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Introduction

» At the Fermilab accelerator complex, the

Main Injector (MI) and Recycler Ring (RR)
share a tunnel. Fermilab Accelerator Complex

» MI: 8-120 GeV proton accelerator for
high-energy neutrino experiments, etc.

Main Injector N
Recycler Ring

* RR: 8 GeV permanent magnet ring,
proton stacker for Ml; beam to g-2.

* Design from the Tevatron days: RR was a g .
storage ring for low intensity antiprotons. ) ] .. B
» Now both the Ml and RR can have high- &=
intensity beams.
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Problem

* Both the Ml and RR can have significant beam loss

* About 260 Beam Loss Monitors (BLMs) spread around
the tunnel to detect beam loss

« Often hard to know which ring is responsible for the
beam loss: both machines can be unnecessarily
tripped

* Purpose of project: better attribute beam loss to a
particular machine to increase uptime

Beam Loss Monitor
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Beam Loss

* One can distinguish between Ml or RR loss based on time / state of the machine or

location

* |dea is to train a machine learning model to distinguish between the two
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Example illustration of overlapping beam
events and losses in the Ml and RR accelerators
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Location dependency of Ml and RR beam loss
as seen from tunnel activation residual doses
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BLM Readout “Pirate” Cards

* BLMs are read out using 7 BLM nodes, tied to
machine permit

« Standard method to read BLM values not

suitable for ML deployment : A TP
* Added a custom VME reader cards (“pirate”) SR _ v
to each BLM node to stream out data PN = i | A5
- Cards use MitySOM Cyclone 5 FPGAs Y — =
« Stream out data using DDCP protocol iy | }g’i"’q.l. = ® £
using UDP at 320 Hz F = i | |
sl _"|: = e [I-‘m-—u
£& Fermilab
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Central Node

« The data from the VME reader cards are collected by a central node
« Uses a REFLEX CES Achilles Arria10 SoC SOM

« The ARM cores collect the data streams, sends the samples to the ML (in the FPGA
fabric), and streams the inference results out to Redis.
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U-Net ML Algorithm

After some tests settled on U-Net
architecture: recognizes both
global and local losses.

Inputs: 260 BLM readings

Non-Uniform Precision:
ac_fixed<16, x=?, true, AC_RND_CONV, AC_SAT>

output

x=7  Activation
x=6 Dense 520

Input Data x=7 Flatten 256
Shape x7  Convid 644
OUtpUtS: 260 x 2 x=7  Input Layer g 10 Convid 1204
(NBLM x nMachines) e e oo ICT
- x8  Conv1d 594 x=10 ZeroPad 258.6
_proba_blllty that loss at a BLM 9 Convid  sspa 0 Upsample  250.6
is attributable to Ml / RR. X=9 Pool 129, 4 «=10 Convid 1256
_ =9 Convi1d 1286 <=9 Convid 1%6.6
New inputs each 3 ms. < Convid 1276 «9 [ Concat 127,14
<=9 Pool 636 «9 ZeroPad '*"®
x=9 Convid 62,8 x99 Upsample 122,8
x=¢  Convid ©61.8
p1M| p2M| p3M| p4M| p5M| p260M|
p1RR szR p3RR p4RR p5RR p260RR
£& Fermilab
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U-Net ML Algorithm

 Model is trained with Keras and uses

post-training quantization output

Non=Uniform Precision: . 520
* Synthesized with hls4ml using Intel/  o-feote:x? e ACRNbCONACSAT 7 Actvation
x=6 Dense
Quartus backend ot 7 I Elatten 255
i Shape x7  Convid 544
* Used Intel Quartus Prime Pro 21.4-7 | inputLayer ,, , w0l Convid 1294
_ _ x=7 BatchNorm 260, 1 x=10.  Concat  2°%.10
* In order to fit on an Arria 10 had =8 Convid  s0.4 <10 ZeroPad 26
to tune the model widths: =91 Convid 258 4 <10 Upsample 250.6
x=9 Pool 129, 4 10 Convid 1256
* 8 bit weights x=9 Convi1d 1286 x=9  Convid 1%6.6
=9 Convid 1276 «9  Concat 127.14
* 16 bit layer outputs, int/frac varied w9 Pool 636 x9  ZeroPad '’
x=9 Convld 628 x=9v Upsample 122,8
« System easily meets required 3 ms <9  Convid 6.8
system latency: U-Net latency 1.57
ms, 1.74 ms system
$& Fermilab

8 09/26/23 Jovan Mitrevski | Fast Machine Learning For Science Workshop 2023



Offline Model Inference

* Attributes ring-wide losses well,
but not local losses: a work in

progress
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Online performance, BLM 232C, purposeful loss in RR

GxSA: Fast Time Plot
Co SA ri 14-JUL-2023 14:38 Pri=a

Loss attributed to RR

Loss attributed to Ml
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Implementation details
* In order to work with the skip connections, had to add a buffer size to the streams

template <typename T, unsigned int N> using stream = ihc::stream<T, ihc::buffer<N>>;
template <typename T, unsigned int N> using stream_in = ihc::stream_in<T, ihc::buffer<N>>;
template <typename T, unsigned int N> using stream_out = ihc::stream_out<T, ihc::buffer<N>>;

* Required changing templates inside nnet_ut1ils implementations

* Ran FIFO depth optimization using the Vivado backend in order to get initial buffer
size estimates, increased some until cosim did not deadlock.

« Given that this is an extensive change and the Intel HLS compiler is being
deprecated (with ihc::streams being replaced with pipes), decided to wait for the
oneAPI version and not try to make a pull request.

2% Fermilab
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Additional change

* The streaming zero-padding implementation caused errors that were not obvious:
Multiple reflexive accesses from stream 'layer3_out' is not allowed

* We wrote an alternate less optimized zero-padding implementation that did not
produce this error.
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Conclusion

» Created a full system with custom hardware and software

« Trained an ML model to distinguish between losses from the Ml and RR

» Synthesized the model using his4ml, the Intel HLS compiler, and Quartus

« Successfully deployed an ML model in hardware as part of accelerator controls

» The first deployment of Realtime Edge Al in the Fermilab accelerator complex

Ll

g ] e ;.
i Tlml
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Backup
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Network details
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System Properties U-Net Model
Trainable Parameters 134434
Default Precision ap_fixed<16, 7>
Precision Strategy Layer-based
Default Reuse Factor 32
Dense/Sigmoid Reuse Factor 260
Average System Latency 1.74ms
FPGA U-Net Latency 1.57ms
Logic Utilization 223674 (89%)
Total Registers 406123
Total Pins 221 (37 %)
Total Block Memory Bits 25275808(58%)
Total RAM Blocks 1818 (85%)
Total DSP Blocks 273 (16%)
Total PLLs 36 %)
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