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• At the Fermilab accelerator complex, the 
Main Injector (MI) and Recycler Ring (RR) 
share a tunnel.
• MI:  8–120 GeV proton accelerator for 

high-energy neutrino experiments, etc.
• RR:  8 GeV permanent magnet ring, 

proton stacker for MI; beam to g-2.
• Design from the Tevatron days:  RR was a 

storage ring for low intensity antiprotons.
• Now both the MI and RR can have high-

intensity beams.

Introduction
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• Both the MI and RR can have significant beam loss
• About 260 Beam Loss Monitors (BLMs) spread around 

the tunnel to detect beam loss
• Often hard to know which ring is responsible for the 

beam loss:  both machines can be unnecessarily 
tripped

• Purpose of project:  better attribute beam loss to a 
particular machine to increase uptime

Problem
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• One can distinguish between MI or RR loss based on time / state of the machine or 
location

• Idea is to train a machine learning model to distinguish between the two

Beam Loss
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• BLMs are read out using 7 BLM nodes, tied to 
machine permit

• Standard method to read BLM values not 
suitable for ML deployment

• Added a custom VME reader cards (“pirate”) 
to each BLM node to stream out data
• Cards use MitySOM Cyclone 5 FPGAs
• Stream out data using DDCP protocol 

using UDP at 320 Hz

BLM Readout “Pirate” Cards
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• The data from the VME reader cards are collected by a central node
• Uses a REFLEX CES Achilles Arria10 SoC SOM
• The ARM cores collect the data streams, sends the samples to the ML (in the FPGA 

fabric), and streams the inference results out to Redis.

Central Node
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READS Central Deblending Node
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• After some tests settled on U-Net 
architecture:  recognizes both 
global and local losses.

• Inputs:  260 BLM readings
• Outputs:  260 × 2 

(nBLM × nMachines) 
probability that loss at a BLM 
is attributable to MI / RR.

• New inputs each 3 ms.

U-Net ML Algorithm
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• Model is trained with Keras and uses 
post-training quantization

• Synthesized with hls4ml using Intel/
Quartus backend

• Used Intel Quartus Prime Pro 21.4
• In order to fit on an Arria 10 had 

to tune the model widths:
• 8 bit weights
• 16 bit layer outputs, int/frac varied

• System easily meets required 3 ms 
system latency:  U-Net latency 1.57 
ms, 1.74 ms system

U-Net ML Algorithm
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• Attributes ring-wide losses well, 
but not local losses:  a work in 
progress

Offline Model Inference
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• Completed the data path, ML model 
inferences streaming live to ACNET devices

• Currently testing ML model inferences on 
accelerator operations
– Studies show the model works well for ring 

wide loss attribution but not local losses, a 
work in progress

• Project ends Fall 2023

Current Data Path

7/12/231

Realtime Edge AI for Distributed Systems (READS)

Offline ML InferencesRealtime ML Inferences
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Online performance, BLM 232C, purposeful loss in RR
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Loss attributed to RR 

Loss attributed to MI 
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• In order to work with the skip connections, had to add a buffer size to the streams

• Required changing templates inside nnet_utils implementations
• Ran FIFO depth optimization using the Vivado backend in order to get initial buffer 

size estimates, increased some until cosim did not deadlock.
• Given that this is an extensive change and the Intel HLS compiler is being 

deprecated (with ihc::streams being replaced with pipes), decided to wait for the 
oneAPI version and not try to make a pull request.

Implementation details
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• The streaming zero-padding implementation caused errors that were not obvious:
     Multiple reflexive accesses from stream 'layer3_out' is not allowed

• We wrote an alternate less optimized zero-padding implementation that did not 
produce this error.

Additional change
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• Created a full system with custom hardware and software
• Trained an ML model to distinguish between losses from the MI and RR
• Synthesized the model using hls4ml, the Intel HLS compiler, and Quartus
• Successfully deployed an ML model in hardware as part of accelerator controls
• The first deployment of Realtime Edge AI in the Fermilab accelerator complex

Conclusion
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Complete Datapath
• Using Redis (Remote Dictionary Server) to stream and fanout inferences from Central Node
• Developed Open Access Client to translate Redis stream to ACNET readings and FTP data

• Can also translate EPICS IOC CA to ACNET
• 520+ ACNET devices at 320Hz

• Logging raw input data and inferences for future model training, monitoring and analysis
• Operators and experts are able to use these readings for everyday tuning using existing 
ACNET console applications (parameter page, FTP)

Datapath
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Backup
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Network details
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