
Symmetry-Based Structured Matrices for Efficient
Approximately Equivariant Networks

Ashwin Samudre∗ Mircea Petrache† Brian D. Nord‡ Shubhendu Trivedi§

Abstract

There has been much recent interest in designing symmetry-aware neural networks
(NNs) exhibiting relaxed equivariance. Such NNs aim to interpolate between
being exactly equivariant and being fully flexible, affording consistent performance
benefits. In a separate line of work, certain structured parameter matrices—those
with displacement structure, characterized by low displacement rank (LDR)—
have been used to design small-footprint NNs. Displacement structure enables
fast function and gradient evaluation, but permits accurate approximations via
compression primarily to classical convolutional neural networks (CNNs). In
this work, we propose a general framework—based on a novel construction of
symmetry-based structured matrices—to build approximately equivariant NNs
with significantly reduced paramter counts. Our framework integrates the two
aforementioned lines of work via the use of so-called Group Matrices (GMs), a
forgotten precursor to the modern notion of regular representations of finite groups.
GMs allow the design of structured matrices—resembling LDR matrices—which
generalize the linear operations of a classical CNN from cyclic groups to general
finite groups and their homogeneous spaces. We show that GMs can be employed
to extend all the elementary operations of CNNs to general discrete groups. Further,
the theory of structured matrices based on GMs provides a generalization of LDR
theory focussed on matrices with cyclic structure, providing a tool for implementing
approximate equivariance for discrete groups. We test GM-based architectures on a
variety of tasks in the presence of relaxed symmetry. We report that our framework
consistently performs competitively compared to approximately equivariant NNs,
and other structured matrix-based compression frameworks, sometimes with a one
or two orders of magnitude lower parameter count.

1 Introduction

Over the past few years, the incorporation of symmetry in neural networks through group equiv-
ariance [1] has started to mature as a fruitful line of research [1–14]. Such networks involve
implementing a generalized form of convolution over groups—since linear equivariant maps over
general fields are necessarily convolutional in nature [7, 4, 3], but can also be designed using ideas
from invariant theory [15], or by using non-linear equivariant maps via attention mechanisms [16–18].
Successful applications have ranged over a dozen areas, involving multiple data types [19–37].

∗School of Computing Science, Simon Fraser University, Burnaby, Canada. ashwin_samudre@sfu.ca
†UC Chile, Fac. de Matemáticas, & Inst. de Ingeniería Matematica y Computacional, Av. Vicuña Mackenna
4860, Santiago, 6904441, Chile. mpetrache@mat.uc.cl.

‡Fermi National Accelerator Laboratory, Batavia, IL 60510; Department of Astronomy and Astrophysics,
University of Chicago, Chicago, IL 60637; Kavli Institute for Cosmological Physics, University of Chicago
Chicago, IL 60637. nord@fnal.gov

§Independent. shubhendu@csail.mit.edu

Preprint. Under review.

ar
X

iv
:2

40
9.

11
77

2v
1

 [
st

at
.M

L
]

 1
8

Se
p

20
24

FERMILAB-CONF-24-0270-CSAID

Despite the successes of equivariant networks, several challenges remain. For instance, it has been
demonstrated empirically [38–41] that a strict equivariance constraint could harm performance—
symmetry in real world tasks is rarely perfect and data measurements could be corrupted or sys-
tematically biased. Indeed, it is reasonable to expect that there could often be a mismatch between
the symmetry that the model encodes and that the data possesses. A natural modeling paradigm
suggested by [38–41] prescribes the design of more flexible models that can calibrate the level of
equivariance based on the data or task. This observation has been supported by a growing body of
recent empirical [42–46] and theoretical work [47, 48].

In this paper we study the principled design of approximately equivariant NNs with significantly re-
duced parameter counts and the attendant computational benefits. For this purpose, we examine a line
of work independent of that on equivariant NNs, which is primarly concerned with designing compact
deep learning models using structured matrix representations of fast transforms (see [49] and the ref-
erences therein). One class of popular methods explicitly involves the design of computationally- and
memory-effective structured matrices, intended to replace dense weight matrices in NNs [50–52]. Yet
another class of methods, proposed in the seminal works of [53, 54], instead operate with traditional
structured matrices: Vandermonde (including polynomial and Chebyshev Vandermonde), Hankel,
Toeplitz, Cauchy, Pick etc. Such matrices are a key object in engineering, especially in control
theory, filtering theory, and signal processing [55]. The special property of these matrices is that their
compositions don’t inherit their structure exactly; however, they do so in an approximate sense. This
approximation is measured by the classical notion of the displacement rank proposed by Kailath and
co-workers [56–58]—such matrices are said to possess displacement structure, and a low degree
of error on composite operations is indicated by a low displacement rank (LDR). While [53, 54]
demonstrated that LDR matrices could be used to design efficient and compact NNs, they were only
concerned with classical MLPs and CNNs and do not obviously extend to equivariant NNs.

We start with the observation that general cyclic matrices—also known as circulant matrices, a
sub-class of LDR matrices—are used to represent classical circular convolution5. It has already
been observed by [54] that these readily yield a notion of approximate convolution (and approximate
equivariance) in classical CNNs. It is this property, which is dependent on cyclic matrices being
LDR, that [54] exploit to build low-resource CNNs. With motivation from the theory of regular
representations, we use the somewhat forgotten notion of group matrices (GMs)6, and obtain a new
family of symmetry-based structured matrices that can be used to model convolution for general
discrete groups. We first develop a generalization of classical CNNs using GMs by building analogues
for each of their elementary operations. Then, simplifying older works on group matrices [60, 61], we
show that our formalism permits a principled notion of approximate equivariance for general discrete
groups. In fact, somewhat analogous to [54], we generalize LDR theory from cyclic matrices to their
analogues for general discrete groups—thus giving a handle on quantifying error to exact equivariance.
To align our exposition with that of modern equivariant NNs, we show how our framework naturally
generalizes to the homogeneous spaces of discrete groups, as well as to compactly supported data
on infinite discrete groups. On a variety of tasks, we show that our proposed method is able to
consistently match or outperform baselines, both from approximately equivariant NNs and structured
matrix-based frameworks, often with an order of magnitude or more, reduced parameter count.

This paper brings together the above mentioned lines of work: equivariant NNs, approximately
equivariant NNs, and structured matrix-based compression approaches. The result is a formalism that
allows the construction of symmetry-aware, approximately equivariant, and parameter-efficient NNs
with competitive performance. We summarize the main contributions of our paper below:

• We develop a formalism for constructing equivariant networks for general discrete groups
using the notion of group matrices (GMs). We show how all the elementary operations
in classical CNNs, such as taking strides and pooling, can be generalized to discrete
groups using group matrices. The resulting networks—GM-CNNs—involve the use of
certain symmetry-based structured matrices which facilitate the construction of light-weight
equivariant NNs. Further, the generalized pooling operation involves a form of group
coarsening and is relevant to the development of group equivariant autoencoders.

5Or convolution over cyclic groups.
6Group matrices are a precursor to the modern notion of regular representations, and pre-date modern group

theory. For a history, we direct the reader to [59]

2

• We present a simple procedure to construct GMs for larger discrete groups which are
composed of direct products or semi-direct products of cyclic or permutation groups, for
which GMs are easy to compute.

• We show that the GM-CNN formalism naturally permits a principled implementation
of approximately equivariant group CNNs. Further, we connect GMs to classical low
displacement rank (LDR) theory, generalizing the theory from the specific case of LDR
matrices with cyclic structure (and thus cyclic groups) to discrete groups. We use the
developed theory to quantify error from exact equivariance.

• We show how our proposed framework easily extends to homogeneous spaces of discrete
groups, as well as to compactly supported data on infinite discrete groups.

• Across a variety of tasks, we demonstrate that our framework consistently returns competitive
performance, often with a significantly reduced parameter count, as compared to various
approximately equivariant networks, and structured matrix-based frameworks. Our code is
available at: https://github.com/kiryteo/GM-CNN

2 Preliminaries and Formal Setup

2.1 Matrices with Displacement Structure and Compressed Transforms in Deep Learning

The work of [54, 53] considers traditional families of structured matrices—Hankel, Toeplitz, Vander-
monde, Cauchy—to build compressed representations of MLPs and classical CNNs. In this section,
we briefly describe the main idea. A matrix M ∈ Rm×n could be called structured if it can be
represented in much fewer than mn parameters. Examples include matrices where the elements have
a simple formulaic relationship with other elements. The displacement operator approach, pioneered
by Kailath et al. [56, 57], consists of representing M via matrices A ∈ Rm×m and B ∈ Rn×n, which
define a linear map known as the displacement operator, as follows:
Definition 2.1 (Sylvester-type Displacement Operator:). Let A and B be fixed, not necessarily
square matrices with compatible dimensions. The Sylvester-type displacement operator, denoted
as ∇A,B(M), is defined as the linear map:

∇A,B(M) :M 7→ AM −MB,

where the difference AM − MB is the residual R. The rank of the matrix R is called the
displacement rank (DR). Further, the recovery of M is immediate from A,B,R.

Remark. An alternative popular formulation of the displacement operator is the Stein-type dis-
placement operator, which defines ∆A,B(M) : M 7→ M − AMB. For most purposes, the two
formulations can be treated interchangeably [55].

The original formulation of DR was in the context of solutions of certain least square estimation
problems of systems written in state-space form [56, 57]. It was originally stated for matrices that
were Toeplitz-like, which weren’t exactly shift-invariant, only approximately so. The formulation
in [56] showed that a Toeplitz-like matrix would be LDR. Such results were later shown for all the
classes of structured matrices listed above [57, 55]. More importantly, many composite operations on
LDR matrices—including transpose/inverse, addition, composition/multiplication, taking direct sums
to construct a larger block matrix—still resulted in LDR matrices (see proposition 1 on closure in
[54]). It is this property that was used by [53, 54] to construct compressed representations of NNs. A
particular form of the Toeplitz matrix, the circulant matrix, could be seen as implementing the usual
circular convolution (see 2.2 below). Thus, a circulant-like matrix7 would implement an approximate
convolution (and thus approximate equivariance), and stacking them together in a NN would preserve
the property of approximate equivariance. This point was noted and proved in section 4 of [54] and
was the basis for building approximately shift-equivariant CNNs in [54]. In the example below, we
illustrate how working with circulant matrices corresponds to a convolution on the group Cn.
Example 2.2 (Circulant Matrices). Note that for A ∈ Rn×n equal to the canonical cyclic permutation
P on n elements and B = P−1, we have ∇P,P−1(M) = 0 iff ∆P,P−1(M) = 0, or iff M is circulant.
Then, we can interpret the entries of v ∈ Rn as encoding a function f : Cn → R over the cyclic group

7A circulant-like matrix is circulant matrix to which an extremely sparse noise matrix is added. A circulant
matrix implements circular convolution, but a matrix with some noise will implement approx. convolution.

3

https://github.com/kiryteo/GM-CNN

Cn = Z/nZ. Thus, for circulant M with first row (m11, . . . ,m1n) encoding map ϕ : Cn → R, the
multiplication v 7→Mv corresponds to group-convolution operation f 7→ ϕ ⋆ f on the group Cn.

The above exposition provides a tantalizing hint that building compressed approximately equivariant
NNs in the spirit of [54, 53] could be a reasonable goal for general discrete groups—but we would
need to identify special structured matrices for each group and ensure they obey an analogous LDR
property as above. In the next section, we state group convolution and show it could be written in
terms of special matrices called group matrices, which will prove key for us to achieve our goal.

2.2 Group Matrices, Group Convolutions, and CNNs

In this section, we present our formulation of GM-CNNs. We first define group matrices, classical
group convolution and reformulate group convolution in terms of GMs. Following which we show
GMs naturally allow to generalize all the elementary operations of classical CNNs, including strides
and pooling, to any discrete group. We also provide a procedure to construct GMs of certain larger
discrete groups efficiently. Finally, we also show that GMs enjoy a natural set of closure properties.

For ease of exposition, we describe the framework in this section using images as inputs, but it readily
generalizes to general data types as will become clear later. In particular, we consider images of size
n× n, modulo the periodicity structure of each side, which is identified with the opposite side of the
image. Such images could be considered as functions over copies of the group G = Cn × Cn, which
permits representing convolutions (as appearing in classical CNNs8 as a group convolution on G.

Since we seek a framework that uses symmetry-based structured matrices towards specific ends, we
depart from the customary treatment of group convolutions that uses group representations. We
instead use the formalism of group matrices (GMs) of discrete groups; while the GM formalism has
a long history, it has mostly been forgotten and has not yet been used to represent general group
convolutions. We first define the requisite notions of group matrices and group diagonals:

Group matrices. If G is a group with cardinality N , then a matrix M ∈ RN×N is a group matrix
of G if there exists a labeling of the rows and columns of M by elements of G such that whenever
gh = g′h′ (with g, h, g′, h′ ∈ G) we have an identification of entries labeled by (g, h), (g′, h′) i.e.
that Mgh =Mg′h′ .

Group diagonals. For g ∈ G the group diagonal matrix Bg associated with g is a particular group
matrix with entries in {0, 1}, whose entries are defined as

(Bg)h,h′ = δ(h = gh′), (1)

where, δ(h = gh′) equals 1 if h = gh′, and 0 otherwise (similar to the Kronecker delta notation). We
observe that group diagonals form a basis of the space of group matrices with entries in X = R.
Bg are extremely sparse matrices with exactly one non-zero entry per row. Thus, we can store them as
arrays of size |G|, listing only the column indices of these entries, rather than as |G| × |G| matrices.

Group convolution. For standard group convolution, if G is a finite group and ϕ, ψ : G→ R, then
convolution of these functions is

ϕ ⋆ ψ(x) :=
∑
g∈G

ϕ(g)ψ(g−1x) =
∑

(g,h)∈G×G: gh=x

ϕ(g)ψ(h). (2)

In the second expression, we write the set of pairs (g, g−1x), g ∈ G implicitly as pairs (g, h) ∈
G×G satisfying the condition hg = x. Observe that GMs permit a simple formulation for group
convolutions for finite groups because they encode the group operation via a linear operator h.

We next use GM formulations to produce general versions of common group convolutional network
choices and operations: convolutions, small kernels, strides, and pooling.

Group convolution using group matrices. We can re-express group convolution in the language of
group matrices and group diagonals as follows. Consider the functions ϕ, ψ : G→ R as vectors in
−→
ϕ ,

−→
ψ ∈ RG, where the vector entries are indexed by G – e.g.

−→
ϕ g := ϕ(g). In this case, the linear

8To be fully precise, in fact, classical CNNs use convolution with infinite group Z× Z, which gives some
extra technical difficulties as we need to keep track of image finite supports. This is solved in classical CNNs by
padding. Later, in §C.2 we show how to extend our framework to general discrete infinite groups.

4

transformation
−→
ψ 7→

−−−→
ϕ ⋆ ψ is expressed by a simple matrix. Moreover, it is sufficient to combine

group diagonals Bg with coefficients encoded in the entries of ψg to define convolution as:

Convψ
−→
ϕ :=

−−−→
ϕ ⋆ ψ =

∑
g∈G

ϕ(g)Bg
−→
ψ . (3)

The verification of (3) is straightforward: using definitions (2) and (1), we have, for all x ∈ G,[−−−→
ϕ ⋆ ψ

]
x
:=

∑
g,h:gh=x

ϕ(g)ψ(h) =
∑
g,h

ϕ(g)ψ(h)δ(gh = x) =
∑
g

ϕ(g)
[
Bg

−→
ψ
]
x
=

[∑
g

ϕ(g)Bg
−→
ψ

]
x

.

Choosing small kernels. In classical CNNs, kernels have support in a k × k-neighborhood of the
origin for small values of k: kernels are nonzero at pixels near the origin. The analogue of this choice
for general finite groups G is to fix a word distance9 and to restrict kernel coefficients

−→
ϕ to be zero

on elements of G at a distance larger than k from the origin. Consequently, if Nk is the number
of elements in the radius-k neighborhood of the identity in G, then the sum from (3) only includes
Nk non-zero summands, which is typically Nk orders of magnitude smaller than the cardinality |G|.
Note that we are never required to compute the Bg matrices except for these Nk choices of g. This
permits an efficient implementation analogous to classical CNNs.

Pooling operations: Group diagonals can be restricted to subgroups. Pooling and stride operations
map input channels, written as functions ψ : G→ R, to outputs of the form ψ′ : H → R, indexed by
a subgroup H ⊆ G. Convolution restricts naturally to H , a property that can be formulated in terms
of group diagonals. The group diagonals BHh (|H| × |H| matrices with group H) acting over

−→
ψ ′ can

be obtained from the BGh (|G| × |G| matrices with group G corresponding to elements h ∈ H ⊆ G)
by removing rows and columns indexed by elements of G \H . In particular, group diagonals are
mapped to group diagonals under this operation, as a consequence of the following lemma:
Lemma 2.3. If h ∈ H , then the rows of G-group diagonal matrix Bh labeled by elements of H , have
entries 1 only in columns whose index labels belong to H .

All proofs are relegated to the appendix.

Pooling operations on finite groups. As mentioned above, we define the pooling operation via
a subgroup H ⊂ G, where pooling is done over subsets of size n = |G|/|H|. We now explicitly
describe the operation. Consider right cosets Hg1, . . . ,Hgn. For each coset Hgi, we select a coset
representative at the closest word distance from the origin: ḡi ∈ argminh∈Hdist(hgi, e). Note that
for h ∈ H , the sets Ph := {hḡi : 1 ≤ i ≤ n} again form a partition of G. Then, the pooling can
be defined as a coarsening operation, based on a function □ ∈ {max, aver, . . . } that fixes a way of
associating to a finite set of elements of R. Typical choices are □(X) = maxX for max-pooling
and aver(X) := 1

|X|
∑
x∈X x for average-pooling. We can then define (H,□)-pooling as

ψ : G→ R 7→ Pool□H(ψ) : H → R, Pool□H(ψ)(h) := □{ψ(g′) : g′ ∈ Ph}. (4)

In classical CNNs, for fixed pooling parameter k, the output value at pixel position (i, j) is set to be
the maximum (or average) of pixel values at distance at ≤ k from pixel (ki, kj) of the input.
Example 2.4. If the group is G = CN × CN with generators denoted as (1, 0), (0, 1), and assuming
that we can factorizeN = mn withm,n ≥ 2, then we can focus on the subgroupH ⊆ G isomorphic
to Cn × Cn, generated by elements (m, 0), (0,m) ∈ G. In this case, the cosets of H have the form

H(i, i′) = {(km+ i, k′m+ i′) : 0 ≤ k < n}, for 0 ≤ i, i′ < m.

We can then directly take values (i, i′) as above as the closest-to-identity representatives gα. With
this notion, the (H, aver)-pooling operation takes as input a signal of the form

ψ : {0, . . . , N − 1}2 → R, with entries denoted ψ(a, a′), 0 ≤ a, a′ < N,

and maps it to a signal given by

ψ′ : {0, . . . , n− 1}2 → R, ψ′(k, k′) := [PoolaverH ψ] (k, k′) :=
1

m2

∑
0≤i,i′<m

ψ(k + i, k′ + i′).

9For a finite group G w.r.t the generating set S, assign each edge of the Cayley graph a metric of length 1.
Then the distance between g, h ∈ G equals the shortest path length in the Cayley graph from vertex g to vertex h

5

Remark. In practice, successive layers to be applied to the output of a Pool□H -layer should use group
matrices associated with group H . Such group matrices can be constructed as follows: take group
diagonals Bg of CN × CN , with g of the form g = (km, k′m) only, of which we remove rows and
columns whose index is not a multiple of m.

Implementing stride via subgroups. Adding stride after convolutional operations allows the user
to manipulate signal sizes across the architecture. If the input is modeled by a finite group G, we
consider a subgroup H , and apply the convolution kernel only at positions indexed by elements of H:

ConvHϕ : RG → RH , ConvHϕ
−→
ψ :=

∑
g∈G

ψ(g)BHg
−→
ψ , (5)

in which BHg is the |H| × |G| matrix obtained by removing rows of Bg that are labeled by G \H .

Obtaining group matrices of complex groups from simpler ones. In many applications, groups
are products or semi-direct products of cyclic or permutation groups. For any finitely generated
group, one can produce the group matrix using the group operation and an algorithm for bringing
group elements to canonical form. However, this can be time-consuming: one would ideally use the
group matrices of individual components and produce a group matrix of the larger group directly.
To achieve this, we use the following procedure. Let G,H be two groups, and consider the product
group G×H . Then, if g ∈ G, h ∈ H , and BGg , B

H
h are the corresponding group diagonals, a group

diagonal in G×H for element (g, h) is given by taking the Kronecker product:

BG×H
(g,h) = BGg ⊗BHh . (6)

Consider a semi-direct product G ⋊ϕ H . As usual, it requires defining a group homomorphism
ϕ : H → Aut(G), and then group operation is defined by (g, h) · (g′, h′) := (g ϕh(g

′), hh′). In this
case, g 7→ ϕh(g) induces a permutation of G, and thus we can associate to it a |G| × |G| permutation
matrix Ph. Then it is direct to check that

B
G⋊ϕH

(g,h) = (PhB
G
g)⊗BHh . (7)

We have thus fully described generalizations of the classical CNN operations to general discrete
groups via group matrices. We also showed that direct or semi-direct product groups of cyclic or
permutation groups permit efficient computation of their group matrices.

Closure of group matrices under elementary operations. As reviewed in §2.1, closure properties of
LDR matrices [54] were key to their use in NN compression [54]. Before we introduce error control
and approximate equivariance, we note the following simple closure properties, proved in §A.2.

Proposition 2.5. If M,M ′ are group matrices for group G, then MT ,M−1,MM ′ are also group
matrices for group G. If N is a group matrix for group H , then the Kronecker product M ⊗N is a
group matrix for the direct product group G×H .

3 Implementing Approximately Equivariant GM-CNNs

A number of researchers have recently argued, both empirically [38–41] and theoretically [47, 48],
that imposing a hard equivariance constraint in NNs can be detrimental to accuracy; practitioners
can benefit by relaxing equivariance requirements at minimal computational cost. Our GM-based
convolutional formalism can be considered as only using a superposition of constant-value diagonals
ϕ(g)Bg as dictated by the formula (3). We now propose a generalization that allows learnable weights
beyond Section 2.2, thus permitting a principled implementation of approximately equivariant NNs.

General matrices in group-diagonal basis. We first show how general matrices can be written in
a group-diagonal basis. Consider a general |G| × |G|-matrix M , and let Bg, g ∈ G be the group
diagonals (1). Then we can always encode the entries from M via |G|-dimensional arrays Fg, g ∈ G:

M =
∑
g∈G

diag(Fg)Bg, where for h ∈ G (Fg)h :=Mh,hg−1 . (8)

6

The validity of expression (8) follows directly from definition (1): the (h, h′)th entry of Bg is
δ(h = gh′), and thus is nonzero (in fact =1) only if g = h(h′)−1. Using the definition (8) of Fg ,∑

g∈G
diag(Fg)Bg

h,h′

=
∑
g∈G

(Fg)h δ(h = gh′) = (Fh(h′)−1)h =Mh,h(h(h′)−1)−1 =Mh,h′ ,

and thus all the entries of the two sides of (8) coincide.

We can obtain the coordinates F (M) associated with any linear operation ψ 7→ Mψ, by shuffling
the entries of M and reducing the matrix F (M), with rows and columns labeled by G, and whose
rows are the coefficients Fg, g ∈ G. We can interpret the columns of F (M) as relative coefficients
multiplied at position g of the group, and row entries as parameterizing the relative position:

ψout(ḡ) =
∑
g∈G

ψin(ḡg
−1)[F (M)]ḡ,g.

With the above, we get a formulation of a more general convolution (learned via M), permitting
approximate equivariance, but expressed in terms of group matrices. We now connect this formulation
to the theory of displacement structures and show that it corresponds to a LDR implementation.

Displacement operator for general groups. Let b represent the vector such that its ith entry is the
constant value associated with row i. Suppose if the matrix F (M) has the form F (M) = 1 ⊗ b,
then it is equivalent to M being a group matrix, and the convolution described above reduces to an
exact convolution as in (3). This property of F (M) can be tested by taking the following difference:

D(M) = DP (M) := F (M)− PF (M), where P (x1, . . . , xN) = (x2, . . . , xN , x1) (9)

Then M is a group matrix (and thus encodes a group convolution) if and only if D(M) = 0.

In fact, the same property D(M) = 0 holds even if in defining D we apply a different cyclic
permutation for each row. More explicitly, for each g ∈ G we select a cyclic permutation σg ∈
Perm(G), and then set P⃗ := (σg)g∈G and define entrywise[

DP⃗ (M)
]
g,g′

:= [F (M)]g,g′ − [F (M)]g,σg(g′)
. (10)

Displacement dimension and rank. When we increase expressivity by allowing a controlled error
to equivariance, a natural metric for this control is via the dimension of the space of allowed matrices
D(M) within a model. We define the displacement dimension of a subset M ⊆ R|G|×|G| as:

dimD(M) := dimR(Span({D(M) : M ∈ M})). (11)

Note that dimD(M) does not depend on the choice of P⃗ in (10), as the dimension considered in
(11) can be computed by summing the dimensions of spans row by row, and that row spans for
DP⃗ (M),M ∈ M do not depend on the choice of permutations σg .

Another metric for measuring the discrepancy of a matrix M from being a group matrix, is the
displacement rank of M , defined as

DR(M) := rank(D(M)). (12)

For further discussion about this notion of displacement rank and connections to the classical
generalization of displacement rank as introduced in [60, 61], see Appendix B.

Low displacement rank implementations. In order to introduce errors to equivariance, we use
kernels, encoded as matrices M whose displacement matrices D(M) have low rank. A simple choice
is to add a matrix with r learnable vector columns agi , 1 ≤ i ≤ r to the a group matrix M :

F (M) = 1⊗ b+

d∑
i=1

agi ⊗ 1. (13)

Then it is direct to verify that rank(D(M)) = dim(Span(ag1 , . . . ,agr)) ≤ r, and that if M is the
space of matrices of the form (13) then dimD(M) = |G|r.

7

Quantifying equivariance error under elementary operations. As a counterpart to the closure
properties of Prop. 2.5 for group matrices, it is interesting to quantify control on how a bound on the
error to equivariance (or to "being a group matrix") behaves under the same operations.

A first approach is to use displacement-based structural metrics such as DR(M) or dimD(M) and
ask if they behave the same way on composite operations between matrices of the same class. Such a
control for the case of classical LDR is available in [54, Prop. 1]. However we found that the natural
displacement operator D, in general, has a very complicated behavior under matrix products, and we
were not able to extend the natural bounds for deterioration under multiplication from [54].

On the other hand, rather than demanding structural/algebraic control, a quantitative control over
the error to equivariance may be more useful in practice, for equivariance error bounds. A natural
quantification is to measure the distance of a matrix from the set of G-group matrices:

dist(M,GM) := min{∥M −M0∥ : M0 ∈ GM}, (14)

in which ∥ · ∥ is Frobenius norm for matrices. We then have the following properties, proved in §A.3:

Proposition 3.1. Let M,M ′ be |G| × |G|-matrices and let GM = GMG be the set of G-group
matrices. For a second group H , let N be an |H| × |H|-matrix and GMH ,GHG×H be the set of
group matrices with group H,G×H respectively. Then

1. dist(M,GM) = dist(MT ,GM).

2. dist(MN,GM) ≤ max{∥M∥, ∥N∥} (dist(M,GM) + dist(M ′,GM)).

3. dist(M ⊗N,GMG×H) ≤ max{∥M∥, ∥N∥}(dist(M,GMG) + dist(N,GMH)).

Finally, as discussed in Section 1, our framework generalizes to not just discrete groups, but also
to their homogeneous spaces. Due to space limitations, we describe the extension to homogeneous
spaces in appendix C. We also show that the framework extends to finitely supported data on infinite
discrete groups in C.2. The error to perfect equivariance for this general setup is quantified in C.3.

4 Experimental Results
GMConv and GMPool operations: Our architecture is built around GMConv and GMPool oper-
ations, which are designed to handle group-based interactions and symmetry-preserving pooling,
respectively. The GMConv operation uses group matrices to define convolutional kernels, where the
neighborhood parameter controls the extent of local interactions based on the word distance idea
described in section 2.2 to implicitly set the kernel size. For cyclic groups, a neighborhood radius of 1
results in 3 group entries [x−1, x, x+1] in a cyclic group, while for direct product of two such groups,
it results in 9 learnable parameters. Generally, a GMConv layer with a neighborhood size k comprises
(2k + 1) × (2k + 1) × number of channels learnable parameters. In error addition experiments,
we introduce an additional error matrix with same structure as the initial group matrix, doubling
parameters from p to 2p. This formulation allows learning approximate equivariance. GMPool
(Section 2.2) performs pooling by leveraging predefined group structures, which are constructed by
generating group elements, forming their Kronecker products, and calculating subgroup cosets. These
cosets and their corresponding tensor indices are precomputed to streamline the pooling process.
During the forward pass, GMPool efficiently utilizes these precomputed indices to select elements
for max or mean pooling, ensuring the operation remains consistent with the group symmetry. Before
presenting our results on different datasets, we would like to note that following [41], we also perform
an equivariance error analysis, which can be found in appendix D.

4.1 Dynamics Prediction

We evaluate our framework on two dynamics prediction tasks: the smoke plumes task (Plumes)
and the Jet Flow task (MJetFlow) as described in [41]. For Plumes, each model takes sequences
of 64× 64 crops of a smoke simulation generated by PhiFlow [62] as input to predict the velocity
field for the next time step. The evaluation is conducted under two settings: “Future", where we
evaluate on the same portion of the simulation, but predict future time steps which are not included in
training. The second setting is “Domain" where the evaluation is done on the same time steps but at
different spatial locations. The data are collected from simulations with different inflow positions and
buoyant forces. The JetFlow task comprises 24 subregions of jet flows sized 62× 23, as described

8

in [41] following a similar evaluation protocol. Our method is not inherently steerable; but we still
compare it against various steerable baselines despite putting it at a disadvantage. The baselines also
include an ordinary MLP and a CNN. Others include an E2-CNN (Equiv) [63], two approximately
equivariant networks e.g. RPP [64] and LIFT [65].

Experimental setup: Our architecture consists of four GMConv layers with 128 channels each,
utilizing PReLU activations and residual connections. We maintain spatial resolution throughout the
network by avoiding pooling operations. A final 1× 1 convolution maps the features to the desired
output channels. The neighborhood parameters are set to 4 for cyclic groups and 2 for dihedral groups
to optimize local interactions. We initialize weights using Kaiming initialization. The model is trained
using the AdamW optimizer with learning rates between 0.003 and 0.009, a weight decay of 0.0153,
and a ReduceLROnPlateau scheduler (factor 0.7, patience 8) on a mean squared error loss. Training
is conducted with a batch size of 256 for up to 100 epochs, employing early stopping (patience 6)
based on validation accuracy to prevent overfitting. We utilize PyTorch for our experiments and the
hyperparameters are fine-tuned for each dataset.

Run times: Using an Nvidia L40S GPU (48GB RAM), forward pass times are approximately 1
second for JetFlow (62× 23 samples) and 1.4 seconds for Plumes (64× 64 samples), reflecting the
complexity of these tasks. FLOPS are detailed in Tables 1 and 2.

Results on JetFlow: Table 1 shows GM-CNN achieves top performance (tied with RGroup) on
the translation task, using the fewest parameters (26,325). Standard Conv and Lift use 51,548 and
1,994,818 parameters respectively. For the rotation task, GM-CNN performs slightly better than
ECNN while using only about 10% of the parameters (29,583 vs 304,128). It also outperforms
Lift and RSteer. Finally, for the scaling task, GM-CNN’s performance is comparable to the best
performers (Rpp and RSteer) while using only a fraction of their parameters (26,325 compared to
1,421,832 for Rpp and 6,742,530 for RSteer). These results highlight the competitive performance of
our method despite not being inherently steerable.

Results on Plume: As seen in Table 2, GM-CNN consistently uses the fewest parameters (19,267)
across all tasks while achieving competitive results. For the translation task, GM-CNN’s performance
is close to the best-performing RGroup, despite using 25 times fewer parameters. In Rotation, it
competes well with top performing methods like Lift and RSteer while maintaining its dramatic
parameter efficiency advantage. Lastly, for scaling, GM-CNN is competitive, with RSteer achieving
only slightly better results at the cost of 350 times more parameters.

Table 1: RMSE on Jet Flow dataset. See text for details [41]. FLOPS are ×1010.

Model Translation Rotation Scaling
Conv Lift RGroupGM-CNN E2CNN Lift RSteerGM-CNN Rpp RSteerGM-CNN

Future 0.22 0.17 0.15 0.15 0.21 0.18 0.17 0.16 0.16 0.14 0.15
±0.06 ±0.02 ±0.00 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.06 ±0.01 ±0.01

Domain 0.23 0.18 0.16 0.17 0.27 0.21 0.16 0.18 0.16 0.15 0.17
±0.06 ±0.04 ±0.01 ±0.01 ±0.03 ±0.04 ±0.01 ±0.02 ±0.07 ±0.00 ±0.01

Params 515481994818 53798 26325 1071361915872 961538 29583 14218326742530 26325

FLOPS 0.007 0.023 0.007 0.006 0.185 0.015 0.922 0.008 0.141 0.024 0.006

4.2 Comparison with structured matrix baselines [53, 54]

We evaluate GM-CNNs on a variety of image datasets and compare them against a set of competitive
baselines—the methods reported in [54] still remain amongst the most competitive. We compare our
methods on two dimensions: accuracy of the models and the total number of parameters. In addition
to datasets from [54], we further consider the SmallNORB [66], Rotated MNIST, and Rectangles
datasets [67]. SmallNORB is a condensed version of the NORB dataset [66], and is specifically
tailored for object recognition tasks focusing on shape. The Rotated MNIST dataset comprises
MNIST data samples that have been randomly rotated, offering a variation that lacks the noise
typically introduced in the MNIST-bg-rot [67] dataset. The Rectangles dataset, a compact binary
classification dataset, distinguishes rectangles based on whether their width or height is greater. For
these image classification tasks, the input dimensions range from 24× 24 to 32× 32. While these are

9

Table 2: RMSE on the Plumes dataset. See text for details [41]. FLOPS are ×1010.
Model MLP Conv Equiv Rpp Combo Lift RGroup RSteer GM-CNN

Translation F 1.56±0.08 —– 0.94±0.02 0.92±0.01 1.02±0.02 0.87±0.03 0.71±0.01 —– 0.81±0.02

D 1.79±0.13 —– 0.68±0.05 0.93±0.01 0.98±0.01 0.70±0.00 0.62±0.02 —– 0.74±0.01

Params 8678240 —– 1821186 7154902 3683332 8235362 1921158 —– 19267
FLOPS 0.001 —– 0.745 0.002 1.492 0.145 0.756 —– 0.003

Rotation F 1.38±0.06 1.21±0.01 1.05±0.06 0.96±0.10 1.07±0.00 0.82±0.08 0.82±0.01 0.80±0.00 0.93±0.02

D 1.34±0.03 1.10±0.05 0.76±0.02 0.83±0.01 0.82±0.02 0.68±0.09 0.73±0.02 0.67±0.01 0.79±0.02

Params 8678240 1821186 1198080 5628298 431808 1801748 1883536 7232258 19267
FLOPS 0.001 0.745 2.965 3.966 0.585 2.955 3.087 1.986 0.003

Scaling F 2.40±0.02 0.83±0.01 0.75±0.03 0.81±0.09 0.78±0.04 0.85±0.01 0.76±0.04 0.70±0.01 0.79±0.02

D 1.81±0.18 0.95±0.02 0.87±0.02 0.86±0.05 0.85±0.01 0.77±0.02 0.86±0.12 0.73±0.01 0.82±0.01

Params 8678240 1821186 1744774 3966984 1059270 2833558 1275266 2427394 19267
FLOPS 0.001 0.745 0.368 0.507 0.326 0.016 0.132 0.041 0.003

small datasets, they capture a wide range of variation, but more importantly, they permit comparison
with existing structured matrix baselines.

Experimental setup: Our base architecture consists of two GMConv layers (120 channels each)
with residual connections, LayerNorm without learnable parameters, and PReLU activations. After
the GMConv layers, an adaptive max pooling layer is applied, followed directly by a single fully
connected layer that performs classification with the cross-entropy loss function. We experiment with
GMConv layers with a neighborhood of 3, incorporating error addition, and with GMPool. We also
include experiments for different neighborhood sizes. Training is conducted with a batch size of 1024
for a maximum of 100 epochs, with early stopping to prevent overfitting. Other hyperparameters are
consistent with those used in our dynamics prediction experiments. For pooling-based experiments,
we employ a GM-CNN architecture with 3 GMConv layers (44, 44, and 56 output channels).

Run times: Forward pass times vary by input size: ∼ 0.6s for 24x24 images (smallNORB), ∼ 0.7s
for 28x28 (MNIST variants), and ∼ 0.8s for 32x32 (CIFAR-10, NORB). These are on par for
all the competing methods. Note that our method can be sped up significantly with custom GPU
implementations for handling structured matrices.

Results. The results are presented in Table 3. GM-CNN variants demonstrate strong performance
across all datasets. Our approach, which combines pooling and error addition with a neighborhood
parameter set to 1, achieves the best results on the MNIST-bg-rot, MNIST-noise, and Rectangles
datasets with minimal parameters. On CIFAR-10, all GM variants outperform other methods. For
NORB and SmallNORB, GM-CNN with a neighborhood size of 3 and error addition shows superior
performance. For Rotated MNIST, the pooling and error addition approach with a neighborhood size
of 3 leads in performance. These performances are achieved with significantly fewer parameters.
Note that the numbers for CIFAR-10 are much lower than state-of-the-art results, which we attribute
to the significantly lower parameter counts.

5 Conclusion

In this paper, we presented the development of a novel formalism (GM-CNNs) for constructing
equivariant networks for general discrete groups using group matrices, generalizing all the elementary
operations of classical CNNs. GM-CNNs employ the use of a novel family of symmetry-based
structured matrices, also developed via our formalism, which facilitates the construction of lightweight
equivariant NNs. Further, we presented a principled implementation of approximately equivariant
group CNNs using our formalism. Connecting group matrices to classical displacement structure
theory, we provide a generalization of the theory for LDR matrices with cyclic structure to discrete
groups. Moving beyond discrete groups, we provide an extension of GM-CNNs to homogeneous
spaces and infinite discrete groups. Finally, we tested our proposed formalism on a variety of
different tasks, and show that GM-CNNs can be consistently competitive, while being significantly
more parameter efficient, compared to approximately equivariant NNs and structured matrix-based
frameworks. For future work, it would be interesting to extend our formulation for continuous groups,
and enabling our setup to be steerable. Further, exploring the group tensorization operations proposed
in [68] (e.g. theorem 1.1), could help improve the scalability of our method.

10

Method ↑ M-bg-rot M-noise CIFAR-10 NORB SmallNORB Rect Rot-MNIST

LDR-TD (r=1) 45.81 78.45 45.33 62.75 83.23 98.53 79.82
14122 14122 18442 14342 14122 14122 14122

GM (n=3) 30.07 80.14 58.31 54.63 79.01 99.60 83.78
12483 13441 13681 12967 12725 12483 48.7k

GM (n=3, E) 49.07 82.55 58.29 70.59 85.22 99.31 83.26
24734 25213 25213 24734 24546 24244 24734

GM (n=1, P + E) 55.29 90.20 58.07 67.84 80.90 99.89 78.77
5915 5915 6003 5687 5573 5915 5915

GM (n=2, P + E) 53.94 88.84 55.10 67.72 78.61 99.86 79.06
8701 8701 8819 8503 8359 8701 8731

GM (n=3, P + E) 53.88 84.92 57.14 66.99 83.02 99.67 84.50
14747 14747 14482 14519 14482 14747 14747

Low-rank[67](r=4) 35.67 52.25 32.28 43.66 78.05 87.48 54.87
14122 14122 18442 14342 6916 7842 14122

Fastfood[68] 38.13 63.55 39.64 59.02 73.38 89.81 58.14
10202 10202 13322 9222 5380 10202 10202

Circulant[69] 34.46 65.35 34.28 46.45 71.23 88.92 52.22
8634 8634 11274 7174 3456 8634 8634

Table 3: Test accuracy and parameter count for GM-CNNs. In the "Method" column, n denotes the
neighbourhood size, P suggests the use of pooling and E suggests error addition. The best accuracy
is in blue, and the second best in red. If GM-CNN achieves best or second-best accuracy with fewer
parameters, then we mark the number of parameters in bold. Clearly, we see that GM-CNN methods
consistently provide the most accurate and usually the lowest parameter count. In cases where the
best GM-CNN model has the best accuracy, but not the lowest parameter count, the second best
GM-CNN model has comparable accuracy, but significantly lower parameter count.

Acknowledgments and Disclosure of Funding

This work is supported by the Deep Skies Community (deepskieslab.com), which helped in bringing
together the authors. MP thanks the Centro Nacional de Inteligencia Artificial in Chile, as well as
acknowledges Fondecyt Regular grant number 1210462 titled “ Rigidity, stability and uniformity for
large point configurations” for supporting his research.

Notice: This work was produced by Fermi Research Alliance, LLC under contract No. DEAC02-
07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The United States Government retains and the publisher, by accepting the work for publication,
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this work, or allow others to do
so, for United States Government purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

11

deepskieslab.com
http://energy.gov/downloads/doe-public-access-plan

References
[1] Taco Cohen and Max Welling. Group equivariant convolutional networks. In ICML, 2016.

[2] Ilyes Batatia, Mario Geiger, Jose Munoz, Tess Smidt, Lior Silberman, and Christoph Ortner. A
general framework for equivariant neural networks on reductive lie groups. Advances in Neural
Information Processing Systems, 36, 2024.

[3] Erik J. Bekkers. B-spline cnns on lie groups. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[4] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant CNNs on
homogeneous spaces. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[5] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant
convolutional networks and the icosahedral cnn. In ICML, 2019.

[6] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups. ArXiv, abs/2104.09459, 2021.

[7] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In ICML, 2018.

[8] Eitan Levin and Mateo Díaz. Any-dimensional equivariant neural networks. In International
Conference on Artificial Intelligence and Statistics, pages 2773–2781. PMLR, 2024.

[9] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. ArXiv, abs/1812.09902, 2019.

[10] Mircea Mironenco and Patrick Forré. Lie group decompositions for equivariant neural networks.
arXiv preprint arXiv:2310.11366, 2023.

[11] Edward Pearce-Crump. Brauer’s group equivariant neural networks. In International Conference
on Machine Learning, pages 27461–27482. PMLR, 2023.

[12] Siamak Ravanbakhsh, Jeff G. Schneider, and Barnabás Póczos. Equivariance through parameter-
sharing. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 2892–2901. PMLR, 2017.

[13] Maurice Weiler, Patrick Forré, Erik P. Verlinde, and Max Welling. Coordinate independent
convolutional networks - isometry and gauge equivariant convolutions on riemannian manifolds.
ArXiv, abs/2106.06020, 2021.

[14] Yinshuang Xu, Jiahui Lei, Edgar Dobriban, and Kostas Daniilidis. Unified fourier-based
kernel and nonlinearity design for equivariant networks on homogeneous spaces. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors,
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 24596–
24614. PMLR, 2022.

[15] Ben Blum-Smith and Soledad Villar. Machine learning and invariant theory. Notices of the
American Mathematical Society, 70:1205–1213, 2022.

[16] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. Advances in neural information processing
systems, 33:1970–1981, 2020.

[17] David Romero, Erik Bekkers, Jakub Tomczak, and Mark Hoogendoorn. Attentive group
equivariant convolutional networks. In International Conference on Machine Learning, pages
8188–8199. PMLR, 2020.

12

[18] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh,
and Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In International
Conference on Machine Learning, pages 4533–4543. PMLR, 2021.

[19] Raphael J. L. Townshend, Stephan Eismann, Andrew M. Watkins, Ramya Rangan, Maria
Karelina, Rhiju Das, and Ron O. Dror. Geometric deep learning of rna structure. Science,
373:1047 – 1051, 2021.

[20] Minkyung Baek, Frank Dimaio, Ivan V. Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Millán,
Hahnbeom Park, Carson Adams, Caleb R. Glassman, Andy M. DeGiovanni, Jose H. Pereira,
Andria V. Rodrigues, Alberdina Aike van Dijk, Ana C Ebrecht, Diederik Johannes Opperman,
Theo Sagmeister, Christoph Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit
Dalwadi, Calvin K. Yip, John E. Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams,
Randy J. Read, and David Baker. Accurate prediction of protein structures and interactions
using a three-track neural network. Science, 373:871 – 876, 2021.

[21] Victor Garcia Satorras, E. Hoogeboom, F. Fuchs, I. Posner, and M. Welling. E(n) equivariant
normalizing flows for molecule generation in 3d. ArXiv, abs/2105.09016, 2021.

[22] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[23] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. ArXiv, abs/2003.03123, 2020.

[24] Marysia Winkels and Taco Cohen. Pulmonary nodule detection in ct scans with equivariant
cnns. Medical image analysis, 55:15–26, 2019.

[25] Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully fourier space
spherical convolutional neural network. Advances in Neural Information Processing Systems,
31, 2018.

[26] Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Diane Bouchacourt. Permutation
equivariant models for compositional generalization in language. In ICLR, 2020.

[27] I. Sosnovik, A. Moskalev, and A. Smeulders. Scale equivariance improves siamese tracking.
2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 2764–2773,
2021.

[28] Stephan Eismann, Raphael J. L. Townshend, Nathaniel Thomas, Milind Jagota, Bowen Jing,
and Ron O. Dror. Hierarchical, rotation-equivariant neural networks to select structural models
of protein complexes. Proteins: Structure, 89:493 – 501, 2020.

[29] Jennifer C. White and Ryan Cotterell. Equivariant transduction through invariant alignment. In
Proceedings of the 29th International Conference on Computational Linguistics, pages 4651–
4663, Gyeongju, Republic of Korea, Oct. 2022. International Committee on Computational
Linguistics.

[30] Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. Sample
efficient grasp learning using equivariant models. CoRR, abs/2202.09468, 2022.

[31] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

[32] Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covari-
ant compositional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

[33] Xiangyu Chen and Min Ye. Cyclically equivariant neural decoders for cyclic codes. arXiv
preprint arXiv:2105.05540, 2021.

13

[34] Xiaoxun Gong, He Li, Nianlong Zou, Runzhang Xu, Wenhui Duan, and Yong Xu. General
framework for e (3)-equivariant neural network representation of density functional theory
hamiltonian. Nature Communications, 14(1):2848, 2023.

[35] Tristan Maxson and Tibor Szilvási. Transferable water potentials using equivariant neural
networks. The Journal of Physical Chemistry Letters, 15(14):3740–3747, 2024.

[36] Koen Minartz, Yoeri Poels, Simon Koop, and Vlado Menkovski. Equivariant neural simulators
for stochastic spatiotemporal dynamics. Advances in Neural Information Processing Systems,
36, 2024.

[37] Sophie Baker, Joshua Pagotto, Timothy T Duignan, and Alister J Page. High-throughput
aqueous electrolyte structure prediction using ionsolvr and equivariant graph neural network
potentials. The Journal of Physical Chemistry Letters, 14(42):9508–9515, 2023.

[38] Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equiv-
ariance constraints. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
30037–30049. Curran Associates, Inc., 2021.

[39] David W Romero and Suhas Lohit. Learning partial equivariances from data. Advances in
Neural Information Processing Systems, 35:36466–36478, 2022.

[40] Tycho F. A. van der Ouderaa, David W. Romero, and Mark van der Wilk. Relaxing equivariance
constraints with non-stationary continuous filters. In Advances in Neural Information Processing
Systems (NeurIPS), volume 35, Dec 2022.

[41] Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning, pages 23078–23091.
PMLR, 2022.

[42] Daniel McNeela. Almost equivariance via lie algebra convolutions. arXiv preprint
arXiv:2310.13164, 2023.

[43] Rui Wang, Robin Walters, and Tess E Smidt. Relaxed octahedral group convolution for learning
symmetry breaking in 3d physical systems. arXiv preprint arXiv:2310.02299, 2023.

[44] Tycho van der Ouderaa, Alexander Immer, and Mark van der Wilk. Learning layer-wise
equivariances automatically using gradients. Advances in Neural Information Processing
Systems, 36, 2024.

[45] Kaitlin Maile, Dennis G Wilson, and Patrick Forré. Equivariance-aware architectural optimiza-
tion of neural networks. arXiv preprint arXiv:2210.05484, 2022.

[46] Alonso Urbano and David W Romero. Self-supervised detection of perfect and partial input-
dependent symmetries. arXiv preprint arXiv:2312.12223, 2023.

[47] Ningyuan Huang, Ron Levie, and Soledad Villar. Approximately equivariant graph networks.
ArXiv, abs/2308.10436, 2023.

[48] Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (ap-
proximate) group equivariance. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
61936–61959. Curran Associates, Inc., 2023.

[49] Atri Rudra. Arithmetic circuits, structured matrices and (not so) deep learning. Theory of
Computing Systems, 67(3):592–626, 2023.

[50] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander
Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices
for efficient and accurate training. In International Conference on Machine Learning, pages
4690–4721. PMLR, 2022.

14

[51] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations. In International conference on machine
learning, pages 1517–1527. PMLR, 2019.

[52] Tri Dao, Nimit S Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps. arXiv preprint arXiv:2012.14966, 2020.

[53] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint
deep learning. Advances in Neural Information Processing Systems, 28, 2015.

[54] Anna Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed
transforms with low displacement rank. Advances in neural information processing systems, 31,
2018.

[55] Victor Y Pan. Structured matrices and polynomials: unified superfast algorithms. Springer
Science & Business Media, 2012.

[56] Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

[57] Thomas Kailath and Ali H Sayed. Displacement structure: theory and applications. SIAM
review, 37(3):297–386, 1995.

[58] Thomas Kailath and Joohwan Chun. Generalized displacement structure for block-toeplitz,
toeplitz-block, and toeplitz-derived matrices. SIAM Journal on Matrix Analysis and Applications,
15(1):114–128, 1994.

[59] Roger Chalkley. Information about group matrices. Linear Algebra and its Applications,
38:121–133, 1981.

[60] Paul D Gader. Displacement operator based decompositions of matrices using circulants or
other group matrices. Linear Algebra and its Applications, 139:111–131, 1990.

[61] William C Waterhouse. Displacement operators relative to group matrices. Linear algebra and
its applications, 169:41–47, 1992.

[62] Philipp M Holl, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving framework
for deep learning via physical simulations. In Workshop on Differentiable Vision, Graphics, and
Physics in Machine Learning at NeurIPS, 2020.

[63] Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In Conference
on Neural Information Processing Systems (NeurIPS), 2019.

[64] Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equiv-
ariance constraints. Advances in Neural Information Processing Systems, 34:30037–30049,
2021.

[65] Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning in spatial
action spaces. In 5th Annual Conference on Robot Learning, 2021.

[66] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages
II–104. IEEE, 2004.

[67] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An
empirical evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th international conference on Machine learning, pages 473–480, 2007.

[68] Harm Derksen. On the nuclear norm and the singular value decomposition of tensors. Founda-
tions of Computational Mathematics, 16(3):779–811, 2016.

15

A Proofs

A.1 Proof of Lemma 2.3

Proof. Direct by definition (1). For h, h′ ∈ H and g ∈ G, the entry of Bh at position (h′, g) is
δ(g = h′h). Since H is closed under the group operation, g = h′h⇒ g ∈ H .

A.2 Proof of Proposition 2.5

Proof. The result follows by linearity from the following explicit properties of group diagonals,
which are direct to check from the definitions:

BTg = B−1
g = Bg−1 , Bg1Bg2 = Bg1g2 . (15)

Finally, the case of Kronecker product follows from (6).

A.3 Proof of Proposition 3.1

Proof. For a matrix M let M0 be M ’s projection, i.e. the group matrix realizing the distance to GM.
Note that ∥M0∥ ≤ ∥M∥ is a consequence of Frobenius norm coming from an inner product.

Since for all matrices X we have ∥X∥ = ∥XT ∥, and since GM is closed under transpose, we have
dist(M,GM) = ∥M −M0∥ = ∥MT −MT

0 ∥ ≥ dist(MT ,GM). By interchanging the roles of
M,MT we also find the other inequality, and thus prove item 1.

For item 2, note that for all matrices X,Y we have ∥XY ∥ ≤ ∥X∥∥Y ∥. Then we use the clo-
sure property of GM under product, and triangle inequality, in order to write dist(MN,GM) ≤
∥MN −M0N0∥ = ∥M(N − N0) + (M −M0)N0∥ ≤ ∥M∥∥N − N0∥ + ∥M −M0∥∥N0∥ ≤
max{∥M∥, ∥N0∥}(∥M −M0∥+ ∥N −N0∥), which allows to conclude by noting ∥N0∥ ≤ ∥N∥.

For item 3, note that for all X,Y we have ∥X ⊗ Y ∥ ≤ ∥X∥∥Y ∥. Then we proceed as for item
2, with tensor product replacing matrix product, keeping in mind that, due to Prop. 2.5, if M0 ∈
GMG, N0 ∈ GMH then M0 ⊗N0 ∈ GMG×H .

.

B Extended discussion on notions of displacement rank for group matrices

B.1 Comparison to classical displacement dimension for group matrices

In this section, we review previous notions of displacement rank from [61, 60]. These works were
motivated by aiming to generalize different aspects of LDR theory from the case of circulant matrices,
formulated very similarly to our Example 2.2. In the case of group matrices, it was realized that the
property of circulant matrices of being constant along diagonals can be generalized to the notion of
group diagonals (whose name includes the term "diagonals" for this reason). Then the natural idea is
that displacement needed to have the property of vanishing on group matrices as in [60, 61].

In a formula extending the Stein-type displacement operator ∆A,BM = M − AMB, which we
defined in Section 1, [60] defined a displacement operator G(M) :=M − PQ(M), in which P is
the permutation matrix corresponding to the cyclic permutation of basis vectors e1 7→ e2 7→ · · · 7→
e|G| 7→ e1, and Q(M) is an involved operation that cyclically permutes elements of M of each given
group diagonal pattern separately. The displacement operation G(M) from the work of [60] was
further rationalized and made more elegant in [61], which replaced the term PQ(M) by a more
general form T (M) in which the permutation P can be chosen arbitrarily. In both cases, operator
G(M) subtracts elements of M which are shifted along group diagonal patterns Bg , and as the shift
is done via a cyclic permutation, we have the property that if all such differences are zero, then the
entries of M are constant along group diagonals.

Our contribution is to simplify the expressions further, by introducing the intermediate reordering
F (M), which was not present in previous work. This allows to easily operationalize the implementa-
tion that is the focus of this work. Our definition (9), and the more complex one (10), are in direct
parallel to the treatment from [60], [61] respectively. The main justification for using (10), is that it
will be helpful in the proof of Proposition B.1 below.

16

B.2 Displacement dimension changes under elementary operations

In this section we consider displacement error DP⃗ (M) as defined in (10), and the derived notion of
displacement dimension dimD(M) from (11). For the latter, we are interested in how it behaves under
elementary operations like those from [54, 55]. Note that in previous work on classical displacement
rank [54], similar results are formulated to study the closure properties of classical structured matrices,
however, we were not able to adapt displacement rank (12) similarly to our case (as also mentioned
in Section 3, above proposition 3.1) for the following reasons: (1) the results valid for classical LDR
structured matrices are not valid in our case, (2) the neural network interpretation as number of
degrees of freedom as quantified in the error to precise equivariance is more important to our setup.

We summarize our results in the following:
Proposition B.1. Let G,H be two groups. Further, consider classes of |G| × |G|-matrices M,M′

and a class of |H| × |H|-matrices N , with D-dimensions with respect to the corresponding groups
denoted respectively as dM , dM ′dN . Then the following holds:

1. The class MT = {MT : M ∈ M} has dimD(MT) = dM .

2. The set M+M′ := {M +M ′ : M ∈ M,M ′ ∈ M′} has dimD(M+M′) = dM +dM ′ .

3. Consider the set M⊗N := {M ⊗N : M ∈ M, N ∈ N}. Then with respect to the group
diagonals from a direct product group G×H , we have dimD(M⊗N) ≤ dM + dN .

Proof. In the setting of item 1, we first claim that

F (MT)gh = F (M)g−1,g−1h. (16)

Once this is proved, we note first that F (MT)’s rows can be re-labeled by g−1 7→ g, to obtain the
matrix F̃ (M) with entries F (M)g,gh. Then, if τg(h) := gh, and σg was the permutation used in the
definition of DP⃗ (M) in (10), then for the rows of F̃ (M) we can use cyclic permutation τ−1

g σgτg.
After this change coordinates F̃ (M) 7→ F (MT). Since all the applied transformations do not depend
on the choice of M ∈ M, and do not change the dimension counts (since, as observed before, dimD

does not depend on the choices of σg’s), this means that M,MT have the same D-dimension.

It now suffices to prove (16). For this, we first note the following commutation relation of vectors
with group diagonal matrices Bg:

Bgdiag(v) = diag(w)Bg, where wh = vg−1h, h ∈ G. (17)

The above follows directly using the definition (Bg)h,h′ = δ(h = gh′).

Recall that Bg is a permutation matrix, thus BTg = B−1
g and we can directly verify BgBh = Bgh,

Bid = Id, thus
BTg = B−1

g = Bg−1 . (18)

Using (17), (18) and a change of variable g 7→ g−1 in the sums, we now get, denoting F = F (M),

MT =
∑
g

BTg diag((Fgh)h) =
∑
g

diag((Fg,gh)hB
−1
g =

∑
g

diag((Fg−1,g−1h)h)Bg.

This directly implies (16), as desired.

Item 2 follows directly from linearity and using the property that dim(V +W) ≤ dimV + dimW
for any vector subspaces V,W ⊆ R|G|×|G|.

Item 3 follows from the definition of Kronecker product, observing that F (M ⊗ N) = F (M) ⊗
F (N).

C Generalization of Framework to Homogeneous Spaces and Infinite Groups

C.1 Actions on homogeneous spaces.

In most machine learning scenarios, the input is more frequently defined not as a function over a
group, but rather on a space on which the group acts [7]. That is, the space X that encodes the inputs,

17

is not identifiable with the symmetry group G, but rather is a homogeneous space of G, i.e. it can
be identified with a quotient by a subgroup H ⊆ G, denoted X = G/H . Elements x ∈ X are then
identified with subsets of the partition into right cosets [x] := xH = {x̄ ∈ G : ∃h ∈ H, x̄ = xh}.
In general, G/H still has a natural action of G, given by g · [x] := [gx].

Convolution overG/H . The convolution operations can be encoded in this case as follows. Consider
a kernel ϕ : G→ R and a channel f : G/H → R, we define

ϕ ⋆ f([x]) :=
∑
g∈G

ϕ(g)f(g−1[x]) =
∑

g∈G,[y]∈G/H

ϕ(g)f([y])δ([y] = [g−1x]). (19)

The above operation can be expressed using group matrices by observing the following

δ
(
[y] = [g−1x]

)
= δ(∃h ∈ H : yh = g−1x) =

∑
h∈H

δ(yh = g−1x) =
∑
h∈H

δ(x = gyh)

=
∑
h∈H

(Bgy)xh = [Bgy1H]x , (20)

in which 1H is the characteristic vector of H . One can verify that (Bgy1H) (x) = (Bgy′1H) (x′)
whenever [x] = [x′] and [y] = [y′], thus expression (20) does not depend on the choices of represen-
tatives x, y. Using this observation, we can fix a choice of representatives, namely

X ⊂ G, such that ∀gH ∈ G/H, |gH ∩X| = 1.

Then we can equivalently work with f, ϕ⋆f : X → R. We then write (19) in terms of group diagonal
matrices and representatives from X as follows:

ϕ ⋆ f(x) =
∑

g∈G,y∈X
ϕ(g)f([y]) (Bgy1H) (x). (21)

C.2 Infinite discrete groups and padding.

Although for ease of exposition in section 2 we used periodic translations, more traditionally CNNs
use the group G = Z2, which is infinite. Then, operation (2) involves an infinite sum, and is thus not
computable. This is naturally taken care of by the following adjustments, which we state directly for
general groups G:

1. We work only with inputs ψ of support contained in a fixed finite set Xin (for CNNs, Xin is
a square {0, . . . , n− 1}2 ⊂ Z2).

2. We use kernels ϕ of support constrained to a finite set N , typically a radius-k (in the word
metric induced by a set of generators) neighborhood of the identity. We further assume Nk

to be symmetric (we use a symmetric set of generators), in which "symmetric" means closed
under taking inverses: g ∈ N ⇔ g−1 ∈ N .

3. While applying ϕ ⋆ ψ(x), x ∈ Xin, the computation (2) involves terms ψ(g−1x), in which
sometimes g−1x /∈ Xin. We then have to extend ϕ by zero on the set (Xin)N , where we
use notation

(A)B := {b−1a : a ∈ A, b ∈ B} = supp(1B ⋆ 1A).
Note that if N is the radius-k word-distance ball around the identity, then (A)N also can be
described as the set of all elements at word-distance ≤ k from A.

The above operations can be summarized as follows:

Pad(ψ)(x) :=

{
ψ(x) if x ∈ Xin,
0 if x ∈ ∂NXin := (Xin)N \Xin,

[ϕ ⋆ Pad(ψ)] (x) :=
∑
g∈N

ϕ(g)Pad(ψ(g−1x)) for x ∈ Xin. (22)

Formally, extension by zero corresponds to a subspace immersion given by a matrix multiplication
E : RXin → R(Xin)N with entries Ex,y = δ(x = y), x ∈ Xin, y ∈ (Xin)N , and then we can
define analogues of group matrices B(Xin)N

g , g ∈ N by the same formula (1) with the restriction of
h, h′ ∈ (Xin)N only. After this, the formula for (22) (analogous to (3) for this case) reads

C̃onvϕ
−→
ψ := ET

∑
g∈N

ϕ(g)B(Xin)N
g

E
−→
ψ . (23)

18

C.3 Error to equivariance.

Note that operation C̃onvϕ is not equivariant under G-action, simply because
−→
ψ has entries in Xin,

which in general is not a union of G-action orbits, and thus is not invariant under the G-action.
In other words, the restriction map encoded in IT in (23) is "the culprit" responsible for the loss
of equivariance, whereas the term in parenthesis in (23) is actually equivariant when applied to
elements of the image of E (corresponding to functions over (Xin)N that are zero outside Xin). A
benefit of (23) is that it makes it straightforward for us to measure the equivariance error of C̃onv,
by extending the theory from Section 3. Working on the image of the extension map I , we define
a version of the displacement operator, denoted D̃, as follows. Consider M̃ := EETM where
M :=

(∑
g∈N ϕ(g)B

(Xin)N
g

)
: following (8), we can encode this matrix as

M̃ =
∑
g∈N

diag(F̃g)B
(Xin)N
g , where (F̃g)x := M̃x,xg−1 . (24)

Then we form a matrix F (M̃) with rows F̃g, g ∈ N and define D(M̃) as in (9). We can bound
the displacement dimension of matrices of the form (24) by noting that the M defined earlier has
D(M) = 0 and by linearity of D, only columns of F̃ corresponding to elements x ∈ Xin such that
there exists g ∈ N such that g−1x′ ∈ ∂NXin can contribute to degrees of freedom of D(M̃). We
thus find that for M := {M̃ as in (24)} it holds that:

dimD(M) ≤ |(Xin)N \Xin| |N |, DR(M) ≤ |(Xin)N \Xin|. (25)

The intuitive explanation for (25) in the case of padding for classical CNNs is that the number of
padding pixels provides rank control for the error to precise equivariance in each layer.

D Equivariance Error Analysis:

In [41], the authors use the equivariance error as a metric to quantify the degree to which a model
deviates from perfect symmetry under group transformations. This measure is relevant for approxi-
mately equivariant networks, which aim to balance the symmetry constraints and model flexibility.
The authors argue that approximately equivariant networks can better capture the imperfect symme-
tries in real-world scenarios via adding soft equivariance regularization during training. However,
equivariance error analysis for GM-CNN suggests that while it does not achieve the optimal balance
between data and model equivariance error, it consistently outperforms most other methods, including
ConvNet, RPP, Lift as seen in Figure 1. Our analysis raises the possibility that the balance between
model and data equivariance error and its relation to overall performance needs further analysis to
accurately quantify. GM-CNN’s ability to capture relevant symmetries and offer strong predictive ca-
pabilities indicate that certain applications may benefit from a more flexible approach to equivariance.
Despite RSteer showing equivariance error close to optimal level, GM-CNN offers a competitive
balance and a promising framework for real-world applications where both symmetry and model
flexibility are crucial.

E Broader Impact

This paper presents a novel formulation for the design of light-weight approximately equivariant
CNNs. The development combines two different threads of research into one framework. It also
presents a theory generalizing classical LDR theory from cyclinc groups to general discrete groups.
As such, while the contribution has a methodological orientation, it is primarily intended to be a
conceptual contribution. We do not foresee immediate societal broader impact of this work. However,
if the formulation presented is scaled up, it could provide very efficient equivariant networks that
could possibly run on mobile devices.

19

Figure 1: Equivariance error analysis on synthetic smoke plume with different levels of rotational
equivariance as described in [41].

20

	Introduction
	Preliminaries and Formal Setup
	Matrices with Displacement Structure and Compressed Transforms in Deep Learning
	Group Matrices, Group Convolutions, and CNNs

	Implementing Approximately Equivariant GM-CNNs
	Experimental Results
	Dynamics Prediction
	Comparison with structured matrix baselines sindhwani2015structured, thomas2018learning

	Conclusion
	Proofs
	Proof of Lemma 2.3
	Proof of Proposition 2.5
	Proof of Proposition 3.1

	Extended discussion on notions of displacement rank for group matrices
	Comparison to classical displacement dimension for group matrices
	Displacement dimension changes under elementary operations

	Generalization of Framework to Homogeneous Spaces and Infinite Groups
	Actions on homogeneous spaces.
	Infinite discrete groups and padding.
	Error to equivariance.

	Equivariance Error Analysis:
	Broader Impact

