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Scale separation is an important physical principle that has previously enabled algorithmic ad-
vances such as multigrid solvers. Previous work on normalizing flows has been able to utilize scale
separation in the context of scalar field theories, but the principle has been largely unexploited
in the context of gauge theories. This work gives an overview of a new method for generating
gauge fields using hierarchical normalizing flow models. This method builds gauge fields from
the outside in, allowing different parts of the model to focus on different scales of the problem.
Numerical results are presented for 𝑈 (1) and 𝑆𝑈 (3) gauge theories in 2, 3, and 4 spacetime
dimensions.
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1. Introduction

Normalizing flows [1–3] are a novel machine-learning based tool for sampling which has
shown promise in the context of lattice field theory for alleviating or eliminating problems such as
critical slowing down and topological freezing [4–6]. Applications of normalizing flows to lattice
field theories have seen great progress in recent years [7, 8], with demonstrations involving Abelian
and non-Abelian gauge theories in 2, 3, and 4 dimensions, with and without fermions, including
preliminary work on QCD [9]. In addition recent efforts in scaling from demonstrations in toy
lattice volumes towards physically relevant theories have seen some success [10, 11].

One physical principle which has yet to be fully integrated into normalizing flow architectures
for field theories is that of scale separation. Scale separation is the principle that physical processes
and systems can often be decomposed into separate processes occurring at differing energy and
length scales. Properly utilizing scale separation is key element of calculations in many physical
domains and in the context of lattice field theory has lead to the development of many useful
algorithms such as multigrid methods [12, 13]. Previous machine-learning based work has explored
the use of scale separation in scalar field theories [14–17], 2D 𝑈 (1) gauge theory [18], and in the
context of linear preconditioners [19, 20], but not in the context of non-Abelian gauge theories.

This work provides a construction of a new class of hierarchically-constructed models referred
to as multiscale models. These models sample gauge fields by starting with coarse degrees of
freedom, and proceeding to add successively finer and finer degrees of freedom. This structure
allows these models to operate separately on the UV and IR degrees of freedom, enabling more
expressive models that are able to take advantage of the physical structure of the theory.

2. Normalizing Flows

Normalizing flows are a method from machine learning for constructing an expressive, learned
change of variables [1, 2, 21]. This change of variables takes the form of a parametrized bĳective
map 𝑓𝜃 which can be used to transform a density 𝑟 (𝑧) (typically referred to as the “prior” density)
into a new “model” density 𝑞𝜃 (𝑈) via

𝑞𝜃 (𝑈) = 𝑟 ( 𝑓 −1
𝜃 (𝑈))

�����det
𝜕 𝑓 −1

𝜃

𝜕𝑈

����� . (1)

Given a desired target density 𝑝(𝑈) = 1
𝑍
𝑒−𝑆 (𝑈) , the model density can be trained to replicate the

target density by minimizing the reverse Kullback-Leibler (KL) divergence,1

KL(𝑞 | |𝑝) = E𝑈∼𝑞 (𝑈) [log 𝑞(𝑈) − log 𝑝(𝑈)] (2)

= E𝑈∼𝑞 (𝑈) [log 𝑞(𝑈) + 𝑆(𝑈)] + log 𝑍 . (3)

Once a model has been trained, the target density 𝑝(𝑈) can be sampled via methods such as
independence Metropolis [21–25], or direct reweighting from the model density. The efficiency of

1Note that the log 𝑍 term in (Eq. (3)) is a constant independent of𝑈, and hence determining this (typically intractable)
term is not required for training.
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Figure 1: Schematic of the procedure for doubling layers, which serve to double the number of lattice sites
in a particular spacetime direction

such methods can be estimated using the effective sample size (ESS) statistic, defined by [26, 27]

ESS =
E𝑈∼𝑞 (𝑈) [𝑤(𝑈)]2

E𝑈∼𝑞 (𝑈) [𝑤(𝑈)2]
, (4)

where 𝑤(𝑈) = 𝑒−𝑆 (𝑈)

𝑞 (𝑈) is the (unnormalized) reweighting factor associated to 𝑈. The ESS gives an
approximation of how many independent target samples are obtained per model sample, and the
ESS is always bounded between 0 and 1.

3. Multiscale Models in Two Dimensions

Similar to a typical normalizing flow model, multiscale models begin by sampling from a prior
density, referred to as the coarse prior. Unlike most normalizing flow-based models, however,
samples from the coarse prior do not live in the same space as target samples; instead the samples
from the coarse prior are gauge fields living on a coarser lattice, possibly as coarse as a single lattice
site. The coarse prior can be any tractable density that can be sampled; for instance, the coarse
prior might be taken as a gauge theory with a coarser lattice spacing than the target density, or the
coarse gauge links could be sampled from the uniform (Haar) distribution.

Once the coarse degrees of freedom have been sampled, new degrees of freedom are added
via successive doubling layers. A doubling layer takes as input a set of “coarse” gauge links
𝑈coarse

𝜈 living on a lattice Λ along with a doubling direction 𝜇, and outputs a new set of “fine”
gauge links 𝑈fine

𝜈 arranged on a lattice Λ′ with twice as many sites appearing along the �̂� direction.
Conceptually, the lattice Λ′ is considered to be a refinement of Λ, meaning that Λ and Λ′ are both
considered subsets of the same underlying space with Λ ⊂ Λ′. This means that applying a doubling
layer halves the lattice spacing in the �̂�-direction, leading to an anisotropic lattice spacing 𝑎𝜈 .
By applying successive doubling layers with different doubling directions, the underlying lattice
spacing can be made arbitrarily small in every direction.

Doubling layers can be constructed in arbitrary dimensions; however, it is simpler to first
construct 2-dimensional doubling layers, and then later generalize the layers to accommodate
arbitrary dimensions (see Sec. 4). A 2-dimensional doubling layer with doubling direction 𝜇 can be
separated into two steps, as illustrated in Fig. 1. First each gauge link oriented along the �̂�-direction
is split into two gauge links 𝑈𝐴 and 𝑈𝐵, subject to the condition

𝑈𝜇 (𝑥) = 𝑈𝐴(𝑥)𝑈𝐵 (𝑥 + 𝑎𝜇 �̂�/2) . (5)
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This can be achieved by sampling 𝑈𝐵 from the uniform (Haar) distribution on the given gauge
group, and then defining 𝑈𝐴 from Eq. (5). Note that at this point no new physical information has
been added, since the added gauge links 𝑈𝐴 and 𝑈𝐵 do not create any new loops. All physical
information is added in the second part of the doubling layer, wherein a new set of perpendicular
links𝑈⊥ is sampled from a chosen distribution. For instance, one possible distribution for sampling
𝑈⊥ would be the heatbath-like distribution

𝑝𝐻𝐵 (𝑈⊥) ∝ exp

{
𝛽
∑︁
𝑥

Re Tr[𝑈⊥(𝑥 + 𝑎𝜇 �̂�/2) (𝑆𝐴 + 𝑆𝐵) (𝑥 + 𝑎𝜇 �̂�/2)]
}

(6)

where 𝛽 ∈ R parameterizes the probability distribution, and 𝑆𝐴 and 𝑆𝐵 are the staples defined by

𝑆𝐴(𝑥 + 𝑎𝜇 �̂�/2) = 𝑈
†
𝐴
(𝑥 + 𝑎𝜈 �̂�)𝑈†𝜈 (𝑥)𝑈𝐴(𝑥) (7)

𝑆𝐵 (𝑥 + 𝑎𝜇 �̂�/2) = 𝑈𝐵 (𝑥 + 𝑎𝜇 �̂�/2 + 𝑎𝜈 �̂�)𝑈†𝜈 (𝑥 + 𝑎𝜇 �̂�)𝑈†𝐵 (𝑥 + 𝑎𝜇 �̂�/2) (8)

and 𝜈 is the direction orthogonal to 𝜇. Alternatively 𝑈⊥ could be a sampled from a normalizing
flow model conditioned on 𝑆𝐴 and 𝑆𝐵, as will be discussed in Sec. 3.1.

Once 𝑈⊥ has been generated, the final fine lattice 𝑈fine
𝜈 can be assembled via

𝑈fine
𝜈 (𝑥) =


𝑈coarse

𝜈 (𝑥) 𝑥𝜇/𝑎′𝜇 even and 𝜈 ≠ 𝜇

𝑈⊥(𝑥) 𝑥𝜇/𝑎′𝜇 odd and 𝜈 ≠ 𝜇

𝑈𝐴(𝑥) 𝑥𝜇/𝑎′𝜇 even and 𝜈 = 𝜇

𝑈𝐵 (𝑥) 𝑥𝜇/𝑎′𝜇 odd and 𝜈 = 𝜇

(9)

where 𝑎′𝜇 = 𝑎𝜇/2 indicates the lattice spacing of the fine latticeΛ′ in the direction 𝜇. This completes
the construction of the doubling layers in 2 dimensions; all that remains is to compute the density
of the resulting field 𝑈fine

𝜈 , which can be accomplished using the factorization

𝑞(𝑈fine
𝜈 ) = 𝑞(𝑈⊥ | 𝑈𝐴,𝑈𝐵,𝑈

coarse
𝜈 )𝑞(𝑈𝐵 | 𝑈coarse

𝜈 )𝑞(𝑈coarse
𝜈 ). (10)

Here 𝑞(𝑈⊥ | 𝑈𝐴,𝑈𝐵,𝑈
coarse
𝜈 ) is the model density of a staple-conditional model, which will be

discussed in Sec. 3.1, and 𝑈𝐵 is sampled from the Haar distribution, which has density 𝑞(𝑈𝐵 |
𝑈coarse

𝜈 ) = 1. Note here that 𝑈𝐴 is determined by 𝑈𝐵 and 𝑈coarse
𝜈 , and hence does not require an

additional term in Eq. (10).

3.1 Staple-Conditional Models

In order to sample 𝑈⊥ (see Fig. 1), it is desirable to have a class of expressive, conditional
models that can incorporate as much gauge-equivariant information from the local neighborhood
of 𝑈⊥ as possible. One natural piece of gauge-equivariant conditional information are the staples
𝑆𝐴 and 𝑆𝐵 defined in Eqs. (7) and (8). More generally, any composition of gauge links passing
from the endpoint to the starting point of 𝑈⊥ has the same gauge transformation properties as 𝑆𝐴

and 𝑆𝐵, and hence can be considered as an abstract staple. Attempting to integrate this information
into the sampling of 𝑈⊥ then leads to the general notion of staple-conditional models, which
are models capable of sampling a single gauge matrix 𝑈, conditioned on a particular number of
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“staples” 𝑆1, . . . , 𝑆𝑛. Note that this architecture requires that each gauge link within 𝑈⊥ is sampled
independently conditioned on the staples. Staple-conditional models can be based on any tractable
distribution; in this work we will primarily consider staple-conditional models based on normalizing
flows.

There are two components to a normalizing flow-based staple-conditional model: a prior (or
base) distribution 𝑟 (𝑧 | 𝑆1, . . . , 𝑆𝑛), 𝑧 ∈ 𝐺, and a conditional normalizing flow 𝑓 (𝑧 | 𝑆1, . . . , 𝑆𝑛).
These two pieces can then be combined to define a model density 𝑞(𝑈 | 𝑆1, . . . , 𝑆𝑛):

𝑞(𝑈 | 𝑆1, . . . , 𝑆𝑛) = 𝑟 ( 𝑓 −1(𝑈) | 𝑆1, . . . , 𝑆𝑛)
����det

𝜕 𝑓 −1(𝑈)
𝜕𝑈

���� . (11)

The prior distribution can be any tractable distribution, such as the uniform (Haar) distribution,
or the heatbath-type distribution defined by Eq. (6) in the case of a 𝑈 (1) gauge theory.2 For the
conditional normalizing flow, the tools and methods developed for constructing gauge-equivariant
flow models can be adapted to the problem with slight modifications. For instance, in the SU(𝑁)
case both spectral and residual flows [28] provide building blocks that can be composed to create
expressive conditional transformations. For the SU(𝑁) staple-conditional flows involved in this
work, a spectral flow is used, acting on an effective active loop 𝑃 defined by

𝑃 = ProjSU(𝑁 )

{
𝑈

𝑛∑︁
𝑖=1

𝛼𝑖𝑆𝑖

}
(12)

where {𝛼𝑖}𝑛𝑖=1 are learned coefficients, and ProjSU(𝑁 ) is a projection onto SU(𝑁), accomplished
via polar decomposition:

ProjSU(𝑁 ) (𝑀) =
𝑀 (𝑀†𝑀)−1/2

det
[
𝑀 (𝑀†𝑀)−1/2]1/𝑁 . (13)

The spectral flow acting on 𝑃 produces a new, transformed value 𝑃′ ∈ SU(𝑁). This transformation
can then be pushed back to the gauge matrix 𝑈 to produce a new matrix 𝑈′ via

𝑈′ = 𝑃′𝑃†𝑈. (14)

This procedure can then be iterated with different values of 𝛼𝑖 and different spectral flows in order
to construct an expressive, learnable transformation. Alternatively, architectures based on residual
flows [28] may also be used as coupling layers, either in place of or alongside spectral flows.
Although the numerical demonstrations in Secs. 3.2 and 4.1 utilize only spectral flow based staple
conditional models, simiar models based on residual flows achieve similar performance.

For𝑈 (1) gauge fields, staple-conditional models can be constructed in a similar manner as the
SU(𝑁) staple-conditional models. The numeric demonstrations in Sec. 3.2 are constructed using
the heatbath-like prior defined in Eq. (6) combined with a sequence of coupling layers based on
circular rational quadratic splines. [29] The coupling layers in the𝑈 (1) case have the same structure

2Note that here “tractable” includes the requirement of computing the normalized density, which is not possible in the
case of a SU(3) heatbath due to the lack of an analytic formula for the normalizing constant for the distribution Eq. (6).
Computing the normalizing constant as well as its gradients numerically is theoretically possible, but the computational
cost of doing so would be impractically large for the models considered in Secs. 3.2 and 4.1.
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Figure 2: Effective sample size (ESS) for 2-dimensional multiscale models (higher is better). Blue data
points indicate the performance of the multiscale model combined with a small fine-lattice flow, while the
orange data points represent the fine-lattice flow alone.

as the SU(𝑁) staple-conditional flows, except that the projection in Eq. (12) is replaced with a
normalization step

Proj𝑈 (1) (𝑧) =
𝑧

|𝑧 | . (15)

3.2 Numeric Results

Numerical demonstrations of multiscale models are investigated for both 𝑈 (1) and SU(3)
gauge theories in 2 dimensions; results are shown in Fig. 2. All models start from a Haar uniform
coarse prior on a 2 × 2 lattice, and target an 8 × 8 fine lattice. In all cases the multiscale model
has been integrated into the overall model as a prior, with an additional flow applied at the finest
scale after all of the degrees of freedom have been generated. This is necessary due to the fact
that the multiscale models as constructed only attempt to capture a subset of possible correlations
in the output gauge configurations, and hence a full fine-lattice flow is still required for maximum
expressivity. For the 𝑈 (1) models the fine lattice flow consists of 48 gauge-equivariant coupling
layers utilizing rational quadratic splines [29], while the find lattice flows for the SU(3) models
consist of a single iteration of direction and location updates, for a total of 8 + 4 = 12 layers in 2
dimensions [28].

In both the 𝑈 (1) and SU(3) cases the multiscale models show significant improvement over
equivalent models without the multiscale component used as a prior. In the 𝑈 (1) case the quality
of the multiscale models is effectively independent of 𝛽, while the non-multiscale models have an
effective sample size consistent with 0. Meanwhile in the SU(3) case the model quality does decline
with 𝛽, but more slowly for the multiscale models, which maintain ∼ 10% ESS even for 𝛽 = 16.

4. Multiscale models in higher dimensions

In greater than two dimensions, models can be constructed in the same manner as in two
dimensions, with a few additional complications. As in two dimensions, higher-dimensional
multiscale models are also constructed as a sequence of doubling layers, each doubling the lattice

6
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extent along a particular direction. The primary complication in adapting the 2-dimensional models
to higher dimensions occurs during the generation of the new gauge links𝑈⊥ that are orthogonal to
the doubling direction. In 𝑑-dimensions, the role that𝑈⊥ plays in 2-dimensional models is replaced
by a (𝑑−1)-dimensional slice of the lattice, as illustrated in Fig. 3. This slice contains both UV and
IR degrees of freedom, and hence more care is required handling this slice than in the 2-dimensional
case.

One viable solution for sampling the (𝑑 − 1)-dimensional slice needed in a 𝑑-dimensional
doubling layer is to utilize a (𝑑 − 1)-dimensional multiscale model. This gives the models a
recursive structure, with each multiscale model depending recursively on several lower-dimensional
models, terminating at the base case of a 2-dimensional model, for which the previously described
2-dimensional multiscale models are sufficient. This gives the broad structure of the model, which
is subject to a handful of complications.

The first complication arises in the conditioning of the models. In order to ensure that the
lower dimensional models can generate correlations in the perpendicular field 𝑈⊥, models need to
have access to sufficient gauge-equivariant information, including information not present within
the slice that the lower-dimensional model operates within. In order to pass such information, the
multsicale models as described above can be modified by adding additional conditioning in the form
of staples constructed out of gauge links present in the higher-dimensional models. This means
that, for instance, a 2-dimensional doubling layer contained within a 3-dimensional model will also
receive as input staples which reach outside of the 2-dimensional plane. These staples can be passed
to the staple-conditional models present within the doubling layers, allowing the staple-conditional
models to properly account for out-of-plane information.

The second complication of the higher dimensional doubling layers arises during the first part
of the doubling layers, wherein the gauge links oriented along the doubling direction are split
in half (see Eq. (6)). In 2-dimensional doubling layers this step does not add any new physical
information, but this is not necessarily true if the 2-dimensional doubling layer is a subcomponent
of a higher-dimensional model. In particular, if there already exist paths of links connecting the
two endpoints of 𝑈𝐵, then 𝑈𝐵 could be sampled from a staple-conditional model conditioned on
these paths, adding new physical information to the sampling step. Furthermore, it is also possible
to sample 𝑈𝐵 at some sites before others, allowing the later values of 𝑈𝐵 to be conditioned on
previous values. In practice this requires careful bookkeeping to route the appropriate staples into
a new staple-conditional model for sampling 𝑈𝐵.

4.1 Numeric Results

Numeric results for 4-dimensional models for both 𝑈 (1) and SU(3) gauge theories are shown
in Fig. 4, in terms of the KL divergence as defined in Eq. (3). Both models start from a Haar
uniform coarse prior of size 𝐿/𝑎coarse = 2, and target a periodic fine lattice of size 𝐿/𝑎fine = 4. The
constant log 𝑍 in Eq. (3) is estimated from the best model available at the given 𝛽, and the same
value of log 𝑍 is used for every model at the same value of 𝛽. As with the 2-dimensional models,
the multiscale models here are integrated into a larger model as a prior, with a small additional
fine-lattice flow. For the𝑈 (1) models the fine lattice flow consists of 48 gauge-equivariant coupling
layers utilizing rational quadratic splines [29], while the fine lattice flows for the SU(3) models

7
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Algorithm 1 Generic 𝑑-dimensional doubling layers
1: Input: Coarse gauge field 𝑈coarse

𝜈 , doubling direction 𝜇, higher-dimensional staples 𝑆
2: Sample 𝑈𝐵 from staple-conditional model
3: Compute 𝑈𝐴 = 𝑈𝜇𝑈

†
𝐵

4: Add 𝑆𝐴, 𝑆𝐵 from Eqs. (7) and (8) to 𝑆

5: if 𝑑 = 2 then
6: Sample 𝑈⊥ from staple-conditional model
7: else
8: Sample (𝑑 − 1)-dimensional slices 𝑈⊥ from (𝑑 − 1)-dimensional multiscale model
9: end if

10: Combine (𝑈coarse
𝜈 ,𝑈𝐴,𝑈𝐵,𝑈⊥) via Eq. (9)

11: Output: fine gauge field 𝑈fine
𝜈

Algorithm 2 𝑑-dimensional multiscale model
Input: Higher-dimensional staples 𝑆
Sample gauge field 𝑈𝜈 at coarsest scale
while 𝑈𝜈 has not reached finest scale do

Choose doubling direction 𝜇

𝑈𝜈 ← DoublingLayer(𝑈𝜈 , 𝜇, 𝑆)
end while

Figure 3: Illustration of a 3-dimensional doubling layer; red points indicate the new lattice sites in the
doubled lattice, and red lines indicate the added gauge links.

consist of a single iteration of direction and location updates, for a total of 48 + 16 = 64 layers in 4
dimensions. [28]

In all cases the KL divergence of the multiscale models is smaller than the KL divergence of
the fine-lattice flow alone. The degree of improvement is slight at smaller values of 𝛽, but increases
for larger values of 𝛽, indicting that the multiscale models have increased expressivity at higher 𝛽
relative to the fine-lattice flows utilized in this work. One plausible explanation for this difference
is that the higher 𝛽 distributions tend to have stronger correlations at longer distances. Multiscale
models can build such correlations directly when acting at the coarser scales, whereas the full
fine-lattice flow needs to build in the correlation structure starting from the finest scale upwards,

8
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Figure 4: KL divergence (see Eq. (3)) for 4-dimensional multiscale models (lower is better). Blue data
points indicate the performance of the multiscale model combined with a small fine-lattice flow, while the
orange data points represent the fine-lattice flow alone.

which is particularly difficult for the relatively small fine-lattice flows utilized in this work.

5. Future work

There are several possible avenues for future improvements for the models presented here.

• The fine-lattice flows utilized in the numeric results here are intentionally small in order
to isolate the effects of the multiscale models. Future studies could combine the multiscale
models with larger, more expressive fine-lattice flows in order to obtain a maximally expressive
combination.

• For the sake of simplicity, the multiscale models presented here assume independence of
links sampled at a given scale after conditioning on the coarser scales. Future models could
relax this assumption, which would also have the benefit of making the multiscale models
universal density approximators, meaning that the models could (in principle) approximate
any density to an arbitrary degree of precision, given a sufficient number of parameters.

• The present work has focused on the method of direct sampling as a benchmarking task
for these new models; however, this is not necessarily the most efficient method for utilizing
multiscale models. Instead a hybrid approach that combines more traditional MCMC methods
such as HMC with flow-based methods could provide a better avenue for near-term physics
applications (see, for instance, the recent work in Refs. [10, 11]).

6. Conclusion

Multiscale models show great potential for improving near- and far-term normalizing flow
capabilities in the context of lattice field theory. By operation on the UV and IR degrees of freedom
separately, these models are able to exploit scale separation in order to more effectively replicate
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the desired gauge field distribution. Though more work is needed to extend these models and
integrate them more fully with other methods, this represents a promising step in understanding and
implementing normalizing flows for gauge generation, and more broadly improving the efficiency
of gauge generation as a whole.
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