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Abstract—Extreme data rate scientific experiments create mas- 

sive amounts of data that require efficient ML edge processing. 
This leads to unique validation challenges for VLSI imple- 
mentations of ML algorithms: enabling bit-accurate functional 
simulations for performance validation in experimental software 
frameworks, verifying those ML models are robust under extreme 
quantization and pruning, and enabling ultra-fine-grained model 
inspection for efficient fault tolerance. We discuss approaches to 
developing and validating reliable algorithms at the scientific edge 
under such strict latency, resource, power, and area requirements 
in extreme experimental environments. We study metrics for 
developing robust algorithms, present preliminary results and 
mitigation strategies, and conclude with an outlook of these and 
future directions of research towards the longer-term goal of 
developing autonomous scientific experimentation methods for 
accelerated scientific discovery. 

Index Terms—real-time systems, neural networks, digital sim- 
ulation, reliability assesment, VLSI, VLSI testing 

 
I. MOTIVATION 

Ground-breaking science requires instruments that push 
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sensing technology with increasing spatial and temporal reso- 
lution to explore nature at unprecedented scales and in extreme 
environments. This has led to a data generation explosion, 
with more and more data being generated in next-generation 
experiments. For example, particle physics experiments look 
for extremely rare collision events (one in a billion billion) that 
can answer fundamental questions about the fabric of space- 
time or the nature of dark matter. Alternatively, microscopy 
experiments take hundreds of thousands of images per second 
to understand material properties that can advance comput- 
ing, quantum science, and basic energy research. There are 
many other applications in a wide range of domain sciences, 
including fusion, nuclear physics, neuroscience, and quantum 
computing, that can benefit from real-time, low-latency edge 
processing [Deiana et al.(2022)]. 

Many of these experiments create terabytes to petabytes of 
data per second, and at this rate these data cannot be stored and 

This work is supported by the U.S. Department of Energy (DOE), Office of 
Science, Office of Advanced Scientific Computing Research under the “Real- 
time Data Reduction Codesign at the Extreme Edge for Science” Project (DE- 
FOA-0002501). 
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Fig. 1. Many scientific and edge ML benchmark tasks [] must process 
incoming data at a high rate leading to extreme low-latency and high- 
bandwidth requirements. Applications illustrated here range across particle 
physics (LHC, DUNE), nuclear physics (EIC), material science (X-ray diffrac- 
tion, microscopy), neuroscience, fusion energy, quantum information science, 
superconducting magnet research, and particle accelerators. This can be 
compared against traditional internet-of-things and mobile device applications 
which are less stringent. 

 

 
processed with traditional methods in off-the-shelf computing 
clusters. Instead, scientists must process the data as close as 
possible to the experimental sensor—-at the edge. This is 
similar in some ways to autonomous vehicles and other smart 
sensing applications, but it occurs at unprecedented data rates 
and latency requirements for data processing. An illustration 
of this is provided in Fig. 1, which shows various benchmark 
tasks for different scientific applications as well as their input 
bandwidth and processing latency requirements. 

These challenges require efficient, specialized compute 
hardware at the extreme edge, e.g., FPGAs, ASICs, and 
systems on chip (SoC). These platforms are common to 
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many scientific experiments. This also has implications for the 
computer architectures [Weng et al.(2024)] that need to meet 
these extreme low-latency requirements: (i) often all neural 
network (NN) parameters must fit on-chip; and (ii) fully on- 
chip inference often requires hardware-software codesign with 
custom/reconfigurable logic to meet latency and bandwidth 
constraints. Per-sensor compression and efficient aggregation 
of information, while preserving scientific fidelity, can sig- 
nificantly impact experiment data flow, analysis, control, and 
operation, as well as, ultimately, how quickly experiments can 
be performed and hypotheses explored. 

In this paper, we discuss various unique and important 
challenges posed by deploying edge ML algorithms in re- 
alistic scientific environments with unfiltered and dynamic 
data streams and present proof-of-principle case studies and 
methodologies that address those challenges. We examine 
techniques: 
• to validate algorithm performance in large experimental 

software frameworks on simulated and real data with func- 
tionally verified VLSI implementations; 

• to characterize the stability of both local and global loss 
landscape structures in the training of highly customized and 
optimized algorithms; and 

• to improve the tolerance of edge ML algorithms to bit flip 
and sensor noise faults caused by experimental conditions 
with ultra-fine-grained bit level inspection and targeted reg- 
ularization techniques. 

II. EXEMPLAR APPLICATION AND PREVIOUS WORK 
For our example domain science task, we consider the 

CERN Large Hadron Collider (LHC) Compact Muon Solenoid 
(CMS) experiment [Chatrchyan et al.(2008)]. This is an ex- 
periment that runs particle collision experiments that generate 
data rates of ∼40 TB/s. To reduce data rates, physicists deploy 
tens of thousands of ASICs and hundreds of FPGAs to make 
decisions on whether a specific collision is of particular inter- 
est (known as triggering) at the microsecond scale [Sirunyan 
et al.(2020)], [CMS Collaboration(2020)]. One such ASIC 
is the endcap concentrator (ECON-T) ASICs [Di Guglielmo 
et al.(2021)], which is planned for deployment in the upcoming 
LHC upgrade. Each ECON-T ASIC is running a NN encoder 
to compress experimental data from the high-granularity end- 
cap calorimeter (HGCAL) [CMS Collaboration(2017)] into 
a smaller format for easy filtering in the trigger system. 
The ECON-T encoder hardware must accept new input data 
at 40 MHz and complete inference in 25 ns within an area 
budget of 4 mm2 [Di Guglielmo et al.(2021)]. To meet these 
constraints, the ECON-T encoder model is a small two-layer 
NN with ∼2000 parameters quantized to have 6-bit fixed-point 
weights which operates completely on-chip. To complicate 
matters further, the ECON-Ts operate in a high-radiation 
environment (due to their close proximity to particle collisions 
in the LHC). High radiation causes transient hardware errors, 
which can lead to incorrect application output (silent data 
corruptions) if the hardware is not designed robustly. The 
ECON-Ts filter terabytes per second of data for high-energy 

physics studies, and faulty execution is unacceptable. Only 
the NN weight parameters are vulnerable to faults because 
the activations are not stored in on-chip memory for longer 
than a cycle, as inference completes in a single cycle. 

The  open-source  quantization-aware  platform 
QKeras [Coelho et al.(2021)] is used for model training 
required for the algorithm development and also for 
generating stimuli for verification. The output of this stage 
is processed by the hls4ml compiler [Duarte et al.(2018)], 
[FastML Team(2023)], which translates the QKeras model 
description into a resultant C++ description. This is then 
converted to an hardware RTL description in Verilog 
utilizing Mentor Catapult HLS. Several verification steps 
are undertaken at this stage to identify bugs and improve 
performance: design rule checks, C simulation and code 
coverage, and other traditional on-chip digital verification. 

The HLS model description requires approximately 1,000 
lines of code. This stage is fast, O(seconds), but it requires 
several hundred iterations to optimize the algorithm perfor- 
mance based on physics metrics. The HLS stage determines 
the level of parallelism in the design, choice of pipelining, 
resource reuse factor, and clock frequency. This directly im- 
pacts the total area, power consumption, and the latency of 
the design. The digital simulation and implementation stages, 
alternatively, is much more time intensive and can take several 
orders of magnitude longer [Di Guglielmo et al.(2021)]. 

III. METHODOLOGY AND METRICS 
For ML models developed for scientific edge application, 

taking the ECON-T as an example, we now discuss methods 
developed for large scale, bit accurate simulation; metrics 
for robust quantized training; and approaches for mitigating 
effects of sensing and electronics faults. 

A. Accurate and fast functional simulation 
Powerful ML algorithms are valuable for real-time data 

processing, but they can lead to complex designs in hardware 
platforms such as FPGAs and ASICs. At the same time, 
for high data rate experiments, these algorithms need to be 
validated against large amounts of data offline to understand 
their performance in identifying rare and interesting signals 
amongst large background processes. This can necessitate a 
CPU-based inference of the model over millions or billions of 
events within the simulation framework of large experimental 
collaborations. 

To that end, a firmware generation workflow like hls4ml 
has an extremely useful benefit that was not intended in 
its initial design. The hls4ml workflow emits a fuctionally 
bit accurate C representation of the NN in hardware with 
the aid of algorithmic C1 and arbitrary precision2 libraries. 
The generated C code contains no external dependencies and 
compiles with any modern C/C++ compiler, making it easy to 
integrate into existing simulation frameworks. This can be used 

1https://hlslibs.org/ 
2https://docs.amd.com/r/en-US/ug1399-vitis-hls/ 

Arbitrary-Precision-AP-Data-Types 

https://hlslibs.org/
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types


to test the functional performance of the hardware algorithm 
in high level programming languages like Python and C much 
more easily and rapidly rather than in lower level hardware 
description languages. 

For CMS trigger applications, it is necessary to emulate the 
ASIC and FPGA algorithms in software in order to evaluate 
their performance in simulation and compare data with simula- 
tion. The firmware simulation generated with hls4ml has been 
added to the CMS software framework (CMSSW) [Bayatian 
et al.(2006)], [CMS Collaboration(2024)] used to collect, 
produce, and analyze physics data. Being fully self-contained, 
the generated C representation is compiled as a shared library 
and dynamically loaded, enabling multiple model versions to 
simultaneously co-exist. This enables physicists to trust the 
performance of algorithms developed for hardware despite 
being tested on very different hardware platforms. 

B. Quantized NN loss landscapes 
Bit accurate representations of these edge ML algorithms is 

important because of the custom quantization often deployed 
to make highly optimized implementations for efficient hard- 
ware. Often training is performed for such algorithms with 
a Pareto optimization over the performance and the system 
constraints (resources, latency, area, power, etc.) [Gholami 
et al.(2021)]. However, the stability of the training is not 
typically considered, and the robustness of the model may 
depend on effects which characterize the local and global loss 
landscape structure. This can lead to unstable and unreliable 
model training and a high sensitivity to small perturbations 
to the input data distribution. As an illustration of this, in 
Figure 2, we show the loss landscapes of 4 ECON-T models 
trained with different uniform quantizations [Yao et al.(2020)], 
[Yang et al.(2021)]. 

These visualizations help us to understand the local stability 
of each trained model under various quantizations. To charac- 
terize these features, we explore a few metrics. 
• CKA similarity: This metric, based on the Centered Kernel 

Alignment (CKA), has shown effectiveness in capturing the 
correspondence between representations in various trained 
neural networks [Kornblith et al.(2019)], owing to its in- 
variance properties. Models converging to the same local 
minima tend to demonstrate similar characteristics, offering 
insights into the smoothness of the loss landscape and the 
potential correlation with model performance and robust- 
ness. A low value of CKA suggests a high difference be- 
tween models initialized with different random parameters, 
implying a challenging loss landscape. 

• Hessian: In Machine Learning (ML), the Hessian matrix 
is a square matrix that characterizes the curvature of the 
loss function at a specific point. The eigenvalues of the 
Hessian matrix provide scalar values that offer insights into 
the curvature type at that point. Positive eigenvalues suggest 
local convexity of the function, indicating a single minimum 
or maximum. 

• Neural Efficiency: This metric, even if not directly related to 
the shape of the loss landscape, can give interesting insights 

 

 
 

Fig. 2.  ECON-T model loss landscapes illustrating varying behaviors 
with different uniform quantizations between 2-bit and 8-bits. A range of 
performance can be seen from very jagged landscapes at 2-bit weights to 
relatively smooth landscapes at 4- and 6-bit weights to a sharp narrow minima 
for 8-bit weights. 

 
 

about the capacity of the model. Indeed, network efficiency 
lets us know what is the percentage of node that are 
effectively used during the inference of the neural network, 
by estimating the minimum number of neurons required 
to encode the information exported by the neural layer, 
assuming perfect encoding [Schaub and Hotaling(2020)]. 
Figure 3 shows the outcomes of the ECON-T analysis. 

Performance heat maps show the performance of the autoen- 
coder by the Earth Mover’s Distance metric when 5% noise is 
introduced to the model inputs, Figure 3(left), revealing that 
the reduced precision of parameters in quantized NNs serves 
as regularization, guiding the model towards flat and smooth 
minima during training (as observed also in Figure 2). This 
is also reflected in the Hessian trace metric, Figure 3(right) 
which indicates lower bit widths have a flatter global minima. 

C. Fault tolerance to bit flips and sensor noise 
The final unique scientific challenge we consider is the 

sensitivity of the NN model to common faults: bit flip faults 
and sensor noise. 

In Section II, we discussed that the ECON-T ASIC will 
operate in an extreme radiation environment, 1000× that 
experienced in outer space. This leads to a large amount of 
single event upsets which cause bits to flip and which affect 
the performance of the ASIC. Typical radiation mitigation 
in hardware deploys triple modular redundancy (TMR) to 
triplicate the weight registers, but this incurs a 200% resource 
overhead. In response, we develop FKeras [Weng et al.(2023)] 
a tool that performs ultra-fine-grained inspection of the model 



of the loss landscape. 
 
 
 
 
 
 
 
 

 
Fig. 3. Results achieved by different versions, in terms of hyperparameters, 
of the ECON-T model. a) Shows the Earth Moving Distance (EMD) achieved 
by the models on clean data. b) Shows the EMD achieved by the model on 
noisy data. c) Shows the average network efficiency of the models. d) Shows 
the top eigenvalue, in logarithmic scale. 

 
 

to study the bit-level sensitivity of each weight in the NN. This 
allows us to prioritize which bits need protection and which 
may be safely disregarded, reducing resource overhead. 

We use FKeras [Weng et al.(2023)] to perform a design 
space exploration on the ECON-T model with respect to 
model size, performance, and fault tolerance. We perform 
a neural architecture search of the ECON-T model, using 
a Bayesian optimization to find small, medium, and large 
quantized ECON-T models that range from less accurate to 
more accurate. In our FKeras analysis, we find that all of the 
weight bits in the small, less accurate model are sensitive to 
faults, i.e., flipping any bit in the weights will cause the model 
to perform worse. For the large, more accurate model however, 
we find that only 6% of the weight bits are sensitive to faults. 
This implies that we need only protect a small fraction of 
the weights [Weng et al.(2023)]. The tradeoff here is that 
we need more resources to implement a larger model. As a 
result, we are met with a design tradeoff that merits careful 
consideration: would it be more worthwhile to implement a 
smaller, less accurate model that requires full protection or a 
larger, more accurate model that requires a small fraction of 
protection? 

Another common fault model for sensing applications is 
noise which may come from the sensor itself or conditions 
in which it is taking data. Therefore, deploying models 
on the edge demands more than just achieving the desired 
performance metrics; it necessitates ensuring robustness to 
perturbations. Robust models can withstand and adapt to 
noisy environments, offering more reliable performance un- 
der varying input data. To meet this challenge, we employ 
specific mitigation techniques that leverage insights from the 
loss landscape analysis. The investigation into the ECON- 
T model highlighted the advantageous effect of converging 
towards wide and flat minima. To address this need, we 
introduced Jacobian Regularization into the training process, 
aiming to push decision boundaries further from individual 
data points by minimizing the Frobenius norm of the Jacobian 
matrix [Hoffman et al.(2019)]. As showed in Figure 4, this reg- 
ularization technique offers a targeted approach to enhancing 
model robustness, informed by the shape and characteristics 

 
 
 
 
 

Fig. 4. The plot illustrates the performance of ECON-T models under 5% 
noisy data trained with different values of λJR, the hyperparameter used to 
tune the weight of the Jacobian regularization component 

 

 
IV. OUTLOOK 

In this paper, we highlight a number of unique challenges 
presented by high-throughput, low-latency scientific edge ML 
applications to enable reliable and efficient hardware VLSI 
implementations. From accurate, large-scale simulation to 
characterizing quantization robustness to fault mitigation under 
bit flips and noise, we present methods that can be employed 
to ensure trustworthy and resilient operation of cutting-edge 
science experiments. The methods we discuss in this study cut 
across a wide range of applications beyond particle physics. 
Future studies will continue to study these methods on other 
scientific domains such as those presented in Fig. 1. 

The state-of-the-art of edge ML applications in science 
have made significant advances in performance and hardware 
optimization [Deiana et al.(2022)]. We discuss a number of 
important reliability challenges, though many remain, and we 
call attention to the importance of designing tools, metrics, and 
techniques to optimize for robustness as well which will enable 
(semi-)autonomous, adaptive, and intelligent experimentation. 
Furthermore, visualization tools to aid domain scientists will 
enhance and transform the way experiments will operate in 
the future. 

From the studies presented here, several interesting research 
lines can be extended. We would like to explore how the 
fault tolerance of a neural network interacts with common 
neural network compression techniques like pruning and quan- 
tization. Perhaps certain pruning techniques lead to more 
resilient neural network weights, similar to a finding in which 
the chosen pruning technique made a neural network more 
resilient to noise in its inputs [Diffenderfer et al.(2021)]. It 
also would be worthwhile to see how loss landscapes reveal 
information on how resilient a neural network is to faults. 
While some correlation between robustness and loss landscape 
metrics were found, the extent of that correlation and possible 
causality still need to be understood. Ultimately, the design 
space optimization of performance, robustness, and efficiency 
is still in early exploration for scientific ML applications. 
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