
Evaluating Performance Portability with the CMS
Heterogeneous Pixel Reconstruction code
N. Andriotis1, A. Bocci2, E. Cano2, L. Cappelli3, M. Dewing4, T. Di Pilato5,6, J. Esseiva7, L. Ferragina8, G. Hugo2,
M. Kortelainen9, M. Kwok9, J. J. Olivera Loyola10, F. Pantaleo2, A. Perego11, W. Redjeb2,12

1BSC 2CERN 3INFN Bologna 4ANL 5CASUS 6University of Geneva 7LBNL 8University of Bologna
9FNAL 10ITESM 11University of Milano Bicocca 12 RWTH

CHEP 2023 11 May 2021 HEP-CCE

FERMILAB-SLIDES-23-038-CMS-CSAID

This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science, Office
of High Energy Physics.

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

• CMS uses GPUs as part of the High-Level Trigger farm in LHC Run 3
• GPU vendors provide their own APIs that also differ from programming the CPU
– Want to minimize development and maintenance effort
– CMS is moving to have portable code between CPU and NVIDIA and AMD GPUs via Alpaka

• Want to be aware of the other technologies in the market to guide long term planning

• Used CMS heterogeneous pixel reconstruction (Patatrack) as a use case for a set of
realistic algorithms utilizing GPU effectively

• Measure the performance of direct, Alpaka, Kokkos, and SYCL versions on CPU,
NVIDIA GPU, and AMD GPU
– All versions give the same results (within reproducibility accuracy)
– Some grain of salt needed to interpret the results

• The versions using different portability technologies have differences

• Report initial experience with std::par and OpenMP Target offload

Introduction

2 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

CMS Heterogeneous Pixel Reconstruction

3 HEP-CCE

• About 40 kernels organized in
5 “framework modules”
– arXiv:2008.13461
– Kernels are short: few µs to ~1 ms, performance sensitive to overheads

• Raw pixel detector data (~250 kB/event) transferred to the GPU
• Only final results transferred back to the CPU: ~4 MB for tracks, ~90 kB for vertices
– Not considered in throughput measurements in this talk

• Extracted into a standalone program to enable rapid prototyping
– Flexible GNU Make -based build system
– Simple framework mimicking CMSSW’s use of oneTBB tasks
– Disk I/O contribution to time measurements is ignored

• 1000 events from TTbar + pileup 50 simulation from CMS Open Data read at the beginning of
the job and recycled

BeamSpot

Clusters
RecHits Tracks Vertices

https://arxiv.org/abs/2008.13461
https://github.com/cms-patatrack/pixeltrack-standalone/
http://doi.org/10.7483/OPENDATA.CMS.GOB0.0LEW

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Alpaka and Kokkos versions are most mature

• Alpaka (earlier reported in ACAT 21: J. Phys. Conf. Ser. 2438 012058)
– Thin, header-only, templated C++ library, abstraction level similar to CUDA

• Backends include serial, OpenMP 2, std::thread, CUDA, HIP, SYCL (experimental)
– Flexible to work with

• E.g. can build a single application that supports multiple GPU backends
– Somewhat more verbose syntax compared to others

• Kokkos (earlier reported in vCHEP 21: EPJ Web. Conf. 251 03034)
– Templated C++ library, higher abstraction level than CUDA

• Backends include serial, OpenMP, CUDA, HIP, HPX, OpenMP-Target, SYCL (experimental)
– Implements a higher-than-CUDA level programming model on top of the low-level APIs
– Constraints how to build the application code
– Have had to understand what Kokkos does between developer and vendor API

4 HEP-CCE

https://github.com/alpaka-group/alpaka/
http://dx.doi.org/10.1088/1742-6596/2438/1/012058
https://github.com/kokkos/kokkos
http://dx.doi.org/10.1051/epjconf/202125103034

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

• Performance measurements done using the resources of the Joint Laboratory for
System Evaluation at Argonne National Laboratory

• CPUs:
– 2-socket Intel Xeon Platinum 8176 (Skylake): 28 cores and 56 threads x 2
– 1-socket AMD EPYC 7532 (Milan): 32 cores and 32 threads
– Measure total throughput of full node

• N processes of M threads such that NxM = number of HW threads

• GPUs:
– NVIDIA: A100 (19.5 FP32 TFLOPS) and A40 (37.4 FP32 TFLOPS)
– AMD: MI100 (32.1 FP32 TFLOPS) and MI250 (90.5 FP32 TFLOPS)
– Measure the throughput on a single GPU by increasing the number of concurrent events
– Node has no other activity

• Take average of 4 executions

Performance measurements

5 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Event processing throughput on CPU “serial backends”

6 HEP-CCE

“Serial” = one instance of the backend for each concurrent event

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Peak memory on CPU “serial backends”

7 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Event processing throughput on CPU “parallel backends”

8 HEP-CCE

One event in flight → concurrent event processing is more useful
than intra-algorithm parallelism in this case

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Event processing throughput on NVIDIA GPU

9 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Mean GPU and CPU utilization on NVIDIA A40 GPU

10 HEP-CCE

As reported by nvidia-smi,
mean from samples

CPU efficiency normalized by
number of threads

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Peak memory usage on NVIDIA A40 GPU

11 HEP-CCE

As reported by nvidia-smi and /proc/<PID>/status. A100 shows similar behavior.

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Event processing throughput on AMD GPUs

12 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Host memory and CPU utilization on AMD MI100 GPU

13 HEP-CCE

MI250 shows similar behavior

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

SYCL version: complete and runs on some hardware

• SYCL: Specification by the Khronos Group
– Some notable implementations:

• Intel’s oneAPI DPC++ and open-source LLVM
• Open SYCL (not tested)

– Allows simultaneous use of multiple backends

• Development of SYCL version revealed many bugs in
the Intel LLVM
– E.g. collective operations on CPU, block shared variables

• Was not able to replicate the setup that would result in a
working executable on other machines with e.g. A100
– Also did not succeed to compile for AMD GPUs

• Some kernels are slower than in CUDA, every operation
creates a SYCL event, SYCL events can not be reused

14 HEP-CCE

https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.w0in00
https://github.com/intel/llvm
https://github.com/OpenSYCL/OpenSYCL

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

• STL parallel algorithms as implemented by NVIDIA in their HPC SDK
– Relies on unified memory

• std::par version is complete, but testing is difficult because of compiler bugs
• Abstraction level much higher than Alpaka/Kokkos/SYCL
– Low barrier for using GPUs in a new codebase
– Converting a large and optimized CUDA application is easier to map to

Alpaka/Kokkos/SYCL
• std::par requires some algorithmic changes and/or more kernels
• Hierarchical parallelism, e.g. synchronizing threads of a block, not supported

– Have to split or rework such kernels
• No access to CUDA shared memory, need to use global memory and use atomics

• Must compile the whole program with nvc++ when offloading for NVIDIA GPU
– To avoid One Definition Rule violations with e.g. std::vector

std::par version: technically complete

15 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

OpenMP Target offload: in progress

• Compiler pragma-based approach, popular for multithreading e.g. in HPC
• Can use #omp target offload in conjunction of multithreading with oneTBB
• Had lots of problems with compilers, especially in conjunction with Eigen
– Mostly with LLVM (15, 16, main): targeting NVIDIA and AMD GPU backends
– NVIDIA HPC SDK: compiles, fails at run time
– AMD (AOMP, AFAR; amdclang underneath): compiler crashes
– Intel oneAPI (icpx): compiles, but not pursued further yet

• Preliminary look on performance of some individual kernels with Nsight Systems
– OpenMP kernels are slower than corresponding CUDA kernels
– Much more data movement in OpenMP version compared to direct CUDA version

16 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

• We have compared the performance of various versions of CMS Heterogeneous
Pixel Reconstruction
– Direct, Alpaka, Kokkos, SYCL on x86 CPU, NVIDIA GPU, and AMD GPU

• Overall the best performance was achieved with Alpaka
• For this use case, Alpaka was also the easiest to work with
– Flexible, little constraints added on top of the vendor APIs

• Kokkos: no concurrent instances of Serial backend (yet), often need to understand
what Kokkos does in between developer and vendor API

• SYCL: compilation problems, overheads
• std::par: compilation problems, crashes, leads to many more kernels
• OpenMP Target offload: compilation problems, data movement is a concern

Conclusions

17 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

• M. Kortelainen: “Performance of Heterogeneous Algorithm Scheduling in CMSSW”,
Track X Tuesday 15:15

• A. Bocci: “Adoption of the alpaka performance portability library in the CMS
software”, Track 2 Tuesday 17:00

• Other portability studies from HEP-CCE
– M. Kwok: “Application of performance portability solutions for GPUs and many-core CPUs

to track reconstruction kernels”, Track X Monday 11:00
– M. Atif: “Porting ATLAS FastCaloSim to GPUs with OpenMP Target Offloading”, Tuesday

poster session
– V. Tsulaia: “Porting ATLAS FastCaloSim to GPUs with std::par and with Alpaka”, Tuesday

poster session
– “Porting ATLAS FastCaloSim to GPUs with Performance Portable Programming Models”,

Track X Tuesday 15:00
– “Results from HEP-CCE”, Track X Tuesday 11:00

Related contributions

18 HEP-CCE

https://indico.jlab.org/event/459/contributions/11810/
https://indico.jlab.org/event/459/contributions/11810/
https://indico.jlab.org/event/459/contributions/11402/
https://indico.jlab.org/event/459/contributions/11402/
https://indico.jlab.org/event/459/contributions/11844/
https://indico.jlab.org/event/459/contributions/11844/
https://indico.jlab.org/event/459/contributions/11848/
https://indico.jlab.org/event/459/contributions/11848/
https://indico.jlab.org/event/459/contributions/11853/
https://indico.jlab.org/event/459/contributions/11853/
https://indico.jlab.org/event/459/contributions/11809/
https://indico.jlab.org/event/459/contributions/11809/
https://indico.jlab.org/event/459/contributions/11821/

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Spares

19 HEP-CCE

2023-05-11 Matti Kortelainen | Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction

Software versions

20 HEP-CCE

Direct Alpaka
b518e8c9

Kokkos
3.5 or 4.0

SYCL
Intel LLVM tag
2022-09
(0f579ba)

x86 CPU GCC 11.1 GCC 11.1 GCC 11.1
Kokkos 3.5

GCC 8.5

NVIDIA GPU GCC 11.1
CUDA 11.6.2

GCC 11.1
CUDA 11.6.2

GCC 11.1
CUDA 11.6.2
Kokkos 3.5

GCC 8.5
CUDA 11.8

AMD GPU GCC 12.2
ROCm 5.4

GCC 12.2
ROCm 5.4

GCC 12.2
ROCm 5.4
Kokkos 4.0

https://github.com/alpaka-group/alpaka/tree/b518e8c9
https://github.com/intel/llvm/tree/2022-09
https://github.com/intel/llvm/tree/0f579ba

