

Physics of Neutrino Oscillations and Neutrino Cross Sections using the NOvA Experiment

Prabhjot Singh, on behalf of the NOvA Collaboration

Users Meeting 2023, Fermilab

30 June 2023

Neutrino Oscillations

- Neutrino flavor states (ν_e , ν_μ and ν_τ) are superposition states of mass states (ν_1 , ν_2 and ν_3)
- Neutrinos oscillate between different flavors
- Oscillations imply non-zero masses of neutrinos

• Ordering of neutrino masses: sign of $|\Delta m_{32}^2|$?

- Ordering of neutrino masses: sign of $|\Delta m_{32}^2|$?
- Maximal or nonmaximal $\nu_{\mu} \nu_{\tau}$ mixing?

- Ordering of neutrino masses: sign of $|\Delta m_{32}^2|$?
- Maximal or nonmaximal $\nu_{\mu} \nu_{\tau}$ mixing?
- Any CP violation by neutrinos?

- Ordering of neutrino masses: sign of $|\Delta m_{32}^2|$?
- Maximal or nonmaximal $\nu_{\mu} - \nu_{\tau}$ mixing?
- Any CP violation by neutrinos?
- Nuclear effects on the neutrino-nucleus interactions

In this Talk

Prabhjot Singh

Cross-section measurements

- nuclear effects, e.g. 2p2h/MEC interactions

In this Talk

Cross-section measurements

- nuclear effects, e.g. 2p2h/MEC interactions

- 3-flavor oscillation results
 - Markov Chain MC bayesian analysis

NORMAL

INVERTED

The NOvA Collaboration

> 240 people, ~ 50 institutions, 7 countries

NOvA is a long-baseline two-detector neutrino oscillation experiment

NOvA is a long-baseline two-detector neutrino oscillation experiment

 Both detectors filled with liquid scintillator and composed of 77% CH₂, 16% chlorine, 6% TiO₂ by

mass

NOvA is a long-baseline two-detector neutrino oscillation experiment

 Both detectors filled with liquid scintillator and composed of 77% CH₂, 16% chlorine, 6% TiO₂ by mass

 14.6 mrad off-axis detectors

 Neutrino beam peaks at 2 GeV

 Functionally identical detectors to reduce systematic uncertainties

Neutrino Beam at Fermilab

- Neutrino and antineutrino modes
- High $\nu_{\mu}(\bar{\nu}_{\mu})$ purity

Beam Exposure

- Total protons on target so far 38e20
- New power record +950 kW

1MW, here we come! - Thanks to the hard work of many people in front and behind the scenes

Event Topologies

Event Topologies

Event Topologies

Event Display

Event Display

Event Display

- NOvA sits in the transition region of all interaction types
- Need better understanding of neutrino interactions to reduce systematic uncertainties on oscillation measurements

Why Cross sections are Important?

To get oscillation probabilities from the event rate, we need to know neutrino-nucleus cross section well, along with neutrino flux, and detector response efficiencies

Cross-section Formula

Two New ν_{μ} CC Cross-section Analyses

Double differential cross sections

Two New ν_u CC Cross-section Analyses

- Double differential cross sections
- Both focus on 2p2h interactions

Both built on previous ν_{μ} CC inclusive measurement Phys. Rev. D 107, 052011 (2023)

Muon System

- Exactly one reconstructed track associated with outgoing muon (low E_{had})
- Boosts 2p2h, reduces DIS and RES interactions

Muon System

- Exactly one reconstructed track associated with outgoing muon (low E_{had})
- Boosts 2p2h, reduces DIS and RES interactions

~12-15%
 uncertainties
 dominated by flux
 systematics

Hadronic System

- NOvA's first measurement in $|\overrightarrow{q}|$ and E_{avail}
- 2p2h concentrated at low values

Hadronic System

- NOvA's first measurement in $|\overrightarrow{q}|$ and E_{avail}
- 2p2h concentrated at low values

~12% uncertainties dominated by flux systematics

d²σ / dlqldE

10-39

Oscillation Results

Far Detector ν_{ρ} and $\bar{\nu_{\rho}}$ Data

- Observe
 - 82 ν_e candidates (27 bkg)
 - 33 $\bar{\nu}_{\rho}$ candidates (14 bkg)

• Large significance of ν_{ρ} appearance

Prabhjot Singh

• >4 σ evidence of $\bar{\nu}_{\rho}$ appearance

Bayesian Treatment

- Markov Chain MC bayesian analysis
- Alternative method of analyzing same dataset
- Same conclusions as the frequentist approach
- Slight preference to upper octant and normal ordering of neutrino masses
- Exclude inverted ordering, $\delta_{cp}=\pi/2$ at $>3\sigma$

NOvA-only θ_{13} and θ_{23} Results

- Larger θ_{13} prefers lower octant for θ_{23} and vice verse
- Normally we use reactor θ_{13} constraint in oscillation fit from PDG
- Here θ_{13} is measured by NOvA using bayesian analysis
- $\sin^2 2\theta_{13} = 0.085^{+0.020}_{-0.016}$
- Consistent results with reactor measurements

Conclusions and Outlook

- We presented two new cross-section measurements sensitive to 2p2h
- Slight preference to upper octant and normal ordering of neutrino masses
- Asymmetry in $\nu_e \bar{\nu_e}$ appearance consistent with zero

Conclusions and Outlook

- We presented two new cross-section measurements sensitive to 2p2h
- Slight preference to upper octant and normal ordering of neutrino masses
- Asymmetry in $\nu_{\rho} \bar{\nu_{\rho}}$ appearance consistent with zero
- Antineutrino beam cross-section measurements are in progress
- NOvA and T2K are working towards joint fit results
- Much new data and results to come

Backup

Brief Introduction to Neutrinos

 The most abundant particles in the Universe after photon

 Postulated in 1930 by W. Pauli to explain the continuous spectrum of beta decay

 Charge-less, spin 1/2, weakly interacting and massless in the Standard Model (SM)

• Three generations: ν_e , ν_μ and ν_τ (and anti-neutrinos)

Sources

Oscillation Phenomenology

- Neutrinos oscillate between different flavors
- Oscillation implies non-zero masses of neutrinos

$\nu_{\mu} ightarrow \nu_{\mu}$ Disappearance Oscillations

Prabhjot Singh

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27 \Delta m_{32}^2 (eV^2) L (km)}{E (GeV)} \right)$$

Survival probability gives direct measurement of $\sin^2(2\theta_{23})$ and Δm_{32}^2

$\nu_{\mu} ightarrow \nu_{e}$ Appearance Oscillations

- Matter has the opposite effect on neutrino and anti-neutrino oscillation
- ullet Matter effect determine the CP-violating phase and the sign of the $|\Delta m_{32}^2|$

Neutrino Beam at Fermilab

- Neutrino and antineutrino modes
- Total protons-on-target 38 x 10²⁰
- High $\nu_{\mu}(\bar{\nu}_{\mu})$ purity

Neutrino Oscillation Analysis

- ullet Aim of the oscillation analysis is to measure $|\Delta m_{32}^2|$, $\sin^2 heta_{23}$ and δ_{cp} parameters
- ullet Parameters are extracted by analyzing the $u_{\mu} o
 u_{\mu}$ disappearance and $u_{\mu} o
 u_{e}$ appearance data
- Both neutrino and anti-neutrino data is used for the parameter extraction

Prabhjot Singh

Best fit values of the oscillation parameter are extracted from the χ^2 fit

$$\chi_i^2 = 2 \times \left(F_i^{Pred.} - F_i^{Data} + F_i^{Data} \ln \frac{F_i^{Data}}{F_i^{Pred.}} \right)$$

Systematic uncertainties are treated as nuisance parameters

ND Data

- ND observes un-oscillated neutrino beam
- ND spectra is used to generate signal and background predictions in the FD
- ND also helps to constrain systematic uncertainties in the FD

ND Data

Prabhjot Singh

 The ND data helps to constrain systematic uncertainties in the FD

ightarrow ν_u Disappearance and $\nu_u ightarrow \nu_e$ Appearance data

- Observe
 - 82 ν_e candidates (27 bkg)
 - 33 $\bar{\nu}_{\rho}$ candidates (14 bkg)

- There is a large significance of ν_{ρ} appearance
- >4 σ evidence of $\bar{\nu}_{\rho}$ appearance

Oscillation Results

Oscillation Parameters	Values
Δm_{32}^2 (10 ⁻³) eV ² /c ⁴	$+2.41 \pm 0.07$
$\sin^2\theta_{23}$	$0.57^{+0.03}_{-0.04}$
$\delta_{\mathrm{cp}} (\pi)$	$0.82^{+0.27}_{-0.87}$

- LO disfavoured at 1.2σ
- IH disfavoured at 1σ
- IH δ_{cp} = $\pi/2$ excluded at >3 σ
- NH δ_{cp} = $3\pi/2$ excluded at ~2 σ

Muon System

- Exactly one reconstructed track associated with outgoing muon
- Boosts 2p2h, reduces DIS and **RES** interactions
- Uncertainties ~12-15% in each bin dominated by flux systematic

Comparisons of 2p2h Models to Data

- Large χ^2 values seen for all 2p2h models/tunes
- Tuned models match data better than Valencia/SuSAv2
- Hadronic system analysis suggests similar conclusions

ν_{μ} CC Inclusive Cross section

https://arxiv.org/abs/2109.12220

- More than 1M ν_{μ} CC events in the analysis
- Good agreement between GENIE and Data
- Uncertainties ~12% in each bin

ν_e CC Inclusive Cross section

https://arxiv.org/abs/2206.10585

Data (Stat. + Syst.)
GENIE v2 - NOvA-tune
GENIE v3*
GIBUU
NEUT
NuWro
https://arxiv.org/abs/2206.10585

- Around 10k ν_e CC events in the analysis
- Measurment in good agreement with prediction generators
- Uncertainties ~15-20% in each bin

Future Outlook

- Oscillations
 - Increasing sensitivity to mass ordering to come
 - More than double data both in neutrino and antineutrino modes
 - We can reach >3 σ mass-hierarchy sensitivity for 30-50% of the δ_{cp} values

- Cross sections
 - Antineutrino beam cross-section measurements and ratios

Conclusions

- NOvA is a globally competitive neutrino oscillation experiment with many exciting results
- NOvA and T2K are both working together towards joint fit results
- Other exciting NOvA analyses are
 - Sterile Neutrinos (First ever look at NC disappearance in antineutrinos https://inspirehep.net/literature/1867930)
 - Supernova neutrinos https://journals.aps.org/prd/abstract/10.1103/
 PhysRevD.104.063024
 - Magnetic Monopoles https://journals.aps.org/prd/abstract/10.1103/
 PhysRevD.103.012007
 - Non-standard Interactions

Conclusions

Both Frequentist and Bayesian methods give same oscillation results

• Measured $\sin^2 2\theta_{13} = 0.085^{+0.020}_{-0.016}$ - consistent with reactor measurements

Observe discrepancies w/2p2h models

More new data and results to come