

Multi-track reconstruction algorithm in the Mu2e experiment

Alessandro Maria Ricci^{*a*,*} on behalf of the Mu2e Collaboration

^a University of Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
^a INFN Section of Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy *E-mail:* alessandro.ricci@df.unipi.it

The Mu2e experiment, under construction at Fermilab, will search for the neutrino-less coherent $\mu^- N \rightarrow e^- N$ conversion in the field of a ²⁷Al nucleus. Such a process violates lepton flavor conservation. About 60% of muons stopped by an ²⁷Al nucleus will undergo nuclear capture, while about 40% will decay in orbit. To quantify the conversion probability, we define $R_{\mu e}$, which is given by the ratio between the $\mu^- \rightarrow e^-$ conversion rate and the nuclear capture rate [1]:

$$R_{\mu e} = \frac{\Gamma\left(\mu^{-} + N\left(Z, A\right) \to e^{-} + N\left(Z, A\right)\right)}{\Gamma\left(\mu^{-} + N\left(Z, A\right) \to v_{\mu}^{-} + N\left(Z - 1, A\right)\right)}.$$
(1)

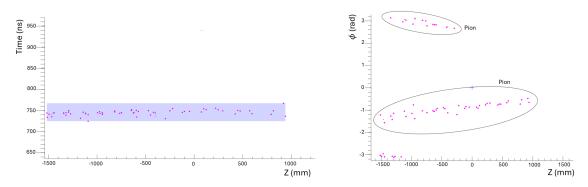
The upper limit on $R_{\mu e}$ is $7 \cdot 10^{-13}$ at 90% CL, set by the SINDRUM II experiment [2]. The goal of the Mu2e experiment is to reach a sensitivity on $R_{\mu e}$ of $8 \cdot 10^{-17}$ at 90% CL. This represents a four-order of magnitude improvement over the current experimental limit.

Mu2e will take its first data in 2027. The signature for the muon conversion is a monochromatic electron of 104.97 MeV/c, an energy slightly below the muon rest mass. While the main experiment goal is to reconstruct the conversion electron, i.e., an event with a single track, there are motivations to develop an efficient tracking algorithm for reconstructing more simultaneous tracks. This could better constrain the background generated by $p\bar{p}$ -annihilation in the Al target and to search for other Beyond the Standard Model processes. In this paper, we present an algorithm designed to reconstruct multi-particle events.

42nd International Conference on High Energy Physics (ICHEP2024) 18-24 July 2024 Prague, Czech Republic

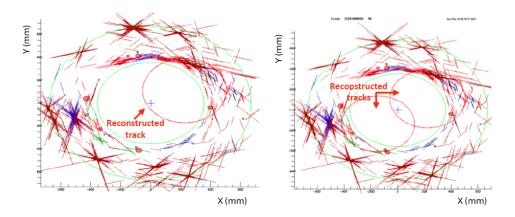
*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).


1. Track reconstruction algorithms

The main Mu2e detector is a straw-tube tracker in a uniform 1 T magnetic field [1]. It is an array of straw drift tubes perpendicular to the beam axis (z-axis). It is designed to accurately measure the trajectory of the electrons in order to determine their momenta.

The track reconstruction is divided in four sequential stages: 1) Hit Reconstruction: raw current signals are converted into position and time coordinates. 2) Time Clustering: hits close in time to each other are grouped together to create time clusters. 3) Helix Finding: within each time cluster, hits consistent with a helix are grouped into helix seeds. 4) Track Fit: the helix seeds are processed by a Kalman filter fit.


The default Mu2e algorithms form time clusters using an ANN trained to efficiently search for a conversion e^- , which removes a large fraction of pion and muon hits. We have developed new clustering algorithms, without any ANN, that are highly efficient for a wide spectrum of particles expected in multi-track events.

Assuming that the straw hits are produced by a particle with a constant momentum component p_z , the time clustering algorithm searches for straight lines in time vs z coordinate space, where z is the axis of the tracker. However, the so-obtained time clusters are inhomogeneous and contain hits of different particles. In many cases, they do not result in a reconstructed track. In some cases, the tracks are effectively simultaneous and the time information alone is not able to disentangle them (Fig. 1).

Figure 1: An example of hit separation in ϕ vs z coordinate space. The hits coming from two pions produced from a $p\bar{p}$ -annihilation could not be adequately distinguished in time vs z plane (left), but are well-separable in ϕ vs z plane (right), where ϕ is the azimuth angle.

The hits produced by different particles with the same initial time and longitudinal speed overlap in the t-z plane but can look well separated in the ϕ -z plane if they correspond to tracks with different angular velocity or a different offset ϕ_0 (Fig. 1). Hits are associated to the same cluster if they belong to the same straight line in both the t-z and the ϕ -z planes. These clusters have a higher purity and when they are used to feed the track reconstruction algorithm the efficiency and the quality of the track reconstruction improves. Fig. 2 shows the same event of $p\bar{p}$ -annihilation in presence of the pile-up hits produced by other beam particles. The standard clustering algorithm finds the leading track, the new algorithm finds both real tracks.

Figure 2: Example of track reconstruction of the same $p\bar{p}$ -annihilation event in presence of the pile-up hits produced by other beam particles. The green circles are the tracker edges and the colored bars are straw hits. Left: standard clustering algorithm. Right: new clustering algorithm.

2. Results

When the multi-track cluster algorithm is applied to simulated $\mu^- \rightarrow e^-$ events with beam pile-up, it selects the 99.2% of time clusters containing the $\mu^- \rightarrow e^-$ process. When applied to events produced by $p\bar{p}$ -annihilation in the stopping target superimposed with beam pile-up, it selects 90% of the time clusters containing $p\bar{p}$ -annihilation products. It rejects 77% of the time clusters that do not contain these processes.

3. Acknowledgements

We are grateful for the vital contributions of the Fermilab staff and the technical staff of the participating institutions. This work was supported by the US Department of Energy; the Istituto Nazionale di Fisica Nucleare, Italy; the Science and Technology Facilities Council, UK; the Ministry of Education and Science, Russian Federation; the National Science Foundation, USA; the National Science Foundation, China; the Helmholtz Association, Germany; and the EU Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement Nos. 734303, 822185, 858199, 101003460, and 101006726. This document was prepared by members of the Mu2e Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

References

- [1] Mu2e Collaboration, Mu2e run 1 sensitivity projections for the neutrinoless $\mu^- \rightarrow e^-$ conversion search in aluminum, Universe (2023) 9, 54. doi:10.3390/universe9010054.
- [2] SINDRUM II Collaboration, A search for μ e conversion in muonic gold, Eur. Phys. J. C 47, 337–346 (2006). doi:10.1140/epjc/s2006-02582-x.