
A Quantum Approach for Implementing
Fixed-Point Arithmetic in Solving Ordinary

Differential Equations
José E. Cruz Serrallés∗, Oluwadara Ogunkoya†, Dog̃a Murat Kürkçüog̃lu†, Nicholas Bornman†,

Norm M. Tubman‡, Silvia Zorzetti†, and Riccardo Lattanzi∗
∗ Center for Biomedical Imaging, Department of Radiology,

New York University Grossman School of Medicine, New York, NY.
† Superconducting Quantum Materials and System Center (SQMS),
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA.
‡ NASA Ames Research Center, Moffett Field, CA, 94035, USA.

Abstract—Differential equations (DEs) serve as fundamental
tools in mathematical modeling across scientific disciplines,
yet classical numerical solvers face limitations with large-scale
or computationally intensive problems. This study explores a
quantum-inspired approach to solving DEs, combining quantum-
inspired techniques with classical methods. It focuses on fixed-
point arithmetic on quantum circuits, utilizing basic quantum
gates to manipulate DE solutions. We expand upon the techniques
introduced by Zanger et al. [Quantum, 5, 502 (2021)] by offering
a precise computation for a fixed-point signed multiplication
scheme, while also presenting a quantum circuit capable of
executing the fixed-point division algorithm. We demonstrate the
feasibility of our approach through the simulation of a linear
Ordinary Differential Equation (ODE), where initial conditions
and parameters are encoded into quantum circuits using fixed-
point representation. By executing sequences of quantum gates
mimicking numerical integration steps, we obtain approximate
solutions to the ODE with specified fixed-point precision.

I. INTRODUCTION

Differential equations (DE) feature prominently in scientific
modeling across various domains, including physical and bio-
logical systems. Due to their analytical complexity, numerical,
rather than exact analytical, methods are commonly employed
to obtain solutions. While classical approaches to modeling
these problems are well-established, they are not without limi-
tations, such as high computational costs and precision inaccu-
racies. A comprehensive overview of classical modeling tech-
niques can be found in [1]–[4]. Quantum approaches to solving
specific types of differential equations have demonstrated
asymptotic scaling advantages compared to classical methods
[5]–[8]. In [9], the Harrow-Hassidim-Lloyd (HHL) algorithm
was introduced to demonstrate potential exponential speedup
compared to classical algorithms for specific linear systems,
particularly those characterized by sparse matrices with few
non-zero entries. However, drawbacks of the algorithm, and
indeed, any practical implementation of a quantum algorithm
on current Noisy Intermediate-Scale Quantum (NISQ) era
devices [10], includes the large qubit overhead and vulner-
ability to noise and errors in quantum computers’ qubits and
control electronics, among other deleterious phenomena. A

related algorithm, the Quantum Singular Value Transformation
(QSVT) [11], shares similarities with HHL. QSVT exhibits
versatility in addressing a broader spectrum of linear systems,
encompassing those featuring exponential terms. However, its
practical application is hampered by the substantial quantum
resources it demands, owing to the intricate nature of the
associated quantum circuit. Alternative algorithms for time-
independent matrix linear differential equations, particularly
those involving non-Hermitian matrices, are explored in [12],
[13].

In this study, we explore a hybrid quantum-classical
methodology akin to that proposed in [14]. Initially, we
provide a comprehensive overview of the techniques outlined
in [14], refine the definition of multiplication within a fixed-
point system involving binary points, and subsequently gener-
alize these findings to encompass the reciprocal operator. To
validate our approach, we apply the developed algorithm to
simulate a problem analogous to that addressed in [14].

II. THEORY

A. Definitions

In a fixed-point number representation system and within
a quantum computing context, fundamental arithmetic oper-
ations can be simulated on a quantum circuit by leveraging
well-chosen combinations of Hermitian operators (usually
present in the Hamiltonian of a system). By encoding the
operands and the desired arithmetic operation into the quantum
circuit, the evolution of the system under the Hamiltonian can
simulate addition, subtraction [15], and multiplication [16].
For an introduction to quantum computing at the logical level,
the interested reader is directed to [17].

Given a continuous-time quantum system with the Hamil-
tonian set to the momentum operator �̂�, the position operator
satisfies

d�̂�
d𝑡

= 1 (1)

as a consequence of the canonical commutation relation[
�̂�, �̂�

]
= 𝑖ℏ. An implication of this relationship is that given

FERMILAB-CONF-24-0195-SQMS

a continuous-time quantum state |𝑎⟩, the operation 𝑒−𝑖𝑐�̂� |𝑎⟩
results in a shift, or addition, of state |𝑎⟩ with constant 𝑐 or
equivalently |𝑎 + 𝑐⟩ [14].

A single qubit encodes a superposition of two states,
denoted |0⟩ and |1⟩, which are basis states lying in two-
dimensional Hilbert space of the qubit. Extending this, a set
of 𝑛 qubits can encode a superposition of 2𝑛 states (via tensor
products of the underlying Hilbert space), each with a unique
binary string representation. As such, every unsigned integer
from 0 to 2𝑛−1 can be encoded encoded in a quantum system
via its corresponding binary representation. In the subsequent
discussion, we refer to these 𝑛–qubit sets containing a superpo-
sition of binary strings as 𝑛-qubit registers, with each binary
string representing an unsigned integer with values ranging
from 0 to 2𝑛 − 1. Hence, in qubit representation, a number
𝑎 =

∑𝑛−1
𝑗=0 2 𝑗𝑎 𝑗 is equivalent to the state |𝑎𝑛−1, . . . 𝑎1𝑎0⟩.

We give a brief review of the basic arithmetic operations as
already shown in [14]. Eq. (1) holds when considering discrete
operators [18]. Hence, a discretized Hamiltonian operator
approach is employed to carry out addition and multiplication
involving 𝑛-qubit registers [14]. More specifically, defining the
discrete position operator �̂� as

�̂� =
2𝑛−1∑︁
𝑗=0

𝑗 | 𝑗⟩⟨ 𝑗 |, (2)

the discrete momentum operator is computed by diagonalizing
with the Quantum Fourier Transform, as shown in the follow-
ing equation.

�̂� = �̂�† �̂� �̂� (3)

The discrete Quantum Fourier Transform �̂� is defined as

�̂� =
2𝑛−1∑︁
𝑘=0

𝑒
−𝑖2𝜋 𝑗𝑘/2𝑛 |𝑘⟩⟨ 𝑗 |. (4)

Note that this definition uses 𝑒− 𝑗𝜔 in the forward operator,
which can differ from other definitions of the QFT that use
𝑒 𝑗𝜔 , the conjugate.

B. Addition of an Unsigned Integral Register and a Constant
Integer

For addition of two unsigned integers |𝑎⟩ and 𝑐, 𝑎 is
encoded in a 𝑛-qubit register while 𝑐 is encoded as a rotation
parameter. Since, there are 2𝑛 basis states, addition is hereby
considered to be mod 2𝑛.

|𝑎 + 𝑐 mod 2𝑛⟩ = 𝑒
−𝑖2𝜋𝑐�̂�/2𝑛 |𝑎⟩ = �̂�†𝑒−𝑖2𝜋𝑐�̂�/2

𝑛
�̂� |𝑎⟩ (5)

To translate to single qubit circuit gates, we make further
expansions:

𝑒
−𝑖2𝜋𝑐�̂�/2𝑛 =

2𝑛−1∑︁
𝑎=0

𝑒
−𝑖2𝜋𝑐𝑎/2𝑛 | 𝑎 ⟩⟨ 𝑎 |

=
2𝑛−1∑︁
𝑎=0

𝑛−1∏
𝑗=0

𝑒
−𝑖2𝜋𝑐𝑎 𝑗/2𝑛− 𝑗 | 𝑎 ⟩⟨ 𝑎 |

=
∑︁

𝑎 𝑗 ∈{0,1}
𝑗=0,...,𝑛−1

𝑛−1∏
𝑗=0

𝑒
−𝑖2𝜋𝑐𝑎 𝑗/2𝑛− 𝑗 | 𝑎𝑛−1 . . . 𝑎0 ⟩⟨ 𝑎𝑛−1 . . . 𝑎0 |

=
𝑛−1⊗
𝑗=0

∑︁
𝑎 𝑗 ∈{0,1}

𝑒
−𝑖2𝜋𝑐𝑎 𝑗/2𝑛− 𝑗 �� 𝑎 𝑗

〉〈
𝑎 𝑗

�� (6)

For interpretation in circuit gates, (6) corresponds to 𝑧–
rotations by an angle 𝜃 = 2𝜋𝑐/2𝑛− 𝑗 on every 𝑗 th qubit in the
qubit register. In general, we define a 𝑐−angle 𝑍−rotation as
follows.

�̂�𝑚 (𝑐) =
[
1 0
0 𝑒𝑖2𝜋𝑐/2𝑚

]
, 𝑚 ∈ N (7)

Therefore, the total number of gates required scales linearly as
the number of qubits. In particular, only �̂�𝑍 (𝜃) gates are need
for the addition of an unsigned integral register to a constant
integer.

C. Addition of Two Unsigned Integral Registers

Given two qubit registers |𝑎⟩ and |𝑏⟩, each encoding unsigned
integers and of width 𝑛, the addition of the two registers can
be achieved using the same logic as in the case of adding an
integer to a qubit register, except that the discrete Hamiltonian
is modified to be �̂� ⊗ �̂�.

𝑒
−𝑖2𝜋�̂�⊗�̂�/2𝑛 |𝑎, 𝑏⟩ = |𝑎, (𝑎 + 𝑏) mod 2𝑛⟩ (8)

We diagonalize the momentum operator using the Fourier
Transform, denoting the identity operator by 𝐼.

𝑒
−𝑖2𝜋�̂�⊗�̂�/2𝑛 =

(
𝐼 ⊗ �̂�†

)
𝑒
−𝑖2𝜋�̂�⊗�̂�/2𝑛

(
𝐼 ⊗ �̂�

)
(9)

We once again proceed to transform the inner diagonal oper-
ator until we obtain an expression that can be implemented
with controlled single qubit gates, as follows.

𝑒
−𝑖2𝜋�̂�⊗�̂�/2𝑛 =

2𝑛−1∑︁
𝑎=0

2𝑛−1∑︁
𝑏=0

𝑒
−𝑖2𝜋𝑎𝑏/2𝑛 | 𝑎, 𝑏 ⟩⟨ 𝑎, 𝑏 | (10a)

=
2𝑛−1∑︁
𝑎=0

2𝑛−1∑︁
𝑏=0

𝑛−1∏
𝑘=0

𝑛−1∏
𝑗=0

𝑒
−𝑖2𝜋𝑎𝑘𝑏 𝑗/2𝑛− 𝑗−𝑘 | 𝑎, 𝑏 ⟩⟨ 𝑎, 𝑏 | (10b)

=
2𝑛−1∑︁
𝑎=0

2𝑛−1∑︁
𝑏=0

𝑛−1∏
𝑘=0

𝑛−𝑘−1∏
𝑗=0

𝑒
−𝑖2𝜋𝑎𝑘𝑏 𝑗/2𝑛− 𝑗−𝑘 | 𝑎, 𝑏 ⟩⟨ 𝑎, 𝑏 | (10c)

The upper limit of the innermost product in (10c) was reduced
because the exponential term equals one when 𝑗 + 𝑘 ≥ 𝑛.
In equation (10c), the values of the 𝑍−rotations in the qubit
register encoding |𝑏⟩ depends on the values of qubit register
encoding |𝑎⟩. Notice also that the exponential term is present

𝑎2 •
𝑎1 • •
𝑎0 • • •
𝑏2

�̂�

𝑅1
†

�̂�𝑏1 𝑅2
†

𝑅1
†

𝑏0 𝑅3
†

𝑅2
†

𝑅1
†

Fig. 1. Quantum circuit for implementing addition of two unsigned integral
registers with 𝑛 = 3 as seen in (10c).

only when 𝑎𝑘 = 1. Therefore, the dynamics generated by
2𝜋�̂� ⊗ �̂�/2𝑛 can be implemented with controlled �̂�𝑚 gates.
For each index 𝑘 ∈ {0, . . . , 𝑛− 1} in (10c), there are 𝑛− 𝑘 − 1
controlled �̂�𝑚 gates. Therefore, there is a total of 𝑛

2 (𝑛 + 1)
controlled �̂�𝑚 gates. Since the number of gates for the
Quantum Fourier Transform scales as 𝑂

(
𝑛2) , the overall cost

of this operation scales as 𝑂
(
𝑛2) two-qubit gates.

D. Fused Multiplication-=Addition of Three Unsigned Inte-
gral Registers

For the multiplication operation, we modify the argument in
[14] by providing a more accurate mathematical description
of the multiplication operation, providing exact results for per-
forming multiplication at the cost of increased qubit overhead

Consider three qubit registers encoding unsigned integers
|𝑎⟩, |𝑏⟩, and |𝑐⟩, each of width 𝑛.The fused multiplication-
addition of the three registers (modulo 2𝑛) can be achieved by
with the discrete Hamiltonian set to �̂� ⊗ �̂� ⊗ �̂�.

𝑒
−𝑖2𝜋�̂�⊗�̂�⊗�̂�/2𝑛 |𝑎, 𝑏, 𝑐⟩ = |𝑎, 𝑏, 𝑎𝑏 + 𝑐 mod 2𝑛⟩ (11)

We once again diagonalize the operator with the Quantum
Fourier Transform.

𝑒
−𝑖2𝜋�̂�⊗�̂�⊗�̂�/2𝑛 =

(
𝐼 ⊗ 𝐼 ⊗ �̂�†

)
𝑒
−𝑖2𝜋�̂�⊗�̂�⊗�̂�/2𝑛

(
𝐼 ⊗ 𝐼 ⊗ �̂�

)
(12)

The procedure for deriving the simplified expression is essen-
tially the same as the one for addition, except that instead
we factor out the sums over |𝑎⟩ and |𝑏⟩, and the outermost
outer product is the outer product over |𝑎, 𝑏⟩. The resulting
expression is given by the following equation.

𝑒
−𝑖2𝜋�̂�⊗�̂�⊗�̂�/2𝑛

=
2𝑛−1∑︁

𝑎,𝑏,𝑐=0

𝑛−1∏
𝑙,𝑘, 𝑗=0

𝑒
−𝑖2𝜋𝑎𝑙𝑏𝑘𝑐 𝑗/2𝑛− 𝑗−𝑘−𝑙 | 𝑎, 𝑏, 𝑐 ⟩⟨ 𝑎, 𝑏, 𝑐 | (13)

Note that the exponential term in the last equation equals 1
when 𝑛 ≤ 𝑗+𝑘+𝑙. The cases of interest are when 𝑛 ≥ 𝑙+𝑘+ 𝑗+1,
which implies that 𝑗 ∈ {0, . . . , 𝑛 − (𝑙 + 𝑘 + 1)}. Consequently,
𝑙 + 𝑘 ∈ {0, . . . , 𝑛 − 1}. Therefore, for a fixed 𝑛, there are
(𝑙−𝑘− 𝑗) doubly controlled �̂�𝑚 gates where 𝑙 ∈ {0, . . . , 𝑛−1},
𝑘 ∈ {0, . . . , 𝑛− (𝑙 + 1)}, and 𝑗 ∈ {0, . . . , 𝑛− (𝑙 + 𝑘 + 1)}. Thus,
the total number of doubly controlled gates is 𝑛

6 (𝑛2 + 3𝑛+ 2).

𝑎1 •
𝑎0 • • •
𝑏1 •
𝑏0 • • •
𝑐1

�̂�

𝑅1
†

�̂�†
𝑐0 𝑅2

†
𝑅1
†

𝑅1
†

Fig. 2. Quantum circuit for implementing fused multiplication–addition of
three unsigned integral registers with 𝑛 = 2 as seen in (10c).

E. Signed and Fractional Encodings

1) Two’s Complement Signed Integral Encoding: The dis-
cussion so far has focused on unsigned integer encoding.
Two’s Complement encoding scheme is used to represent
superpositions of signed integers on quantum registers. The
pertinent details of this encoding scheme are as follows. Given
an unsigned integer of the form

𝑎 =
𝑛−2∑︁
𝑘=0

𝑎𝑘2𝑘 ≡ 𝑎𝑛−2 . . . 𝑎0 (14)

the corresponding Two’s complement signed integer has a
value given by the following equation.

𝑏𝑛−1𝑏𝑛−2 . . . 𝑏0 ≡ −𝑏𝑛−12𝑛 +
𝑛−2∑︁
𝑘=0

𝑏𝑘2𝑘 (15)

where

𝑏𝑛−1𝑏𝑛−2 . . . 𝑏0 = (�̃�𝑛−1�̃�𝑛−2 . . . �̃�0) + 1. (16)

The operation ‘∼’ flips the bit value, while the (𝑛 − 1)𝑡ℎ bit
is the sign bit (initially set to zero before the flip operation).
This encoding scheme is beneficial because addition and mul-
tiplication of Two’s Complement signed integers corresponds
exactly to the addition and multiplication of unsigned integers
composed of the same sequence of bits.

2) Fixed-Point Fractional Encoding: To represent frac-
tional numbers, a fixed point scheme is adopted. More pre-
cisely, this involves scaling an unsigned 𝑛-bit fixed-point
number by a factor of 2− 𝑓 as shown in the following equation.

2− 𝑓 (𝑎𝑛−1, 𝑎𝑛−2 . . . 𝑎0) = 𝑎𝑛−1𝑎𝑛−2 . . . 𝑎 𝑓 · 𝑎 𝑓 −1 . . . 𝑎0 (17)

Here, 𝑓 denotes the number of bits that compose the fractional
part of the number, or the number of bits after the binary
point. Henceforth, we denote 𝑛-bit fixed-point numbers with
𝑓 fractional bits as (𝑛, 𝑓)-bit fixed-point numbers.

3) Two’s Complement, Fixed-Point Fractional Encoding:
Signed fractional numbers are represented using the Two’s
Complement representation of the fixed-point scheme. The
value of an 𝑛-bit Two’s Complement, fixed-point number with
𝑓 fractional bits, is given by the following equation, which

Registers: input |𝑞⟩ ∈ (𝑛, 𝑓); output |𝑟⟩ ∈ (𝑛, 𝑓);
ancillae |𝑠⟩, |𝑡⟩ ∈ (𝑛, 𝑓), |𝑎⟩ ∈ (𝑓 , 𝑓).

Let |𝑟 ′⟩ = |𝑟, 𝑎⟩ ∈ (𝑛, 2 𝑓) and |𝑠′⟩ = |𝑠, 𝑎⟩ ∈ (𝑛, 2 𝑓)
1: |𝑞, 𝑟, 𝑠⟩ ← INIT(|𝑞, 𝑟, 𝑠⟩) ⊲ See Alg. 4
2: for 𝑖 ← 1 to 𝐿 do
3: |𝑠, 𝑎⟩ ← |1, 0⟩ ⊲ Reset & Copy
4: |𝑞, 𝑟, 𝑠′⟩ ← |𝑞, 𝑟, 𝑠′ − 𝑞 𝑟⟩ ⊲ FMA† #1
5: |𝑟, 𝑡, 𝑎⟩ ← |𝑟, 𝑟, 0⟩ ⊲ Reset & Copy
6: |𝑟 ′, 𝑠, 𝑡⟩ ← |𝑟 ′ + 𝑠 𝑡, 𝑠, 𝑡⟩ ⊲ FMA #2
7: end for

Alg. 1. Proposed reciprocal gate for 𝐿 Newton Iterations.

involves a minor modification of the expression for the value
of Two’s Complement integers in (15).

𝑎𝑛−1 . . . 𝑎 𝑓 · 𝑎 𝑓 −1 . . . 𝑎0 ≡ −𝑎𝑛−12𝑛−1− 𝑓 + 2− 𝑓
𝑛−2∑︁
𝑘=0

𝑎𝑛2𝑘 (18)

Similar to integers, one can think of signed fixed-point frac-
tional numbers as signed integers composed of the same
sequence of bits, scaled by a factor of 2− 𝑓 .

F. Fused Multiplication, Addition and Scaling of Three Un-
signed Fixed–Point Registers

Addition and multiplication are quite straightforward opera-
tions for unsigned fixed–point numbers. However, the number
of qubits necessary to store the output to full precision
increases linearly with respect to the fractional width of
fixed–point numbers. The authors of [14] imposed a rounding
condition to deal with this issue. As we will demonstrate
in the following section, this choice results in significant
excessive rounding, thereby compromising the accuracy of the
multiplication of fixed–point registers.

III. METHODS

A. Proposed Algorithm for Fused Multiplication–Addition of
Three Fixed-Point Registers

We start by noting that rounding up the multiplication of
two unsigned (𝑛, 𝑓)−bit fixed–point numbers 𝑎 and 𝑏 can
be expressed by scaling the integer value by a power of two
and using the floor function, as follows. Suppose the unsigned
integers �̃� = 2− 𝑓 𝑎 and �̃� = 2− 𝑓 𝑏 are represented in the (𝑛, 𝑓)−
bit fixed point register, then the direct product 𝑐 = �̃��̃� has 2 𝑓
bits after the dot. To represent 𝑐 in the same register requires
discarding the bits following the first 𝑓 bits after the dot.
Note that there are still 𝑛 − 𝑓 bits before the dots since the
arithmetic operations are represented modulo 2𝑛− 𝑓 . This can
be achieved in binary representation by shifting the bits to the
right 𝑓−places as done in [14], i.e.

𝑐 = �̃��̃� ≫ 𝑓 =

⌊
𝑎𝑏

2 𝑓

⌋
. (19)

The operation ‘≫ 𝑓 ’ denotes the bit shift to the right by 𝑓
bits or the integer division by 2− 𝑓 .

We can express the floored product as the convolution of
the bits composing 𝑎 and 𝑏, and can then split the resulting

Registers: input |𝑞⟩ = |𝑞𝑛−1 . . . 𝑞0⟩ ∈ (𝑛, 𝑓);
output |𝑟⟩ = |𝑟𝑛−1 . . . 𝑟0⟩ ∈ (𝑛, 𝑓).

1: |𝑞, 𝑟⟩ ← |𝑞, 𝑞⟩ ⊲ Reset & Copy
2: for 𝑛← (𝑛 − 1) to 0 do
3: |𝑟𝑛⟩ ← �̂� |𝑟𝑛⟩ cont. by |𝑞𝑛−1⟩ ⊲ Cont. X
4: end for
5: |𝑟⟩ ← |𝑟 + 1⟩ cont. by |𝑞𝑛−1⟩ ⊲ Cont. Add

Alg. 2. Proposed absolute value gate for Two’s Complement fixed–point
registers.

sum into two parts: the integral part and the floored fractional
part.

𝑐 =

⌊
𝑛−1∑︁
𝑙=0

𝑛−1∑︁
𝑘=0

𝑎𝑙𝑏𝑘2𝑙+𝑘− 𝑓
⌋

=
𝑛−1∑︁
𝑙=0

𝑛−1∑︁
𝑘=0

𝑘+𝑙≥ 𝑓

𝑎𝑙𝑏𝑘2𝑘+𝑙− 𝑓 +

𝑛−1∑︁
𝑙=0

𝑛−1∑︁
𝑘=0

𝑘+𝑙≤ 𝑓 −1

𝑎𝑙𝑏𝑘2𝑘+𝑙− 𝑓

 (20)

The term that involves the summation constrained by 𝑘 + 𝑙 ≤
𝑓 − 1 is precisely the term that was set to 0 after rounding
in [14], but in general, this term is not equal to 0, requiring
more careful treatment of the multiplication operation.

We propose instead to augment the output register |𝑐⟩ with
𝑓 ancilla qubits on the right, and then to discard or reuse
the ancilla qubits after the fused multiplication–addition. More
precisely, we define a new (𝑛 + 𝑓 , 2 𝑓)−bit fractional output
integer 𝑐 whose value is given by the following

𝑐 = 𝑐𝑛−1𝑐𝑛−2 . . . 𝑐 𝑓 · 𝑐2 𝑓 −1 . . . 𝑐 𝑓 𝑐 𝑓 −1 . . . 𝑐0

≡
𝑛−1∑︁
𝑙=0

𝑛−1∑︁
𝑘=0

𝑘+𝑙≥ 𝑓

𝑎𝑙𝑏𝑘2𝑘+𝑙− 𝑓 +
𝑛−1∑︁
𝑙=0

𝑛−1∑︁
𝑘=0

𝑘+𝑙≤ 𝑓 −1

𝑎𝑙𝑏𝑘2𝑘+𝑙− 𝑓 (21)

Note that there are exactly 2 𝑓 bits in the second sum in
(21). This is made possible by appending additional 𝑓 ancilla
bits to represent the bits {𝑐 𝑓 −1 . . . 𝑐0}. Then, multiplication
involving this new augmented output register involves a slight
modification of (13), as follows.

𝑒
−𝑖2𝜋�̂� 𝑓 ⊗�̂�/2𝑛 =

2𝑛−1∑︁
𝑎=0

2𝑛−1∑︁
𝑏=0
| 𝑎, 𝑏 ⟩⟨ 𝑎, 𝑏 |

𝑛−1⊗
𝑗=0

∑︁
𝑐 𝑗 ∈{0,1}

𝑛−1∏
𝑘=0

𝑛−1∏
𝑙=0

𝑒
−𝑖2𝜋𝑎𝑙𝑏𝑘𝑐 𝑗/2𝑛− 𝑗−𝑘−𝑙+ 𝑓 �� 𝑐 𝑗

〉〈
𝑐 𝑗

�� (22)

where 𝑀 𝑓 is the newly defined multiplication operator.

B. Proposed Algorithm for Calculating Reciprocal of Fixed-
Point Registers

The only remaining elementary operation that is necessary
for numerical linear algebra over superpositions of fixed-point
values on quantum registers is division. As a first step for
calculating division, we propose applying Newton’s Method

Registers: input |𝑞⟩ = |𝑞𝑛−1 . . . 𝑞0⟩ ∈ (𝑛, 𝑓);
output |𝑟⟩ = |𝑟𝑛−1 . . . 𝑟0⟩ ∈ (𝑛, 𝑓).

1: |𝑟𝑛−1⟩ ← �̂� |𝑟𝑛−1⟩ cont. by |𝑞𝑛−1⟩ ⊲ Cont. X
2: for 𝑘 ← (𝑛 − 2) to 0 do
3: |𝑟𝑛−1⟩ ← �̂� |𝑟𝑛−1⟩ ⊲ Flip MSB
4: |𝑟𝑘⟩ ← �̂� |𝑟𝑘⟩ cont. by |𝑞𝑘 , 𝑟𝑛−1⟩ ⊲ Cont. X
5: |𝑟𝑛−1⟩ ← �̂� |𝑟𝑛−1⟩ ⊲ Undo flip
6: |𝑟𝑛−1⟩ ← �̂� |𝑟𝑛−1⟩ cont. by |𝑟𝑘⟩ ⊲ Save
7: end for
8: |𝑞𝑛−1⟩ ← �̂� |𝑞𝑛−1⟩ ⊲ Temp. flip MSB
9: |𝑟𝑛−1⟩ ← �̂� |𝑟𝑛−1⟩ cont. by |𝑞𝑛−1⟩ ⊲ Flip if needed

10: |𝑞𝑛−1⟩ ← �̂� |𝑞𝑛−1⟩ ⊲ Undo flip
11: for 𝑛← 0 to ⌊𝑛/2⌋ do
12: |𝑟𝑛, 𝑟𝑛−1−𝑛⟩ ← |𝑟𝑛−1−𝑛, 𝑟𝑛⟩ ⊲ Reverse
13: end for

Alg. 3. Proposed gate for rounding to a power of 2 and calculating the inverse
of this power of 2 via bit reversal.

to find the reciprocal of fixed-point values by finding the roots
of the following function, as proposed in [19] in the classical
computing context.

𝑓 (𝑥) = 1
𝑥
− 𝐷 (23)

𝐷 here is the value of the number for which we would like
to find the reciprocal. The gradient is given simply by

𝑓 ′ (𝑥) = − 1
𝑥2 . (24)

Consequently, the Newton update step is given by the follow-
ing equation.

𝑥𝑘+1 ← 𝑥𝑘 − 𝑓 (𝑥𝑘)
𝑓 ′ (𝑥𝑘) = 𝑥𝑘 + 𝑥𝑘 (1 + 𝐷𝑥𝑘) (25)

This update step can thus be implemented with two fused
multiplication–addition operations, and the process can be
repeated until we reach the desired error tolerance. Because
quantum computations are not branching–friendly, we opt to
fix the number of iterations 𝐿, while ensuring that the initial
guess is close to the desired reciprocal. Algorithm 1 contains
more details on the operations of this gate.

Finding an initial guess for the Newton iterations that
is close enough to the eventual result is crucial, because
otherwise the method might not converge. We find the initial
guess for the reciprocal operation by formulating yet another
algorithm that scans the input register qubit-by-qubit while
keeping track of the most significant qubit that has been found.
However, before we describe this procedure, we must first
describe the absolute value operation for fixed-point registers:
If the input is a signed register, we first calculate the absolute
value of the signed register, which we detail in Alg. 2. The
most significant bit of the input register |𝑞⟩ controls all of
the operations, namely addition with constant 1 and inversion
via �̂� gates. Because the chosen representation is Two’s
Complement, this operation is self-adjoint. Additionally, when
we state that addition is controlled by qubit |𝑞𝑛−1⟩, we mean

Registers: input |𝑞⟩ ∈ (𝑛, 𝑓); outputs |𝑟⟩, |𝑠⟩ ∈ (𝑛, 𝑓).
1: |𝑞, 𝑟⟩ ← ABS(|𝑞, 𝑟⟩) ⊲ Alg. 2
2: |𝑟, 𝑠⟩ ← INVRECIP2(|𝑟, 𝑠⟩) ⊲ Alg. 3
3: |𝑟, 𝑠⟩ ← |𝑠, 𝑟⟩ ⊲ Swap
4: |𝑞, 𝑟⟩ ← ABS†(|𝑞, 𝑟⟩) ⊲ Undo Alg. 2

Alg. 4. Proposed procedure for the initialization of the reciprocal gate.

Registers: input |𝑞⟩ ∈ (𝑛, 𝑓); input/output |𝑟⟩ ∈ (𝑛, 𝑓).
Let I = [0, 2𝑛) if unsigned or

[−2𝑛−1, 2𝑛−1) otherwise.
1: for 𝑘 ∈ I, 𝑙 ∈ I do
2: |𝑞, 𝑟⟩ ←

��𝑘2− 𝑓 , 𝑙2− 𝑓
〉

⊲ Reset & Copy
3: |𝑞, 𝑟⟩ ← |𝑞, 𝑟 + 𝑞⟩ ⊲ Addition
4: 𝑠← MEASURE(|𝑠⟩)
5: 𝑠← (𝑘 + 𝑙) · 2− 𝑓
6: COMPARE(𝑠, 𝑠)
7: end for

Alg. 5. Proposed scheme for the exhaustive validation of the addition gate
that was originally proposed in [14].

that all of the operations for addition are controlled by this
qubit.

Given the absolute value of the input register |𝑞⟩ that is
stored on register |𝑟⟩, we now proceed to describe the pro-
posed approach for finding the initial guess of the reciprocal
operation. For simplicity, we assume there are 𝑛 = 2 𝑓 +1 total
qubits and 𝑓 fractional qubits. The algorithm can be extended
to the case where the two sets about the decimal point have
unequal lengths when disregarding the sign qubit.

Given input register |𝑞⟩ and output register |𝑟⟩, we first
ensure that the output register is in state |0⟩ with a reset, and
then apply a 𝐶�̂� gate to the most significant qubit |𝑟𝑛−1⟩,
controlled by the most significant or sign qubit of the input
|𝑞𝑛−1⟩. Qubit |𝑟𝑛−1⟩ stores whether we have encountered a
non-zero qubit in the input. Then, for 𝑘 = 𝑛 − 2, we invert
|𝑟𝑛−1⟩ with an �̂� gate, apply a 𝐶𝐶�̂� gate to |𝑟𝑘⟩, controlled
by |𝑞𝑘 , 𝑟𝑛−1⟩, apply another �̂� gate to |𝑟𝑛−1⟩ to undo the
inversion, and then apply a 𝐶�̂� gate once again to |𝑟𝑛−1⟩,
controlled by |𝑟𝑘⟩, effectively storing whether we encountered
a non-zero qubit. The process is then repeated for 𝑘 ← 𝑛−3 to
0. At the end of this loop, we flip qubit |𝑟𝑛−1⟩ if qubit |𝑞𝑛−1⟩
was not active to begin with by inverting |𝑞𝑛−1⟩ with an �̂�
gate, inverting |𝑟𝑛−1⟩ with a 𝐶�̂� gate, controlled by |𝑞𝑛−1⟩,
and apply an �̂� gate to |𝑞𝑛−1⟩ to undo the inversion. With the
power of 2 stored on output register |𝑟⟩, we reverse the order
of the qubits so as to obtain the reciprocal of said power of
2. Algorithm 3 describes this process in more detail.

Finally, we have all of the necessary gates and operations for
initializing the reciprocal operation. We calculate the absolute
value of the input, obtain the nearest power of 2 and invert it
by reversing the order of the qubits, undo the absolute value
operation, and then perform swaps and resets to ensure that the
registers are initialized properly. Algorithm 4 provides more
details on this procedure.

Registers: inputs |𝑞⟩, |𝑟⟩ ∈ (𝑛, 𝑓); input/output |𝑠⟩ ∈ (𝑛, 𝑓).
Let I = [0, 2𝑛) if unsigned or

[−2𝑛−1, 2𝑛−1) otherwise.
1: for 𝑘 ∈ I, 𝑙 ∈ I, 𝑚 ∈ I do
2: |𝑞, 𝑟, 𝑠⟩ ←

��𝑘2− 𝑓 , 𝑙2− 𝑓 , 𝑚2− 𝑓
〉

⊲ Reset & Copy
3: |𝑞, 𝑟, 𝑠⟩ ← |𝑞, 𝑟, 𝑠 + 𝑞 𝑟⟩ ⊲ FMA
4: 𝑠← MEASURE(|𝑠⟩)
5: 𝑠← ⌊ ((𝑚 · 2 𝑓

) + 𝑘 𝑙) · 2− 𝑓 ⌋ · 2− 𝑓
6: COMPARE(𝑠, 𝑠)
7: end for

Alg. 6. Proposed scheme for the exhaustive validation of the fused
multiplication–addition (FMA) gate.

C. Assessment of Accuracy of Addition and Multiplication
Schemes

We assess the correctness of the implemented addition
scheme and our proposed multiplication scheme by exhaus-
tively simulating the gate under consideration for all possible
combinations of inputs. More specifically, for addition, we
implemented the procedure described in Alg. 5, whereby we
iterated over the outer product of the domain of each input to
the addition gate, checking the correctness of each output, a
process that scales as 𝑂

(
22𝑛) for 𝑛-bit inputs. Similarly, for

fused multiplication–addition, we implemented the procedure
described in Alg. 6, once again checking the output over the
outer product of all three inputs, which is a process that scales
as 𝑂

(
23𝑛) for 𝑛-bit inputs.

D. Assessment of Accuracy of Proposed Division Scheme

The number of qubits required for the implementation of
the division operation is higher due to the necessary number
of ancilla qubits. Additionally, the procedure is not exact as
it is an iterative algorithm. Consequently, we opted to sample
the domain of the inputs and generate statistics based on the
observed errors in the outputs, taking into account the effect
of rounding due to fixed-point arithmetic. This differs from
the approaches used for addition and multiplication, which
are exhaustive and exact.

E. Simulation of Rudimentary Ordinary Differential Equation
on a Simulated Quantum Computer

In order to validate our approach, we solved the same
system of ordinary differential equations that is featured in
[14]. Namely, we solved the following system of equations.

du
d𝑡

=

[
0 1
−1 0

]
u s.t. u

(
0+
)
=

[
0
−1

]
(26)

The analytical solution of this system subjected to the pre-
scribed initial conditions is given by

u(𝑡) = −
[
sin(𝑡)
cos(𝑡)

]
𝑢(𝑡), (27)

where the function 𝑢(𝑡) denotes the Heaviside step function.
We solved the system with the trapezoidal rule –as opposed
to Forward Euler as in [14]– for a variety of qubits after the
decimal point. We fixed 𝑛 = 𝑓 +2 and use Two’s Complement
registers so as to be able to represent ±1 exactly.

TABLE I
SUMMARY OF STATISTICS OBSERVED WHEN VALIDATING FUSED

ADDITION–MULTIPLICATION OVER UNSIGNED REGISTERS USING THE
ROUNDING SCHEME PROPOSED BY ZANGER ET AL. [14].

n f failure rate mean error 𝜎 of error max. |error |
4 1 23.438% -0.9375 1.991 7.5000
4 2 46.875% -0.9375 1.242 3.7500
4 3 64.453% -0.6445 0.646 1.8750
5 1 24.219% -1.9375 4.073 15.500
5 2 48.438% -1.9375 2.533 7.7500
5 3 66.602% -1.3320 1.312 3.8750
5 4 78.711% -0.7871 0.643 1.9375

IV. DISCUSSION

A. Error in Addition, Multiplication, and Division

Following the procedures for validation of addition and
fused addition-multiplication that are described in Algs. 5 and
6, we tested exhaustively for all possible combinations of reg-
ister widths (𝑛, 𝑓), where 𝑛 ∈ [2, 3, 4, 5, 6] and 𝑓 ∈ [2, . . . , 𝑛],
and obtained 100% accuracy for the addition scheme that was
originally proposed in [14] and 100% accuracy for the fused
multiplication-addition scheme that we proposed. However,
the fused multiplication–addition routine with the rounding
condition that was proposed in [14] exhibited large error.
Table I summarizes the observed statistics of the error for
several representative widths (𝑛, 𝑓) of unsigned registers. A
“failure” was defined when the output of the FMA gate does
not match the expected output exactly. Due to the modulo
2𝑛− 𝑓 arithmetic, the error in the output can be quite large. Even
when there was no overflow, the error rate of this gate was still
unacceptably high for scientific computation. The error rate
increased as the number of fractional qubits 𝑓 was increased,
matching our assessment of the deficiencies of this rounding
approach.

For the proposed division algorithm, we simulated the
division operation for 100 samples, for 𝐿 = 10 Newton
iterations, and for fractional qubits 𝑓 of 6, 7, and 8. Figures
4a, 4b, and 4c show the distribution of the error in the output
for 6, 7, and 8 fractional qubits, respectively. We observed
a spread of the error about 0, with the majority of non-zero
error at ±2− 𝑓 , as expected. As the number of fractional qubits
was increased, we observed that the standard deviation also
decreased. For 𝑓 of 6, 7, and 8, we observed that the means of
the error were 7.8125 ·10−4, 1.0938 ·10−3, and −1.5625 ·10−4,
respectively, and that the standard deviations of the error
were 1.02676 · 10−2, 5.2107 · 10−3, and 3.3276 · 10−3, respec-
tively, with the standard deviation decaying approximately as
𝑂
(
2− 𝑓

)
.

B. Simulation of Ordinary Differential Equation

We simulated the same system of ordinary differential
equations as in [14] with initial conditions u(0+) = [

0 −1
]T

for register widths

(𝑛, 𝑓) ∈ {(10, 8), (11, 9), (12, 10), (13, 11), (14, 12)},

0 1 2 3 4 5 6
−1.0

−0.5

0.0

0.5

1.0

𝑡 [s]

Evolution of 𝑢1 (𝑡) for Δ𝑡 = 1/16 s

8
9
10
11
12
Ref.

(a)

0 1 2 3 4 5 6
−1.0

−0.5

0.0

0.5

1.0

𝑡 [s]

Evolution of 𝑢2 (𝑡) for Δ𝑡 = 1
16

(b)

8 9 10 11 12
2−6

2−5

2−4

2−3

2−2

Fractional qubits

Relative error vs. fractional qubits

𝑢1
𝑢2
u

(c)

Fig. 3. Results from the solution of the tested system of ordinary differential equations for several fractional width 𝑓 , with total width 𝑛 = 𝑓 + 2. Figs. (a) &
(b) show the evolution over time of 𝑢1 and 𝑢2, respectively, for the tested values of 𝑓 . Fig. (c) shows the relative error with respect to the analytical solution
as a function of fractional width 𝑓 .

−0.04 −0.02 0.00 0.02 0.04
0

20

40

60

80

100

Recip(𝑥) − ⌊ 1
𝑥 ⌋

Reciprocal gate error for 𝑓 = 6

(a)

−0.04 −0.02 0.00 0.02 0.04
0

20

40

60

80

100

Recip(𝑥) − ⌊ 1
𝑥 ⌋

Reciprocal gate error for 𝑓 = 7

(b)

−0.04 −0.02 0.00 0.02 0.04
0

20

40

60

80

100

Recip(𝑥) − ⌊ 1
𝑥 ⌋

Reciprocal gate error for 𝑓 = 8

(c)

Fig. 4. Error of output of reciprocal gate when compared with expected output. The total number of qubits was constrained to 𝑛 = 2 𝑓 + 1 for 𝑓 fractional
qubits. Each gate was tested with 100 samples of a normal distribution N(0, 5) and for 𝐿 = 10 Newton iterations. Samples that did not have a reciprocal
that is representable after flooring were discarded, such as 0 and 2− 𝑓 .

while using a step size of Δ𝑡 = 1/16 s. The explicit trapezoidal
rule update step is given in the following equation.

u𝑘+1 ← 1
1 + Δ𝑡2

4

[
1 − Δ𝑡2

4 Δ𝑡
−Δ𝑡 1 − Δ𝑡2

4

]
u𝑘 (28)

When evaluated at the prescribed step size of Δ𝑡 = 1/16 s, this
equation reduces to

u𝑘+1 ← 1
1025

[
1023 64
−64 1023

]
u𝑘 (29)

Figure 3 demonstrates the evolution of the two components
over 100 time steps or 6.25 s. We saw uniform convergence
to the analytic solution as the number of fractional qubits per
register was increased. Figure 3c shows the relative error in
the 𝐿2 sense of the solution when compared to the analytic

solution in Eq. 27. The decay of the error as a function
of 𝑓 behaves asymptotically as 𝑂

(
2− 𝑓

)
when compared to

both the analytic solution and the solution that was obtained
using the trapezoidal rule on a classical computer with 64-
bit floating-point arithmetic. We expect that given enough
fractional qubits, the error with respect to the analytic solution
would saturate due to the use of the trapezoidal rule.

V. CONCLUSION

While fixed-point arithmetic is more limited than floating-
point arithmetic in terms of accuracy as a function of reg-
ister bit widths, fixed-=point arithmetic is significantly less
complex to implement in terms of gate operations. In this
work, we demonstrated that with the appropriate number of
ancilla qubits, multiplication can be implemented accurately

for signed fixed=-point numbers using Hadamard and z-
rotation gates. Building on this, we showed that given enough
qubits to achieve the desired accuracy, solving an ordinary
differential equation with fixed-point arithmetic is feasible, and
we showed that extending the set of available operations to
include division is also feasible.

Future work would involve exploring ways of rendering
these operations robust to noise with error correction strate-
gies. Improving the initialization procedure by obtaining a
better initial guess for the iterative reciprocal gate would
also be a fruitful future direction. Additionally, exploring the
implementation of floating–point arithmetic with these basic
fixed–point operations would also be an interesting avenue
to explore. Another possible and motivating application of
our approach is to explore the use of quantum computing to
simulate the dynamics of bulk magnetization in Magnetic Res-
onance Imaging (MRI), which is used extensively in medical
imaging.

The physics of MRI depends on applying an external, strong
magnetic field 𝐵0 to a tissue (on the order of 0.5–7 T), which
aligns the nuclear spins of the tissue and induces a net bulk
magnetization M that precesses about the direction of the
static field at the Larmor frequency. The longitudinal and
transverse components of M exhibit relaxation times 𝑇2 and 𝑇1,
respectively, which dictate the decay rates of the components
under only 𝐵0. These relaxation times are parameters to the
governing Bloch Equations. Obtaining a large set of solutions
to the Bloch Equations with different parameters, such as 𝑇1
and 𝑇2, is a computationally demanding task on a classical
computer. In future work, we aspire to leverage quantum
parallelism to simulate the Bloch Equation for many different
sets of external parameters simultaneously.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, National Quan-
tum Information Science Research Centers, Superconducting
Quantum Materials and Systems Center (SQMS) under the
contract No. DE-AC02-07CH11359.

REFERENCES

[1] C. Runge and M. W. Kutta, “Beiträge zur numerischen Lösung partieller
Differentialgleichungen,” Mathematische Annalen, vol. 46, no. 2, pp.
167–178, 1895.

[2] J. C. Adams and F. Bashforth, “On the numerical integration of func-
tions,” Cambridge Philosophical Transactions, vol. 10, pp. 200–210,
1855.

[3] L. Euler, “Methodus invariantibus integralium differentiarum aequa-
tiones,” Commentationes Arithmeticae, vol. 9, pp. 193–228, 1768.

[4] L. F. Shampine and M. W. Reichelt, “Implementation of rosen-
brock methods,” ACM Transactions on Mathematical Software (TOMS),
vol. 12, no. 1, pp. 58–78, 1986.

[5] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM journal on computing,
vol. 26, pp. 1484–1509, 1997.

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends
et al., “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, pp. 505–510, 2019.

[7] D. R. Simon, “On the power of quantum computation,” SIAM Journal
on Computing, vol. 26, no. 5, pp. 1474–1483, 1997.

[8] L. K. Grover, “Quantum computers can search arbitrarily large databases
by a single query,” Phys. Rev. Lett., vol. 79, pp. 4709–4712, 1997.

[9] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical Review Letters, vol. 103, no. 15,
p. 150502, 2009.

[10] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available:
https://doi.org/10.22331/q-2018-08-06-79

[11] A. M. Childs, R. Kothari, and R. D. Somma, “Quantum algorithm for
systems of linear equations with exponentially improved dependence on
precision,” SIAM J. Comput., vol. 46, pp. 1920–1950, 2015. [Online].
Available: https://api.semanticscholar.org/CorpusID:3834959

[12] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quantum
algorithms for simulating sparse hamiltonians,” Communications in
Mathematical Physics, vol. 270, pp. 359–371, 2005. [Online]. Available:
https://api.semanticscholar.org/CorpusID:37923044

[13] D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation
with nearly optimal dependence on all parameters,” in 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, 2015, pp. 792–
809.

[14] B. Zanger, C. B. Mendl, M. Schulz, and M. Schreiber, “Quantum
Algorithms for Solving Ordinary Differential Equations via Classical
Integration Methods,” Quantum, vol. 5, p. 502, Jul. 2021. [Online].
Available: https://doi.org/10.22331/q-2021-07-13-502

[15] S. Lloyd and S. L. Braunstein, “Quantum computation over contin-
uous variables,” in Quantum Information with Continuous Variables.
Springer, 1999, pp. 9–17.

[16] J. Alvarez-Sanchez et al., “A quantum architecture for multiplying
signed integers,” Quantum Information Processing, vol. 10, no. 6, pp.
775–789, 2011.

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[18] G. Verdon, J. Pye, and M. Broughton, “A universal training algorithm
for quantum deep learning,” arXiv preprint arXiv:1912.08278, 2019.

[19] U. Kucukkabak and A. Akkas, “Design and implementation of reciprocal
unit using table look-up and newton-raphson iteration,” in Euromicro
Symposium on Digital System Design, 2004. DSD 2004., 2004, pp. 249–
253.

