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Abstract
Nonlinear integrable optics (NIO) are a promising alter-

native approach to lattice design. The integrable optics test
accelerator (IOTA) at Fermilab has been constructed for
dedicated studies of magnetostatic elliptical elements as de-
scribed by Danilov and Nagaitsev. The most compelling
verification of correct implementation of the NIO lattice is
direct observation of the analytically expected invariants.
This report outlines the experimental and analytical methods
for extracting the nonlinear invariants of motion from data
gathered in the last IOTA run.

INTRODUCTION
Nonlinear integrable optics are an attractive way to im-

prove the range of amplitude-dependant detuning without
negatively affecting the dynamic aperture. NIO has a long
history [5, 9], but has been typically limited to exotic fo-
cusing elements. Danilov and Nagaitsev were the first to
describe a two dimensional NIO system which could be real-
ized as traditional magnetostatic focusing elements [4]. The
base of the DN system is a "bare" linear lattice composed of
a matching section with linear optics and a drift region for
placement of nonlinear inserts. The matching section of the
lattice must satisfy three conditions

1. Matched horizontal and vertical beta functions in the
nonlinear insert

2. The minimum beta function in the drift is located at the
center of the drift

3. An integer multiple of 𝜋 phase advance across the
matching section outside the insertion

To complete the DN system a nonlinear potential with
elliptical geometry is inserted into the drift space. The two
invariants preserved by the system are presented in a com-
plex parameterization [10] in Eq.(1) and Eq.(2). The author
recommends using this parameterization over the original, it
is more numerically stable about the 𝑦 = 0 line for simulation
purposes and avoids a number of pitfalls in interpretation.
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Here the phase space variables are normalized to the
"bare" lattice Courant-Snyder lattice functions, with 𝑞, 𝑝𝑞
as the unormalized phase space coordinates.
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The 𝑡 and 𝑐 parameters are characteristic of the DN system
and describe the scaling of nonlinear field and the geometry
of singularities in the potential.

The nonlinear potential must be longitudinally scaled with
respect to the bare lattice beta function in the drift. In prac-
tice, this means slicing up the nonlinear insert into a number
of individual elements which are individually scaled to ap-
proximate the ideal smooth scaling of the potential. To
evaluate practical implementation of the DN system, the
IOTA storage ring was constructed at Fermilab [1]. IOTA is
a small (40 m), easily re-configurable ring for beam dynam-
ics studies and general accelerator R&D. The centerpiece of
IOTA for NIO studies is a 1.8 m long 18 element DN insert
constructed by Radiabeam [11]. The NIO program at IOTA
consists of two stages. The first stage is experiments with a
150 MeV electron pencil beam to probe the potential. The
second stage is experiments with a 2.5 MeV proton beam to
study the interaction of NIO with intense space charge.

IOTA Run 4 was conducted in 2024 as a part of the NIO
electron program. Experimental measurement of conser-
vation of the DN nonlinear invariants is a straightforward
indication of implementation of the DN system.

EXPERIMENTAL METHODS
Due to the strict requirements on the linear lattice set by

the DN system, a simulation study was performed to evalu-
ate the range of bare lattice parameters that still exhibited
good conservation of the nonlinear invariants. These values
were used as targets for the linear optimization of the lattice.
Optimization was performed using the implementation of
LOCO in SixDSimulation [12]. The target for the LOCO op-
timization was the IOTA design lattice, a simulation model
also developed in SixDSimulation. The target parameters
and experimentally realized values are found in Table 1.

In addition to the linear lattice optimization, sextupoles
in IOTA were adjusted for operations. Simulation studies
have indicated that successful operation of the DN system
requires matched chromaticity [13]. For turn-by-turn (TBT)
analysis, it is desirable to maximize the decoherence time
by minimizing chromaticity. Based on these requirements
the chromaticity was minimized and matched to between -1
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Table 1: IOTA Run 4 Bare Lattice Parameters

Parameter Target Result
Phase Advance Accuracy 0.001 0.001(5)
Dispersion in Insert <1 cm 0.5(2) cm
Closed Orbit Deviation <50 µm 40(5) µm
Beta Function Deviation 1% 2%
Beta Beating 1% 1%
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Figure 1: Single BPM response to a kick.

and 0 using sextupole magnets in the matching section of
the IOTA lattice.

The TBT measurements in IOTA utilized stripline kick-
ers [2] and the 21 button BPMs [6] in IOTA. For a given
measurement, once the electron beam was at its radiative
equilibrium and in a sufficient current range for the BPMs
to be sensitive and unsaturated, a dipole kick was applied.
The TBT centroid position was then measured by the BPM
system for several thousand turns. To probe the full physical
aperture, both the horizontal and vertical kickers were fired
in a single turn to allow for mixed-plane excitations. The
strong nonlinearity of the system means that the centroid
oscillations decohere in a short time (50-250 turns), with
different decoherence times in different planes depending
on the amplitude (Figure 1). To effectively probe the non-
linear dynamics of the system, a grid of different horizontal
and vertical amplitudes were measured for various values of
the DN t-parameter. The pyIOTA library [7] was used for
automated lattice control and data acquisition for all TBT
data sets.

POSITION RECONSTRUCTION
For calculation of the invariant expressions, the four di-

mensional (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦) transverse coordinates of the beam
need to be reconstructed. This was accomplished through
the use of a least squares fitting of the turn by turn BPM data
to generate a virtual BPM.

Before fitting the TBT data a few preprocessing steps
were taken. BPM calibrations for scaling and roll as fit
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Figure 2: Diagram of IOTA with matching section indicated.
All IOTA BPMs lie on the path indicated.
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Figure 3: Illustration of fitting method. Blue points are
preprocessed tbt centroid positions in each BPM along the
matching section indicated in Figure 2. Orange cross in-
dicates the fitted position. Green line is the fitted position
propagated through the same transfer matrices used for fit-
ting.

from the LOCO optimization were applied. A principle
component analysis was applied to all of the BPMs. Based
on the singular value, the first 8 components of the PCA were
used to reduce the uncorrelated noise in the TBT signals.

Since the matching section of the DN system is most of the
lattice footprint, all IOTA BPMs are located in this section.
For the fitting, he matching section was essentially treated
in a channel mode from the end of the nonlinear insert to
the beginning of it (Figure 2).

As the linear elements are not adjusted from the bare
lattice parameters for different the linear transfer matrices
from the design lattice were used to fit the virtual BPM
position from up to all 21 BPMs.

Intermittent unreliability and saturation in the BPMs
needed to be filtered before applying the fitting algorithm.
Individual BPMs could be dropped, up to 10. Studies of re-
duction in the number of BPMs yielded improvement in the
fit quality for one nonstandard BPM, so it was dropped from
fitting. All other BPMs were used barring errors. The known
nonlinearities in the matching section stemming from the
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Figure 4: Calculated invariant quantities for t=-0.238 and
proportional amplitudes in x and y. All traces are normalized
to the mean over their first 28 turns. Note the reduction in
value due decoherence in the fitted positions.

sextupole fields were considered, but expanding the method
using second order transfer maps yielded poor quality fits of
the motion, and strictly linear fits were used for analysis.

INVARIANT CALCULATION
To evaluate the invariant expressions, the raw fitted coor-

dinates needed to be normalized by the bare lattice Courant-
Snyder functions at the virtual BPM location. Like the trans-
fer matrices, these quantities were extracted from the design
lattice. To benchmark the method, the Courant-Snyder in-
variants were extracted from the bare lattice.

Due to the TBT noise in the BPM data, any derived pa-
rameter will also exhibit TBT noise. Additionally, the fast
decoherence of the centroid oscillation will cause the cal-
culated invariants show a correlated fast reduction in value.
To determine the quality of conservation the calculated in-
variants were normalized to their mean value over the first
28 turns.

For reasonable comparison to the equivalent Courant-
Snyder invariant, the first order effect on the lattice functions
of the DN element was extracted from the design lattice. This
effect comes from the quadrupole term of the non-linear
field. To avoid apparent invariant changes due to any linear
coupling, the sum of the horizontal and vertical invariants
(the Hamiltonian) was used for comparison [8]. The first DN
invariant, the Hamiltonian of the system, is very similar to
the CS Hamiltonian. As a result these two quantities display
similar levels of conservation. A better metric is looking at
the conservation of the second DN invariant.

Figure 5 is plots the rms of the normalized second in-
variant against kick amplitude. Primarily horizontal kicks
demonstrate superior conservation to primarily vertical
kicks.

To evaluate expected conservation levels, single particle
simulations were performed for the same amplitude excita-
tion. Using the same conservation metrics, the conservation

Table 2: Invariant Conservation RMS

Invariant Simulation Experimental
CS Hamiltonian 1.9% 6.9%
DN Hamiltonain 0.3% 5.6%
DN Invariant 0.3% 6.9%
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Figure 5: DN second invariant RMS over 28 turns.

levels were found to be below the noise limit of the directly
calculated experimental invariants 2

CONCLUSION AND NEXT STEPS
Direct calculation of the analytical invariant quantities

from fitted position data has insufficient resolution to demon-
strate conservation of these invariants. More sophisticated
analysis of the fitted position data is ongoing, including
an application of machine learning to search for invariants
of motion [3]. Comparison of conservation levels against
kick amplitude and t-parameter indicates that signal-to-noise
ratio in the current BPM system needs to be better or the
available dynamic aperture must be larger to directly observe
non-linear contributions to the DN Hamiltonian and invari-
ant using electron beam as a probe. With a larger dynamic
aperture, the amplitude of measureable kicks could be in-
creased, at larger amplitudes the nonlinear terms in the DN
system become stronger and the conservation ratio between
the DN and Courant-Snyder invariants increases. The fol-
lowing contribution [14] describes the measured limitations
on the dynamic aperture.
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