A Collaboration Website for Muon Catalyzed Fusion and Muon Beam Production

Don Flecky,
Columbia Basin College

Advisor: Carol J. Johnstone, Accelerator Division
Abstract

This research initiative establishes a dynamic online platform geared towards supporting the burgeoning Muon Catalyzed Fusion collaboration, focusing on the concurrent development of particle accelerators and transport beamlines for muon beams. The central feature of this endeavor is the creation of a multifaceted website comprising both public-facing and private sections to cater to diverse user needs. The public segment is meticulously designed to serve as an educational hub, featuring information pages targeted at the general public alongside private pages exclusively accessible to collaboration members. These pages will host an array of multimedia elements, ranging from images and text animations to video lectures, covering an extensive spectrum of topics integral to the science of Muon Catalyzed Fusion. Encompassing areas such as Acceleration, Applications, Instrumentation, Beamline Design, and beam dynamics design codes, the educational content aims to make complex scientific concepts more accessible to a broader audience. Ensuring seamless accessibility across various devices and operating systems, the website incorporates integration with collaborative tools such as Google Docs for document collaboration, GitHub for code repository management, and WordPress for blogging with interactive commenting features. The bifurcation between public and private sections is a strategic approach to maintaining transparency while safeguarding proprietary research and works in progress. The public pages are strategically crafted to disseminate information, showcasing the latest endeavors and achievements within the NK Labs collaboration, including lectures, published papers, and regular blog posts open to public comments. On the other hand, the private section provides collaboration members with a secure space to share unpublished or nonpublic research, fostering collaborative efforts through integrated Google Docs and Python Plotty for shared graphing work. In essence, this ambitious project endeavors to bridge the gap between complex scientific knowledge and public understanding, enhance collaboration among researchers, and serve as a dynamic and inclusive platform for sharing and advancing the state-of-the-art in Muon Catalyzed Fusion and Accelerators.
Introduction

This research initiative arises from a comprehensive examination of past and ongoing technical work within the realm of Muon Catalyzed Fusion. Recognizing the need for an advanced, collaborative platform, this project seeks to build upon existing efforts and address the limitations inherent in current scientific resources.

At its core, this project represents a paradigm shift in the approach to scientific website development. It goes beyond conventional methods by establishing a meticulously designed website with a multifaceted structure. The aim is to create a dynamic online environment that seamlessly integrates educational and collaborative elements, pushing the boundaries of what is currently available.

The technical objectives of this endeavor are far-reaching. The project strives for seamless accessibility across diverse devices and operating systems, integrating collaborative tools to foster a conducive environment for scientific collaboration. Beyond conventional features, the website will incorporate cutting-edge technologies such as Python Plotty for advanced data visualization through interactive graph plotting.

A pivotal aspect of the project lies in its strategic bifurcation into public and private sections. This approach ensures transparency while safeguarding proprietary research and works in progress. Public-facing pages serve as an educational hub, disseminating information to a broader audience, while private sections offer collaboration members a secure space for sharing unpublished or nonpublic research. The integration of tools like Google Docs and Python Plotty further enhances collaborative efforts within this secure space.

In essence, this ambitious project epitomizes a holistic approach to web development for scientific websites. It successfully bridges the gap between complex scientific knowledge and public understanding, offering a secure and dynamic platform for advancing the state-of-the-art in Muon Catalyzed Fusion and Accelerators. The outcomes align seamlessly with the initial technical objectives, highlighting the project's commitment to innovation and the advancement of scientific collaboration.
Methods 1: Establishing a Web Development Framework for Scientific Websites

This research endeavors to articulate a detailed and expansive methodological approach, weaving together an intricate tapestry of programming languages and technologies to construct a robust and multifaceted toolkit tailored explicitly for the creation of compelling and user-friendly scientific websites. The comprehensive toolkit, comprising HTML, Cascading Style Sheets (CSS), SCSS, JavaScript, jQuery, and PHP, is meticulously designed to address the unique challenges and requirements inherent to the dissemination of scientific data, research findings, and educational materials in a digital landscape.

HTML: Foundation for Scientific Content Structuring

Initiating the web development journey for scientific websites involves the meticulous utilization of HTML as the foundational markup language. Going beyond its syntactical significance, HTML assumes a pivotal role in structuring and organizing diverse scientific content across web pages. Employing HTML tags, elements such as headings, paragraphs, links, and images are meticulously delineated, establishing the fundamental scaffolding necessary for the nuanced presentation of scientific data, research findings, and educational materials.

CSS: Precision Styling for Visual Harmony in Scientific Interface

In tandem with HTML, the integration of Cascading Style Sheets (CSS) becomes imperative for achieving a visually harmonious and cohesive web interface tailored to scientific contexts. CSS transcends conventional stylistic considerations; it acts as a meticulous architect, providing granular control over the presentation and layout of HTML documents. From dictating color schemes and font styles to orchestrating spatial arrangements and element positioning, CSS fosters an environment where aesthetic appeal and user experience in scientific exploration are prioritized and elevated.

SCSS: Progressive Styling Augmentation for Scientific Visualization

Addressing the escalating demand for more sophisticated styling features in the scientific realm, the incorporation of SCSS (Sassy CSS) emerges as a progressive choice. As a superset of CSS, SCSS introduces advanced features, including variables, nesting, and mixins. These augmentations play a pivotal role in enhancing the efficiency of styling web pages for scientific content, promoting cleaner and more modular code. The adoption of SCSS contributes to streamlined development workflows and bolsters the scalability and maintainability of the website’s stylistic elements, crucial for presenting complex scientific data in a comprehensible and visually appealing manner.

JavaScript: Dynamic Scientific Interaction on the Client Side

Transitioning into the realm of dynamic functionality, the JavaScript programming language becomes the dynamic force empowering scientific websites with interactive elements on the client side. Beyond its syntactical intricacies, JavaScript empowers
developers to implement a diverse array of features specific to scientific exploration, such as real-time data visualization, interactive graphs, and dynamic content updates. By executing directly within users' browsers, JavaScript significantly elevates a scientific website's responsiveness and user engagement, fostering an immersive and dynamic online experience tailored to the unique needs of scientific audiences.

jQuery: Streamlined Client-Side Development for Scientific Applications

In synergy with JavaScript, the strategic integration of jQuery further refines the development landscape, offering a streamlined approach to handling common tasks specific to scientific applications. Functioning as a lightweight and efficient library, jQuery abstracts complexities associated with document traversal, manipulation, event handling, and animation. Its intuitive syntax and cross-browser compatibility ensure that developers can expedite their coding processes, facilitating the creation of interactive and dynamically responsive scientific web pages. Through this integration, jQuery becomes an indispensable tool in the developer's toolkit, enhancing the overall efficiency and effectiveness of the website creation process for scientific contexts.

PHP: Backend Scripting for Dynamic Content Generation in Scientific Contexts

Seamlessly transitioning to the server side, PHP (Hypertext Preprocessor) assumes a pivotal role in the backend architecture of scientific websites, providing server-side scripting capabilities essential for dynamic web development. Embedded directly within HTML code, PHP executes on the server, handling tasks such as database interactions, complex data processing, and various server-side functions specific to scientific data management. By seamlessly bridging the gap between client-side interactions and server-side operations, PHP completes the comprehensive toolkit employed in the creation of a robust, functional, and user-centric scientific website. It acts as the backbone of dynamic content delivery, ensuring a seamless and cohesive web experience for scientific audiences engaging with intricate datasets, research findings, and educational resources.

Conclusion: A Holistic Interplay for Scientific Web Development Excellence

In reflection, the exploration of HTML, CSS, SCSS, JavaScript, jQuery, and PHP within this expansive methodological framework underscores the collaborative interplay between structure, style, and functionality tailored specifically for scientific web development. Each language and technology assume a unique yet interconnected role in shaping the scientific user experience, from the initial visual appeal to dynamic interactions and seamless server-side operations. This amalgamation of elements results in a harmonious and efficient web development process, where meticulous attention to detail ensures the creation of scientific websites that not only meet but exceed the expectations of modern scientific audiences. Navigating the ever-evolving landscape of web technologies, this versatile toolkit remains a steadfast companion, empowering developers to craft digital spaces that captivate and resonate with scientific users across the globe.
Methods 2: Web Development Techniques for Enhanced User-Centric Experiences

In the dynamic and ever-evolving landscape of web development, the creation of a compelling and user-centric scientific website demands a meticulous integration of diverse elements to captivate and engage visitors. This comprehensive research project embarks on an exploration of several key methodologies specifically tailored for scientific website development, elucidating their roles and impacts on user experience. From the foundational structure of the navigation bar to the dynamic visual allure of animated text and the immersive storytelling capabilities of parallax scrolling, each method contributes uniquely to the intricate tapestry of a scientific website's design. Additionally, we delve into interactive features like Owl Carousel, video integration, and responsive buttons, aiming to unveil the intricate interplay between design elements, functionality, and user engagement within the context of scientific communication and data dissemination.

Foundation Elements: Navigation Bar & Drop-Down Menus for Scientific Exploration

In the meticulous development of a scientific website, the navigation bar assumes a pivotal role, acting as the cornerstone for providing users with a structured and accessible means of traversing diverse sections. It encompasses vital links and often incorporates branding elements, laying the groundwork for a cohesive and organized user experience that seamlessly facilitates exploration through the site's multifaceted scientific content. The navigation bar stands as an essential navigational hub, strategically designed to enhance the overall usability of the website in the pursuit of scientific knowledge.

Nested within the navigation bar, a drop-down menu emerges as a fundamental component, instrumental in managing and presenting an extensive array of links within a hierarchical structure. This dynamic feature substantially augments the efficiency of the navigation system, proving particularly advantageous for scientific websites boasting a profusion of content or a spectrum of diverse categories. The drop-down menu, seamlessly integrated, extends the navigational capabilities of the scientific website, contributing significantly to the creation of an intuitive and user-friendly interface that caters to the specific needs of scientific exploration.

To infuse the scientific website with dynamic visual allure, the strategic use of animated text emerges as a compelling technique. By employing CSS animations or leveraging JavaScript libraries, textual content undergoes a metamorphosis with effects such as fading, sliding, or scaling. Beyond mere aesthetic appeal, animated text strategically directs user attention, fostering a more engaging and interactive browsing experience that transcends the static confines of traditional web design. In the context of scientific communication, this method becomes a powerful tool for emphasizing key concepts, guiding users through complex information, and enhancing the overall accessibility of scientific content.
Interactive Features: Owl Carousel for Dynamic Scientific Content Presentation

For an interactive and visually captivating presentation of scientific content, the incorporation of the Owl Carousel jQuery plugin stands out as a judicious choice. This responsive plugin facilitates the creation of customizable, touch-enabled carousels, providing an ideal platform for showcasing scientific images, data visualizations, or research findings in an engaging slideshow format. The Owl Carousel enriches the scientific website’s multimedia capabilities, offering an interactive canvas for displaying research highlights, project galleries, or any other featured content that demands dynamic visual representation. In the realm of scientific websites, this method becomes instrumental in presenting complex data sets or visualizing scientific discoveries in an accessible and engaging manner.

Immersive Storytelling: Parallax Scrolling for Scientific Narratives

Expanding the visual narrative further, the implementation of parallax scrolling introduces a dynamic dimension to the scientific website's design ethos. Achieved by moving background elements at a differential speed compared to the foreground during user scrolling, parallax scrolling engenders a visually immersive experience. This technique serves as a strategic design element, transcending conventional static visuals to elevate scientific storytelling and intensify the overall user engagement on the website. Within the scientific context, parallax scrolling becomes a powerful tool for presenting research timelines, illustrating scientific processes, or guiding users through the sequential exploration of scientific narratives.

Multimedia-Rich Approaches: Video Integration for Scientific Communication

Video integration emerges as a potent tool in the arsenal of modern web development, presenting a dynamic and multimedia-rich approach to scientific information dissemination. Whether utilized for compelling product demonstrations, setting the ambiance with laboratory visuals, or delivering informative content, embedded videos using HTML5 or external hosting platforms significantly contribute to a more immersive and engaging scientific user experience that transcends the limitations of traditional textual content. In scientific websites, video integration becomes pivotal for showcasing experiments, explaining complex scientific concepts, or featuring interviews with researchers, enhancing the depth and breadth of scientific communication.

Nuanced Visual Elements: Fade-In Buttons and Fluid Buttons for Scientific Precision

In the pursuit of refining the scientific website's user interface further, the integration of fade-in buttons introduces a nuanced yet sophisticated visual element. Leveraging CSS transitions or animations, these buttons gracefully adjust their opacity, adding a touch of elegance to user interactions. The gradual fade-in effect not only enhances the overall aesthetic appeal of the scientific website but also ensures a polished and visually cohesive design that resonates seamlessly with the scientific user's visual sensibilities. Within the
scientific context, these buttons provide a subtle and visually pleasing way to guide users to critical sections, encourage specific actions, or highlight important calls to action. In the dynamic realm of interactive design, fluid buttons take center stage, responding dynamically to scientific user interactions and contributing to the scientific website's overall responsiveness. Employing CSS properties like transitions, these buttons exhibit smooth and fluid animations upon user hover or click. This responsive design feature significantly enhances the scientific user experience, fostering a sense of interactivity and engagement that permeates throughout the entirety of the scientific website's user interface. For scientific websites, fluid buttons become instrumental in providing a seamless and intuitive navigation experience, ensuring that users can effortlessly interact with complex scientific data or explore diverse scientific topics.

Optimal Content Presentation: Accordion/Collapsing Headers for Scientific Efficiency

Concluding the repertoire of interactive elements, the integration of accordion/collapsing headers proves invaluable in optimizing the presentation of scientific content. These user interface elements empower scientific users to expand or collapse sections of content, offering an efficient utilization of space and reducing visual clutter. Implemented through a judicious combination of JavaScript and CSS, accordion functionality enhances the scientific website's organizational structure, allowing users to focus on the specific scientific content that is most pertinent to their needs, thereby elevating the overall usability and navigational efficiency of the scientific website. Within the scientific context, accordion/collapsing headers become an essential tool for organizing extensive research findings, scientific articles, or educational materials, providing users with a streamlined and user-friendly experience in their scientific exploration.

Conclusion: A Holistic Approach to Scientific Website Development

In the intricate realm of web development, this research project has meticulously unveiled a tailored tapestry of techniques designed for the unique challenges of scientific websites. From the user-friendly foundation laid by navigation bars and drop-down menus to the engaging elements like animated text and parallax scrolling, each methodology contributes to a comprehensive user experience in the scientific context. The integration of Owl Carousel and video content enriches the interactive and multimedia dimensions, forging a deeper connection between scientific users and websites. Simultaneously, the refined aesthetics of fade-in buttons and the responsive nature of fluid buttons add finesse to the scientific user interface. The organizational efficiency brought by accordion/collapsing headers concludes our exploration through diverse web development realms customized for scientific needs. The holistic approach advocated here prioritizes not only visual appeal but also functionality, seamlessly aligning with the intricate requirements of scientists, researchers, and educators. These methodologies collectively guide developers and designers towards crafting scientific websites that not only meet but surpass the expectations of the scientific community, ensuring a continuously evolving and user-centric trajectory for the future of scientific website design.
Conclusion: Innovation and User-Centricity in Scientific Web Development

In summary, this research initiative has achieved a remarkable milestone by establishing a dynamic online platform tailored for the evolving needs of the Muon Catalyzed Fusion collaboration. The multifaceted website, with its meticulously designed public and private sections, stands as a testament to the commitment to excellence in both scientific communication and collaboration.

The public section, now complete, signifies a successful step towards bridging the gap between complex scientific knowledge and public understanding. The strategic incorporation of multimedia elements, educational content spanning various topics in Muon Catalyzed Fusion, and seamless accessibility across devices exemplify a user-centric approach to scientific website development. Pending authorizations for media and ongoing content polishing are pivotal steps towards optimizing the impact of the public section.

Simultaneously, the private section, while still in development, promises to be a secure and collaborative space for collaboration members. The ongoing efforts in establishing robust security protocols and secure hosting underline the commitment to safeguarding proprietary research, fostering an environment conducive to collaboration and knowledge sharing among members.

The exploration of web development methodologies further solidifies the commitment to excellence. The detailed methods encompassing HTML, CSS, SCSS, JavaScript, jQuery, and PHP highlight a holistic approach, ensuring the creation of scientifically sound, visually appealing, and functionally robust websites. These techniques not only meet but exceed the expectations of modern scientific audiences, paving the way for a continuously evolving and user-centric trajectory in scientific website design.

In conclusion, this ambitious project not only achieves its initial objectives but sets the stage for future advancements in Muon Catalyzed Fusion and Accelerators. By successfully marrying innovation with a user-centric focus, the platform becomes a dynamic hub for the exchange of knowledge, collaboration among researchers, and the dissemination of cutting-edge advancements in the field. The outcomes of this research initiative signify a significant contribution to the scientific community and lay the groundwork for continued excellence in the realm of scientific web development.
Impact & Future Work: Holistic Certainty in Scientific Web Development Future

The successful completion of the public section marks a significant milestone in our project, showcasing tangible results in the form of a comprehensive and accessible interface. As we await authorization for media content and refine information, we anticipate a direct impact on user engagement and understanding of Muon Catalyzed Fusion. These enhancements will contribute to a more immersive experience for the general public, aligning with our overarching goal of bridging the gap between complex scientific concepts and broader comprehension.

Concurrently, while the private section undergoes its final stages of development, the focus on implementing robust security protocols and establishing secure hosting is poised to yield lasting impacts. The outcome will be a secure and collaborative space that safeguards proprietary research, fostering an environment where collaboration members can share unpublished or nonpublic findings with confidence.

Looking ahead, the roadmap for completing the website is intricately tied to the seamless integration of essential tools, including Google Docs, Plotly, ChatGPT, WordPress, and GitHub. These integrations are pivotal not only for the current functionality of the platform but also for its future impact on collaboration and information exchange within the Muon Catalyzed Fusion community.

The achieved results in the public section and the ongoing work in the private section underscore our commitment to excellence. The immediate impact on user experience and the potential for future collaboration within a secure framework highlight the success of our endeavors. Moving forward, our focus on continuous improvement and innovation positions this platform as a dynamic hub for advancing the state-of-the-art in Muon Catalyzed Fusion. Future work will center on refining user interactions, expanding collaborative features, and staying at the forefront of technological advancements to ensure sustained impact and relevance.
Appendix A (Web Page Views)

Navigation Bar (including drop-down menu):

Low Energy Muon Collaboration

Animated Text:

Sliding In:

Science is as Science does...

'It has been clearly demonstrated that the science beheld by the Holy Union of NK Labs and Fermilab is far superior to any other science I would allow into existence.'
- God

Our Proof
See what ChatGPT has to say

Set:

Science is as Science does...

'It has been clearly demonstrated that the science beheld by the Holy Union of NK Labs and Fermilab is far superior to any other science I would allow into existence.'
- God

Our Proof
See what ChatGPT has to say
Owl Carousel:

Moving:

Set:

Parallax:
Video:

Fade-In Buttons:

Science for the sake of Science

Tempor erat elit reprehenderit. Diam dolor diam ipsum et tempor sit. Aliqiu diam amet diam et eoo labores. Cita erat ipsum et lorem et sit, sed sit no labore lorem sit. Sanctus duita duo justo et tempor eirmod magna dolore erat amet

Read More

Science

Erat ipsum justo amet duo et elitr dolor, est duo duo eoo lorem sed diam sed diam sed diam sed lorem.

Read More

Science Type Science

Erat ipsum justo amet duo et elitr dolor, est duo duo eoo lorem sed diam sed diam sed lorem.

Read More

The Most Science

Erat ipsum justo amet duo et elitr dolor, est duo duo eoo lorem sed diam sed diam sed lorem.

Read More

Fluid Buttons:

Set:

Mouse Hover:
Accordion/Collapsing Headers:

Fading In:

<table>
<thead>
<tr>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a Muon</td>
</tr>
<tr>
<td>Muon Production</td>
</tr>
<tr>
<td>Acceleration</td>
</tr>
<tr>
<td>Accelerator Applications</td>
</tr>
</tbody>
</table>

Set:

<table>
<thead>
<tr>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a Muon</td>
</tr>
<tr>
<td>Muon Production</td>
</tr>
<tr>
<td>Acceleration</td>
</tr>
<tr>
<td>Accelerator Applications</td>
</tr>
</tbody>
</table>

Accordioned/Collapsed:

<table>
<thead>
<tr>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a Muon</td>
</tr>
<tr>
<td>Muon Production</td>
</tr>
<tr>
<td>Acceleration</td>
</tr>
<tr>
<td>Accelerator Applications</td>
</tr>
<tr>
<td>Short summary with link to full page.</td>
</tr>
</tbody>
</table>
Appendix B (Code)

Navigation Bar (including drop-down menu):

```html
<!-- Navbar Start -->
<div class="container-fluid sticky-top">
  <div class="container">
    <nav class="navbar navbar-expand-lg navbar-dark bg-dark">
      <a href="index.html" class="navbar-brand">Low Energy Muon Collaboration</a>
      <button type="button" class="navbar-toggler ms-auto me-0" data-bs-toggle="collapse" data-bs-target="#navbarCollapse">
        <span class="navbar-toggler-icon"></span>
      </button>
      <div class="collapse navbar-collapse" id="navbarCollapse">
        <a href="index.html" class="nav-item nav-link active">Home</a>
        <a href="about.html" class="nav-item nav-link">About</a>
        <a href="service.html" class="nav-item nav-link">Services</a>
        <a href="project.html" class="nav-item nav-link">Projects</a>
        <a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown">
          Pages
        </a>
        <div class="dropdown-menu bg-light mt-2">
          <a href="feature.html" class="dropdown-item">Features</a>
          <a href="team.html" class="dropdown-item">Our Team</a>
          <a href="faq.html" class="dropdown-item">FAQ</a>
          <a href="testimonial.html" class="dropdown-item">Testimonial</a>
          <a href="404.html" class="dropdown-item">404 Page</a>
        </div>
        <a href="contact.html" class="nav-item nav-link">Contact</a>
      </div>
      <button type="button" class="btn text-white p-0 d-none d-lg-block" data-bs-toggle="modal" data-bs-target="#searchModal"><i class="fa fa-search"></i></button>
    </nav>
  </div>
</div>

<!-- Nav Bar End -->
```

Animated Text:

-An image of animated text displaying scientific content related to muon catalyzed fusion and beam production. The text includes elements such as equations, graphs, and bullet points.

Fermi National Accelerator Laboratory

15
A Collaboration Website for Muon Catalyzed Fusion and Muon Beam Production

Don Flecky, Columbia Basin College

Owl Carousel:

<div class="col-lg-7 wow fadeIn" data-wow-delay="0.5s">
 <div class="owl-carousel testimonial-carousel border-start border-primary">
 <div class="testimonial-item ps-5">
 <i class="fa fa-quote-left fa-2x text-primary mb-3"></i>
 <p class="fs-4">Aliquam amet diam et eos labore. Clita erat ipsum et lorem et sit,</p>

 <div class="ps-3">
 <h5 class="mb-1">Client Name</h5>
 Profession
 </div>
 </div>
 </div>
</div>

Parallax:
A Collaboration Website for Muon Catalyzed Fusion and Muon Beam Production

Don Flecky, Columbia Basin College

Video:

Fade-In Buttons:

Fluid Buttons:

Accordion/Collapsing Headers:
References

Creation of this website needed no direct sources as the information contained here is from the public domain and no direct references are necessary. As well, acknowledgment that the rules of each coding language were followed and thoroughly studied, should be made. This fact includes having the ability to garner the necessary help from the code editing software (the Visual Studio Code platform) as well as various websites across the internet. No content has made it to this report as there were no specific references to any rules, just theory.

Acknowledgements

Special Thanks to my mentor Dr. Carol Johnstone and Ara Knaian of NK Labs, and to my colleagues Jasmine Tang, Wesley Winter and Erica Garcia Badaracco for their continued support and interactions.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internships Program (CCI)