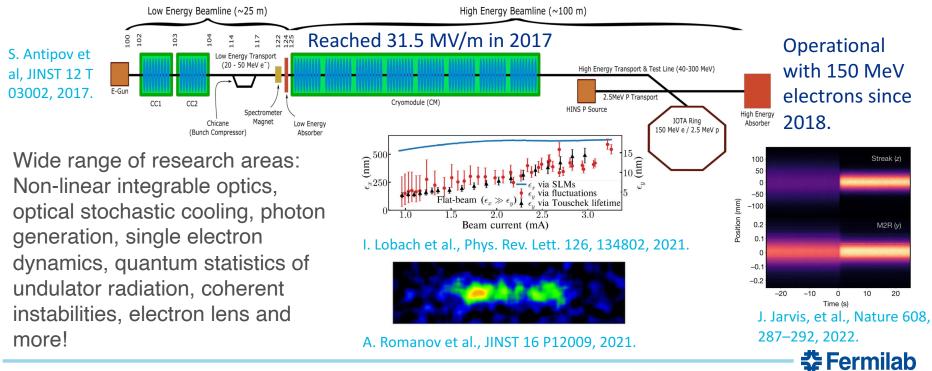


FERMILAB-SLIDES-23-330-AD


Experiments on Electron Cooling and Intense Space-Charge at IOTA

Nilanjan Banerjee, MaryKate Bossard, John Brandt, Young-Kee Kim, Sergei Nagaitsev, Giulio Stancari In partnership with:

The FAST/IOTA Facility

The Fermilab Accelerator Science and Technology (FAST) facility and the Integrable Optics Test Accelerator are dedicated to beam physics research.

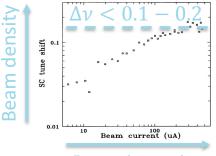
Overview

1. Motivation and Conceptual Design

2. Beam Experiments using Electron Cooling

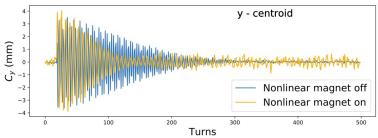
3. Hardware Configuration and Status

Motivation and Conceptual Design


THE UNIVERSITY OF CHICAGO

Maximizing Brightness and Intensity

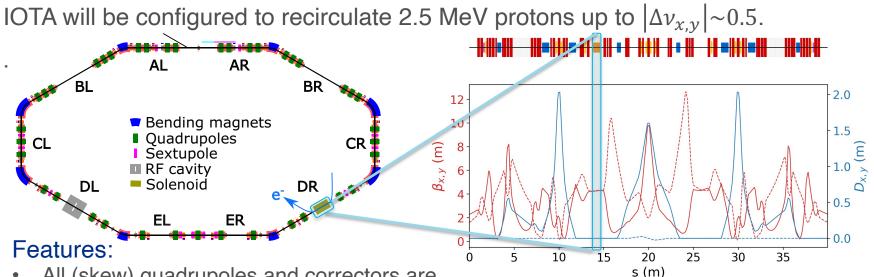
Four grand challenges of accelerator and beam physics facing the community are:


- 1. Beam Quality: Limited by heating due to Intra-Beam Scattering, resonance crossing, etc.
- 2. Beam Intensity: Limited by collective effects and particle losses.
- 3. Beam Control
- 4. Beam Prediction: Limited by error fields and non-linearity of space-charge.

J. Blazey et al, Accelerator and Beam Physics Roadmap, DOE Accelerator Beam Physics Roadmap Workshop, 2022 S. Nagaitsev et al., Proceedings Particle Accelerator Conference, 1995, pp. 2937-2939

Beam intensity

How to maximize phase-space density of stored beam and minimize beam loss in a ring for given number of turns?



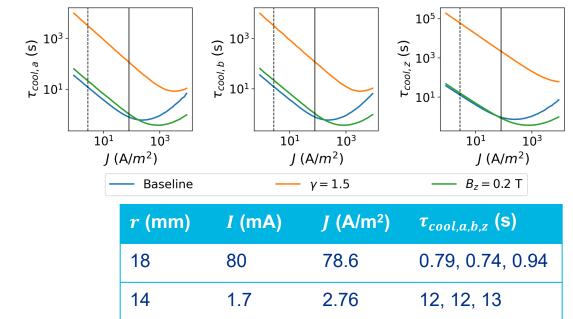
C. C. Hall et al., in Proc. IPAC'19, paper WEPTS070, 2019 How much tune spread is needed to stabilize stored beam?

CHICAGO

The Proton Program at IOTA

- All (skew) quadrupoles and correctors are independently controlled.
- Both bunched beam and coasting.
- Single turn injection.
- Electron lens/cooler with length 0.7 m.
- G. Stancari et al, JINST 16 P05002, 2021

At the Laslett tune shift of 0.5, Intra-Beam Scattering driven transverse emittance growth time-scale is a few seconds. Electron cooler must compensate for heating.


Electron Cooler Design Parameters

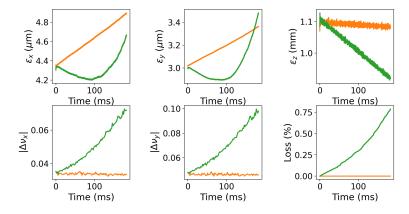
Electron beam parameters aim to provide a cooling time of $\sim 1 - 10$ seconds to control equilibrium emittance at different bunch charges.

We estimated the cooling time using the Parkhomchuk model assuming:

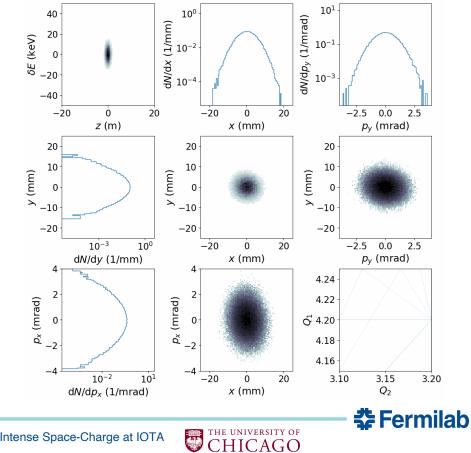
- Flat transverse distribution of the electron beam.
- Ideal solenoid field.
- Matched proton beam.

For the baseline design we chose two electron coolers with an order of magnitude difference in cooling time.

M. Bossard et al., in Proc. IPAC'23, pp. 646-649, 2023.


6

CHICAGO


‡ Fermilab

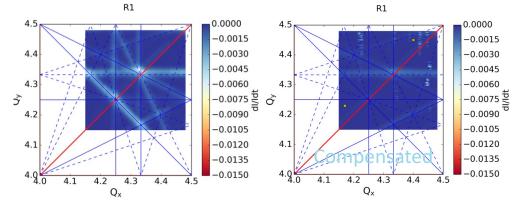
Simulations in PyORBIT with Space-Charge and Cooling

We simulate our experiments using a transverse PIC space-charge model and the Parkhomchuk model of cooling.

Cool the core of the beam. Can't cool large amplitude particles excited by periodic resonance crossing.

Beam Experiments using Electron Cooling

THE UNIVERSITY OF CHICAGO


Optimization of the Bare Lattice to Maximize Tune Shift

What is the maximum space-charge tune shift of stored beam we can achieve?

- Optimizing the linear lattice configuration, including tunes and transverse coupling.
- 2. Compensating for specific resonance driving terms using sextupoles.

3.20 3.20 3.20 $Q_{\gamma}^{\varepsilon_{\lambda}/\varepsilon_{\lambda}}$ 100*δε_x/ε_x* 0, 1200 2.5 2.5 2 SSO or 3.15 0.0 3.103,10 4.20 4.15 4.15 4.20 4.15 4.20 0, 0, 0.

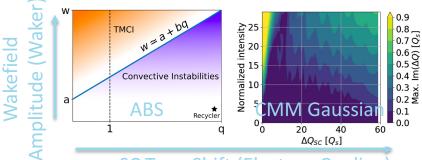
Simulated tune scans over 25 synchrotron periods for a Gaussian bunched beam with $|\Delta v_{y}(t=0)| = 0.05$

F. Asvesta et al., in Proc. IPAC'22, pp. 2056-2059, 2022.

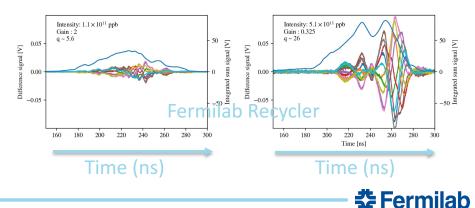
CHICAGO

🛠 Fermilab

Interplay of Space-Charge and Coherent Instabilities


How are coherent instabilities affected by space-charge? The 2.5 MeV protons at IOTA provide strong space-charge but weak impedance.

Measure instability growth rate and headtail amplification in the parameter space using:

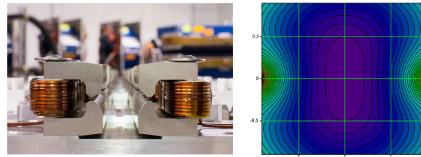

 Controlled wakefields generated using the wake-building feedback system.

R. Ainsworth et al., in Proc. HB'21, pp. 135-139, 2021.O. Mohsen et al., in Proc. NAPAC'22, pp. 124-127, 2022.

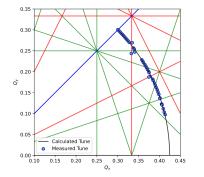
 Electron cooling to enforce an equilibrium phase-space distribution, independent of bunch charge.

SC Tune Shift (Electron Cooling) ABS: A. Burov, Phys. Rev. Accel. Beams 22, 034202, 2019. CMM: X. Buffat et al., Phys. Rev. Accel. Beams 24, 060101, 2021.

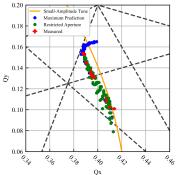
CHICAGO


Tunable Landau Damping with Space-Charge

Non-linear Integrable Optics enable large amplitude-dependent tune spreads while keeping single-particle dynamics stable.


Flagship project for the Integrable Optics Test Accelerator!

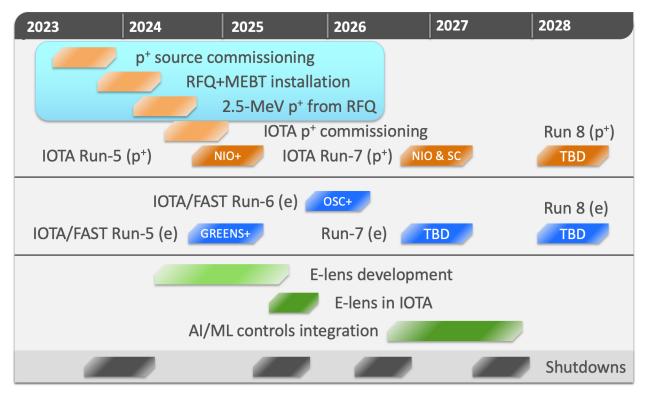
Electron cooling enables:


- Single particle dynamics experiments with pencil beam and low energy spread.
 A. Valishev et al., in Proc. IPAC'21, pp. 19-24, 2021.
 N. Kuklev et al., in Proc. IPAC'21, pp. 1964-1967, 2021.
- 2. Measurement of minimum tune spread required to mitigate coherent instabilities with space-charge.

V. Danilov and S. Nagaitsev, Phys. Rev. ST Accel. Beams 13, 084002, 2010. S. Antipov et al, JINST 12 T03002, 2017.

J. Wieland et al., in Proc. IPAC'23, pp. 3230-3232, 2023.

S. Szustkowski, PhD Thesis, Northern Illinois University, 2020.

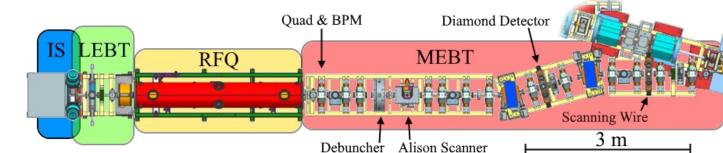


Hardware Configuration and Status

THE UNIVERSITY OF CHICAGO

Electron Cooling in 2025

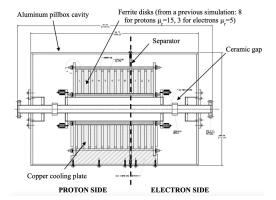
D. Edstrom, IOTA/FAST department meeting, 2023.

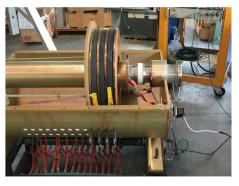


‡ Fermilab

THE UNIVERSITY OF

2.5 MeV Proton Injector and IOTA RF Configuration


Injector beamline capable of delivering short pulses of 2.5 MeV protons at 1 Hz.



Broadband normal conducting RF system with two gaps, but only 30 MHz gap installed.

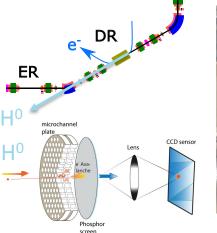
h	f(MHz)	$V_{min}(V)$	$Q_s(V = 1 \text{ kV})$
4	2.187	72	0.01
56	30.62	1000	0.04

E. Prebys, Beams Document 4837-v1, Fermilab, 2015.

D604

IOTA

G. M. Bruhaug and K. Carlson, in Proc. NAPAC'16, pp. 432-434, 2016.

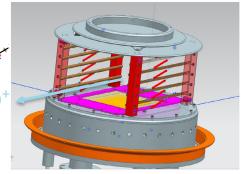

Proton Beam Diagnostics

Injector: Toroid, Scanning wire, Allison scanner Storage Ring:

- DCCT: Measure injection efficiency and beam lifetime.
- Beam Position Monitors
 - Use LOCO to configure lattice.
 - Use turn-by-turn centroid positions of pencil beams to measure single-particle dynamics.
- Neutralization monitor
 - Measure equilibrium transverse profile with cooling.
- Ionization Profile Monitor

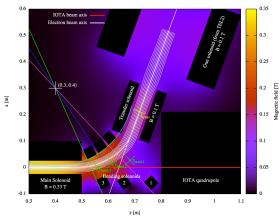
16

- Measure turn-by-turn evolution of transverse profile.

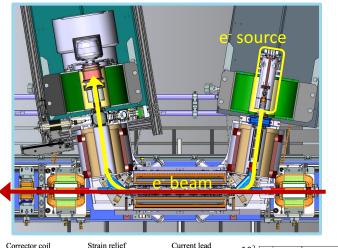


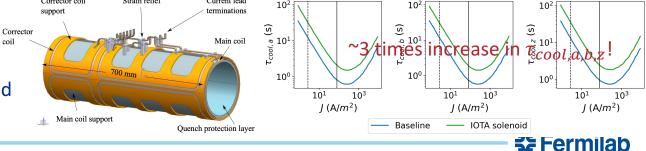
Bongho Kim et al., NIM A, 899, 22-27, 2018.

CHICAGO


V. Shiltsev, NIM A, 986, 164744, 2021. H. Piekarz et al, Beams Document 9903v1, Fermilab, 2023.

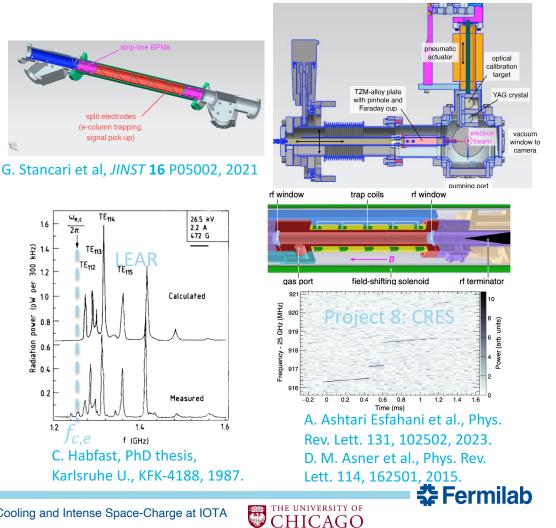
Electron Lens Setup


Conceptual design of all parts exist but engineering design needs to be finalized.


Electron Tracking

D. Noll and G. Stancari, Technical Memo, Fermilab, 2015. FERMILAB-TM-2598-AD-APC.

Conduction cooled SC solenoid R.C. Dhuley et al 2021 JINST 16 T03009


THE UNIVERSITY OF

CHICAGO

10/5/23 Nilanjan Banerjee I Experiments on Electron Cooling and Intense Space-Charge at IOTA

Electron Beam Diagnostics

- Toroids: Measure beam current and losses.
- Stripline BPMs: Align with the proton beam.
- Profile measurement: Measure transverse profile.
- Recombination Monitor: Optimize cooling performance.
- Cyclotron Emission Monitor: Estimate electron density and temperature.

Conclusion

CHICAGO

19 10/5/23 Nilanjan Banerjee I Experiments on Electron Cooling and Intense Space-Charge at IOTA

Acknowledgements

Rob Ainsworth, Alexey Burov, Brandon Cathey, Sergei Kladov, Valeri Lebedev, Aleksandr Romanov, Alexander Valishev and the IOTA/FAST collaboration at Fermilab.

Thank You!

