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We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of
the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth
dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark
matter candidate. This work constitutes the first milestone in the program to study stealth dark
matter self-interactions. Here, we focus on reducing excited state contamination in the single baryon
channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators
onto the irreducible representations of the octahedral group. We compare our resulting spectrum to
previous work involving Gaussian smeared non-projected operators and find good agreement with
reduced statistical uncertainties. We also present the spectrum of the low-lying odd-parity baryons
for the first time.

I. INTRODUCTION

Dark matter makes up about 84% of the mass of the
Universe, but its composition remains a mystery. Given
that around 99% of the mass of visible matter in the Uni-
verse arises from the strong dynamics of quantum chro-
modynamics (QCD), it is well motivated to consider dark
matter candidates whose mass arises from the dynam-
ics of some new confining gauge theory, For reviews, see
Refs. [1–3]. There are a large variety of theories that can
lead to viable dark matter as dark baryons, for instance
see Refs. [4–15].

In this paper, we focus on stealth dark matter [9],
where the Standard Model is extended to include an
SU(4) gauge theory with four fermions in the fundamen-
tal representation that produces a spectrum of compos-
ite particles. The lightest dark baryon is stable, elec-
trically neutral, and provides a viable candidate for the
dark matter in the Universe. Previous lattice studies of

∗ kimmy.cushman@yale.edu

stealth dark matter have investigated the effective Higgs
coupling [7, 9], the dark baryon electromagnetic polariz-
ability [16], and the confinement transition and its rela-
tion to gravitational waves [17–19]. We have recently [20]
been working to extend this research program to include
studies of stealth dark matter self-interactions, which is
the motivation of the work presented here. In the follow-
ing we refer to stealth dark matter as the SU(4) gauge
theory which we study in the quenched limit with two
fundamental flavors in the valence sector.

In order to study stealth dark matter self-interactions
from first principles, Lüscher’s method [21, 22] can be
applied to non-perturbative lattice calculations of the
single- and two-baryon spectrum. Such analyses require
high precision energy measurements from multi-baryon
correlation functions, which still present challenges to the
lattice community in studies of QCD [23–25]. Stealth
dark matter with four colors represents a more challeng-
ing problem compared to QCD due to the larger number
of fermion Wick contractions required to compute baryon
correlation functions, as well as the reduced signal-to-
noise ratio. On the other hand, the physical parameter
space for stealth dark matter extends to much heavier
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pion-to-nucleon mass ratios than for QCD at the physical
point, which ameliorates some of the challenges related
to studying baryons.

As a first step towards study of baryon interactions,
we begin in this work by computing baryon masses us-
ing state of the art lattice QCD techniques. To achieve
the greatest signal in our SU(4) hadron correlation func-
tions, we implement traditional and stochastic Lapla-
cian Heaviside (LapH) smearing (also known as distil-
lation) [26, 27]. We also project our operators into ir-
reducible representations (irreps) of the lattice octahe-
dral group [28], as is done in state-of-the-art hadron-
scattering studies of QCD [25, 29–31]. This paper repre-
sents the first application of both LapH and irrep projec-
tion on the meson and baryon spectrum of stealth dark
matter.

In this work, we analyze the spectrum of the SU(4)
gauge theory with fundamental fermions in the quenched
approximation. We consider the isospin symmetric limit
of two-flavor mesons and baryons. We study three
quenched ensembles with volume 323×64 and β = 11.028,
11.5, and 12.0. We estimate the ground state and first-
excited state energies of the pseudoscalar meson, the vec-
tor meson, and irrep projected even- and odd-parity spin-
0, spin-1, and spin-2 baryons with 2-point correlation
functions of LapH smeared operators. We use a simple
operator basis to perform a combined fit analysis, and
we apply model averaging [32, 33] to all of our fits. We
then compare our ground state energy values to the re-
sults presented in an initial study of the SU(4) stealth
dark matter spectrum involving simpler operators [7].

This paper is organized as follows: in Section II we
describe our operator optimization, with Section IIA de-
scribing how operators are projected onto the irreducible
representations of the octahedral group, and then Sec-
tion II B reviewing the Laplacian Heaviside method and
describing our implementation. In Section III, we de-
scribe our operator basis and fitting procedure, and com-
pare our spectrum results to results from Ref. [7]. We
present our conclusions in Section IV.

II. OPTIMIZING OPERATORS

In this section, we develop the framework for the opera-
tor construction we use for the baryon scattering problem
needed to study stealth dark matter self interactions. We
anticipate the scattering problem to present challenges.
The first is the statistical challenge due to the exponen-
tially decreasing signal-to-noise ratio at large Euclidean
times, which is expected to scale like e−2mPSt for SU(4)

as opposed e−
3
2mPSt for SU(3) [34–36], where mPS is the

mass of the pseudoscalar meson. In addition, we eventu-
ally will need to construct a large variational basis to im-
prove our estimation of the ground state of the one- and
two-baryon systems. Completing these calculations for
various scattering momenta to access higher-wave scat-
tering channels presents the additional challenge of esti-

mating the all-to-all propagator. The following sections
discuss how projecting onto lattice irreps and implement-
ing the LapH method address these challenges.
One way of improving the signal in our correlation

functions is to project operators into the irreps of the
octahedral group. By using a set of operators in a defi-
nite irrep, we reduce the contamination in our signal from
states with different spin.
Another way is using the LapH method [26], which has

three important benefits. First, it provides a low-rank ap-
proximation to the all-to-all propagator. Second, LapH
has been shown to reduce excited state contamination
in correlation functions [20, 26, 27]. This is important
for scattering measurements because Lüscher’s method
requires analyzing energy differences, and we need the
largest signal-to-noise ratio possible. Finally, LapH al-
lows for great flexibility and computational efficiency in
the construction of a large variational basis of operators.
All operators presented in this work are defined with

all fermion fields at a single point prior to LapH smear-
ing. We do not include operators with displacement or
nonzero momentum in this work.

A. Projection onto irreducible representations

In this section, we first review the motivation for using
lattice irreps in Section IIA 1. In Section IIA 2 we set up
our notation and describe our choice of flavor wave func-
tions, contrasting our SU(4) gauge theory choices against
what would be done for SU(3). Then in Section IIA 3, we
review the algorithm for constructing irreps and describe
our basis choice. The results of our irrep projections are
presented in the Appendix in Table X.

1. Irreps and SU(4)

When a continuum field theory is discretized onto a
lattice, the symmetry group SO(3) of rotations is bro-
ken. Instead of the continuous rotations of the sphere,
a cubic lattice has symmetries of the octahedral group,
O, describing all of the discrete rotations about the axes
of symmetry of the cube. In the case of fermion rep-
resentations with positive and negative parity, we are
concerned with the breaking of O(3) into the 96-element
double point group, OD

h [28]. In the continuum, there are
infinitely many spin irreps of O(3), defined by the quan-
tum numbers J and P , where J = 0, 12 , 1,

3
2 , 2,

5
2 , 3,

7
2 , · · · ,

and P = ±1. However for a lattice field where we con-
sider the double point group symmetries, there are just
16 irreps, G1g, G1u, G2g, G2u, Hg, Hu for fermions, and
A1g, A1u, A2g, A2u, Eg, Eu, T1g, T1u, T2g, T2u for bosons,
where the subscripts g and u denote positive and neg-
ative parity, respectfully.
Due to the broken symmetry on the lattice, we can-

not construct hadronic operators with definite quantum
number J . We can only project operators into definite
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J Λ

0 A1

1 T1

2 E ⊕ T2

3 A2 ⊕ T1 ⊕ T2

4 A1 ⊕ E ⊕ T1 ⊕ T2

J Λ

1
2

G1

3
2

H

5
2

G2 ⊕H

7
2

G1 ⊕G2 ⊕H

9
2

G1 ⊕ 2H

TABLE I: Subduction tables for the five lowest integer
(left) and half-integer (right) spin representations, J ,
into octahedral group representations, Λ.

lattice irreps. The discretization forces a subduction of
spin irreps into lattice irreps. In the continuum limit,
when the full symmetry is restored, the lattice irreps are
induced back to the spin irreps. We use the subduction
rules, as given in Table I, to select operators of interest
and interpret the spectrum.

In the study of SU(4) gauge theory, we are only inter-
ested in bosonic representations due to the even number
of colors, so we will only be dealing with positive- and
negative-parity operators in the A1, A2, E, T1, T2 irreps.
One can find detailed presentations of fermionic repre-
sentations in Refs. [37, 38].

To reiterate, our baryon operators are bosons, and the
only quantum numbers we care about are IJP , rather
than IGJPC as one would consider for mesons. In this
work we will only consider operators with zero orbital
angular momentum, so J = S, with a maximum value of
S = 2. Hence, we only need the first three rows of the
left-side table in Table I. The irrep projection provides
the JP quantum numbers and, as we describe in the next
section, we perform a separate projection onto isospin I
as well. Note that in this work, we focus on construct-
ing two-flavor baryons. Hence, isospin, I, is a sufficient
quantum number to describe the flavor content of our
baryons (as opposed to also keeping track of stealth dark
matter analogues of strangeness, charm, etc.).

According to the subduction table, to study the spin-0
baryon that is the dark matter candidate, we construct
operators in the A1 irrep. The next particle in the spec-
trum that overlaps with the A1 irrep has spin 4. Hence,
correlation functions constructed from the A1 irrep have
no excited state contamination from physical states with
spin 1 or spin 2, improving our signal compared to non-
projected operators. We also study the spectrum associ-
ated with S = 1 through projections onto T1, as well as
S = 2, through projections onto E and T2.

2. Setup for constructing irreps

To see how the irreps are constructed, first consider an
SU(4) baryon operator, O, to be given by

O =
∑

c1c2c3c4
f1f2f3f4
α1α2α3α4

ψc1f1α1
ψc2f2α2

ψc3f3α3
ψc4f4α4

× ϵc1c2c3c4 ϕf1f2f3f4 χα1α2α3α4 , (1)

where ψ are Grassmann numbers indexed with color in-
dices, ci, flavor indices, fi, and spin indices, αi. The
Grassmann numbers are contracted with three rank-4
tensors. These tensors are the Levi-Civita tensor, ϵ, the
flavor wavefunction, ϕ, and the spin projection, χ. We
use this notation for convenience, but also to empha-
size the symmetry constraints imposed by the Grassmann
numbers, as described below. Note that for non-local op-
erators, the Grassmann numbers would also need to be
contracted with some position/displacement tensor in-
volving gauge links. In this work, we are considering only
local operators so we omit the position tensor. Here, our
goal is to find ϕ and χ such that the operators have def-
inite isospin and lattice irrep.

In the sections below, we compare our SU(4) spectrum
results to Ref. [7], where operators are constructed using
“di-quark” operators given by

O =
(
ψα
1 X

αβ
1 ψβ

2

)(
ψσ
3 X

σδ
2 ψδ

4

)
, (2)

with ψi representing fermions with two flavors labeled u
and d. The rank-2 spin tensors X1 and X2 are identified
with spin according to

spin-0 : X1 = Cγ5, X2 = Cγ5 (3)

spin-1 : X1 = Cγi, X2 = Cγ5, i = 1, 2, 3 (4)

spin-2 : X1 = Cγi, X2 = Cγj , i ̸= j (5)

where C = γ4γ2 is a charge-conjugation operator. As an
example, their spin-0 operator,

O =
(
uα (Cγ5)

αβ dβ
)(
uσ (Cγ5)

σδ dδ
)
, (6)

in our notation corresponds to

χαβσδ = (Cγ5)
αβ(Cγ5)

σδ (7)

ϕf1f2f3f4 =

{
1 for (f1, f2, f3, f4) = (u, d, u, d)

0 otherwise.
(8)

Note that these operator do not have definite total isospin
and spin.
To construct our irrep projected operators in this work,

we use the fact Grassmann numbers anticommute, so
when they are contracted with tensors to form a scalar,
as in Equation 1, only the totally anti-symmetric part of
the product ϵϕχ will contribute. Given that the color
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tensor, ϵ, is totally antisymmetric, only the totally sym-
metric part of the product of the flavor and spin tensors
contributes.

To construct two-flavor baryon operators in SU(4)
(gauge theory), we can gain insight by looking at the to-
tally symmetric spin-flavor irreps of SUS,F (4)⊃ SUS(2)×
SUF (2), with S denoting non-relativistic 2-component
spin, and F denoting flavor. That is, we can embed rep-
resentations of SUS(2) × SUF (2) into representations of
SUS,F (4), where a representation of the spin-flavor group
has a spin label and a flavor label. The totally symmetric
spin-flavor wave function can be decomposed using the
Young diagrams below:

SUS,F (4)
=

SUS(2)
×

SUF (2)

+

SUS(2)

×

SUF (2)

+

SUS(2)

×

SUF (2)

. (9)

This equation tells us that a totally symmetric spin-
flavor wavefunction (horizontal Young Diagram on the
left-hand side) can be decomposed into a product of spin
and flavor wavefunctions in three ways. The first term
represents S = 2, I = 2. The second term represents
S = 1, I = 1. And the third term represents S = 0, I = 0.
The analogous equation for SU(3) gauge theory is

SUS,F (4)
=

SUS(2)
×

SUF (2)

+

SUS(2)

×

SUF (2)

. (10)

The first term, with totally symmetric isospin and spin
corresponds to the ∆ baryon, which has I = S = 3/2.
The second term corresponds to the nucleon, with I =
S = 1/2.

The relativistic Dirac spins can have more non-
vanishing contributions, but in this work, we focus on the
operators with S = I. We assume that, as in QCD, the
spectrum can be described by a constituent quark model,
where the baryons with S ̸= I require orbital angular mo-
mentum and have higher masses. Using these symmetries
to determine the correct combination of lattice irreps and
isospins, we construct three sets of spin-flavor wavefunc-
tions: A1 with I = 0, T1 with I = 1, and T2 and Eg with
I = 2. The flavor wavefunctions with definite I = 0, 1, 2
are determined from the SU(2) Clebsch-Gordon coeffi-
cients, and are given in the Appendix in Table IX.

Given a particular flavor wavefunction, we can write
Equation 1 in a more familiar form by combining the
flavor tensor with the Grassmann fields and labeling the

quarks by their flavor. For example, the operator with

the I = 0 flavor wavefunction labeled MS
(2)
0 in Table IX,

(ud− du)(ud− du), can be written as

OΛ = ϵabcd(uaαd
b
β − daαu

b
β)(u

c
σd

d
δ − dcσu

d
δ)χ

Λ
αβσδ, (11)

where Λ indicates the lattice irrep, and χΛ is the spin
tensor wavefunction for that irrep. Below, we summarize
what is needed to understand our application of the irrep
projected spin tensors, χΛ, listed in Table X.

3. Projecting into a definite irrep

Here we use the usual irrep projection formula [29], as
reviewed in Appendix A 5. For each irrep Λ, we pro-
duce dΛ × K unique operators, χΛλ,k, λ = 1, . . . , dΛ,
k = 1, . . . ,K. Here, dΛ is the dimension of the irrep,
and K is the number of copies in the irrep.
By the definition of being an irrep, each of the K sets

of dΛ operators is a closed subspace under application of
all elements of the group of lattice rotations. Therefore,
once χΛλ,k is calculated for each λ, we are free to choose
a basis in the dΛ dimensional subspace defined by each ir-
rep. In this work, we compute the spin projections using
Equation A2, and then perform the basis transforma-
tion which diagonalizes the group element corresponding
to rotation of π/2 about the z-axis, C4z. For example,
dΛ = 2 for the Eg irrep, so the matrix representation of
C4z is 2 × 2. It has eigenvalues Rz = {−1, 1}. These
rotation group eigenvalues correspond to Sz eigenvalues
in the Lie algebra su(2) according to

Rz = eiπ/2Sz . (12)

In the Eg example, Sz = {0, 2}. The other positive-parity
irrep corresponding to spin-2 is T2g, which has algebra
eigenvalues Sz = {−1, 1, 2}. Thus, these two irreps span
the full spectrum of spin-2, with Sz = {−2,−1, 0, 1, 2}.1
The diagonalized irrep-projected spin tensors for irreps

A1g, Eg, T1g, T2g and A1u, Eu, T1u, and T2u are tabu-
lated in Table X. As a result of the diagonalization, Sz

are used as a label for the irrep row instead of λ.

B. Laplacian Heaviside method (LapH)

The basic concept of LapH is to construct correlation
functions from a low rank approximation of the all-to-all
propagator by using the low modes of the gauge invariant
Laplacian [26]. In this section, we first review the formal-
ism of LapH, and then discuss our operator construction
through a baryon correlation function example. We then
discuss LapH in practice, with a discussion about opti-
mization and timing.

1 Note that −1 = eiπ/2·−2 = eiπ/2·2, so Rz = −1 appearing in
both Eg and T2g allows for both Sz = 2 and Sz = −2 as required.
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1. LapH formalism

LapH is essentially a form of quark field smearing. The
source and sink quark fields, ψ, at spacetime position
(x, t) are smeared according to

ψa
α(x, t) →

Nvec∑
i=1

Vx,a|i(t) V
†
i|y,b(t) ψ

b
α(y, t), (13)

where color indices are given by Latin letters, a, b, . . . and
Dirac spinor indices are given by Greek letters, α, β, . . .
Above, Einstein summation convention is used for the
sum over spatial position y and color index b, but the
sum over eigenvectors is written explicitly to draw atten-
tion to the fact that the sum only runs up to the chosen
parameter Nvec. The matrices V are the eigenvectors of
the gauge invariant lattice Laplacian, ∆, given by

∆ab
xy(t) =

Nd−1∑
k=1

(
Uab
k (x, t)δy,x+k̂ +

(
U†)ab

k
(y, t)δy,x−k̂

)
− 2δxyδab (14)

∆ab
xy(t) Vx,a|i(t) = λi(t) Vy,b|i(t), (15)

where Nd−1 is the number of spatial dimensions, and Uk

are the gauge link fields in direction k. By ordering the
eigenvectors by increasing magnitude of their eigenval-
ues, λi, the smearing, Equation 13, becomes a sum over
the first Nvec low modes of the Laplacian. These are
analogous to the low Fourier modes in a scalar field the-

ory. In the limit Nvec → N
(max)
vec = L3

xNc, the smearing
operation becomes the identity, and the quark field is not
smeared, i.e. ψ(x, t) → ψ(x, t). In the limit Nvec → 0,
the quark field is smeared to a wall source.

Computationally, we compute Nvec eigenvectors, V ,
and solve for the propagator, D−1, using the eigenvec-
tors as the source, and then contracting the result with
the Hermitian conjugate of each eigenvector at the sink.
The resulting object is the perambulator, τ , defined as

ταα0
ii0

(t, t0) = V †
i|x(t) D

−1
αα0

(x, t|x0, t0) Vx0|i0(t0), (16)

which can be interpreted as the matrix of N2
vec

eigenvector-to-eigenvector propagators (in contrast to
point-to-all or all-to-all propagators). The eigenvectors
and perambulators are then saved to disk and, depend-
ing on how they are contracted with spin-tensors, can be
used to form any number of hadron operators. This is
true even with displacements and projections onto dif-
ferent momenta, as described in Ref. [26]. Therefore,
the ability to construct a large variational basis with the
same initial building blocks of eigenvectors and peram-
bulators makes up for the greater complexity of imple-
menting LapH.

2. Example correlation functions using LapH

The operator and correlation function construction us-
ing LapH is nearly the same for SU(3) and SU(4) mesons,
the only difference being the number of color indices car-
ried on the eigenvectors. See for example Ref. [26] or
Ref. [20].

Here, we show the application of LapH to the baryon
example shown in Equation 11. Suppressing the spatial,
temporal, and color indices for clarity, the correlation
function without LapH is given by

C(x, x′) = ϵ
(
uαdβ − dαuβ

)
(uσdδ − dσuδ

)
χαβσδ

× ϵ
(
ūα′ d̄β′ − d̄α′ ūβ′

)(
ūσ′ d̄δ′ − d̄σ′ ūδ′

)
χ̃α′β′σ′δ′

(17)

= ϵabcdϵa
′b′c′d′

χαβσδ χ̃α′β′σ′δ′

×
(
D−1

αα′

aa′
D−1

σσ′

cc′
−D−1

ασ′

ac′
D−1

σα′

ca′

)
×

(
D−1

ββ′

bb′

D−1
δδ′

dd′
−D−1

βδ′

bd′

D−1
δβ′

db′

)
(18)

where χ̃αβσδ = χ∗
α′β′σ′δ′γ

αα′

4 γββ
′

4 γσσ
′

4 γδδ
′

4 , as required to

compute O†. Now, applying LapH, and writing the color
indices explicitly, the correlation function becomes

C(x, x0) = ϵabcdϵa
′b′c′d′

χαβσδ χ̃α′β′σ′δ′

Nvec∑
ijkl

i′j′k′l′

T ijkl
abcd

T †
i′j′k′l′

a′b′c′d′

×
(
ταα

′

ii′ τσσ
′

kk′ − τασ
′

ik′ τσα
′

ki′

)(
τββ

′

jj′ τ
δδ′

ll′ − τβδ
′

jl′ τ
lj′

δβ′

)
,

(19)

where

T ijkl
abcd

= Va|i Vb|j Vc|k Vd|l, (20)

T †
ijkl
abcd

= V †
i|aV

†
j|bV

†
k|cV

†
l|d. (21)

As is the case for mesons, the propagator in position
and color space is replaced by the perambulator in the
LapH subspace defined by the eigenvectors, and then the
eigenvectors are used to take this low mode result back to
position space. Again, note that the result is similar to
that for SU(3) baryon correlation functions, except that
there would be three fermion fields being contracted and
there would be three indices on the tensors ϵ, T , and χ
above.

It is worth mentioning that these examples consider
LapH smearing of point-to-point correlation functions,
but it is straightforward to consider momentum projec-
tion as usual by summing over all spatial positions with
weights eip·x.
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FIG. 1: Hyperbolic cosine form of effective mass of
pseudoscalar meson correlation function for 323 × 64
ensemble of 200 configurations with β = 12 and
κ = 0.1475. Plot compares different LapH smearing
parameters, Nvec, to non-LapH point-point and
point-shell correlation functions. Lines connecting data
points are included to guide the eye.

3. LapH in practice

Using LapH smearing reduces excited state contami-
nation in a similar way as Gaussian smearing, but with
LapH, the tunable smearing parameter is Nvec. Figure 1
compares the amount of excited state contamination ap-
pearing in our SU(4) β = 12 pseudoscalar meson correla-
tion functions produced with a range of smearing, from
no smearing (point-point) to smearing with Nvec = 4, the
four zero modes of the Laplacian (due to there being four
colors), corresponding to a wall source. As expected, the
effective mass with the most excited state contamination
comes from the point-point correlation function with no
smearing, the red, highest curve. By inspection, one can
see that the LapH effective masses, the lowest four curves,
have significantly less excited state contamination than
both the point-point and Gaussian sink smeared point-
shell correlation functions.2 However, one can see that all
of the curves converge to the same effective mass plateau.

Figure 2 shows a closer look at the same LapH effec-
tive masses described above, but zoomed in and with the
purple Nvec = 4 curve lightened for clarity. One can see
that while there is less excited state contamination for
smaller values of Nvec, the errors are larger. Therefore,

2 The amount of excited state contamination appearing in the
Gaussian smeared data depends on the parameters of the smear-
ing. The non-LapH correlation functions were computed using
the Chroma implementation provided by Michael Buchoff [7].
In this work, gauge invariant quark smearing was used with
smearing parameters wvf param = 4.0 for β = 11.028, 11.5 and
wvf param = 8.0 for β = 12.
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FIG. 2: Zoomed in version of Figure 1, showing only
LapH effective masses to compare excited state
contamination and relative error. Lines connecting data
points are included to guide the eye.

in choosing Nvec, one has to consider the trade off be-
tween increasing systematic or statistical error.

Given that the parameter Nvec controls the overlap
of the operator with states in the spectrum, operators
constructed with different number of eigenvectors can be
used as a variational basis in a generalized eigenvalue
problem. In the Section III E below, we follow a differ-
ent approach and perform combined fits of correlation
functions using different numbers of eigenvectors.

Looking back at Equation 19, one can see that the
baryon correlation function requires the contraction of
2Nc eigenvector indices, running from 1, . . . , Nvec. More
specifically, the leading order of computational complex-
ity in eigenvector indices for Eq. (19) is O(NNc+1

vec ). In
other words, the computational cost is proportional to
O(N5

vec) for SU(4) baryons; see Appendix A 4 for more
details. Therefore, the computational cost of these con-
tractions is especially problematic for baryons in larger
gauge groups like SU(4), and will pose a significant chal-
lenge for 2-baryon correlation functions which will require
4Nc contractions. Similarly, it will require O(N2Nc+1

vec ) =
O(N9

vec) of leading complexity for SU(4) baryon-baryon
scattering and this is extremely expensive, and there-
fore it will be essential to apply the stochastic LapH
(sLapH) method which is discussed in the next section.
For the single-baryon correlation functions being studied
in this work, we find that the contraction step presented
in Equation 19 becomes the leading contribution to the
computation time of a baryon correlation function for
Nvec ≈ 32. This number of course depends on algorith-
mic and hardware details, discussed further in Section IV
and Appendix A 4.
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β Plaquette
√
8t0/a κ

11.028 0.578791(4) 5.2411(16) 0.1554

11.5 0.605634(3) 7.8707(50) 0.1515

12.0 0.628840(3) 11.550(15) 0.1475

TABLE II: The parameters, plaquette, and Wilson flow
scale for each of the three SU(4) 323 × 64 ensembles
considered in this work.

C. Stochastic LapH (sLapH)

sLapH [27] is a powerful method that allows for a sig-
nificant reduction in the number of vector contractions,
while still controlling the number of eigenvectors used to
define the LapH subspace and therefore the overlap with
different states in the spectrum. Due to the computa-
tional cost of computing LapH baryons, we choose to use
sLapH when smearing with larger Nvec is desired. sLapH
vectors, Ṽ are defined according to

Vxa|i → Ṽxa|n ≡
Nvec∑
i=1

Vxa|iρin, n = 1, 2, . . . Nnoise,

(22)

where ρin is a matrix whose columns are noise vectors. In
this work, we use Z4 noise with interlace-J = 2 dilution
as defined in Ref. [27]. In the following section, we argue
that it is not worth using sLapH for the baryon analysis
with our current computational resources. However, it is
still useful to use sLapH to study the larger Nvec behavior
of meson correlation functions to explore the relationship
between β and the optimal Nvec. This will be essential
when we move on to baryon scattering, where the com-
putational cost will be higher as Nvec increases, and we
will want to maximize the signal at early times due to
the exponentially decaying signal-to-noise ratio.

In order to optimize statistical and systematic errors,
it is important to consider the relative times required to
complete each step of the LapH process. Computational
resources and timing are discussed in Appendix A 4.

III. ANALYSIS

A. Ensemble details

In this work, we compute the low-lying meson and
baryon spectrum for three quenched SU(4) ensembles
with lattice volume 323×64. We use the Wilson gauge ac-
tion and consider bare lattice couplings β = 11.028, 11.5
and 12. In Table II we report the corresponding values of
the plaquette (normalized to unity) and the Wilson flow
scale

√
8t0/a (where ‘a’ is the lattice spacing) defined

through the condition
{
t2 ⟨E(t)⟩

}
t=t0

= 0.4 [39, 40].

We choose these couplings to match those studied in
Ref. [7]. While that earlier work used the heatbath algo-
rithm for gauge configuration generation, here we employ

the hybrid Monte Carlo (HMC) algorithm, in prepara-
tion for future work using dynamical fermions. We use a
version of the Chroma software system [41], with a force-
gradient integrator and a trajectory length of one molec-
ular dynamics time unit (MDTU). Because autocorrela-
tions increase for larger β, we generated 160,000 MDTU
for β = 12 and only around 40,000 MDTU for each of
β = 11.028 and 11.5. For each ensemble we measured
observables on 385 thermalized configurations, separat-
ing the configurations by 400 MDTU for β = 12 and by
100 MDTU for the stronger couplings.
For each β we analyze the heaviest valence fermion

mass considered by Ref. [7]. We employ Chroma to cal-
culate the perambulators, using the unimproved Wilson
fermion action with the values of κ shown in Table II.
For the β = 11.028 and 11.5 ensembles, the correspond-
ing pseudoscalar-to-vector mass ratio ismPS/mV ≈ 0.77.
For the β = 12 ensemble we have heavier valence fermions
leading to mPS/mV ≈ 0.89.

B. Fitting details

All of our fits use the same procedure. First, all of
our SU(4) meson and baryon operators are bosons and
are even under time-reversal, so we “fold” the correlation
functions about Nt/2 to increase the statistics. Also, all
correlation functions are calculated on only one source
time. For the case of point-point/point-shell/shell-shell
correlations only one measurement is performed, in con-
trast to ≈ 5 measurements per configuration used in
Ref. [7]. This is irrelevant for LapH correlation functions,
where N sink

vec ×N source
vec measurements are used. Before fit-

ting, we average the correlation functions corresponding
to the three polarizations of vector mesons, as well as all
Sz components, as listed in Table X, of baryons in the
E, T1, and T2 irreps.
We perform χ2-minimization fits using a full covari-

ance matrix with linear shrinkage [42], as presented in
Ref. [43]. We implement model averaging [32, 33] to es-
timate central values and systematic errors due to the
model choices. All correlation functions are fit to hy-
perbolic cosine models with one, two, and three energy
states for a range of fitting regions in Euclidean time.
That is, the fit model is

C(t) =
Nstates∑
m=1

am

(
e−Emt + e−Em(Nt−t)

)
, (23)

where Nstates = 1, 2, 3, and the fit parameters are am is
a real number and Em is positive. We estimate errors
on fit parameters by model averaging errors computed
from a sample of parameters obtained using a bootstrap
analysis in which we randomly select 385 measurements
to form 100 bootstrap samples.

As motivated in Refs. [33, 44] we use strict data quality
cuts in our model averaging and only fit to a maximum
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time, tcut such that C(tcut)/C(1) is more than eight stan-
dard deviations from zero. We also impose quality cuts
to determine the models used in the model average. We
exclude models where any of the fit parameters are un-
constrained, i.e. ≥ 100% error. We also exclude models
to more states than the data appear to support.

C. Spectrum comparison with simple operators

In this work, we want to isolate the effects of using
LapH and irrep projected operators. Therefore we com-
pare our results to a previous study [7] of the spectrum
which does not employ LapH or irrep projected opera-
tors. This comparison also serves as a validation of the
physics results from our updated simulation code and
methods. We ensure our ensembles are statistically com-
patible with those used in the previous work by fitting
correlation functions constructed using the same oper-
ators used in the previous work, as described in Equa-
tion 2. We choose the Gaussian smearing parameters to
match the results of Ref. [7].

Our results of the ground state masses in each channel
are obtained by performing a combined fit to three dif-
ferent zero-momentum projected smearing prescriptions:
point-point, point-shell, and shell-shell as implemented
in Ref. [7]. The same procedure for performing the com-
bined fits is used here as is used for the LapH and irrep
projected correlation functions, with more details given
in Section III E.

Figure 3 shows the spectrum results in units of the
spin-0 baryon. Our results are the data points with error
bars and are compared to those quoted in Ref. [7], which
are given as the horizontal error bands. We can see that
our results are in good agreement with the previous work.
Even using the same simple operators at this point, our
errors are smaller on average, even though we have less
measurements for each channel overall. We attribute this
to our more sophisticated analysis procedure, described
in Section III B, as well as the fact that we performed a
combined fit to the correlation functions with the three
smearings.

D. LapH and irrep operator basis

The contractions required to calculate the baryon cor-
relation functions, as in Equation 19, are computation-
ally expensive, and the cost scales badly with the number
of LapH eigenvectors, Nvec (or noise vectors in the case
of sLapH). Therefore, we compute the inexpensive meson
correlation functions for a range of Nvec in order to study
the trade off between reduced excited state contamina-
tion and reduced signal. Although the optimization may
not transfer directly from the mesons to the baryons, the
meson study provides an inexpensive starting point for
optimizing the baryon signal.

Figures 1, 2, and 4 show the effective mass of the pseu-
doscalar meson for the β = 12, 11.028 and 11.5 ensembles
for a range of Nvec. The figures show that depending on
the coupling, some small Nvec choices smear the opera-
tor wave function too much to even have a good overlap
with the ground state, for example Nvec = 4 for β = 12.0
and Nvec = 16 for β = 11.028. Also varying β has a sig-
nificant effect on the value of Nvec that is large enough
such that excited state signal appears at later timeslices,
where the fits are performed. For example, excited state
signal appears to be significant at Nvec = 16 for β = 12.0
between timeslices t = 2 to t = 8. On the other hand,
the coarsest lattice, with β = 11.028, for both Nvec = 32
and Nvec = 64, the signal for excited states diminished
by timeslice t = 8.

In this work, we focus our computational resources
on the even-parity baryons and the pseudoscalar baryon
(A1u). We also estimate the rest of the odd-parity spec-
trum to study the spectrum ordering, using a smaller
number of eigenvectors and accepting a larger error for
the odd-parity states. Using the initial meson analysis as
described above, the number of eigenvectors chosen for
the even-parity (and A1u) and odd parity baryon corre-
lation functions, B+ and B− are shown in Table III.

β B+, A1u Nvec B− Nvec

11.028 32 24

11.5 24 24

11.028 16 16

TABLE III: Number of eigenvectors chosen for baryon
correlation functions for each ensemble.

As expected, the coarsest lattice with β = 11.028 re-
quires the largest number of eigenvectors, Nvec = 32,
and we are able to get away with using the very small
Nvec = 16 for the finest lattice with β = 12.
These choices of Nvec are significantly smaller than

those used in typical lattice QCD calculations. However,
in the baryon spectrum problem here, the bottleneck of
the entire lattice calculation is the contractions, so we
choose to trade off using a larger number of eigenvectors
for increasing statistics. That is, the computational cost
is linear in the number of configurations, but it is quar-
tic (or worse) in the number of eigenvectors, so for fixed
computational cost, we choose to reduce the number of
eigenvectors and increase the number of configurations.
The scaling of the computational cost as a function

of the number of (s)LapH vectors also means that using
sLapH is not very beneficial with our current computa-
tional procedure. While sLapH allows us to increase the
number of eigenvectors used for a fixed number of noise
vectors, that number of noise vectors has to be sufficiently
large to sample the LapH subspace well enough. There-
fore, we only use sLapH when constructing the meson
correlation functions. This still provides useful informa-
tion about how the signal varies with Nvec and β. The
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FIG. 3: Spectrum results using the simple operators defined in Equation 2 as used in previous work, Ref. [7]. Our
results, colored points with error bars, are compared to the quoted results from the previous work, depicted by error
bands. Masses, mX , are in units of the spin-0 baryon mass, mS0, for each bare coupling, β. The left figure shows all
of the states measured in this work, and the right figure shows the same results, zoomed in to focus on the baryons.
In the left figure, the errors are smaller than the points.
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FIG. 4: β = 11.028 (top) and β = 11.5 (bottom)
pseudoscalar meson effective masses, using the
hyperbolic cosine form of the effective mass. Lines
connecting data points are included to guide the eye.

LapH smearings used for the mesons are presented in Ta-
ble IV, with sLapH with Nnoise = 32 used for Nvec > 100.

β Nvec

11.028 16, 32, 64, 160

11.5 16, 32, 64, 120

12.0 8, 16, 32, 64

TABLE IV: Number of eigenvectors chosen for meson
correlation functions for each ensemble.

E. Combined Fits

The operators used in this work are zero-momentum,
non-displaced operators, and we find that our opera-
tors are not orthogonal enough to perform a reliable
variational analysis. Instead, for both the baryons and
mesons, we perform combined fits to N correlation func-
tions. For the meson analyses, N = 4 as four differ-
ent LapH smearings are used. For the baryon analysis,
N = K, where K is the total number of copies, indexed
by k, for each irrep. The values of K, as tabulated in
Table X, are given in Table V.

Λ K

A1g 4

T1g 5

Eg 3

T2g 3

Λ K

A1u 2

T1u 4

Eu 2

T2u 2

TABLE V: Number of operators, K, for each irrep, Λ.

We perform a simultaneous χ2 minimization fit to the
N correlation functions, fitting all correlation functions
to a model with the same number of states, Nstates, but
allowing the range of timeslices in the fit to vary between
the different correlation functions. The fit parameters are
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FIG. 5: Results of β = 11.5 pseudoscalar meson fits
with up to two states to single correlation functions
constructed with different LapH smearing, Nvec (left
panel) and combined fits with up to three states to all
four correlation functions simultaneously taking into
account all data covariances (right panel). Energies
given in lattice units.

the Nstates energy levels, plus the N ×Nstates amplitudes
of each energy state for each correlation function. We use
shrinkage to provide a reliable estimate of the inverse co-
variance matrix required to perform the χ2 minimization,
taking into account covariances among the data sets used
in the combined fit.

1. Meson combined fits varying Nvec

For the meson spectrum analysis, we perform com-
bined fits of correlation functions constructed fromN = 4
different LapH smearings, parametrized byNvec, with op-
erators defined as

O(x, t) =

Nvec∑
ij

Vx|i(t)V
†
i|y(t)ūα(y, t) Γαβ

× dβ(z, t)Vz|j(t)V
†
j|x(t), (24)

where color indices are suppressed, and Γ = γ5 for the
pseudoscalar meson, and Γ = γ1, γ2, γ3 for each polariza-
tion of the vector meson. As indicated in Section III B,
we average over the correlation functions corresponding
to the three polarizations of the vector mesons.

Figure 5 shows the fit results after model averaging for
the β = 11.5 pseudoscalar meson ground state and ex-
cited state energies in lattice units. The left panel shows

the results of individual fits to each Nvec, and the right
panel shows the result of a combined χ2 minimization
fit to all four correlation functions simultaneously, which
we use as the final results presented in Tables VI, VII,
and VIII. Only two-state fits survived model averaging
for the single correlation fits, whereas three-state fits con-
tributed to the model average for the combined fit, so a
third energy state was extracted. From the single cor-
relation function results in the figure, it is possible to
see the effect of increasing Nvec, which makes the opera-
tor more point-like. For larger Nvec, the signal has more
overlap with excited states, so the first excited state is
better resolved.
Because there is more signal to work with, the com-

bined fit is also able to constrain a third state, which
provides better constraints on the lower states. Thus
combined fits have the least excited state contamination
and are working exactly as desired. By combining the
signals of four correlation functions with different over-
laps with excited state, it is possible to achieve the best
variational estimate of the ground state and first excited
state. We found similar results for the mesons for all
three ensembles presented here.

2. Baryon combined fits with Nvec fixed

For the baryon spectrum analysis, we perform com-
bined fits of the N = K correlation functions defined
analogously to the example of Equation 19 with spin-
wavefunctions defined in Table X and flavor wavefunc-
tions defined in Table IX, using Iz = I. Prior to the anal-
ysis, we average the correlation functions corresponding
to the different spin-projection of each irrep. From the
meson examples, we see that varying Nvec in the com-
bined fits can be useful in achieving energy estimates
with less excited state contamination. However, due to
the high computational cost of increasing the number
of eigenvectors for the baryons, we are not able to vary
Nvec meaningfully enough to achieve correlation func-
tions with significantly different overlaps with higher en-
ergy states. We find that varying the operators by using
the K different operators resulting from the irrep projec-
tion improves the energy estimates even for fixed Nvec,
as shown in the examples below.
Figure 6 shows an example of single versus combined

fit results for the β = 12 T1g baryon, which corresponds
to spin-1. All of the baryon operators, indexed by k, used
the same number of eigenvectors, Nvec = 16, as shown
in Table III. The left panel shows the model averaged fit
results to the single correlation functions, and the right
panel shows the results of the combined χ2 minimiza-
tion to all five correlation functions simultaneously. The
single correlation function fits contributing to the model
average are two-state fits, whereas the combined fit has
enough signal to constrain a third state as well. Although
the number of eigenvectors is kept fixed, the operators
each have different overlaps with the energy eigenstates.
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to two states to correlation functions constructed with
different operators indexed by k (left panel) and
combined fits with up to three states to all five
correlation functions simultaneously taking into account
all data covariances (right panel). Energies are given in
lattice units and some error bars are smaller than the
size of the data points.

Here, the most notable example is the k = 4 correlation
function, which constrains the ground state the least, but
gives the lowest estimate of the first excited state with
the least error. By combining the signal from all of the
correlation functions, the combined fit is able to constrain
three states, and provides the best variational estimates
of the ground state and first excited state compared to
the single correlation function fits. We find that only the
β = 12 baryon combined fits are able to constrain a third
state.

Figure 7 shows the fit results to the β = 11.5 A1g

baryon, which corresponds to spin-0. The number of
eigenvectors is Nvec = 24 for each of the baryon oper-
ators, indexed by k. The single correlation function fit
results are shown in the left panel, and two examples
of combined fit results are shown in the right panel. In
this example, both the single fits and combined fits only
are able to constrain two energy states. Even so, the fi-
nal combined fit results, shown as the solid data points in
the right panel, have less excited state contamination and
smaller uncertainties. This can be understood by looking
more closely at the fits which contribute to the model
average. We find that the vast majority of the model
probability for the single correlation function fits comes
from two-state fits starting at timeslice t = 2. For the
combined fits, models containing timeslice 2 contribute
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FIG. 7: Results of β = 11.5 A1g baryon fits to
correlation functions constructed with different
operators indexed by k are shown in the left panel. The
right panel shows two examples of combined fits to all
four correlation functions simultaneously, where the
difference between the open and closed circles is
described in the text. All energies given in lattice units.

very little to the model average (< 1%). However, to
provide a direct comparison between the single and com-
bined fits, the combined fit values for the model starting
at timeslice t = 2 for all correlation functions is shown as
the unfilled data points in the right panel. It appears that
this combined fit is able to resolve the first excited state
with a lower value, indicating that the single correlation
function fits have uncontrolled systematic uncertainties.
On the other hand, the model with the largest contribu-
tion to the combined fit model average is the two-state
model with initial timeslices of t = 3 for all correlation
functions. By combining the signal of the four correla-
tion functions and leveraging the additional statistics, the
full combined fit model average is able to constrain an ex-
cited state without including timeslice t = 2, where there
is contamination from higher states. Hence, the final re-
sult from the combined fit provide the lowest variational
estimate of the ground state and first excited states.

Fits like these, where a third state could not be con-
strained, occur for all of the β = 11.028 and β = 11.5
baryons. We attribute this to the fact that the coarser
lattice spacings require larger Nvec to achieve a suffi-
ciently localized operator, but we only use Nvec = 32
and Nvec = 24, respectively. See Appendix A3 for com-
ments on a few non-intuitive combined fits which required
special care.

By studying combined fits for baryon correlation func-
tions, we can see that having a variety of operators leads
to a reduced statistical error and reduced excited state
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contamination in ground state and first excited state en-
ergies. From the meson analysis, we see that varying the
number of eigenvectors has a similar effect. Ideally we
would use a variety of Nvec for each operator, resulting
a in a large set of operators which could be fit together.
However, given the high computational cost of increasing
Nvec for the baryons, performing combined fits to corre-
lation functions with varying operator construction alone
is a robust and relatively inexpensive way to resolve en-
ergy states with reduced excited state contamination.

F. Final spectrum results

Tables VI, VII, and VIII show the final results of the
ground state, first excited, and second excited state en-
ergies in lattice units. Figure 8 shows the full spectra,
including our fit results of excited states, for each of the
three ensembles, given in units of the A1g ground state
mass, which corresponds to the dark matter candidate.

One feature to note is that the positive parity baryons
are ordered as in QCD, with increasing spin having a
larger mass. That is, we find mA1g < mT1g < mT2g,Eg ,
confirming the ordering found in Ref. [7]. This is an es-
sential feature of stealth dark matter, where the dark
matter candidate, the lowest energy stable baryon, must
be the scalar. Also of note is the fact that the two irreps
corresponding to spin-2, T2g and Eg, are consistent with
each other, which indicates that we are not sensitive to
the discretization effects which break the symmetry be-
tween these two irreps.

Also, as found in Ref. [7], the baryon spectrum is more
compressed for the heavier valence fermions used for the
β = 12 ensemble, corresponding to larger mPS/mV ≈
0.89. This is the behavior expected because the quark
mass is a greater contributor to the baryon mass com-
pared to the angular momentum and strong dynamics
contributions.

We can confidently state that for all of the ensembles
studied in this work, the odd-parity baryons are heavier
than the even parity baryons. For the β = 11.028 and
β = 12 ensembles, the odd-parity spectrum is consistent
with an ordering by increasing angular momentum. But
for β = 11.5, we see one three sigma outlier. We find
that the β = 11.5 combined fits to the K = 2 A1u, T2u,
and Eu correlation functions do not result in a signifi-
cantly lower ground state, whereas the T1u combined fit
to K = 4 correlation functions does see a marked im-
provement. The ground state fit parameters of the T1u
individual fits sit right around 0.85, putting the spin-1
mass directly between the spin-0 and spin-2 masses. To
fully resolve the spectrum ordering, further study involv-
ing more operators or greater statistics are needed.

Figure 9 shows the same results as Figure 8, but com-
pares the results of the mesons and even-parity baryons
to the results of the simpler non-LapH Gaussian smeared
operators presented in Ref. [7]. Our results from the
LapH, irrep projected operators are given by the data

β 11.028 11.5 12.0

PS 0.3477(1) 0.2561(2) 0.2734(2)

vector 0.4527(2) 0.3278(3) 0.3044(3)

A1g (0+) 0.983(3) 0.6975(8) 0.653(1)

T1g (1+) 1.012(2) 0.7168(8) 0.662(1)

T2g (2+) 1.065(4) 0.751(1) 0.678(1)

Eg (2+) 1.064(3) 0.753(1) 0.677(1)

A1u (0−) 1.25(1) 0.833(7) 0.732(4)

T1u (1−) 1.40(4) 0.80(1) 0.733(3)

T2u (2−) 1.36(7) 0.88(1) 0.756(3)

Eu (2−) 1.42(3) 0.89(1) 0.755(3)

TABLE VI: Final results of ground state hadron masses
in lattice units for the three ensembles studied in this
work.

β 11.028 11.5 12.0

PS 0.82(5) 0.57(2) 0.455(7)

vector 0.88(4) 0.60(2) 0.473(5)

A1g (0+) 1.56(9) 1.10(1) 0.84(1)

T1g (1+) 1.65(3) 1.094(8) 0.857(6)

T2g (2+) 1.71(7) 1.19(1) 0.91(3)

Eg (2+) 1.71(6) 1.20(1) 0.90(3)

A1u (0−) 2.1(1) 1.30(5) 0.99(6)

T1u (1−) n/a 1.12(2) 0.89(2)

T2u (2−) 2.3(4) 1.4(1) 1.11(4)

Eu (2−) n/a 1.5(1) 1.10(4)

TABLE VII: Final results of first excited state hadron
masses in lattice units for the three ensembles studied
in this work, with “n/a” indicating combined fit not
including this excited state.

points with error bars, and the results from the previ-
ous work with simpler operators are given by the hor-
izontal error bands. In general, our results with LapH
and irrep projected operators have smaller uncertainties
and provide estimates of the baryon masses with less ex-
cited state contamination. In particular, the β = 12.0
spectrum presented in the previous work likely suffered
from the greatest excited state contamination, yielding
the greater discrepancy seen in Figure 9.

IV. CONCLUSION

This work is the first milestone in the research pro-
gram to calculate stealth dark matter self-interactions
using lattice field theory. We presented the first LapH
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FIG. 8: Final results, including excited states, of combined fits to the LapH smearing and irrep projected correlation
functions for the three ensembles studied in this work. All of the results are presented in units of the ground state
A1g baryon mass. For each panel, from the left to the right, the first two data points indicate the pseudoscalar and
vector mesons. The next four data are for the baryons with even-parity baryons (circles), and the last four data are
the odd-parity baryons (squares). Filled and empty symbols are for the ground and 1st excited state masses,
respectively. The second excited state masses are presented in a lighter color. Note that the spin label in the legend
is meant to aid interpretation; in the continuum limit, the irreps are “injected” to higher spins as well. Also note
that some of the data points are larger than the error bars.

smearing, irrep projected results of the baryon spectrum,
and presented the first results of the odd-parity baryon
spectrum. For three points in the stealth dark matter
parameter space, for Nf = 2 at three quark masses,
we resolved the even-parity baryon ordering with greater
precision and reduced systematic error compared to pre-
vious work [7] from 2014. However, the changes to the
spectrum are small, so the excited state contamination in
previous results does not have significant implications on
the electromagnetic polarizability results [16] and effec-
tive Higgs coupling results [7, 9] found in previous work.

Due to the improved operator construction and use
of advanced analysis techniques, including model averag-
ing [32, 33] and shrinkage [42, 43], we achieved ground
state precision of 0.1% to 0.3% in the even parity sec-
tor, and 0.4% to 5% in the odd parity sector. We also
were able to extract first excited state energy estimates
for 22 of the 24 baryons, with second excited state energy
estimates as well for five baryons.

The baryon-baryon scattering problem required to
study stealth dark matter self-interactions will necessi-
tate further developments in the baryon construction and
analysis procedure. Having developed SU(4) irreps and

LapH, some interesting paths forward are now open. For
example, we may want to include irrep projected dis-
placed quark baryon operators and compute two-baryon
systems with finite orbital angular momentum. These
constructions would provide a large variational basis of
operators that we can use to solve a generalize eigenvalue
problem, as is done in state-of-the-art hadron scattering
calculations in QCD [25, 30, 31, 45].

As we scale up to solving the baryon-baryon scatter-
ing problem, we need to address the issue of the Nvec

scaling of the computational cost by using sLapH. In ad-
dition, implementation of common subexpression elimi-
nation [46] would greatly reduce the number of diagrams
required to complete Wick contractions required for two-
baryon correlation functions.
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β 11.028 11.5 12.0

PS 1.8(4) 1.1(2) 1.01(5)

vector 2.0(2) 1.2(2) 1.03(2)

A1g (0+) n/a n/a 2.4(3)

T1g (1+) n/a n/a 2.07(5)

T2g (2+) n/a n/a 2.5(3)

Eg (2+) n/a n/a 2.4(3)

A1u (0−) n/a n/a n/a

T1u (1−) n/a n/a 2.4(2)

T2u (2−) n/a n/a n/a

Eu (2−) n/a n/a n/a

TABLE VIII: Final results of second excited state
hadron masses in lattice units for the three ensembles
studied in this work, with “n/a” indicating combined fit
not including this excited state.
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Appendix A: Appendix

1. Tabulated isospin wavefunctions

Table IX shows all of the isospin I = 0, 1, 2 wavefunc-
tions for SU(4) baryons. As described in Section IIA 2,
we constructed baryon operators with I = S, and for
convenience, we used Iz = I.
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Tableau Label I Iz orthonormal basis

1 2 3 4
TS 2 2 uuuu

2 1 1
2
(uuud+ uudu+ uduu+ duuu)

2 0 1√
6
(uudd+ udud+ duud+ dudu+ dduu+ uddu)

2 -1 1
2
(uddd+ dudd+ ddud+ duuu)

2 -2 dddd

1 3 4

2
MS

(1)
1 1 1 1√

2
(ud− du)uu

1 0 1
2
(ud− du)(ud+ du)

1 -1 1√
2
(ud− du)dd

1 2 4

3
MS

(2)
1 1 1

√
2
3
uudu− 1√

6
(udu+ duu)u

1 0 1√
3
uudd− 1√

12
(udu+ duu)d+ 1√

12
(udd+ dud)u− 1√

3
dduu

1 -1 1√
6
(udd+ dud)d−

√
2
3
ddud

1 2 3

4
MS

(3)
1 1 1

√
3
4
(uuu)d− 1√

12
(uud+ udu+ duu)u

1 0 1√
6
(uud+ udu+ duu)d− 1√

6
(udd+ dud+ ddu)u

1 -1 1√
12
(udd+ dud+ ddu)d−

√
3
4
(ddd)u

1 3

2 4
MS

(1)
0 0 0 1

2
(ud− du)(ud− du)

1 2

3 4
MS

(2)
0 0 0 1√

3
(uudd+ dduu)− 1√

12
(ud+ du)(ud+ du)

TABLE IX: Irreducible representations of SU(2) isospin needed for SU(4) baryons determined from Clebsch-Gordon
coefficients of four isospin-half fermions.

2. Tabulated irreps

In Table X, we tabulate the spin projections used in
this work. Here we show only the irreps corresponding
to S = 0, 1, 2, which, as shown in Table I, are A1, T1, E,
and T2. The left-hand and right-hand tables correspond
to even and odd parity irreps, respectively. See Sec-
tion IIA 3 for the descriptions of k and Sz.

The final column of each table shows the indices of
the spin tensor χ which are nonzero, with coefficients
providing the value of the tensor at those indices. For
example, 0013 + 0233 − 2(0112 + 1223) corresponds to
the spin tensor with χ0013 = χ0233 = 1 and χ0112 =
χ1223 = −2, and zeros elsewhere. Note that the isospin
wavefunctions for A1 irreps and T1 irreps are given as I =

0, MS
(2)
0 and I = 1, MS

(1)
1 from Table IX, respectively.

Note that the operators listed in Table X are not sym-
metrized, i.e. averaged over all permutations of the in-
dices. It is unnecessary to symmetrized because only the
total symmetric components of the flavor-spin wavefunc-
tion ϕχ contribute due to the symmetry of Equation 1,
so we provide the simplest version of the operators in the
table.

3. Non-intuitive combined fit cases

Most combined fits proceeded without issue according
to the analysis procedure described above, but here, we
explain each of the two types of special cases that come
up. The first special case is when the combined fit param-
eters has significantly larger errors than the individual
fits, for example in the Eg β = 11.5 correlation func-
tions fits. Upon inspection of the fits, we find that only
one- and two-state fits contributed to the model average
of the single correlation fits, whereas three-state mod-
els dominated the combined fit model average. In this
case, we remove the three-state models from the set of
possible models and redid the combined fit, which yields
parameters whose error was similar to the individual fits.
In general, this case comes up when models dominating
the single state fits are those with 2-states and a starting
timeslice of 2, 3, or 4. The individual correlation func-
tion fits do not prefer to add another state because the
reduction in χ2 and inclusion of more timeslices do not
compensate for the additional parameters of the model,
whereas it does in the combined fit, at the expense of
a much larger error. Of the 45 total combined fits per-
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Λ k Sz Nonzero elements of χΛ,λ,k

A1g 1 0 0011 + 2233

2 0 0013 + 0233− 2(0112 + 1223)

3 0 0123 + 2(0213)

4 0 0033 + 1122 + 4(0213)

T1g 1 1 0111 + 2333

0 0101 + 2323

−1 0100 + 2322

2 1 0133− 1213 + 1312

0 0123− 0213 + 0312

−1 0122− 0203 + 0302

3 1 0311 + 0333− 1211 + 1233− 2(0113 + 1323)

0 0103 + 0211− 0233− 0301 + 1322

−1 0102 + 0201− 0300 + 0322 + 1222− 2(0223)

4 1 0133 + 1213 + 1312− 2(0313)

0 0303− 1212

−1 0122 + 0203 + 0302− 2(0212)

5 1 3(0311 + 0333− 1211) + 4(0113 + 1323)− 7(1233)

0 2(0103− 0233 + 1322) + 3(0301− 0211)

+5(0112 + 0323− 1223)

−1 3(0300− 0201− 1222)− 4(0223) + 7(0322 + 0102)

Eg 1 0 0011 + 2233

2 0000 + 1111 + 2222 + 3333

2 0 0013 + 0112 + 0233 + 1223

2 0002 + 0222 + 1113 + 1333

3 0 0033 + 1122 + 4(0123)

2 0022 + 1133

T2g 1 1 0133 + 1123

−1 0023 + 0122

2 0022− 1133

2 1 0333 + 1112 + 3(0113 + 1233)

−1 0003 + 1222 + 3(0012 + 0223)

2 0002 + 0222− 1113− 1333

3 1 0111 + 2333

−1 0001 + 2223

2 0000− 1111 + 2222− 3333

Λ k Sz Nonzero elements of χΛ,λ,k

A1u 1 0 0011− 2233

2 0 0013− 0233 + 2(1223− 0112)

T1u 1 1 0111− 2333

0 0101− 2323

−1 0100− 2322

2 1 0133 + 1213− 1312

0 0123 + 0213− 0312

−1 0122 + 0203− 0302

3 1 0311− 0333− 1211− 1233 + 2(1323− 0113)

0 0103 + 0211 + 0233− 0301− 1322

−1 0102 + 0201− 0300− 0322− 1222 + 2(0223)

4 1 0113 + 0311− 0333− 1211− 1323 + 2(1233)

0 0103 + 0233− 1322 + 2(0301− 0211)

+3(0112− 0323 + 1223)

−1 0201− 0223− 0300− 1222 + 2(0322− 0102)

Eu 1 0 0011− 2233

2 0000 + 1111− 2222− 3333

2 0 0013 + 0112− 0233− 1223

2 0002 + 1113− 0222− 1333

T2u 1 1 0111− 2333

−1 0001− 2223

2 0000− 1111− 2222 + 3333

2 1 1112− 0333 + 3(0113− 1233)

−1 0003− 1222 + 3(0012− 0223)

2 0002 + 1333− 0222− 1113

TABLE X: Irrep projections for positive-parity (left) and negative-parity (right) irreps, Λ, used in this work. See
text for notation.

formed in this work, we resolve the issue as described
here for 10 combined fits.

The other case where we have to stray from the origi-
nal procedure occurred in the β = 11.028 odd-parity data
sets for T1u, T2u, Eu. We find a very small tcut in our pre-
analysis data quality cuts, with values of tcut = 8, 4, and
8, respectively. We expect these correlation functions to
have the worst signal because they are calculated on the
coarsest lattice, where Nvec = 32 or more would be re-
quired to achieve a strong signal, but Nvec = 24 is used to
reduce the computational cost. Nonetheless, we achieve
satisfactory fits by increasing the cutoff time to tcut = 12
which correspond to the value where the data was within

one standard deviation from zero, as opposed to eight
standard deviations, as described in Section III B. We do
not find that the results vary significantly from choosing
different tcut around tcut = 12.

4. LapH computational costs

Note that the eigenvector solve time is not exactly lin-
ear in the number of eigenvectors, and depends on the
algorithm used. We use the Arnoldi algorithm in the
ARPACK++ matrix library
For the perambulator timing, note that, as described
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in Section II B 1, computing an Nvec × Nvec perambula-
tor, τij requires Nvec inversions of the Dirac matrix, one
for each source vector. Hence, the computation time is
approximately proportional to the number of eigenvec-

tors used at the source, N
(source)
vec . Also, the inversion

time depends on the fermion mass. This example con-
siders the ensemble with β = 12 and κ = 0.1475, which
corresponds to a relatively heavy fermion mass, with a
pseudoscalar to vector mass ratio of mPS/mV = 0.76.

As described in Section II B 2, the meson correlation
functions require N4

vec contractions, i.e. summation over
indices i, i′, j, j′ running from 1 to Nvec. The baryon
correlation function, in contrast requires N2Nc

vec

The computational cost (complexity) of the tensor con-
tractions in eigenvector indices for Eq. (19) is O(NNc+1

vec ).
The proof is as follows. In Eq. (19), Tijklτii′ involves

O(N5
vec) complexity. And T̃i′j′k′l′ ≡ Tijklτii′τjj′τkk′τll′

involves four such consecutive operations and still gives
O(N5

vec) computing complexity. The remaining contrac-

tion in Eq. (19), TijklT̃ijkl is in O(N4
vec) complexity and

it is a sub-leading amount of order, but one should note
that it additionally scales with N2

operatorNgraph where
Noperator is the number of operators in our variational
basis and Ngraph is the number of possible permutation
in indices in the Wick contraction. In practice, Ngraph

can be much larger thanNvec, and therefore the last Wick
contraction step becomes dominant in the computational
cost. To reduce the factor of Ngraph, further optimization
with diagram consolidation and common sub-expression
elimination [46] is in progress.

5. Review of projecting onto definite irreps

Please note that the following section can hold for spin
projections in any SU(Nc) theory by changing the num-
ber of indices on the spin tensors from Nc = 4.

Here, we review the method of calculating the irrep
projected spin tensor, χΛλ,k for a particular operator
choice k of the dλ row of irrep Λ. For each of the dΛ
rows of the irrep, we will find K unique operator copies.
Table XI tabulates the dimensions, dΛ of each of the ir-
reps, Λ. One can check these against the subduction
table, Table I, to confirm that the dimensions match, i.e.
2J+1 =

∑
dΛi

for each of the irreps Λi in the subduction
of the continuum irrep J .

Λ dΛ

A1 1

E 2

T1 3

T2 3

Λ dΛ

G1 2

G2 2

H 4

TABLE XI: Dimensions, dΛ of each of the irreps, Λ,
corresponding to integer continuum spin (left) and
half-integer continuum spin (right).

By the definition of being irreps, each of the K sets of
dΛ operators is a closed subspace under application of all
elements of the group of rotations.
To compute the irrep projected spin tensor χΛλ,k for

lattice irrep Λ, row λ, and set k, we must determine the
projection matrix, PΛ,λ, and use(

χΛ,λ
i

)
αβσδ

=
∑
j

PΛ,λ
ij

(
χj

)
αβσδ

, (A1)

where χj on the right-hand side is some convenient ba-
sis of spin tensors, which are most likely not irreps. In
general, PΛ,λ has K linearly independent rows, so the
projection produces K linearly independent spin tensors
for irrep Λ and row λ. That is, χΛλ,k is given by linearly

independent combinations of χΛ,λ
i on the left hand side.

The matrix PΛ,λ is computed using the formula [29]

PΛ,λ
ij =

dΛ
gOD

h

∑
R∈OD

h

ΓΛ(R)λ,λW (R)−1
ij , (A2)

where dΛ is the dimension of the irrep, gOD
h
is the number

of elements in the double point group, OD
h , and sum is

taken over all elements, R, of the group. The matrices
ΓΛ(R) are the known set of dΛ×dΛ matrices which define
the irrep. The matricesW (R) are defined by how the spin
tensor basis, χi transforms under each element, R, of the
group. That is, χi → W (R)ij χj . The transformation
rule is given by(

χi

)
αβσδ

R
−→ Λαα′

1
2

Λββ′

1
2

Λσσ′
1
2

Λδδ′
1
2

(
χi

)
α′β′σ′δ′

, (A3)

where Λ 1
2
= Λ 1

2
(R) is the usual Lorentz transformation

for spinors under a rotation R. For example, the spin
transformation for the octahedral group element corre-
sponding to rotation of π/2 about the z-axis, the element
called C4z, is given by Λ 1

2
(C4z) =

1√
2
(1 + γ2γ1).

The convenient basis of spin tensors, χi, depends on
the flavor wavefunction. For example, in the positive
parity irrep Eg, which corresponds to spin-2, we consider
the totally symmetric flavor wavefunction uuuu. Using
the notation from Equation 1, the flavor tensor ϕ = 1 for
f1f2f3f4 = (uuuu) and zero elsewhere. An SU(4) baryon
operator with this flavor wavefunction and arbitrary spin
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is given by

O =
∑

a,b,c,d

∑
αβσδ

ψauα ψbuβ ψcuσ ψduδϵ
abcdϕuuuuχαβσδ.

(A4)

In this case, χ must be totally symmetric, so there are
only N = 35 linearly independent choices for the spin
indices. One choice of basis for the spin tensors is the 35
tensors having α ≤ β ≤ σ ≤ δ.
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