for contributions at early stages of the project. We also thank
L. Barca and M. Hansen for useful discussions. This work is supported in part by the U.S. De-
partment of Energy, Office of Science, Office of Nuclear Physics, under grant Contract Number
DE-SC0011090 and by Early Career Award DE-SC0021006, and has benefited from the QGT Top-
ical Collaboration DE-SC0023646. PES is supported in part by Simons Foundation grant 994314
(Simons Collaboration on Confinement and QCD Strings) and by the U.S. Department of Energy
SciDAC5 award DE-SC0023116. DAP is supported from the Office of Nuclear Physics, Department
of Energy, under contract DE-SC0004658. This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Of-
fice of Science, Office of High Energy Physics. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231. FRL acknowledges partial sup-
port by the Mauricio and Carlota Botton Fellowship. RA is supported by the U.S. Department of
Energy SciDAC5 award DE-SC0023116 and the High Energy Physics Computing Traineeship for
Lattice Gauge Theory (DE-SC0024053).

References

[1] H. Fritzsch and M. Gell-Mann, Current algebra: Quarks and what else?, eConf C720906V2
(1972) 135 [hep-ph/0208010].

[2] E. Klempt and A. Zaitsev, Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD
inspired concepts, Phys. Rept. 454 (2007) 1 [0708.4016].

[3] V. Crede and C.A. Meyer, The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63
(2009) 74 [0812.0600].

[4] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu and S.-L. Zhu, An updated review of the new hadron
states, Rept. Prog. Phys. 86 (2023) 026201 [2204.02649].

[5] BESIII collaboration, Confirmation of the 𝑋 (1835) and observation of the resonances
𝑋 (2120) and 𝑋 (2370) in 𝐽/𝜓 → 𝛾𝜋+𝜋−𝜂′, Phys. Rev. Lett. 106 (2011) 072002
[1012.3510].

7

https://arxiv.org/abs/hep-ph/0208010
https://doi.org/10.1016/j.physrep.2007.07.006
https://arxiv.org/abs/0708.4016
https://doi.org/10.1016/j.ppnp.2009.03.001
https://doi.org/10.1016/j.ppnp.2009.03.001
https://arxiv.org/abs/0812.0600
https://doi.org/10.1088/1361-6633/aca3b6
https://arxiv.org/abs/2204.02649
https://doi.org/10.1103/PhysRevLett.106.072002
https://arxiv.org/abs/1012.3510


[6] BESIII collaboration, Observation of 𝑋 (2370) and search for X(2120) in 𝐽/𝜓 → 𝛾𝐾�̄�𝜂′,
Eur. Phys. J. C 80 (2020) 746 [1912.11253].

[7] BESIII collaboration, Determination of Spin-Parity Quantum Numbers of X(2370) as 0-+
from J/𝜓→𝛾KS0KS0𝜂’, Phys. Rev. Lett. 132 (2024) 181901 [2312.05324].

[8] A. Athenodorou and M. Teper, The glueball spectrum of SU(3) gauge theory in 3 + 1
dimensions, JHEP 11 (2020) 172 [2007.06422].

[9] D. Vadacchino, A review on Glueball hunting, in 39th International Symposium on Lattice
Field Theory, 5, 2023 [2305.04869].

[10] C. Lorcé, H. Moutarde and A.P. Trawiński, Revisiting the mechanical properties of the
nucleon, Eur. Phys. J. C 79 (2019) 89 [1810.09837].

[11] M. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei,
Phys. Lett. B 555 (2003) 57 [hep-ph/0210165].

[12] M.V. Polyakov and P. Schweitzer, Forces inside hadrons: pressure, surface tension,
mechanical radius, and all that, Int. J. Mod. Phys. A 33 (2018) 1830025 [1805.06596].

[13] V.D. Burkert, L. Elouadrhiri, F.X. Girod, C. Lorcé, P. Schweitzer and P.E. Shanahan,
Colloquium: Gravitational Form Factors of the Proton, 2303.08347.

[14] G.A. Tickle and C. Michael, An Investigation of the Structure of the O+ Glueball in SU(2)
Lattice Gauge Theory, Nucl. Phys. B 333 (1990) 593.

[15] S. Necco and R. Sommer, The N(f) = 0 heavy quark potential from short to intermediate
distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008].

[16] S. Durr, Z. Fodor, C. Hoelbling and T. Kurth, Precision study of the SU(3) topological
susceptibility in the continuum, JHEP 04 (2007) 055 [hep-lat/0612021].

[17] M. Creutz, Monte Carlo Study of Quantized SU(2) Gauge Theory, Phys. Rev. D 21 (1980)
2308.

[18] N. Cabibbo and E. Marinari, A New Method for Updating SU(N) Matrices in Computer
Simulations of Gauge Theories, Phys. Lett. B 119 (1982) 387.

[19] A.D. Kennedy and B.J. Pendleton, Improved Heat Bath Method for Monte Carlo
Calculations in Lattice Gauge Theories, Phys. Lett. B 156 (1985) 393.

[20] F.R. Brown and T.J. Woch, Overrelaxed Heat Bath and Metropolis Algorithms for
Accelerating Pure Gauge Monte Carlo Calculations, Phys. Rev. Lett. 58 (1987) 2394.

[21] S.L. Adler, Overrelaxation Algorithms for Lattice Field Theories, Phys. Rev. D 37 (1988)
458.

[22] C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD,
Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018].

8

https://doi.org/10.1140/epjc/s10052-020-8078-4
https://arxiv.org/abs/1912.11253
https://doi.org/10.1103/PhysRevLett.132.181901
https://arxiv.org/abs/2312.05324
https://doi.org/10.1007/JHEP11(2020)172
https://arxiv.org/abs/2007.06422
https://arxiv.org/abs/2305.04869
https://doi.org/10.1140/epjc/s10052-019-6572-3
https://arxiv.org/abs/1810.09837
https://doi.org/10.1016/S0370-2693(03)00036-4
https://arxiv.org/abs/hep-ph/0210165
https://doi.org/10.1142/S0217751X18300259
https://arxiv.org/abs/1805.06596
https://arxiv.org/abs/2303.08347
https://doi.org/10.1016/0550-3213(90)90053-G
https://doi.org/10.1016/S0550-3213(01)00582-X
https://arxiv.org/abs/hep-lat/0108008
https://doi.org/10.1088/1126-6708/2007/04/055
https://arxiv.org/abs/hep-lat/0612021
https://doi.org/10.1103/PhysRevD.21.2308
https://doi.org/10.1103/PhysRevD.21.2308
https://doi.org/10.1016/0370-2693(82)90696-7
https://doi.org/10.1016/0370-2693(85)91632-6
https://doi.org/10.1103/PhysRevLett.58.2394
https://doi.org/10.1103/PhysRevD.37.458
https://doi.org/10.1103/PhysRevD.37.458
https://doi.org/10.1103/PhysRevD.69.054501
https://arxiv.org/abs/hep-lat/0311018


[23] M. Gockeler, R. Horsley, E.-M. Ilgenfritz, H. Perlt, P.E.L. Rakow, G. Schierholz et al.,
Lattice operators for moments of the structure functions and their transformation under the
hypercubic group, Phys. Rev. D 54 (1996) 5705 [hep-lat/9602029].

[24] D. Brömmel, Pion Structure from the Lattice, Ph.D. thesis, Regensburg U., 2007.
10.3204/DESY-THESIS-2007-023.

[25] W. Detmold, D. Pefkou and P.E. Shanahan, Off-forward gluonic structure of vector mesons,
Phys. Rev. D 95 (2017) 114515 [1703.08220].

[26] P. Shanahan and W. Detmold, Gluon gravitational form factors of the nucleon and the pion
from lattice QCD, Phys. Rev. D 99 (2019) 014511 [1810.04626].

[27] P. Shanahan and W. Detmold, Pressure Distribution and Shear Forces inside the Proton,
Phys. Rev. Lett. 122 (2019) 072003 [1810.07589].

[28] D.C. Hackett, D.A. Pefkou and P.E. Shanahan, Gravitational Form Factors of the Proton
from Lattice QCD, Phys. Rev. Lett. 132 (2024) 251904 [2310.08484].

[29] D.C. Hackett, P.R. Oare, D.A. Pefkou and P.E. Shanahan, Gravitational form factors of the
pion from lattice QCD, Phys. Rev. D 108 (2023) 114504 [2307.11707].

[30] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer, On the generalized
eigenvalue method for energies and matrix elements in lattice field theory, JHEP 04 (2009)
094 [0902.1265].

[31] W.I. Jay and E.T. Neil, Bayesian model averaging for analysis of lattice field theory results,
Phys. Rev. D 103 (2021) 114502 [2008.01069].

[32] D. Steinberg, “kmeans1d.” https://github.com/dstein64/kmeans1d, 2019.

[33] D.A. Pefkou, D.C. Hackett and P.E. Shanahan, Gluon gravitational structure of hadrons of
different spin, Phys. Rev. D 105 (2022) 054509 [2107.10368].

[34] M.L. Wagman, Lanczos, the transfer matrix, and the signal-to-noise problem, 2406.20009.

[35] D.C. Hackett and M.L. Wagman, Lanczos for lattice QCD matrix elements, 2407.21777.

[36] L. Barca, S. Schaefer, F. Knechtli, J.A. Urrea-Niño, S. Martins and M. Peardon, Exponential
error reduction for glueball calculations using a two-level algorithm in pure gauge theory,
Phys. Rev. D 110 (2024) 054515 [2406.12656].

9

https://doi.org/10.1103/PhysRevD.54.5705
https://arxiv.org/abs/hep-lat/9602029
https://doi.org/10.1103/PhysRevD.95.114515
https://arxiv.org/abs/1703.08220
https://doi.org/10.1103/PhysRevD.99.014511
https://arxiv.org/abs/1810.04626
https://doi.org/10.1103/PhysRevLett.122.072003
https://arxiv.org/abs/1810.07589
https://doi.org/10.1103/PhysRevLett.132.251904
https://arxiv.org/abs/2310.08484
https://doi.org/10.1103/PhysRevD.108.114504
https://arxiv.org/abs/2307.11707
https://doi.org/10.1088/1126-6708/2009/04/094
https://doi.org/10.1088/1126-6708/2009/04/094
https://arxiv.org/abs/0902.1265
https://doi.org/10.1103/PhysRevD.103.114502
https://arxiv.org/abs/2008.01069
https://github.com/dstein64/kmeans1d
https://doi.org/10.1103/PhysRevD.105.054509
https://arxiv.org/abs/2107.10368
https://arxiv.org/abs/2406.20009
https://arxiv.org/abs/2407.21777
https://doi.org/10.1103/PhysRevD.110.054515
https://arxiv.org/abs/2406.12656

