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Abstract
The measurement of beam emittances by extracting the

quadrupole mode signal from a 4 plate beam position moni-
tor (BPM) was published at least 40 years ago. Unfortunately,
in practice, this method suffers from poor signal to noise
ratio and requires a lot of tuning to extract out the emittances.
In this paper, an improved method where multiple BPMs are
used together with better mathematical analysis is described.
The BPM derived emittances are then compared with those
measured by the Ion Profile Monitor (IPM). Surprisingly, the
BPM measured emittances behave very well and are more
realistic than those measured by the IPM.

INTRODUCTION
The measurement of beam emittances by extracting the

quadrupole mode signal from a 4 plate beam position moni-
tors (BPM) was published at least 40 years ago [1, 2]. How-
ever, the quadrupole signal is very small when compared to
the dipole signal and so, in practice, this method suffers from
poor signal to noise [3]. This means that to actually get the
emittance, a lot of tuning is required. We decided a revisit
of this method because the Booster Ionization Profile Moni-
tors (IPMs) have idiosyncrasies that are very puzzling [4].
For example, the beam current measured by the IPM is not
conserved. It also shows an emittance growth during the
Booster ramp that is unexplained [5].

Our contribution to the improvement of this method are
the use of multiple BPMs which then gives us a better way
for emittance extraction. When we compared the emittances
extracted with our method to those measured by the IPMs
in the Booster, we found that the BPM measured emittances
were more realistic than those from the IPMs.

THEORY
This section only contains an abridged version of the

theory. A full derivation can be found in Ref. [6] which
follows Miller [1].

The cross section of the 4 plate BPM is shown in Fig. 1.
The image current density, 𝐽𝑤 , that is induced by a pencil
current, 𝐼𝑏, at (𝑟𝑏, 𝜃𝑏) is given by

𝐽𝑤 (𝑟𝑏, 𝜃𝑏; 𝑏, 𝜙𝑤) =

− 𝐼𝑏 (𝑟𝑏, 𝜃𝑏)
2𝜋𝑎

[
1 + 2

∞∑︁
𝑛=1

( 𝑟𝑏
𝑎

)𝑛
cos 𝑛 (𝜙𝑤 − 𝜃𝑏)

]
.

(1)

We can integrate the above to obtain the current on each plate
𝑅(ight), 𝐿(eft),𝑇(op) and 𝐵(ottom). For example the current
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on the 𝑅(ight) plate, 𝐼𝑅, is simply 𝐼𝑅 =
∫ 𝜙0/2
−𝜙0/2 𝑑𝜙 𝑎𝐽𝑤 to

give

𝐼𝑅 = − 𝐼𝑏 (𝑥𝑏, 𝑦𝑏)
2𝜋

{
𝜙0 + 2

[
2
( 𝑥𝑏
𝑎

)
sin

𝜙0
2
+(

𝑥2
𝑏
− 𝑦2

𝑏

𝑎2

)
sin 𝜙0

]}
.

(2)

where we have only kept terms lower than (𝑟𝑏/𝑎)3. We can
obtain similar equations for 𝐼𝐿 , 𝐼𝑇 and 𝐼𝐵.
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Figure 1: This cartoon shows the line current 𝐼𝑏 at (𝑟𝑏, 𝜃𝑏)
inducing a current density on the 𝑅(ight) pickup plate. All
the plates have radius 𝑎 and subtends an angle 𝜙0. The
current density at (𝑎, 𝜙𝑤) is 𝐽𝑤 .

And if the transverse distribution of the beam is a bi-
gaussian distribution centred at (𝑥, 𝑦̄) with standard devia-
tions 𝜎𝑥 and 𝜎𝑦 in the 𝑥 and 𝑦 directions respectively, then
the normalized gaussian distribution function is

𝜌(𝑥, 𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦

exp
[
− (𝑥 − 𝑥)2

2𝜎2
𝑥

]
exp

[
− (𝑦 − 𝑦̄)2

2𝜎2
𝑦

]
.

(3)
With the above density function, the new current distribution
on the 𝑅(ight) plate is

𝑅 =

∫ ∞

−∞
𝑑𝑥 𝑑𝑦 𝜌𝐼𝑅, = − 𝐼𝑏

2𝜋

{
𝜙0 + 2

[
2
(
𝑥

𝑎

)
sin

𝜙0
2
+(

𝜎2
𝑥 − 𝜎2

𝑦

𝑎2 + 𝑥2 − 𝑦̄2

𝑎2

)
sin 𝜙0

]}
.

(4)
The remaining plates will also have a similar current distri-
butions 𝐿, 𝑇 , 𝐵.

Finally, we can take the appropriate sum and difference
combinations of 𝑅, 𝐿, 𝑇 and 𝐵 to create the dipole modes,
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𝑑𝑥 and 𝑑𝑦 and quadrupole mode 𝑞

𝑑𝑥 =
𝑅 − 𝐿

𝑅 + 𝐿 + 𝑇 + 𝐵
=

sin 𝜙0
2

𝜙0
2

(
𝑥

𝑎

)
𝑑𝑦 =

𝑇 − 𝐵

𝑅 + 𝐿 + 𝑇 + 𝐵
=

sin 𝜙0
2

𝜙0
2

(
𝑦̄

𝑎

)
𝑞 =

2 sin 𝜙0
𝜙0

(
𝜎2
𝑥 − 𝜎2

𝑦

𝑎2 + 𝑥2 − 𝑦̄2

𝑎2

)


. (5)

𝑞 can be written in terms of 𝑑𝑥 and 𝑑𝑦 to give

𝑞 − (𝑑2
𝑥 − 𝑑2

𝑦)𝜙0 cot
𝜙0
2

=
2 sin 𝜙0

𝜙0

(
𝜎2
𝑥 − 𝜎2

𝑦

𝑎2

)
. (6)

The above can be written In terms of lattice functions by
using the following relationship

𝜎2
𝑥,𝑦 =

𝛽𝑥,𝑦𝜖𝑥,𝑦

𝜋
+ (𝐷𝑥,𝑦𝜎𝑝)2 (7)

where 𝜖𝑥,𝑦 are the emittances, 𝛽𝑥,𝑦 are the beta functions,
𝐷𝑥,𝑦 are the dispersions of the beam in the 𝑥 and 𝑦 directions
respectively; and 𝜎2

𝑝 = ⟨(𝑑𝑝/𝑝)2⟩ is the standard deviation
of the relative momentum spread of the beam.

Thus, Eq. (6) becomes

Δ𝑞 ≡ 2
𝑎2

sin 𝜙0
𝜙0

[
𝛽𝑥𝜖𝑥

𝜋
−

𝛽𝑦𝜖𝑦

𝜋
+ (𝐷𝑥𝜎𝑝)2

]
(8)

whereΔ𝑞 is as defined above and we have set 𝐷𝑦 = 0 because
the vertical dispersion is small in Booster.

We can write down a matrix equation using the above
from the measurements of 1 to 𝑛 BPMs or 1 to 𝑛 samples
from 𝑚 BPMs
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where the 𝑗 th row comes from the 𝑗 th pickup or the 𝑗 th
sample. If 𝑛 > 3 then we have a non-square matrix on
the lhs, which means that we have an over-determined set
of equations. This non-square matrix is easily inverted
using SVD methods. See for example, Mathematica’s
PseudoInverse[] function.

Data Manipulations
If we naïvely perform the inversion in Eq. (9) to obtain

the emittances, we will find that we will get garbage. The
keys for getting sensible emittances are discussed below.

1. Theoretically, the gain on each BPM plate is required
to be the same for Eq. (9) to work. Therefore, we have

to correct the signal from the BPM plates to ensure that
this condition is satisfied. Note: The choice of gain is
critical for ensuring the emittance solutions are real and
not complex. Details about our method is discussed in
Ref. [6].

2. Any DC offsets from each BPM plate when there is no
beam.

3. The most important observation of Eq. (9) is that on
the rhs, there is the difference 𝛽𝑥𝜖𝑥/𝜋 − 𝛽𝑦𝜖𝑦/𝜋. This
means that if we had a round beam and 𝛽𝑥 ≈ 𝛽𝑦 then
this difference is close to zero. So, in this configura-
tion, it may not be possible to actually extract out the
emittances. The ideal situation for extracting out the
emittances would be to have one of the 𝛽’s be a lot
larger than the other, i.e. either 𝛽𝑥 ≫ 𝛽𝑦 or 𝛽𝑥 ≪ 𝛽𝑦 .

For the Booster, the BPMs in the S locations are good
for extracting 𝜖𝑥 because 𝛽𝑥 (30 m) ≫ 𝛽𝑦 (5 m) while the
BPMs at the L locations are good for extracting 𝜖𝑦 because
𝛽𝑥 (7 m) ≪ 𝛽𝑦 (20 m).1 Therefore, Eq. (9) must contain
data from both L and S BPMs to get good 𝜖𝑥,𝑦 solutions. In
this paper, we have paired the data from S01 and L01, S02
and L02, etc. for solving Eq. (9).

Systematic Error Removal
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Figure 2: The systematic error of the emittances calculated
with Eq. (9) for BPM pairs (L15, S15) to (L23, S23).

We will find that even after applying the keys in the pre-
vious section, the emittances found from Eq. (9) for every
BPM pair have different, but reproducible, systematic er-
rors. The systematic errors of each BPM pair (L15, S15) to
(L23, S23) at three different beam intensities at 6, 10 and 15
turns2 can be seen in Fig. 2. For each BPM pair, we have
1 We are using the symbols “≫” and “≪” loosely here.
2 The Linac beam is “stacked” in Booster in units of turns. Higher turns

means higher intensity in Booster.



collected data at each intensity thrice to show that the curves
are reproducible.
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Figure 3: The horizontal and vertical emittance growth
w.r.t. 6 turns for BPM pairs (L19, S19) to (L21, S21) for 10,
12, 15 and 17 turns are shown here.

Since the systematic error for each BPM pair is repro-
ducible, we can simply correct it by defining the 6 turn curve
in Fig. 2 to be the reference. We can then take the difference
between any 𝑛 turn curve with the 6 turn curve to obtain the
emittance growth w.r.t. 6 turns emittance. A sample of the
horizontal and vertical emittance growth w.r.t. 6 turns for
BPM pairs (L19, S19) to (L21, S21) for 10, 12, 15 and 17
turns are shown in Fig. 3.

From this example, although the curves from each BPM
pair are not the same, we can identify some common features.
This leads us to make the hypothesis that the differences are
due to underlying random noise that can be averaged out if
our system is ergodic. This means that we can average over
the emittance from all the BPM pairs (space average) which
should be the same as the averaged emittance at each BPM
pair (time average).

COMPARISON TO IPM EMITTANCE
The application of the ergodic hypothesis was the last

step in the analysis of our method. At this point, we have to
do some verification. One way to do this is to compare the
BPM and IPM emittance measurements at different beam
intensities.
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Figure 4: The vertical emittance growth w.r.t. 6 turns mea-
sured by the IPM (left) and the BPMs (right) for 8, 10, 12,
14, and 16 turns. The dotted line is where the beam crosses
transition. Note: the IPM measured emittance is too large;
the shaded regions in the right plot are the statistical 1 sigma
spread of the emittance at each intensity. Sectors 5, 14 and
22 were ignored because of bad BPM data.

For the first test, shown in Fig. 4, we will look at the
vertical emittance at different intensities because the vertical

IPM is the reliable channel. Unfortunately, when we took the
data, the IPM emittance results are at least a factor of 4 – 10
times too large and a linear growth which gets more steep as
the intensity increases. We have not found any mechanism,
including ecloud, that can cause this type of growth. On
the other hand, the BPM emittance growth is a lot more
realistic. The beam has an initial growth then flattens. A
second growth happens after transition.

For the second test, we will look at the horizontal emit-
tance. On a particular occasion (11 Jul 2023), the horizontal
IPM functioned and returned data that looked reasonable
except that it is too big by at least a factor of 4. Due to
the lack of horizontal IPM data, we can only compare the
IPM emittance growth taken on 11 Jul 2023 to the the BPM
emittance growth data taken on 25 Mar 2024 in Fig. 5. Even
though the data was taken about 7 months apart, they look
similar, with the emittance oscillating after transition.
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Figure 5: The horizontal emittance growth w.r.t. 6 turns mea-
sured by the IPM (left) and the BPMs (right) are shown here.
The IPM emittance is about 4 times too large. Unfortunately,
we can only compare data taken on different dates.

CONCLUSION
We have improved the extraction of emittance from the

BPM quadrupole mode by using multiple BPMs and with
better data analysis. The compromise is that we do not mea-
sure absolute emittance but the emittance growth w.r.t. some
reference. We have found that the emittance growth ex-
tracted from the BPM quadrupole mode looks more sensible
than those measured by the IPMs. As part of making this
method easy to use and without any expert tuning, we have
written a python GUI to interact with the user and a C++ pro-
gram backend that can calculate Booster’s emittance from
real time BPM data. If this method proves to be as robust
as we believe it to be, it opens up the ability of measuring
emittances in nearly all rings that have 4 plate BPMs.
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