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Abstract

First order phase transitions in the very early universe are a prediction of many
extensions of the Standard Model of particle physics and could provide the
departure from equilibrium needed for a dynamical explanation of the baryon
asymmetry of the Universe. They could also produce gravitational waves of a
frequency observable by future space-based detectors such as the Laser Interfer-
ometer Space Antenna (LISA). All calculations of the gravitational wave power
spectrum rely on a relativistic version of the classical nucleation theory of Cahn-
Hilliard and Langer, due to Coleman and Linde. The high purity and precise
control of pressure and temperature achievable in the laboratory made the first-
order A to B transition of superfluid 3He ideal for test of classical nucleation
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theory. As Leggett and others have noted the theory fails dramatically. The life-
time of the metastable A phase is measurable, typically of order minutes to
hours, far faster than classical nucleation theory predicts. If the nucleation of
B phase from the supercooled A phase is due to a new, rapid intrinsic mecha-
nism that would have implications for first-order cosmological phase transitions
as well as predictions for gravitational wave (GW) production in the early uni-
verse. Here we discuss studies of the A-B phase transition dynamics in 3He,
both experimental and theoretical, and show how the computational technology
for cosmological phase transition can be used to simulate the dynamics of the
A-B transition, support the experimental investigations of the A-B transition in
the QUEST-DMC collaboration with the goal of identifying and quantifying the
mechanism(s) responsible for nucleation of stable phases in ultra-pure metastable
quantum phases.

Keywords: helium 3; phase transitions; time-dependent Ginzburg-Landau equation;
cosmology; early universe; gravitational waves

1 Introduction

First order phase transitions are predicted to occur during cooling in the early universe
as a signal of physics beyond the Standard Model. The transition is expected to proceed
by the nucleation of bubbles of the stable phase by quantum or thermal fluctuations
after supercoooling. These bubbles grow rapidly due to the pressure difference between
inside and outside, and subsequently merge. The “fizz” generates pressure waves, which
on collision produce shear stresses with non-vanishing quadrupole moment, and hence
gravitational waves [1, 2] (see [3] for a review).

The power spectrum of the gravitational waves depends on a relatively small num-
ber of equilibrium and near-equilibrium properties of the phase transition, at least in
the case where the super-cooled transition happens fairly close to the critical temper-
ature. Two of the most important are the temperature at which bubbles nucleate, and
the duration of the transition. Both can be computed from the bubble nucleation rate
per unit volume as a function of temperature. In the standard approach, the nucle-
ation rate density is computed in homogeneous nucleation theory [4, 5] adapted to
relativistic quantum field theory [6, 7].

Given the importance of cosmological nucleation theory for the prediction of GWs
in the early universe, and its close relation to nucleation theory developed for labora-
tory systems, it is important to test the theory against experiment. Bubble nucleation
observed in nature and in standard laboratory systems usually happens around seeds:
small particles in suspension or surface irregularities. Testing nucleation theory in the
bulk requires extremely pure systems in containers with very smooth walls. Thus,
the ideal system for such a test is superfluid 3He, which in zero magnetic field has
two phases distinguished by their residual symmetries, and a first order transition
between them. The transition from a normal Fermi liquid to the superfluid takes place
between 1–2.5 mK, at which temperatures superfluid 3He is essentially pure. Even 4He
is insoluble in the limit T → 0, with a solubility of order X4 ∼ 10−6 at T = 2mK [8].
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Fig. 1: Phase diagram of bulk 3He at low temperatures and zero magnetic field.

At zero magnetic field, A phase is stable in a small wedge in the plane of tem-
perature T and pressure P below the superfluid critical temperature (see Fig. 1), but
above the polycritical pressure PPCP ≃ 21 bar. As the system is cooled further, A
phase becomes metastable below a temperature TAB. Homogeneous nucleation theory
predicts that the lifetime of the A phase at any temperature or pressure is enormous,
far longer than the age of the universe. Yet the transition is observed to happen within
in a few hours, even in cells with smooth walls [9, 10]. Thus homogeneous nucleation
theory fails dramatically, raising questions as to its extension to cosmological phase
transitions.

The QUEST-DMC (Quantum-Enhanced Superfluid Technologies for Dark Matter
and Cosmology) collaboration was set up under UK Quantum Technology for Fun-
damental Physics programme to tackle the nucleation problem using new techniques,
both experimental and theoretical, which have become available since the experiments
performed in the 1990s. In this article we report on progress in building simula-
tion code to investigate the dynamics of the order parameter of the system, using
established field theory of superfluid 3He, and tools and techniques borrowed from
cosmological simulations of phase transitions (see e.g. Ref. [11] on time-dependent
Ginzburg-Landau (TDGL) theory, Ref. [12] on cosmological phase transitions, and
Ref. [13, 14] on topological defects.

2 Cosmological phase transitions and GWs

At early times in its evolution the Universe was very close to thermal equilibrium,
as the perfect blackbody spectrum of the Cosmic Microwave Background radiation
demonstrates [15]. The earlier the time, the higher the temperature, and at very high
temperatures the state of matter in the early Universe must change. At temperatures
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(thermal energies) higher than around 100 MeV, reached at about 0.1 ms after the
Big Bang, the theory of the strong interactions - Quantum Chromodynamics (QCD) -
predicts that quarks and gluons inside nucleons are liberated. At still higher temper-
atures, around 100 GeV, the average value of the Higgs field is predicted to vanish.
Elementary particles are then massless, and the electroweak symmetry between the
photons, W and Z bosons restored.

If an early Universe phase transition were of first order the consequences would be
very interesting. The development of homogeneous nucleation theory in quantum field
theory [6, 7], combined with relativistic combustion theory [16, 17] builds a picture
of a transition proceeding by nucleation of bubbles of the low temperature phase by
thermal or quantum fluctuations, followed by rapid expansion, which transfers some
of the latent heat of the system into motion of the plasma. The resulting shear stresses
generate gravitational waves [1, 2]. One can estimate that these gravitational waves
would be of frequencies observable by pulsar timing arrays (QCD transition, nHz) and
space-based interferometers with million-km baselines (electroweak transition, mHz).
Another important consequence of a first order electroweak phase transition is that it
supplies one of the prerequisites for the dynamical generation of the baryon (matter-
antimatter) asymmetry in the Universe: namely departure from thermal equilibrium
[18, 19].

The first calculations of the free energy of the Standard Model (SM) [20, 21] indi-
cated that gauge field theories like the electroweak theory have a first order transition,
albeit with rather small latent heat [22]. Early calculations with lattice quantum field
theory also showed that gluons confine in a first order phase transition [23, 24].

Further investigation of the Standard Model transitions has shown that they are
both cross-overs [25–27]. All thermodynamic quantities evolve smoothly with temper-
ature, and while there are peaks in various susceptibilities, there is no possibility that
the Universe became stuck in a metastable state. The Universe of the Standard Model
stays very close to thermal equilibrium, as the particle scattering rate is many orders
of magnitude higher than the rate of change of temperature due to expansion.

This is perhaps disappointing. However, the majority of particle physicists are
convinced that the Standard Model is not the ultimate description of matter and
interactions. Apart from lacking a description of gravity, the SM has no explanation
for dark matter or the baryon asymmetry (see e.g. [28, 29] for pedagogical reviews).
Moreover, calculations of the vacuum fluctuations of the Standard Model particles
indicate that the current magnitude of the Higgs field, 174 GeV, is not the lowest
energy state [30, 31]. A related puzzle is what determines the magnitude of the Higgs
field, and why it is so different from the fundamental mass scale set by gravity, 1019

GeV.
The problems with the Standard Model motivate extending it. The study of exten-

sions to the Standard Model is known as BSM (beyond the Standard Model) physics
and it emerges that a first order phase transition in the early Universe is very much a
possibility in Standard Model extensions [32]. The search for gravitational waves from
the early Universe then becomes a search for BSM physics. There follow some major
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questions: how to observe these gravitational waves, and how to calculate their spec-
trum. Both have become very active areas in the intersection between particle physics
and cosmology, and now ultra-low temperature physics.

The simulations and modelling of first order transitions in the early Universe (see
[3] for a review) have shown that the gravitational wave spectrum depends mainly on
a handful of thermodynamic quantities: the critical temperature, the transition rate,
the latent heat, the phase boundary terminal velocity, and the sound speeds in the two
phases. The most difficult to calculate accurately are the transition rate β (the inverse
lifetime of the metastable phase) and the phase boundary speed vw, as they are both
non-equilibrium quantities. The amplitude and shape of the gravitational wave power
spectrum are quite sensitive to these parameters. For example, the peak frequency is
proportional to the ratio vw/β and the transition temperature.

Calculations of the transition rate β are based on the homogeneous nucleation the-
ory of Langer [5], a formalisation of the Cahn-Hilliard theory [4]. It was introduced
into quantum field theory at zero temperature by Coleman [6], and at non-zero tem-
perature by Linde [7] (see [33] for a discussion of the theory). There has been recent
progress with perturbative calculations of the rate parameter β [34], and it has also
been calculated non-perturbatively using numerical lattice simulations of Standard
Model-like gauge-Higgs system [35, 36]. Calculations of the wall speed are based on
modelling of the plasma in terms of quasi-stable particles and the Boltzmann equation
[37, 38]. Here, too, progress can be made with numerical methods [39, 40]. Both of
these frameworks have direct analogies in superfluid 3He, which offers the opportunity
to test and further develop the theory behind the gravitational wave calculations.

3 The A-B nucleation puzzle

According to the homogeneous nucleation theory of Cahn and Hilliard [4] and Langer
[5], a metastable system makes the transition to the stable state with lower free energy
via in small region, which is nevertheless large enough for the pressure difference
between the interior and exterior to overcome the surface tension of the boundary
between. In the bulk, such a region with lowest energy is spherical: the critical droplet
or bubble. The critical bubble provides the route through the space of order parameter
configurations to the ground state.

The thermal activation rate per unit volume is

Γ(T, P ) = λanae
−Ec/kBT , (1)

where λa is the attempt frequency, the rate at which the system tries to get over the
barrier between the metastable state and ground state, na is the number density of
regions in which an attempt can be made, Ec is the energy barrier, and T is the bath
temperature. The attempt frequency and density are set by microscopic dynamics of
the order parameter and are difficult to calculate. This calculation has recently been
automated for a single-component order parameter [41], but the rate evaluation for
the 18-component order parameter of 3He is far more of a challenging. However, the
pair correlation length, ξ, provides an estimate for the maximum density, na ∼ ξ−3.
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The attempt rate is governed by a combination of inertial dynamics and diffusion over
the barrier [5, 33, 42].

In the case of superfluid 3He, the two phases in question are the A and B phases
separated by the first-order transition line TAB(p) (see Fig. 1). In zero magnetic field,
above the polycritical point pressure PPCP ≃ 21 bar, the A phase is stable below
the superfluid critical temperature Tc and TAB, where the B phase takes over as the
phase with lower free energy. Both phases belong to the spin-triplet (S = 1), p-wave
(L = 1) manifold of pairing states defined by the macroscopic amplitude of fermion
pairs, ⟨ψp,aψ−p,b⟩, where p is the relative momentum of the pair of orbiting 3He
fermions while a and b are the spin projections (↑ or ↓) of the fermions comprising
the pair. The corresponding mean-field pairing self energy, ∆ab(p) = g ⟨ψp,aψ−p,b⟩,
where g is the attractive pairing interaction in the spin-triplet, p-wave Cooper channel.
These amplitudes are the elements of a symmetric 2 × 2 matrix order parameter,
∆̂(p) = iσ⃗σy · d⃗(p), where iσ⃗σy are the symmetric Pauli matrices, and the three-

component spin vector, d⃗(p), is in general a linear superposition of the p-wave basis
functions for momenta restricted to the Fermi surface. Thus,

∆̂(p) = (iσασy)Aαi (p̂)i , (2)

is parametrized by a 3 × 3 complex matrix, Aαi, that transforms as a vector with
respect to index α under spin rotations, and, separately, as a vector with respect to
index i under orbital rotations.1 This representation for the order parameter provides
us with an S = 1, L = 1 basis for an irreducible representation of the maximal
symmetry group of normal 3He,

G = SO(3)L × SO(3)S × U(1)N × T × C × P, (3)

which includes SO(3)L rotations in three-dimensional space, SO(3)S rotations in the
spin space, and the global phase transformation group U(1)N, as well as discrete
symmetries T , C and P , where T is time-reversal symmetry, C is the particle-hole
symmetry, and P is parity symmetry. The subscripts L, S refer to the generators for
the rotation groups while N is the number operator which is the generator for changes
in phase.

The bulk B-phase, which minimizes the bulk free energy over most of the pressure-
temperature plane below Tc, is the “isotropic” state defined by

AB
αi =

1√
3
∆B δαi , (4)

with residual symmetry HB = SO(3)L+S × T , i.e. the B-phase is time-reversal invari-
ant and invariant under joint rotations of spin and orbital components of the order
parameter. This state was shown by Balian and Werthamer to be the ground state
for spin-triplet, p-wave pairing in the weak-coupling limit [45]. The high degree of

1We follow the notation of Ref. [43] for the form of the spin-triplet, p-wave order parameter and Ginzburg-
Landau (GL) functional. See also Vollhardt and Wölfle [44] for a pedagogical development of the same.
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symmetry of the B-phase implies a large continuous degeneracy space,

RB = U(1)N × SO(3)L−S , (5)

corresponding to the choice of phase of the order parameter defined by the elements
of U(1)N, as well as the relative orientation of the spin and orbital coordinates of the
spin-triplet, p-wave Cooper pairs, represented by SO(3)L−S. As a result the class of
degenerate B-phase order parameters is,

AB
αi =

1√
3
∆B e

iφRαi[ϑn̂] , (6)

where φ is the global phase and Rαi[ϑn̂] is an orthogonal matrix defining a rotation
of the spin and orbital coordinates by angle ϑ about the direction n̂. Thus, there
are 4 continuous degeneracy parameters, and hence 4 gapless Nambu-Goldstone (NG)
modes. The phase mode is realized as collisionless sound in superfluid 3He-B and plays
a central role in observations of the spectrum of Higgs modes [46, 47]. There are three
spin-orbit modes that are key signatures of spin-triplet pairing in NMR spectroscopy
of 3He [48]. Nuclear dipolar interactions and Zeeman energies in an external magnetic
field partially lift the degeneracy of these modes, opening small gaps providing a novel
example of the Light Higgs scenario [49].

The stability of the A-phase at high pressure and temperatures relatively near to
Tc results from corrections to weak-coupling BCS theory that become sufficiently large
at high pressures to stabilize an equal-spin pairing (ESP) state that also spontaneously
breaks time-reversal symmetry with an order parameter of the form,

AA
αi = ∆A d̂α (m̂i + i n̂i) /

√
2 , (7)

where d̂ is a real unit vector in spin space along which the A-phase Cooper pairs
have zero spin projection. The orthonormal unit vectors m̂ and n̂ combined with
the relative phase of π/2 define orbital motion of the A-phase Cooper pairs with

orbital angular momentum +ℏ per Cooper pair along the axis l̂ = m̂ × n̂. This axis
is chiral and it highlights both broken mirror symmetry and broken time-reversal
symmetry by the A-phase. The latter allows for a macroscopic ground state angular
momentum predicted to be, Lz = Nℏ/2 for a system with N 3He atoms. 2 The
corresponding residual symmetry group is then, HA = SO(2)d×U(1)Lz−N×Z2, where

SO(2)d is the group of rotations in spin space about the axis d̂. The A phase breaks
orbital rotation symmetry as well as global gauge symmetry, however a rotation by
any angle about the chiral axis can be undone with an appropriately chose element of
U(1)N which leads to the residual gauge-rotation symmetry of the A-phase defined by
U(1)Lz−N. The residual discrete Z2 symmetry results from the combination of time-
reversal and mirror reflection in a plane containing the chiral axis. This symmetry
allows for the remarkable transport properties of the A phase including the anomalous

2See Ref. [50] for a discussion of the connection between the topological edge states, the edge currents
and Lz as well as review of theoretical literature on the ground state angular momentum.
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Hall effect that was reported for electrons moving in 3He-A driven by an electric field
perpendicular to the chiral axis [51, 52].

The A phase is also endowed with a large degeneracy space, in this case by the
combined degeneracy in the orientation of the spin direction d̂ on the surface of a
unit sphere, S2, and the orientation of the orbital triad, {m̂, n̂, l̂}, which is the group

of rotations in 3-space, SO(3). However, the combined transformations: d̂ → −d̂ and
(m̂+ i n̂) → − (m̂+ i n̂) is a discrete symmetry of the A-phase (Z

′

2), and thus the
degeneracy space excludes these combined changes of sign such that [53]

RA = S2 × SO(3)/Z
′

2 . (8)

The continuous degeneracy space implies the existence of 5 Nambu-Goldstone modes,
2 spin wave modes, 2 orbital wave modes and the sound mode. It is also worth noting
that the Z

′

2 symmetry is directly related to topologically stable half quantum vor-
tices originally predicted by Volovik and Mineev for ESP states [54, 55], and which
were recently discovered in NMR spectroscopy of the ESP polar phase of 3He under
rotation [56].

In simulating nonequilibrium dynamics and nucleation processes the low energy
excitations - Goldstone and pseudo-Goldstone modes - are expected to play an impor-
tant role in transporting mass, energy and magnetization. Another notable fact is
that the residual symmetry group of the B phase is not a sub-group of HA, and thus
the phase transition is necessarily first order. Thus, to nucleate the B phase from
the homogeneous A-phase requires deviations or fluctuations of the order parameter
from the local equilibrium A phase that incur an energy barrier, inhibiting nucleation
and allowing for supercooling of the A phase below TAB. Cooling below TAB at pres-
sures above PPCP puts the superfluid into a metastable state with free energy excess
∆fAB = fA−fB, where fA and fB are the condensation energy densities of the A- and
B-phases, which can be determined by integrating the measured specific heats from
Tc to the relevant temperature below Tc.

The path in order parameter space that minimizes the energy cost of a domain wall
(DW) separating the A and B phases, AA

αi → ADW
αi (x) → AB

αi, for a bubble of radius
R of 3He-B embedded in 3He-A plays a key role in the theory of nucleation of the -
phase in supercooled A phase. The surface energy of the A-B interface was measured
at high pressure by Osheroff and Cross [57], and at low pressure and high magnetic
field by Bartkowiak et al [58]. Theoretical calculations using GL theory [59–61] give
σAB ∝ ξfB, where ξ is the Ginzburg-Landau coherence length, with proportionality
constant close to 1 in good agreement with experiment.

To estimate the energy and radius of the critical bubble in the thin-wall approx-
imation (R ≫ ξ) we express the total energy of a bubble of B-phase embedded
in metastable A-phase as a sum of the gain in condensation energy proportional
to −∆fAB, and the cost in surface energy, proportional to σAB. Both depend on
temperature and pressure. Thus,

E(R) = 4πR2σAB − 4π

3
R3∆fAB . (9)
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The critical bubble is determined by the condition E′(R) = 0, representing a spherical
bubble poised between expansion and contraction. The radius and energy of the critical
bubble are then

Rc =
2σAB

∆fAB
, Ec =

16π

3

σ3
AB

∆f2AB

, (10)

and the critical bubble free energy is

Ec ≃ ϵ|fB|ξ3 (∆fAB/|fB|)−2
, (11)

where ϵ ≃ 10. The Ginzburg-Landau coherence length near the critical temperature
is ξ = ξGL(1 − T/Tc)

−1/2, where ξGL =
√

7ζ(3)/20 ξ0 and ξ0 = ℏvF/2πkBTc is the
Cooper pair correlation length in the ballistic limit [62]. The order of magnitude of the
condensation energy density is set by the density of states at the Fermi surface N(0) =
m∗kf/(2π

2ℏ2) and the critical temperature according to fB ∼ −N(0)(kBTc)
2(1 −

T/Tc)
2. Hence

Ec/kBT ∼ Gi (Tc/T ) (1− T/Tc)
1/2

(∆fAB/|fB|)−2
. (12)

where Gi = N(0)ξ30(kBTc) is the Ginzburg number, which takes values between 800
at zero pressure and 2900 at melting pressure, about 34 bar. A plausible estimate
for the order of magnitude of the length scale in the attempt density is the Cooper
pair correlation length ξ0, which takes values in the range 16 nm to 77 nm. An upper
bound the attempt rate is vF/ξ0, where the Fermi velocity vF is in the range 30m s−1

to 60m s−1.
The last factor in Eq. (12) diverges as (1− T/TAB)

−2 as the A-B equilibrium line
is approached, but even without the divergent factor the size of the Ginzburg num-
ber already ensures that the exponential e−Ec/kBT in the nucleation rate, Eq. (1),
overwhelms the attempt frequency in an experimentally accessible volume, leading to
an estimate of the lifetime of the metastable A-phase that vastly exceeds the current
age of the universe. Thus, as pointed out early after the discovery of the superfluid
phases [59, 63] classical nucleation theory predicts that the superfluid 3He should
remain in the metastable A-phase indefinitely in any experiment that can be realisti-
cally conceived. However, experimental investigations of supercooled 3He-A all show
that the B phase nucleates on timescales of seconds to hours suggesting another
mechanism is responsible for the nucleation of 3He-B [9, 10, 10, 64–69].

4 Explanations for the nucleation puzzle

Proposed explanations for the puzzle are many and varied [63, 66, 69–75]. The leading
contenders consider that nucleation in bulk, metastable superfluid 3He-A is caused
by energy injection by cosmic-ray muons or another energetic particle. In the “Baked
Alaska” scenario proposed by Leggett [63] the energy deposition breaks Cooper pairs
creating a local region of “hot” quasiparticles surrounded by the cold metastable A
phase. A shell of energetic quasiparticles expands, driving the system locally normal,
behind which the superfluid returns to a temperature below Tc, allowing the B-phase
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to nucleate with measurable probability. At this point the size of the shell must be
larger than the critical bubble size, otherwise the surface tension of the A-B phase
boundary will overwhelm the pressure difference and the B-phase bubble will collapse.
Support for such a scenario of local heating nucleating the B-phase is reported by
Schiffer et al. where it was shown that 764 keV neutrons as well as MeV γ rays from
60Co stimulate the A-B transition [9].

A particularly interesting consequence of a second-order symmetry-breaking phase
transition such as the normal-superfluid transition in 3He, was pointed out by Kibble
in the context of phase transitions in the early Universe: the generation of topological
defects [76]. He showed how to predict the type of defect on the basis of the topology
of the manifold of equilibrium states and the defect density on the basis of estimates
of the correlation length as the universe cools through a continuous phase transition.
The density estimate was later updated by Zurek who made the explicit link to defect
formation in rapid quenches in superfluid 4He [77, 78]. Experiments to investigate
vortex formation in superfluid 4He [79, 80] proved inconclusive, but experiments in
the B phase of superfluid 3He [81, 82] demonstrated spontaneous vortex generation in
rapid quenches consistent with the Kibble-Zurek mechanism.

The “Cosmological Scenario” for A-B nucleation proposed by Volovik and Kibble
[72, 83] envisages that energy is transported rapidly out of the injection region by
thermal diffusion, and that the front where the quasiparticle temperature goes below Tc
is swiftly followed by another front where it goes below TAB. The rapidity of the quench
inside the energy deposition region suggests that it contains causally disconnected
regions of local order, which evolve either into the A or B phases according to the
Kibble-Zurek scenario. In this case a complex region of multiple phases, separated by
domain walls, emerges. If a large enough B phase region has formed, it will expand and
eventually take over the condensate. Moreover, different types of topological defects
such as domain walls between B-phases [84], as well as vortices can be generated in the
energy deposition region. Indeed vortices have been detected in the Helsinki group’s
experiments injecting energy with neutrons [82]. There has been discussion between
the authors of the competing models [85, 86], but as yet no consensus.

It has also been pointed out that nucleation may be seeded by complex order
parameter configurations at the boundaries of an experimental cell, either by surface
roughness, or by topological singularities [71, 87]. Nucleation at rough boundaries has
been argued to fit the data of Hakonen et al. [65, 74], where nucleation occurred close to
a “catastrophe” line in the (T, P ) plane with a characteristically peaked temperature
distribution. The catastrophe line would be different for each experiment, as it would
depend on the details of the boundaries, particularly in the heat exchanger, where
complex surfaces of many square metres in area are found. Recently, it has been shown
that the position of the catastrophe line also depends on the path in the (T, P ) plane
taken when cooling through the A phase into the metastability region [69]. This was
explained in terms of a model of complex order parameter configurations acting as
B-phase seeds in small cavities, principally the heat exchanger.

More exotic explanations have been put forward. Non-topological order parameter
configurations known as Q-balls [88] have been proposed as an alternative to the
critical bubble as the route from the A phase to the B phase [70]. Such objects have
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been experimentally detected and studied [89]. It has also been proposed that resonant
tunnelling, a quantum-mechanical phenomenon where quantum tunnelling can proceed
via a classically allowed intermediate state of the same energy, could be at play in
superfluid 3He as well [75]. However, such classically allowed states were shown not
to exist in the quantum field theory of a single scalar field [90], so the existence of
resonant tunnelling for the multicomponent order parameter of 3He is not clear.

5 New experiments on A-B nucleation

In order to study nucleation in the bulk superfluid, one would like to eliminate or
control the effect of the container walls. The first imperative is to isolate the metastable
superfluid from the heat exchanger, which contains a large rough area in contact with
the superfluid. This can be done in two ways. One method is to utilize the Zeeman
energy of the ESP A phase in which case its equilibrium bulk free energy is reduced
in a magnetic field. Above about 0.6 T, the A phase is the stable superfluid phase
over the whole (T, P ) plane [91, 92]. By placing two opposing magnets close to each
other, it is possible to create a region of low magnetic field, where the superfluid is in
the metastable A phase, surrounded by higher field, where the A phase is stable [93].
In this configuration the phase transition happens in the low-field region, well away
from the walls of the container.

A new set of experiments use engineered cells and surfaces to confine 3He into
multiple chambers of different heights within a single experimental cell to study A-B
nucleation. Container walls generally lead to pair breaking and distortion of the order
parameter near the wall. The magnitude of pair-breaking depends on the atomic scale
properties of the wall [94–96]. In general pairing of states with orbital angular momen-
tum in the plane of a surface are suppressed. If the wall is smooth, e.g. by pre-plating
with superfluid 4He, quasiparticles reflect specularly, and the in-plane orbital states
are unaffected. This is the case for the A phase with the chiral axis aligned normal
to the wall; pair-breaking is suppressed and thus the the A-phase order parameter
survives all the way to the wall. The B phase, on the other hand, is modified by pair-
breaking of the orbital component normal to the wall. Its order parameter is distorted
towards the planar phase at the wall. The planar distorted B phase extends into the
bulk over a distance of a few coherence lengths. In the case of an atomically rough
surface pair-breaking occurs for all orbital components, in which case both the A and
B phase are suppressed near the wall by diffuse scattering. Thus, the ideal geometry is
a slab that stabilizes the A phase with minimal pair-breaking, i.e. by 4He pre-plating,
below Tc, but is thick enough to support the B-phase at lower temperatures as shown
for example in Fig. 3 of Ref. [96]. Indeed, experiments in thin nanofabricated cavi-
ties show that A phase can be stabilised at any pressure over a range of temperatures
[97, 98], and is the stable superfluid phase that onsets at the critical temperature.

These facts motivated the construction of the experimental cell used in the
QUEST-DMC experiments which consists of 5 superfluid “lakes” of 3He, each being
approximately 7 µm in depth, surrounded by shallower regions of ∼70 nm, in which
the 3He is forced to be either in the normal phase (diffuse scattering) or only the A
phase (specular scattering). This design allows for the study of the A-B transition

11



in multiple regions of metastable A phase in lakes of various volumes. The results of
the intital studies in this geometry are reported elsewhere [99]. The ultimate goal is
study intrinsic A-B nucleation by understanding, controlling and potentially eliminat-
ing extrinsic nucleation related to boundaries, defects, and particles depositing energy
in 3He.

6 Simulations of nonequilibrium phase transitions

In order to develop a deeper understanding of nucleation mechanisms for phase tran-
sitions, the QUEST-DMC theory effort is developing computational tools to simulate
nonequilibrium dynamics for the A-B transition of metastable 3He-A. This is a tech-
nically challenging problem involving the dynamics of a bosonic field defined on a
multi-dimensional order parameter space coupled to excitations of the underlying
fermionic vacuum. In many cases the dynamics occurs under conditions that are far
from equilibrium, particularly for nucleation generated by localized energy deposition.
Here we discuss simulations based on dynamics described by TDGL theory based on
the extension of the strong-coupling GL functional by Wiman and Sauls [62, 100]
that captures the A-B transition and extends the GL theory to temperatures below
TAB [101].

6.1 Time-dependent Ginzburg-Landau theory

Time-dependent Ginzburg-Landau (TDGL) equations have long been studied in the
context of the nonequilibrium dynamics of superconductors, particularly for super-
conductors in the “dirty” limit, ℏ/τ ≫ ∆, where τ is the mean scattering time for
unbound fermionic quasiparticles (see e.g. Kopnin’s review [102]). These equations
have been also been studied in the context of Kibble-Zurek quench dynamics and
normal-superfluid boundary propagation for U(1) superfluids by several authors [103–
105]. TDGL equations for superconductors and superfluids in the clean limit were
developed early on by Abrahams and Tsuneto for a U(1) superconductor starting from
an expansion of the nonequilibrium mean-field equations for the order parameter [106]
(see also Ref. [107]), and for superfluid 3He by Kleinert [108]. Below we formulate
the dynamics as a bosonic field theory for superfluid 3He with dissipation from the
excitations of the underlying fermionic vacuum.

The space-time evolution of the bosonic field describing Cooper pairs in bulk 3He,
Aαi(r, t), is governed by field equations obtained from the TDGL Lagrangian, L =
K − U , where

K =

∫
dV τ0 Tr

(
ȦȦ†

)
, (13)

is the kinetic energy associated with temporal fluctuations of the field A(r, t) with
Ȧ = ∂A/∂t and τ0 the inertia of the field which determines the dispersion of the
bosonic modes of the superfluid phases [11]. The potential energy functional is defined
by the GL free energy functional, which includes a second-order invariant,

U2[A] =

∫
dV αTr

(
AA†) , (14)
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that controls the phase transition to the broken symmetry phase. For α > 0 the
equilibrium state is the symmetric normal Fermi-liquid, while for α < 0 the equilibrium
state spontaneously breaks the symmetry, with a finite bosonic amplitude A. The
broken symmetry equilibrium state is determined by the fourth-order interactions of
the bosonic field,

U4[A] =

∫
dV

5∑
p=1

βp up(A) , (15)

where the five linearly independent fourth-order invariants of the maximal symmetry
group G for 3He in Eq. (3) are

u1 = |Tr
(
AAT

)
|2 , u2 = Tr

(
AA†)2

u3 = Tr
(
AATA∗A†) , u4 = Tr

(
AA†AA†) , u5 = Tr

(
AA†A∗AT

)
. (16)

Spatial gradients of the bosonic field also play a central role in the dynamics and
contribute to the effective potential in the form of supercurrents, textural bending
energies and deformations of the order parameter near the cores of singular topological
defects and boundaries,

U∂ [A] =

∫
dV

3∑
m=1

Km vm(∂A) , (17)

where the three linearly independent leading order gradient energies are

v1 = ∂kAαj∂kA
∗
αj , v2 = ∂jAαj∂kA

∗
αk , v3 = ∂kAαj∂jA

∗
αk . (18)

Thus, the Lagrangian density for the bosonic fields takes the form,

L = τ0 Tr
(
ȦȦ†

)
− αTr

(
AA†)− 5∑

p=1

βp up(A)−
3∑

m=1

Km vm(∂A) , (19)

where τ0 is the effective inertia for Cooper pair fluctuations. This Lagrangian respects
the maximal symmetry group G of 3He in Eq. (3). Weak violation of particle-hole sym-
metry by the parent Fermi-liquid allows for an additional invariant in the Lagrangian
that is first-order in ∂tA,

KΓ = iΓ
[
Tr

(
ȦA†

)
− Tr

(
AȦ†

)]
. (20)

However, this C-violating term is expected to be small; thus we neglect it in the
dynamical simulations that follow. In contrast we retain the dissipative term that is
first order in ∂tA that arises from coupling of the thermal bath of fermionic excitations
to nonequilibrium states of the bosonic field as discussed in Sec. 6.2.

The Lagrangian (19) generates the dynamical equations for the bosonic excitations
of superfluid 3He [11]. The bosonic field theory is significant as it provides an under-
standing of fundamental dynamical features resulting from spontaneous symmetry
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breaking in condensed matter and quantum field theories. A good example is Nambu’s
fermion-boson mass relations [109] for the broad class of Nambu/Jona-Lasinio field
theories [110, 111], which includes 3He, for mass generation by spontaneous symmetry
breaking [11, 112].

The parameters α, βp and Km that define the effective potential are temperature-
and pressure-dependent, and can be calculated from the microscopic theory of
superfluid 3He [100, 113–116], have the values

α(T ) =
1

3
N(0)(T/Tc − 1), (21)

βp = β0

(
bwc
p +

T

Tc
bscp

)
, p ∈ {1, . . . , 5} (22)

where the βp parameters in the weak-coupling limit are determined by pressure-
independent ratios and an overall scale set by

β0 =
7ζ(3)

80π2

N(0)

3(kBTc)2
, {bwc

p } = (−1, 2, 2, 2,−2) . (23)

The strong-coupling corrections to the βp parameters, bscp , are calculated based on
the leading order corrections to weak-coupling BCS theory as formulated by Rainer
and Serene [113]. A key result is that the strong-coupling corrections to the GL func-
tional are determined by the scattering amplitude for normal-state quasiparticles with
energies and momenta confined to the Fermi surface. This scattering amplitude also
determines the normal-state thermodynamic and transport properties of the normal
Fermi liquid phase of 3He. This allows us to solve the inverse problem to determine the
scattering amplitude from the experimental data for the normal Fermi liquid phase of
3He and the heat capacity jumps for the A- and B-phases at Tc. This program was
carried out and shown to predict the stability of the A-phase above the polycritical
pressure as well as the temperature dependence of the gap, thermodynamic potential
and heat capacity of the B-phase at low temperatures [114–116]. The calculated A-B
transition line is in excellent agreement with experimental results as shown in Fig. 8.6
of Ref. [116].

The other development in strong-coupling theory for 3He is the recognition of the
importance of the temperature-dependent scaling of the strong-coupling β parameters
below Tc shown in Eq. (22). This scaling is based on the microscopic strong-coupling
theory and developed in Refs. [62, 100]. The temperature and pressure dependence
of the strong-coupling corrections captures the A-B transition transition line to good
accuracy, and extends the predictive capabilities of the GL theory to temperatures
below TAB [101] for pressures above the polycritical pressure. This is essential for
developing TDGL theory to study order parameter dynamics in the metastable A
phase. In what follows we use the results for bsci (p) tabulated in Ref. [101]; these values
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Fig. 2: Phase diagram of bulk 3He showing the experimental superfluid critical tem-
perature Tc (black solid line), the A-B equilibrium line TAB (black dashed line)
[117] and the theoretical result for TAB based on the linear temperature scaling and
pressure-dependence of the strong-coupling β parameters below Tc [101].

are slightly different than the more accurate results reported in Ref. [116], but both
sets are comparable in their magnitude and pressure dependences.3

The spatial derivative terms in Eq. (17) determine the energy cost of deformations
of the order parameter from its homogenous equilibrium value. All three stiffness
coefficients are positive and can be calculated to good approximation in weak-coupling
theory,

K1 = K2 = K3 =
7ζ(3)

60
N(0)ξ20 , (24)

where ξ0 = ℏvF/2πkBTc is the zero-temperature Cooper pair correlation length.
The counterpart to the space derivative terms given in Eq. (13) is the kinetic energy

which is second-order in time-derivatives. The stiffness to temporal fluctuations of the
order parameter in the weak-coupling limit is given by

τ0 = ℏ2
7ζ(3)

48

N(0)

π2k2BT
2
c

. (25)

This result is equal in magnitude to the fourth-order contribution to the linear com-
bination of β parameters that determine the gap amplitude for the B-phase, i.e.
τ0 = βB = β12 + β345/3 in weak-coupling theory. This result guarantees that the
J = 0+ Higgs mode has the mass of two fermions at the continuum edge, M0+ = 2∆B.

3A review of strong-coupling theory, including the effective interactions in liquid 3He that give rise to
the stability of 3He-A and deviations from weak-coupling BCS theory for the thermodynamic properties,
will be published in a separate report.
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Based on symmetry grounds it is argued that the relation τ0 = βB is preserved to
leading order in strong-coupling theory in [11].

For static, but in general homogeneous superfluid phases, the effective potential,
U2 + U4 + U∂ , defines the GL free energy functional, FGL[A] =

∫
dV fs[A], with

fs[A] = αTr
(
AA†)+ 5∑

p=1

βp up(A) +

3∑
m=1

Km vm(∂A) . (26)

The GL functional is supplemented by boundary conditions for the order parameter
A that depend on the geometry and atomic scale properties of the boundary. In the
simulations discussed later in this report we compare energy densites relative to that
of the homogeneous B-phase, fB = −α2/4βB and we normalize to the energy density
scale

f0 =
1

3
N(0)(kBTc)

2. (27)

It is worth noting that our formulation of TDGL theory for the space-time dynam-
ics of pure spin-triplet, p-wave superfluid 3He can be extended to include attractive,
but sub-dominant, spin-triplet, f-wave Bosonic excitations, including the predicted
S = 1, L = 3, J = 4− Higgs mode [118] for which there is experimental evidence from
acoustic Faraday rotation of transverse sound [119].

The general form of the S = 1, L = 3 order parameter is Fα;ijk(r, t) which
transforms as a vector under SO(3)S for the index α and as a rank 3 symmetric,
traceless tensor under orbital rotations (SO(3)L) for the indices i, j, k. The lead-
ing order contribution to the effective potential is then αf (T )Fα;ijkF

∗
α;ijk, where

αf (T ) =
1
3 N(0)

(
T/Tcf − 1

)
where Tcf is the f-wave pairing instability temperature

which is a direct measure of the f-wave pairing interaction. For sub-dominant f-wave
pairing we have 0 < Tcf < Tc. There are many new invariants that contribute the
extended TDGL functional which can be enumerated using group representation the-
ory. Whether or not there is an f-wave condensate depends on the material parameters
of the new invariants. It may be possible that such a condensate exists in the cores
of o-vortices in the B phase, analogous to the p-wave condensate in the core of an
Abrikosov (s-wave) vortex [55].

Finally we note that symmetry breaking perturbations from the nuclear Zeeman
energy in an external magnetic field and the nuclear magnetic dipole-dipole energy
can be included in this framework, c.f. Refs. [100, 120], but here we focus on A-B
transition in the absence of magnetic field and neglect the weak nuclear dipole-dipole
energy. These effects of these perturbations on A-B transition will be discussed in a
future work.

6.2 TDGL equations with dissipation by the fermionic bath

The Euler-Lagrange equations obtained from Eq. (19) generate the non-dissipative
coupled dynamical equations for the 3× 3 complex matrix order parameter, Aαi(r, t),
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for superfluid 3He,

τ0Äαi + αAαi −K1∂
2Aαi − (K2 +K3)∂i∂jAαj

+2
[
β1A

∗
αiTr

(
AAT

)
+ β2AαiTr

(
AA†)

+ β3(AA
TA∗)αi + β4(AA

†A)αi + β5(A
∗ATA)αi

]
= 0 .

(28)

These coupled equations involve only the bosonic degrees of freedom with parameters
corresponding to the fermionic vacuum in local equilibrium. We include thermal fluc-
tuations of the fermionic vacuum via a Langevin source term that couples the thermal
fluctuations locally to the bosonic field. Several authors have formulated the dynamics
of a bosonic field theory coupled to a thermal bath in terms of a stochastic Langevin
source [103, 121]. We add to the right-hand side of Eqs. (28) a Gaussian noise source
ζαi(r, t) with intermediate-time averages ⟨ζαi(r, t)⟩ = 0 and 4

⟨ζαi(r, t)ζβj(r′, t′)⟩ = 2γ kBT δαβδijδ(r− r′)δ(t− t′) . (29)

The parameter γ plays an important role as it leads, via the fluctuation-dissipation
theorem, to damping of space-time fluctuations of the bosonic field via an additional
dissipative time-derivative term, γȦαi, on the left-side of Eq. (28) that is characteristic
of Langevin dynamics. Thus, the set of dynamical equations including the dampling
and Langevin noise source terms are,

τ0Äαi + γȦαi + αAαi −K1∂
2Aαi − (K2 +K3)∂i∂jAαj

+2
[
β1A

∗
αiTr

(
AAT

)
+ β2AαiTr

(
AA†)

+ β3(AA
TA∗)αi + β4(AA

†A)αi + β5(A
∗ATA)αi

]
= ζαi(r, t) .

(30)

For temperatures very close to Tc, i.e. the “gapless region” where |∆(T )| ≪ πkBTc,
the damping by the fermionic bath is given by [122]

γ = ℏ
πN(0)

48kBTc
. (31)

However, γ decreases rapidly below Tc as the mean field order parameter, and
excitation gap, become established. At low temperatures the temporal dynamics is
dominated by the inertial term defined by Eq. (13). However, at intermediate temper-
atures we retain both the inertial and damping terms. On dimensional grounds It is
convenient to express γ = ℏ2γ̃(

√
35ζ(3)/60)N(0)/6π(kBTc)

2, where γ̃ has dimensions
of frequency.

6.3 Dynamic lattice field theory simulations

Simulating order parameters living on a high dimensional manifold in 3+1 dimen-
sions requires high-performance computational resources, both in terms of parallel
floating point performance and effective input and output (I/O) for visualisation of
the results. In the last two decades, high performance computing (HPC) technologies

4Our formulation is similar that of Ref. [121].
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have improved remarkably both in hardware and software branches. One of goals of
QUEST-DMC project is developing libraries to solve and analyze static and time-
dependent GL equations easily, in the way of distributed parallelism and parallel I/O.
We solve the TDGL equations in Eq. (30) with finite difference discretization and
explicit time discretization [123]. In order to write Eq. (30) in dimensionless form,
the order parameter Aαi is expressed in units of kBTc, the length unit is the zero-
temperature limit of the GL coherence length ξGL =

√
7ζ(3)/20 ξ0, and the time unit

is tGL =
√

5/3 (ξGL/vF). Then, the discretized equations are evolved in time for each
point on a Cartesian grid in three space dimensions. To utilize HPC systems with
distributed memory, we use the lattice field theory library HILA as our framework
[124, 125]. HILA offers a uniform grid, on which the number of sites along each Carte-
sian direction can be chosen separately, and a series of pre-defined class templates to
easily handle scalars, vectors and matrices as physical fields on the lattice. It also has
excellent scaling with number of lattice sites.

Another significant aspect of simulating dynamics with TDGL theory are the
boundary conditions and initial conditions. We adopt periodic boundary conditions
and surface scattering boundary conditions to model different experimental situa-
tions [62, 94, 116]. When we test scenarios, e.g., Baked Alaska or the Cosmological
scenario, which rely on physical processes in the bulk of sample periodic boundary
conditions can be used. On the other hand, for heterogeneous environments e.g., order
parameter distortion or textural singularities near physical boundaries, a wide range of
boundary conditions that take into account different levels of atomic scale roughness
have been developed [96, 126–128].

We set the initial conditions for the order parameter configuration on the 3-
dimensional spatial lattice for various homogeneous equilibrium states such as A, B or
normal phase. Different levels of noise can be introduced to simulate the fluctuating
forces from the thermal excitations. In the rest of Sec. 6, we discuss our simulation
results with this types of initial states and let those generated from other situations
to be discussed in future works.

6.4 Preliminary results for a highly disordered initial state

Here we discuss a test of the Cosmological scenario using the numerical technology
which we introduced in Sec. 6.3. In order to gain a general understanding of our
numerical tool kit, as well as the features of physical system built upon it, we set
up a statistically homogeneous noisy initial state, with material parameters, α(T )
and βp(T ), with uniform and fixed temperature and pressure. This can be thought
of as modelling a quench with cooling rate 1/τQ → ∞ over the simulation grid with
non-equilibrium order parameter configuration [72, 77].

The spatial grid was 512× 256× 256 sites with a lattice spacing 0.5 ξGL. We chose
to simulate dynamics at p = 25 bar and T = 1.228 mK, for which ξGL = 12.0 nm,
making the larger side length 6.2 µm. The temperature-dependent Ginzburg-Landau
coherence length at the given temperature is ξGL(T ) = 17.6 nm. The total simulation
time was 103tGL, corresponding to 665 ns based on tGL = 0.65 ns at this pressure
and temperature. The damping parameter was set to γ̃ = 0.02t−1

GL = 30.05 MHz.
This choice is somewhat larger than the value inferred from the absorption of sound
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near the J = 2− Higgs mode in 3He-B [46, 129]. The values based on experimental
measurements are order 0.1− 5 MHz.

The spatial boundary conditions were chosen to be periodic in all three directions.
This boundary condition allows us to focus on the possible nucleation of B-phase
during a simulation in the absence of confining boundaries. The initial configuration of
Aαi was chosen from a Gaussian distribution at every site without spatial correlations,
but with mean order parameter corresponding to the equilibrium A phase.

With the sufficient onsite noise, which creates a “glass-like” order parameter, we
obtain B-phase bubbles that appear after a run time tn ≃ 50 ns, which is significantly
longer than the characteristic pair formation time ℏ/

√
Tr (AA†) ∼ 1 ns. Interestingly,

increasing the onsite noise amplitude does not necessarily lead to an increased likeli-
hood of the nucleation of B-phase. We found that only noise amplitudes in the range
0.4∆A−0.5∆A, where ∆A is equilibrium A-phase gap, triggered nucleation of B-phase
in this particular simulation. Figure 3 shows the B-phase bubble (dark blue) that
have nucleated in the surrounding metastable A-phase (cyan), and the correspond-
ing A-B domain walls (red) after time t = 91.7 ns. Specifically, Fig. 3(a) shows the
distribution of locally stationary free energy density fs defined in Eq. (26), which is
calibrated against the magnitude of the bulk free energy density fB of B-phase. The
metastable A-phase free energy density is depicted in cyan, while A-B domain walls,
which appear in light yellow and red, have much higher energy density contributed in
part by gradient energy.

In addition to B-phase bubbles and A-B domain walls, we also find domain walls
separating degenerate, but symmetry inequivalent, B-phases, as shown in Fig. 3(a) and
(b). Such walls and their relevance to Cosmology have been first considered in Ref. [84].
In isotropic pure 3He [130] these domain walls are non-topological, but can exist when
a certain symmetry is present between two different B-phase domains [84, 131]. The
specific symmetry group involved in this situation consists of π-rotation of global U(1)
phase and global π-rotations of SO(3)S in spin space. This interesting coexistence of
A-B domain walls and B-B domain walls is to be expected in the Cosmological scenario
based on the degeneracy space of the bulk B-phase.

By contrast, symmetry-breaking fields, such as that imposed on 3He by nematic
aerogel, lead to topological protection [132–136]], analogous to Cosmological Lazarides-
Shafi domain walls. In 3He confined to slab geometry, such domain walls are at the
heart of the putative crystalline superfluid phase with spontaneously broken transla-
tion symmetry [62, 137–139] (see also [140–142] for transport experiments with stepped
confinement). Here the mechanism of nucleation of the domain walls is a major out-
standing question, that may be related to the A-B transition puzzle. In addition to the
“hard” [131] domain walls discussed above, “soft” textural domain walls can be sta-
bilised and manipulated by a combination of confinement, magnetic field and nuclear
dipolar energy [143].

These preliminary studies with a homogeneous quench and infinite cooling rate do
not allow us yet to draw firm conclusions about the nucleation of B phase bubbles
in metastable A-phase. However, we note that the order parameter remains non-zero
everywhere throughout the evolution, suggesting that the bubbles of B phase can
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(a)

(b)

Fig. 3: Snapshots of distributions of stationary free energy fs in Eq. (26) and√
Tr (AA†) at running time t = 91.7 ns. (a) Distribution of stationary free energy fs

over simulation grid as described in Sec. 6.3. We calibrated fs against bulk free energy
fB of equilibrium B-phase, then the dark blue corresponds of bulk B-phase, while cyan
corresponds to bulk A-phase. The domain wall has higher stationary energy because
of the gradient energy. (b) Profiles of

√
Tr (AA†) between 3.4 and 3.6, corresponding

to the range found in domain wall structures at the temperature and pressure of the
simualtion (1.228 mK, 25 bar). The domain walls visible are either between A- and
B-phases or between different B-phases. The latter are non-topological domain walls,
which require specific symmetry between two domains [84]. The coexistence of A-B
domain wall and B-B domain walls can be understood as defects nucleated during fast
quench, which is a natural and expected result in cosmological scenario [72].
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appear without the system entering the normal phase following energy injection. Sim-
ulations based on more realistic temperature profiles, together with physically realistic
cooling dynamics, are ongoing and will be discussed in future reports.

7 Summary and outlook

In the construction of models of fundamental physics beyond the Standard Model
to account for dark matter and the baryon asymmetry, amongst other puzzles, a
common prediction is a first order phase transition in the early universe. Such phase
transitions would produce an isotropic stochastic background of gravitational waves. If
the phase transition took place at temperatures at or above the electroweak symmetry
breaking scale – where many models predict new particles and interactions – the
gravitational waves would be potentially observable at future space-based gravitational
wave observatories such as LISA [32].

Computations of the expected signal depend, amongst other things, on a relativistic
version of the homogeneous nucleation theory of Cahn and Hilliard [4] and Langer [5].
It is therefore important to test the theory in the laboratory. Superfluid 3He has a
first order phase transition between the A and B phases, for which the theory predicts
that at pressures, temperatures and magnetic fields where the A phase is metastable,
the system should remain in the A phase in the course of any conceivable experiment.
Yet the transition usually happens within in a few hours [66]. The QUEST-DMC
collaboration aims to resolve this puzzle, and to decide whether the experimental
observations point to a new rapid bulk nucleation mechanism, or to explanations based
on external sources of excitation energy such as high energy cosmic ray particles or
radioactive decay products from labaoratory materials [63, 73].

The QUEST-DMC collaboration involves new experiments to control and eliminate
boundary effects in two ways: nanofabricated cells taking advantage of confinement
stabilization of phases, and utilizing magnetic fields to isolate metastable A-phase
from experimental boundaries. Careful choice of nanotechnology makes walls atom-
ically smooth, while shaped magnetic field distributions ensure that the A phase is
metastable only in a portion of the experiment not in contact with the walls. In this
way surface nucleation sites are eliminated. Future experiments will use the advances
in a parallel strand of work on superfluid 3He as a dark matter detector to understand
fluxes of energetic particles and to eliminate them by building experimental facilities
underground [144, 145].

At the same time we are building simulation algorithms and numerical codes to
investigate the space-time dynamics of the 18-component order parameter of the sim-
ulation system, superfluid 3He. We can simulate the evolution of this system disturbed
by energy injection, or investigate the distortion of the order parameter around bound-
aries in complex geometries. In our first set of numerical experiments using the new
code, we have shown that regions of B-phase are nucleated following a spatially uni-
form random disturbance of the metastable A phase. Sufficiently large fluctuations
can produce sufficiently large regions of B phase to overcome the surface tension of
the phase boundary, and thus grow into a stable B-phase. We plan more detailed sim-
ulations of existing nucleation scenarios, including the Baked Alaska model and the
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Cosmological nucleation scenario, where the disturbance in the order parameter is
localised.
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