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Today’s mechanical sensors are capable of detecting extremely weak perturbations while operating
near the standard quantum limit. However, further improvements can be made in both sensitivity
and bandwidth when we reduce the noise originating from the process of measurement itself —
the quantum-mechanical backaction of measurement — and go below this ‘standard’ limit, possi-
bly approaching the Heisenberg limit. One of the ways to eliminate this noise is by measuring a
quantum nondemolition variable such as the momentum in a free-particle system. Here, we propose
and characterize theoretical models for direct velocity measurement that utilize traditional electric
and magnetic transducer designs to generate a signal while enabling this backaction evasion. We
consider the general readout of this signal via electric or magnetic field sensing by creating toy
models analogous to the standard optomechanical position-sensing problem, thereby facilitating the
assessment of measurement-added noise. Using simple models that characterize a wide range of
transducers, we find that the choice of readout scheme — voltage or current — for each mechanical
detector configuration implies access to either the position or velocity of the mechanical sub-system.
This in turn suggests a path forward for key fundamental physics experiments such as the direct
detection of dark matter particles.

I. INTRODUCTION

The ability of the state-of-the-art quantum sensors
to monitor the position of objects with high preci-
sion [1, 2] has driven tremendous advances in fundamen-
tal physics, particularly in the first detection of gravita-
tional waves [3]. Recently there has been renewed interest
in the use of momentum measurement [4, 5] for ultra-
sensitive force detection, specifically for the purposes of
dark matter detection [6]. Approaches for monitoring or
measuring particulate dark matter by observing changes
in the momentum of test particles, such as those being
considered by the Windchime collaboration [7, 8], rep-
resent a key motivation to explore and develop impulse
metrology for broadband force sensing.

The measurement of weak forces generally requires the
transduction of the induced motion of a system into an
electrical or optical signal. Thus, estimating such forces
is limited by both technical issues, such as thermal noise
and instrumental noise, but also by the noise limits aris-
ing from the act of measurement itself [1]. This is usu-
ally characterized by the standard quantum limit (SQL),
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which places a lower bound on how precisely the conju-
gate variables of a system can be measured. Recently,
efforts to get beyond the SQL with mechanical sensors
have yielded substantial successes, in part by reducing or
removing the effects of measurement backaction [2, 4, 9–
13]. For practical or fundamental applications, includ-
ing gravitational wave detection [1, 4, 13, 14] and, more
recently, the detection of potential dark matter candi-
dates [6, 7, 15], the ability to measure beyond the SQL
may also be paired with the need to do so over a wide
range of signal frequencies, as in the case of broadband
signals from a black hole in-spiral or the case of signals
from rapidly moving particulate dark matter.

With these interests in mind, a particular opportunity
emerges for going beyond the SQL: quantum nondemoli-
tion (QND) measurement. The simplest example occurs
when measuring a free particle, or a harmonic oscilla-
tor well above its resonance frequency: measurements of
momentum at different times commute, even when ac-
counting for the evolution of the system, and thus back-
action can be pushed into the position variable without
it disturbing subsequent measurements, thereby circum-
venting the SQL [1, 16]. In practice, the canonical mo-
mentum of a combined probe and mechanical system is
not a QND variable [5]. Nevertheless, measurement of
the mechanical sub-system’s momentum, rather than its
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position, can provide a significant reduction of the mea-
surement backaction.

In this work, we explore options to transduce a force
signal to an electrical signal, enabling measurement us-
ing a parametric cavity in the microwave regime or op-
tical regime (Fig. 1), a typical paradigm from the op-
tomechanics and electromechanics community [17–22].
In contrast to most work in the field, here we are fo-
cused on broadband frequency signals (impulses delivered
over very short times), typically well above the mechan-
ical resonance (as indicated in Fig. 1e), and thus seek to
exploit the QND opportunities such measurements en-
able. Our detailed examination reveals that the mechan-
ical variable (position or momentum) accessed is depen-
dent on the chosen measurement readout of the electrical
system: via charge or flux. This indicates two different
approaches for broadband backaction-evading measure-
ment transduced to the microwave domain. Of specific
interest in our case is leveraging the intuition of Fara-
day’s law — that velocity creates a voltage — to find
a magnetomechanical scheme that utilizes a traditional
voice coil, which is used in dynamic microphones and
loudspeakers [23, 24]. We find QND measurement of ve-
locity occurs when this coil’s voltage is measured rapidly.
Surprisingly, we also find that for an electromechanical
detector, such as a variable-position capacitor used in a
condenser microphone [23–26], we also can get backac-
tion evasion by rapid measurement of the current from
the microphone.

We remark that there are other electrical measurement
approaches, such as DC current or voltage measurement,
that can in principle allow direct velocity measurements
to be naturally implemented without the use of a para-
metric cavity. However, there are a variety of technical
challenges in achieving the SQL with DC current or volt-
age measurement. We also note that compared to the
optical domain, electrical systems overall offer a more
energy efficient readout by operating in the microwave
regime. As a consequence, far less power is required to
interrogate a system’s sensors and achieve a SQL-level
resolution [27–30].

This paper is organized as follows. In Section II, we in-
troduce and explore two detector configurations that uti-
lize different electrical transducers: a magnetomechani-
cal detector scheme and an electromechanical detector
scheme. The general readout of a transduced electrical
signal is considered in Section III, by using a parametric
cavity for either electric field or magnetic field sensing.
This creates an optomechcanical analog that enables the
use of standard techniques from optomechanics. In Sec-
tion IV we assess measurement-added noise and consider
an example signal, comparing the four cases given by
the combination of the two detector schemes presented
in Section II and the two readout options discussed in
Section III. We conclude and discuss the implications of
our results in Section V.

II. TRANSDUCERS

A. Magnetomechanical Detector Scheme

We begin by examining the magnetomechanical trans-
ducer and detector scheme shown in Figs. 1a and 1b,
respectively, which operate as a consequence of Fara-
day’s law [31, 32]. This fundamental principle of electro-
magnetism describes the voltage generated when a time-
varying magnetic flux threads a conducting loop. This
allows us to first consider the magnetomechanics of the
transducer and establish the transducer constant before
deriving the Hamiltonian describing the total detector
scheme. A review of Faraday’s law and its application in
the example we consider can be found in Appendix A.
The magnetomechanical transducer we consider,

shown in Fig. 1a, consists of two main elements: a mag-
netic test mass and a pick-up coil. We take the pick-up
coil to be superconducting so as to neglect any internal
dissipation. The mass is attached to a spring with spring
constant k. The test mass is a cylindrical magnetic struc-
ture of mass m that contains an annular air gap at a ra-
dius R through the length of the cylinder, as shown in the
cross-section in Fig. 1a. This magnetic mass is arranged
such that within the air gap a uniform radial magnetic
field B = Br r̂ is maintained. Embedded within the air
gap is a pick-up coil of radius R and turn number N .
This is known as the voice-coil configuration, common
to dynamic microphones and loudspeakers [23, 24]. This
transducer allows for a simple closed-form expression for
the induced voltage, which due to the uniform field, is
purely velocity-dependent, as we now show.
We consider an impulse which causes the magnetic

mass to move with a velocity v = −vẑ. For velocities
much less than the speed of light, it is both equivalent
and convenient to compute the voltage in the rest frame
of the magnet, rather than the rest frame of the voice
coil (as in our detection scheme). In the rest frame of the
magnet, the voice coil moves with velocity v = vẑ, experi-
encing the magnet’s uniform magnetic field B = Br r̂ and
no electric field (E = 0). We then use Faraday’s law to
calculate the induced voltage across the voice coil to be:

ε = 2πNRBrv = Tvv . (1)

We note that this induced voltage is proportional to ve-
locity via the transducer constant Tv = 2πNRBr, which
is simply the product of the length of wire used in the
voice coil and the magnetic field. Through this constant,
the mechanical motion of the magnetic test mass is trans-
duced to a voltage, which may be read out electrically.
The magnetomechanical detector scheme, shown in

Fig. 1b, is a parallel LC-circuit that models the trans-
ducer as an inductor with inductance L threaded by an
external flux Φext, due to the interaction between the
voice coil and magnetic test mass of the transducer, with
the capacitance CL in parallel. We then employ the
usual techniques for circuit quantization [33] to come to
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FIG. 1. (a) Schematic representation of the magnetomechanical transducer, consisting of a structured magnetic mass m
suspended by a spring with spring constant k. In the cross section, the radial magnetic field in the air gap experienced by
the coil is indicated in green. The lumped-element detector circuit for the magnetomechanical case is shown in (b), where
the magnetomechanical element of (a) is modeled as an inductor L threaded by an external flux Φext = Tvx (shown in green)
dependent on the position of the magnetic mass. Sign conventions for analysis are indicated as well as the reference ground
node and node variables Q,Φ. (c) Schematic representation of the electromechanical transducer, including the electric field
(dark blue) between the charged plates of the mechanical capacitor consisting of a movable plate of mass m and charge −Qb

C

connected to a fixed plate of charge +Qb
C by a spring with spring constant k. Equilibrium distances are indicated for reference.

In (d), the electromechanical element of (c) is depicted in a lumped-element detector circuit via the capacitance C(x). Sign
conventions for analysis are indicated as well as the reference ground node and node variables Q,Φ. In (e), we indicate the
relative scale of frequencies in the system for our chosen parameters, including that of the to-be-incorporated parametric cavities
(see Fig. 2). The input force on the test masses is indicated in red, resulting in the broad sensing region indicated by the red
shaded region.
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a Hamiltonian description of the magnetomechanical de-
tector scheme that includes the mechanical motion. This
derivation and its associated details can be found in Ap-
pendix B. The coupling between the mechanics and the
circuit occurs via the presence of the position-dependent
external flux Φext = Tvx, where we identify Φ̇ext with the
induced voltage ε in Eq. (1) and x with the position of
the test mass.

We first consider a simplified case, treating Φext as
only a time-dependent external flux. This leads to two
distinct gauge descriptions of the circuit that differ in
how they couple to the external flux: one to its time-
derivative (a voltage) via a term QΦ̇ext and the other
to the external flux via a term ΦΦext/L, where Q and
Φ correspond to the circuit’s degrees of freedom. Upon
promoting the degrees of freedom to quantum operators
Q̂ and Φ̂, which satisfy the commutation relation [Q̂, Φ̂] =
−iℏ, we see that these two equivalent descriptions are
related by a time-dependent gauge transformation given
by the unitary:

Û = e−iQ̂Φext/ℏ . (2)

We note that recent work [34–37] has focused on the term

QΦ̇ext of the first gauge, exploring other equivalent de-
scriptions that eliminate its necessity. In contrast, we
focus on both of these gauge choices to highlight and
compare how the two gauges couple the circuit to the
mechanical degrees of freedom.

Incorporating the mechanical degrees of freedom in-
troduces the canonical momentum p into the Hamilto-
nian. Importantly, p is not necessarily the mechanical
momentum mẋ; the gauge choice determines whether or
not this is the case. In particular, in the first gauge,
p = mẋ+CLTv(Φ̇ + Tvẋ). In the second gauge, p = mẋ.
As before, upon promoting the degrees of freedom to op-
erators where [Q̂, Φ̂] = −iℏ and [p̂, x̂] = −iℏ, we find
these two equivalent descriptions are now related via a
more general unitary (gauge) transformation

Û = e−iTvQ̂x̂/ℏ . (3)

Altogether, we find the Hamiltonians

Ĥ
(E,v)
1 =

p̂2

2m
+

1

2
kx̂2 − Tv

m
Q̂p̂

+
Q̂2

2

(
1

CL
+

T 2
v

m

)
+

Φ̂2

2L

(4)

and

Ĥ
(E,v)
2 =

p̂2

2m
+

1

2
kx̂2 +

Q̂2

2CL
+

(Φ̂− Tvx̂)
2

2L
, (5)

where Q̂ and p̂ are the canonical node charge and mo-
mentum conjugate to the node flux Φ̂ and position x̂,
respectively. With only the capacitance CL connected to
the node, Q̂ directly corresponds to the charge on this
capacitor’s plates. The subscripts in Eqs. (4) and (5)

enumerate the two gauge choices in this detector scheme,
while the superscripts indicate the readout scheme (ex-
plored in Section III) and detector configuration.

Examination of Eqs. (4) and (5) reveals an interesting
feature of this detector configuration: equivalent descrip-
tions contain different couplings to the mechanical de-
grees of freedom. In the first gauge, the voice coil and its
mechanics are coupled through momentum and charge,
while in the second gauge, position and flux are cou-
pled. We account for both of these gauge descriptions in
the magnetomechanical case as we consider the different
readout schemes in Section III. However, these different
gauges are equivalent descriptions and do not yield any
differences in performance, as discussed in Section IV.

B. Electromechanical Detector Scheme

In contrast to the magnetomechanical configuration,
an electromechanical detection scheme is governed by
electrostatic principles. In this case, we begin with the
Hamiltonian description and leverage this understanding
to establish how mechanical motion translates to an elec-
trical signal. We consider the electromechanical trans-
ducer and detector scheme shown in Figs. 1c and 1d,
respectively. The electromechanical transducer consists
of two oppositely charged plates with charge ±Qb

C con-
nected by a spring with spring constant k. This forms
a capacitor with one fixed plate and one movable plate
of mass m whose capacitance is a function of the posi-
tion of the movable plate, namely, C(x) = ϵ0A

d0−x . We
take the area of the plates A to be much larger than
their uncharged equilibrium separation d0. As the mas-
sive plate moves due to an impulse, the capacitance
changes, thereby altering the charge on the plates and
the voltage across them. In the language of fields, as the
plate moves, the uniform electric field between the plates
changes strength. These are the working principles be-
hind condenser microphones [23–26].

We consider such a mechanically-varying capacitor in
the detector circuit shown in Fig. 1d. In addition to
the capacitance C(x), this circuit consists of a voltage
source VDC in series to charge the capacitor, in parallel
with a large inductor L and its parasitic capacitance CP .
We then employ the usual techniques for circuit quanti-
zation [33] to come to a Hamiltonian description of the
detector circuit. Due to the inverse dependence on posi-
tion in the capacitance C(x), the coupling between the
circuit and mechanical degrees of freedom is nontrivial in
form. However, we can linearize the coupling by consid-
ering impulses that amount to only small displacements
from equilibrium. Details of this derivation can be found
in Appendix B.

In total, we come to a linearized Hamiltonian of the
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form

Ĥ(E,x) =
p̂2

2m
+

1

2
keff(x̂− x0)

2 − Tx

CP
(Q̂−Q0)(x̂− x0)

+
(Q̂−Q0)

2

2Ceff
+

Φ̂2

2L
+ V (Q0, x0) ,

(6)

where Q̂ and p̂ are the canonical node charge and canon-
ical momentum, which are conjugate to the node flux Φ̂
and position x̂, respectively. In this case, Q̂ corresponds
to the sum of the charge on the plates of the two capac-
itors connected to the node, while p̂ is the mechanical
momentum of the movable plate. We define the effective
capacitance as Ceff = C(x0)+CP and the effective spring

constant to be keff = k − CeffT
2
x

C(x0)CP
. The point {Q0, x0}

corresponds to the equilibrium node charge and position
when the plates are charged. While the distance d0 corre-
sponds to the separation of the plates when uncharged,
as the plates charge, the plate separation decreases as
electrostatic attraction shifts the position of the movable
plate closer to its counterpart. This equilibrium point
corresponds to the position where the force of electro-
static attraction and the restorative force of the spring
exactly balance, and is a function of the spring con-
stant k, the voltage bias VDC, and the geometry of C(x),
namely, the area A and plate separation d0. We define
the energy associated with this equilibrium charge and
position configuration as V (Q0, x0), whose functional
form is given in Appendix B.
Importantly, this linearization procedure enables us to

define the transducer constant Tx in this system:

Tx = CP
(Q0 − CPVDC)

ϵ0A

(
C(x0)

Ceff

)2

, (7)

which characterizes how changes in the position x of the
movable plate result in changes of the charge on the
mechanically-varying capacitor’s plates ±Qb

C , i.e.,

Qb
C ≈ C(x0)

Ceff
(Q− CPVDC) + Tx(x− x0) . (8)

With this description, it is clear that the charge on
the plates of the capacitor is sensitive to the position
of the movable plate while the current through the
mechanically-varying capacitor is sensitive to the veloc-
ity:

ibC = Q̇b
C ≈ C(x0)

Ceff
Q̇+ Txẋ . (9)

From Eqs. (8) and (9), we see how the position of the
movable plate affects the charge (and by extension, the
voltage) on the mechanically-varying capacitor and how
the motion of the plate results in a current. Together
with Eq. (6), these equations characterize the behavior
and response of the electromechanical transducer shown
in Fig. 1c.

Up until this point, we have focused on the detector
configurations and the corresponding electrical signals
produced as a result of the motion of a test mass. In
the following section, we shift our attention to the mea-
surement of this signal by considering various readout
schemes.

III. IDEALIZED RECEIVERS

Our interest lies in the measurement-added noise asso-
ciated with each detector scheme, in which a mechanical
signal of interest is transduced to an electrical one. In
this section, we consider readout schemes to access the
mechanical degrees of freedom via the detector circuits’
degrees of freedom. Because measurement-added noise in
optomechanical systems is well understood, we imagine
reading out the degrees of freedom of the detector cir-
cuits using a parametric cavity whose frequency depends
on the electric or magnetic fields generated in each de-
tector circuit, as shown in Fig. 2. This parametric cavity
approach is exemplified by the rf-SET (radio-frequency
single-electron transistor) [38], a Cooper-pair box con-
nected to a resonant circuit where variations in the local
electric field change the circuit properties and can be de-
tected in reflectometry. Thus our approach amounts to
a measurement of the mechanically-generated electrical
signal as a voltage via the electric field of a capacitor
or a current via the magnetic field of an inductor. As
such, we consider voltage and current readout schemes
for both the magnetomechanical and electromechanical
detection schemes of Section II, including the two gauge
descriptions outlined in Section IIA.
We note again that in practice, there are methods for

reading out the degrees of freedom of an electrical circuit
which may be more direct, such as using a Cooper-pair
box or a superconducting quantum interference device
(SQUID) [39–47]. However, this Gedankenexperiment
serves as a useful scaffolding for us to develop our under-
standing of measurement-added noise in electrical sys-
tems.

A. Electric field sensing

To access a detector circuit’s voltage, we consider mea-
suring the electric field across a capacitor using a para-
metric cavity sensitive to electric fields, as indicated in
Fig. 2a and the left column of Fig. 2c, and exemplified
in a rf-SET [38] or similar device from circuit quantum
electrodynamics (circuit QED) [39–42] in the microwave
domain. We then imagine the parametric cavity to have
a resonance frequency that depends on the electric field
of a capacitor coupled to the cavity. For a parallel plate
capacitor, we express the electric field in terms of the
charge on the plates Qb and their area A, or in terms of
the voltage across the plates vb and their separation d′:

E = Qb

ϵ0A
= vb

d′ . Here, Qb and vb refer to the branch
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FIG. 2. (a) Schematic representation of the configuration for voltage measurement via electric field sensing using a parametric
cavity (such as a rf-SET) with a resonance frequency that depends on the electric field E (indicated in dark blue) inside a
capacitor of each detector circuit. (b) Schematic representation of the configuration for current measurement via magnetic field
sensing using a parametric cavity (such as a resonator terminated with a DC SQUID) with a resonance frequency that depends
on the magnetic field B (indicated in green) generated by an inductor LM connected to each detector circuit. We show here
that the parametric cavity readout depends on the electric field or the magnetic field and is naturally gauge invariant. In (c),
we provide a visual table showing the different combinations of measurement schemes and detector configurations considered
in the main text, including small blue and green ovals representing the cavities to indicate which circuit elements interact with
the parametric cavities in each case as well as a labelling of which schemes access the mechanical position or velocity.

charge and branch voltage of the capacitor, which are
unique to each detector configuration. We use the super-
script b to denote branch variables throughout the text;
this is to distinguish from other variables, such as veloc-
ity v, present in our analysis. Branch variables and their
role in circuit analysis are discussed in Appendix B.

In the magnetomechanical detector configuration, we
take the parallel capacitance CL as the capacitor coupled
to the parametric cavity. As described in Section IIA, the
charge on this capacitor’s plates corresponds to the node
charge Q. One can also confirm, using Appendix B, that
the voltage across the capacitor, vbCL

= Φ̇b
CL

= −Q/CL,
is gauge-independent.

Therefore, in both gauges we express the electric field
in terms of the degrees of freedom of the circuit as

Ev = − Q

ϵ0A
= − Q

CLdL
, (10)

where we have taken CL = ϵ0A
dL

with dL the separation
of the plates.
In the electromechanical case, we take the

mechanically-varying capacitor C(x) to be the ca-
pacitor coupled to the parametric cavity. To express the
electric field in this capacitor in terms of the degrees of
freedom of the circuit, we use the linearized expression
for the charge on the plates of the capacitor C(x), given
by Eq. (8). This yields an approximate expression for
the electric field of the form

Ex ≈ C(x0)

Ceff

(Q− CPVDC)

ϵ0A
+

Tx

ϵ0A
(x− x0) , (11)

and ensures a linear coupling of position to the cavity for
small displacements.
We then incorporate the parametric cavity into the

Hamiltonian description from Section II, given by



7

Eqs. (4), (5), and (6). The cavity Hamiltonian takes
the usual form,

ĤE
cav = ℏω(E)â†â , (12)

where â†, â are the creation and annihilation operators
of the cavity mode that satisfy the commutation relation
[â, â†] = 1 and ω(E) is the resonance frequency of the
cavity that depends on the electric field E. To gener-
ate the usual optomechanical coupling, we expand ω(E)
about some equilibrium field value E0:

ω(E) = ω(E0) + ηE(E − E0) + ... , (13)

where we define the cavity’s sensitivity to electric fields

ηE = dω(E)
dE |E=E0 . We then make the substitutions for

Ev and Ex from Eqs. (10) and (11) and truncate at linear
order to define the cavity frequencies

ω(Ev) = ω
(E,v)
0 − g

(E,v)
Q Q̂ (14)

and

ω(Ex) = ω
(E,x)
0 + g

(E,x)
Q Q̂+ gxx̂ , (15)

where we define the coupling constants g
(E,v)
Q = ηE

CLdL
,

g
(E,x)
Q = ηEC(x0)

Ceffϵ0A
, and gx = ηETx

ϵ0A
. We have also defined

the rescaled cavity frequencies ω
(E,v)
0 = ω(Ev

0 ) − ηEE
v
0

and ω
(E,x)
0 = ω(Ex

0 )− ηEE
x
0 − g

(E,x)
Q CPVDC − gxx0.

Altogether, we write the cavity Hamiltonian in Eq. (12)
for the magnetomechanical and electromechanical detec-
tor configurations as

Ĥ(E,v)
cav = ℏω(E,v)

0 â†â− ℏg(E,v)
Q Q̂â†â (16)

and

Ĥ(E,x)
cav = ℏω(E,x)

0 â†â+ ℏ
(
g
(E,x)
Q Q̂+ gxx̂

)
â†â , (17)

respectively, where in both cases we have generated the
coupling between the cavity and the circuit, akin to the
optomechanical treatment.

B. Magnetic field sensing

For current measurement via magnetic field sensing,
we exploit the magnetic fields generated by the current
flowing through an inductor and read out the magnetic
field using a magnetic-field sensitive parametric cavity, as
shown in Fig. 2b, and exemplified by a microwave trans-
mission line resonator terminated with a DC SQUID [43–
47]. In this case, we take the parametric cavity to be
characterized by a resonance frequency dependent on the
magnetic field of a coupled inductor, adding a parallel in-
ductance LM to the circuits considered thus far, as shown
in the right column of Fig. 2c. We choose this inductance
such that LM < L in order for this additional inductor

to act as a relatively low-impedance element for current
to flow through.
Noting that the motion of the test masses will alter the

current through the inductor LM , thereby changing the
magnetic field it generates, we consider the expression of
this magnetic field in terms of circuit quantities. For a
long solenoid,

B = µnibLM
=

µnΦb
LM

LM
, (18)

where µ is the magnetic permeability of the material
making up the core of the inductor and n is its turn
density. The current flowing through the inductor ibLM

is expressed in terms of its branch flux Φb
LM

in the usual
way. We note that expressing the branch flux in terms of
circuit degrees of freedom is dependent on the detector
configuration, and in the magnetomechanical case, also
dependent on the gauge choice. This necessitates some
care in expressing Φb

LM
in terms of the circuit degrees of

freedom.
One can perform an analogous treatment of the current

measurement circuits in Fig. 2c, following the procedures
in Appendix B, and confirm that in the magnetomechani-
cal case, the first gauge yields Φb

LM
= −(Φ+Tvx) and the

second gauge yields Φb
LM

= −Φ, while in the electrome-

chanical case Φb
LM

= Φ. The associated Hamiltonians
are equivalent to their voltage counterparts except for
the addition of an inductive term, (Φb

LM
)2/2LM . For the

magnetomechanical detector scheme, the Hamiltonians
for each gauge are

H
(B,v)
1 = H

(E,v)
1 +

(Φ + Tvx)
2

2LM
(19)

and

H
(B,v)
2 = H

(E,v)
2 +

Φ2

2LM
. (20)

In the electromechanical case,

H(B,x) = H(E,x) +
Φ2

2LM
. (21)

To include the parametric cavity, we proceed anal-
ogously to the voltage measurement case, exchanging
ω(E) for ω(B) and remaining mindful of the various ex-
pressions of the magnetic field appropriate for different
detector configurations and gauges. We then find the
cavity Hamiltonians appropriate for each gauge in the
magnetomechanical detection scheme to be

Ĥ
(B,v)
cav,1 = ℏωB

0 â†â− ℏgB(Φ̂ + Tvx̂)â
†â (22)

and

Ĥ
(B,v)
cav,2 = ℏωB

0 â†â− ℏgBΦ̂â†â , (23)

where we have defined the coupling constant gB = ηBµn
LM

,

the rescaled resonance frequency ωB
0 = ω(B0) − ηBB0,
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and the cavity’s sensitivity to magnetic fields ηB =
dω(B)
dB |B=B0

. Similarly, we find the cavity Hamiltonian

Ĥ(B,x)
cav = ℏωB

0 â†â+ ℏgBΦ̂â†â (24)

for the electromechanical case.

C. Exploiting the optomechanics analogy

To consider the measurement-added noise in these toy
models, we incorporate a drive to probe the parametric
cavities. We follow the usual formulation for optome-
chanical systems [48–50] to include the drive and model
the noise associated with quantum fluctuations of the
vacuum. Details of this analysis can be found in Ap-
pendix C. Altogether, we arrive at the Hamiltonians for
voltage and current measurement in both the magne-
tomechanical and electromechanical detection schemes,
accounting for the two gauges in the magnetomechanical
case.

For voltage measurement in the magnetomechanical
case, we obtain the Hamiltonian

Ĥ ′(E,v)

i = −ℏ∆â†â−ℏG(E,v)
Q Q̂X̂

+ Ĥ
(E,v)
i + ĤB + Ĥint ,

(25)

where i = 1, 2 for the two gauge choices. We have de-

fined the detuning ∆ = ωL − ω
(E,v)
0 with ωL the drive

frequency, while the Hamiltonians ĤB and Ĥint describe
those of the bath and the bath-cavity coupling, respec-
tively, as defined in Appendix C. Relevant constants have

been collected to define G
(E,v)
Q =

√
2αg

(E,v)
Q , with α cor-

responding to the drive strength. Similarly, in the elec-
tromechanical case the Hamiltonian is

Ĥ ′(E,x)
= −ℏ∆â†â+ℏ

(
G

(E,x)
Q Q̂+Gxx̂

)
X̂

+ Ĥ(E,x) + ĤB + Ĥint ,
(26)

where G
(E,x)
Q =

√
2αg

(E,x)
Q and Gx =

√
2αgx. In both

detector schemes, we take the drive strength α to be
real, enabling the cavity-circuit coupling to be writ-
ten in terms of the amplitude quadrature of the cavity,
X̂ = (â+ â†)/

√
2. We note there is no loss of generality

with this choice of α; taking α to be purely imaginary
yields a circuit-cavity coupling that goes instead as the
phase quadrature of the cavity, Ŷ = −i√

2
(â− â†).

For current measurement in each of the detector con-
figurations and gauges, we find the Hamiltonians

Ĥ ′(B,v)

1 = −ℏ∆â†â−ℏGB(Φ̂ + Tvx̂)X̂

+ Ĥ
(B,v)
1 + ĤB + Ĥint ,

(27)

Ĥ ′(B,v)

2 = −ℏ∆â†â−ℏGBΦ̂X̂

+ Ĥ
(B,v)
2 + ĤB + Ĥint ,

(28)

and

Ĥ ′(B,x)
= −ℏ∆â†â+ℏGBΦ̂X̂

+ Ĥ(B,x) + ĤB + Ĥint ,
(29)

where here we have defined the coupling constant GB =√
2αgB .
In what follows, we use the Hamiltonians in Eqs. (25)-

(29) to find and solve the Heisenberg-Langevin equations,
enabling the assessment of noise sensitivities.

IV. COMBINATIONS OF TRANSDUCERS AND
RECEIVERS

We now turn our attention to measurement and the
consequences of different transducer and receiver com-
binations, given by the Hamiltonians in Eqs. (25)-(29).
For each of these combinations, we solve the Heisenberg
equations of motion to find the force noise power spec-
tral density (PSD). We then use the force noise PSD to
compare the sensitivities of the different configurations
at different frequencies.

A. The equations of motion

We begin with the usual methods from input-output
theory [51], writing down and solving the Heisenberg

equation of motion for the bath modes b̂(ω). This enables
the equations of motion for the cavity operators â, â† to

be expressed in terms of the input modes b̂in and output

modes b̂out. The details of this procedure can be found
in Appendix D.
At this stage, it is preferable to recast the equations

of motion for the cavity operators in terms of quantities
accessible to measurement, namely, the amplitude and
phase quadratures of the cavity, X̂ and Ŷ , respectively,
where [X̂, Ŷ ] = i. We also define the quadratures of the

input and output bath modes as X̂in = (b̂in + b̂†in)/
√
2,

Ŷin = −i(b̂in − b̂†in)/
√
2, X̂out = (b̂out + b̂†out)/

√
2, and

Ŷout = −i(b̂out − b̂†out)/
√
2. Using these definitions

and the input-output relation given by Eq. (D7) in Ap-
pendix D, it can be verified that each of the input and
output quadratures satisfy their own input-output rela-
tions of the form

X̂out = X̂in +
√
κX̂ (30)

and

Ŷout = Ŷin +
√
κŶ , (31)

where κ corresponds to the cavity decay rate.
By combining the equations of motion for â and â†

we find the equations of motion for each cavity quadra-
ture. These equations, in combination with the Heisen-
berg equations of motion for the remaining system op-
erators (x̂, p̂, Φ̂, and Q̂), specify the complete system
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of equations describing each case. Below, we explicitly
show the equations of motion for each detector configu-
ration, measurement scheme, and gauge. We also include
an input force F̂in in the equation for the canonical mo-
mentum to account for the impulse we wish to detect.
We note that it is appropriate for the input force to act
on the canonical momentum rather than the mechanical
momentum, as in each instance we consider, the canoni-
cal momentum is either strictly the mechanical momen-
tum or a linear combination that includes the mechanical
momentum.

We first consider the equations of motion for voltage
measurement via electric field sensing. In the magne-
tomechanical case, the first gauge yields the equations of
motion

dx̂

dt
=

p̂

m
− Tv

m
Q̂ ,

dp̂

dt
= −kx̂+ F̂in ,

dΦ̂

dt
= −ℏG(E,v)

Q X̂ − Tv

m
p̂+

(
1

CL
+

T 2
v

m

)
Q̂ ,

dQ̂

dt
= − Φ̂

L
,

dX̂

dt
= −∆Ŷ − κ

2
X̂ −

√
κX̂in ,

dŶ

dt
= ∆X̂ +G

(E,v)
Q Q̂− κ

2
Ŷ −

√
κŶin .

(32)

It is convenient to rewrite these equations in a more com-
pact form. Defining the matrix

M1
(E,v) =



0 1
m 0 -Tv

m 0 0

-k 0 0 0 0 0

0 -Tv

m 0 1
C′

L
-ℏG(E,v)

Q 0

0 0 - 1L 0 0 0

0 0 0 0 -κ2 -∆

0 0 0 G
(E,v)
Q ∆ -κ2


, (33)

we can rewrite Eq. (32) as

d

dt
Ẑ = M1

(E,v)Ẑ + Ẑin , (34)

where we have defined the vector of operators
Ẑ = {x̂, p̂, Φ̂, Q̂, X̂, Ŷ } and the vector of inputs

Ẑin = {0, F̂in, 0, 0, -
√
κX̂in, -

√
κŶin}. We also define the

capacitance C ′
L for convenience to be 1

C′
L

= 1
CL

+
T 2
v

m .

The equations of motion for the second gauge can be sim-

ilarly represented via Eq. (34) with the matrix M2
(E,v),

defined as

M2
(E,v) =



0 1
m 0 0 0 0

-k′ 0 Tv

L 0 0 0

0 0 0 1
CL

-ℏG(E,v)
Q 0

Tv

L 0 - 1L 0 0 0

0 0 0 0 -κ2 -∆

0 0 0 G
(E,v)
Q ∆ -κ2


, (35)

where we have defined for convenience k′ = k+
T 2
v

L . Like-
wise, the electromechanical case is described by the ma-
trix

M (E,x) =



0 1
m 0 0 0 0

-keff 0 0 Tx

CP
-ℏGx 0

- Tx

CP
0 0 1

Ceff
ℏG(E,x)

Q 0

0 0 - 1L 0 0 0

0 0 0 0 -κ2 -∆

-Gx 0 0 -G
(E,x)
Q ∆ -κ2


. (36)

We can analogously describe the equations of motion
for the current measurement scheme. In the magnetome-
chanical case, we find for the two gauges

M1
(B,v) =



0 1
m 0 -Tv

m 0 0

-k′M 0 - Tv

LM
0 ℏGBTv 0

0 -Tv

m 0 1
C′

L
0 0

- Tv

LM
0 - 1

L′ 0 ℏGB 0

0 0 0 0 -κ2 -∆

GBTv 0 GB 0 ∆ -κ2


, (37)

and

M2
(B,v) =



0 1
m 0 0 0 0

-k′ 0 Tv

L 0 0 0

0 0 0 1
CL

0 0

Tv

L 0 - 1
L′ 0 ℏGB 0

0 0 0 0 -κ2 -∆

0 0 GB 0 ∆ -κ2


, (38)

where we have defined for convenience the quantities

k′M = k +
T 2
v

LM
and 1

L′ = 1
L + 1

LM
. For the electrome-
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chanical detector configuration, we have

M (B,x) =



0 1
m 0 0 0 0

-keff 0 0 Tx

CP
0 0

- Tx

CP
0 0 1

Ceff
0 0

0 0 - 1
L′ 0 -ℏGB 0

0 0 0 0 -κ2 -∆

0 0 -GB 0 ∆ -κ2


. (39)

B. Assembling the noise PSD

These linear equations are straightforward to solve in
the frequency domain. Defining the Fourier transform of
our relevant operators as follows

f̂(ν) =
1√
2π

∫ ∞

−∞
f̂(t)e−iνtdt

f̂(t) =
1√
2π

∫ ∞

−∞
f̂(ν)eiνtdν

, (40)

where the frequency dependence of f̂(ν) is explicit, the
time derivatives in the equation of motion given by

Eq. (34) for each matrix M simply transform as df̂(t)
dt →

iνf̂(ν).
Solving the systems of equations given by Eq. (34) in

the frequency domain, for zero detuning (∆ = 0), yields
a general solution of the form

Ẑ(ν) =
(
iν1 −M

)−1
Ẑin(ν) , (41)

where we focus on the solutions for the phase quadrature
of the cavity Ŷ (ν), given by the final row of Eq. (41).

The circuit degrees of freedom are coupled to X̂, hence,
the information about the circuit, the mechanics, and
ultimately F̂in are found in the equation of motion and
solution of its conjugate, Ŷ (as opposed to X̂, the other
quantity accessible to measurement).

In the magnetomechanical system, the solutions found
in each gauge are identical, sans the solutions for p̂ and
Φ̂. This is unsurprising, since these quantities are those
affected by the unitary [Eq. (3)] that connects the gauges.
This is true in both the voltage and current measurement
cases. For both the magnetomechanical and electrome-
chanical detector schemes, the solutions for Ŷ (ν) may
then be used in the input-output relation, Eq. (31), to

find the output quadrature Ŷout(ν). These solutions are
explicitly shown in Appendix E.

We then use the solution for the output quadrature
Ŷout(ν) to assess the noise sensitivity. We define the force
estimator as the output phase quadrature in force units
(i.e., we divide Ŷout by the coefficient of F̂in):

F̂E(ν) = F̂in + β(ν)X̂in + γ(ν)Ŷin , (42)

where β represents the coefficient for the measurement
backaction noise term and γ corresponds to the shot noise
term in this measurement, as we are measuring the Ŷ
quadrature.
The frequency dependence of the noise sensitivity is

given by the force noise power spectral density (PSD):

SFF(ν) =

∫ ∞

−∞
⟨F̂ †

E(ν)F̂E(ν
′)⟩ dν′ . (43)

To evaluate the noise PSD in Eq. (43), we note the follow-
ing regarding the resulting noise correlation functions:

⟨X̂†
in(t)X̂in(t

′)⟩ = ⟨Ŷ †
in(t)Ŷin(t

′)⟩ = 1

2
δ(t− t′)

⟨F̂ †
in(t)F̂in(t

′)⟩ = NBMδ(t− t′)

, (44)

where we have taken the vacuum fluctuations of the cav-
ity to be white noise and the input signal noise from
the mechanics to be thermal noise. We consider here an
Ohmic model for thermal noise corresponding to Brow-
nian motion with noise amplitude NBM. We assume
there is no correlation between the signal noise and vac-
uum fluctuations, and no correlation between the vacuum
fluctuations. Taking all of the above into consideration,
Eq. (43) can be rewritten as

SFF(ν) =
|β(ν)|2

2
+

|γ(ν)|2

2
+NBM . (45)

In what follows, we list the noise PSD expressions for
each combination of detector configuration and measure-
ment scheme (recalling that the solutions across gauges
are identical) in terms of relevant susceptibilities. In each
case, we optimize the coupling strength (and as a result,
the drive strength) to balance the backaction and shot
noise terms at some fixed frequency, thereby identify-
ing the SQL at this frequency for each case. Then, we
compare the performances of different detector and mea-
surement combinations and discuss the features of these
noise PSD expressions.
It is convenient to first define the frequencies

ω2
m =

k

m
, ω2

c(ce) =
1

LCL(eff)
, ω2

l(le) =
1

LMCL(eff)

δ2v =
T 2
v

mL
, δ2x =

CeffT
2
x

mC2
P

,

(46)

as well as the cavity and bare mechanical susceptibilities
χκ and χm, respectively:

χκ =
−
√
κ

κ
2 + iν

, χm =
−1

ν2 − ω2
m

. (47)

For the magnetomechanical detector scheme, voltage
measurement via electric field sensing yields the noise
PSD

S
(E,v)
FF =

ℏ2G(E,v)
Q

2
m|χκ|2

2Lδ2vχ
2
mν2

+
mL

2G
(E,v)
Q

2
δ2v |χκ|2χ2

mχ
(E,v)
lc

2
ν2

+NBM ,

(48)
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where we define the circuit susceptibility as

χ
(E,v)
lc =

−1

ν2 − ω2
c − δ2v(1− χmω2

m)
. (49)

Upon balancing the backaction and shot noise terms for
some fixed frequency, we find the optimized coupling
strength

G
(E,v)
Q

2
=

L

ℏ|χκ|2|χ(E,v)
lc |

. (50)

For current measurement via magnetic field sensing, we
find the noise PSD

S
(B,v)
FF =

ℏ2GB2
mL|χκ|2

2δ2vχ
′
m

2

+
m

2GB2
Lδ2v |χκ|2χ′

m
2χ

(B,v)
lc

2
ω4
c

+NBM ,
(51)

where we have instead defined the dressed mechanical
susceptibility

χ′
m =

−1

ν2 − ω2
m − δ2v

(52)

as well as the circuit susceptibility in this case as

χ
(B,v)
lc =

−1

ν2 − ω2
c − ω2

l + δ2vω
2
cχ

′
m

. (53)

In this instance, we find the optimized coupling strength
to be

GB2
=

1

ℏ|χκ|2|χ(B,v)
lc |Lω2

c

. (54)

We note that in the magnetomechanical detector scheme,
the various mechanical and circuit susceptibilities are
gauge-dependent — just as the canonical momenta are
different across the two gauges, so are the associated re-
sponse functions. The physical meaning of these suscep-
tibilities therefore depends on the gauge choice. We em-
phasize that the noise PSDs are gauge-independent, how-
ever, expressing the noise PSDs in terms of these gauge-
dependent functions yields different functional forms of
the noise PSDs. We direct the reader to Appendix F for
the explicit forms of the noise PSDs written in terms of
the relevant frequencies defined in Eq. (46).

For the electromechanical detector scheme, voltage
measurement via electric field sensing yields the noise
PSD

S
(E,x)
FF ≈

ℏ2G(E,x)
Q

2
m|χκ|2

2δ2xχ
2
mLω2

ce

+
mL

2G
(E,x)
Q

2
δ2x|χκ|2χ2

mχ
(E,x)
lc

2
ω2
ce

+NBM ,

(55)

where in this case we define the circuit susceptibility

χ
(E,x)
lc =

−1

ν2 − ω2
ce + δ2xω

2
ceχm

. (56)

In Eq. (55), we have taken Gx → 0, as for our chosen pa-

rameters, G
(E,x)
Q ≫ Gx. The exact noise PSD, including

the contributions from Gx, can be found in Appendix F.
We note that this contribution is included in the numer-
ics we present in Sections IVC and IVD, which confirms
the negligible contribution from Gx. Therefore, we op-
timize the coupling to balance the backaction and shot

noise terms with respect to G
(E,x)
Q only, using Eq. (55).

We find this coupling strength to be

G
(E,x)
Q

2
=

L

ℏ|χκ|2|χ(E,x)
lc |

. (57)

For current measurement via magnetic field sensing we
find the expression

S
(B,x)
FF =

ℏ2GB2
mLω2

ce|χκ|2
(
1− δ2xχm

)2
2δ2xχ

2
mν2

+
m

2GB2
Lδ2x|χκ|2χ2

mχ
(B,x)
lc

2
ω2
ceν

2
+NBM ,

(58)

where we define the circuit susceptibility

χ
(B,x)
lc =

−1

ν2 − ω2
ce − ω2

le + δ2x(ω
2
ce + ω2

le)χm
. (59)

To balance backaction noise and shot noise, we find the
optimized coupling

GB2
=

1

ℏ|χκ|2|χ(B,x)
lc ||1− δ2xχm|Lω2

ce

. (60)

In what follows, we examine the noise PSDs given by
Eqs. (48), (51), (55), and (58), comparing their behavior
to the standard optomechanical case and examining their
specific functional features.

C. Comparison to optomechanical systems

Our goal is to look for signals which have broad char-
acteristics in frequency space (i.e., an impulse in the time
domain), requiring an integration of the noise over a fre-
quency band to be able to predict a signal to noise ra-
tio (SNR). Thus, our interest is in the broadband sensi-
tivity of the noise PSDs. Additionally, if we can directly
access a QND-like variable, such as the velocity of the me-
chanical system, we expect the measurement backaction
to decrease over a broad frequency spectrum. Therefore,
we restrict our discussion to the broadband frequency re-
sponse of the noise PSDs in an effort to understand the
best readout strategies for certain kinds of transducers
subject to broadband signals.
In Fig. 3, we show the total measurement-added noise

for each detector circuit and measurement readout com-
bination, given by Eqs. (48), (51), (55), and (58). We
note that we have taken the thermal noise NBM affecting
the mechanical oscillator to be negligible. In addition,
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FIG. 3. Total measurement-added noise for each detector
configuration and readout choice. The dark blue curves
correspond to voltage readout via electric field sensing for
the magnetomechanical and electromechanical configurations.
Here, the magnetomechanical system displays a backaction-
evading characteristic absent in the electromechanical case.
The green curves correspond to current readout via magnetic
field sensing for each detector configuration. However, in
this case the electromechanical system displays a backaction-
evading feature rather than the magnetomechanical case. The
parameters used for generating these plots are as follows:
detector mass m = 1 g, mechanical resonance frequency
ωm/2π = 10 Hz, cavity decay rate κ/2π = 1 MHz, inductance
L = 10 µH, mutual inductance LM = 1 nH, circuit resonance
frequencies ωc/2π = 10 MHz and ωce/2π ≈ 1 MHz, capaci-
tance CP = 25 fF, with transducer constants Tv = 2 T ·m
and Tx = -10−10 C/m. The coupling coefficients are fixed to
their SQL values for a target frequency of 1 MHz, as given by

Eqs. (50), (54), (57), and (60), with Gx ≈ TxG
(E,x)
Q .

we have fixed the coupling coefficients to their optimized
SQL values, given by Eqs. (50), (54), (57), and (60), for
a target frequency of 1 MHz. Taken together, the total
noise and its associated behavior are particularly relevant
in the context of the standard optomechanical position-
sensing problem as well as previous work on velocity sens-
ing in optomechanical systems [6, 52]. For convenience
of comparison, we include Fig. 4, which shows the ex-
pected noise PSD for both position- and velocity-sensing
scenarios in an optomechanical analogue, specifically for
use with a broadband signal. Details associated with this
plot can be found in Appendix G.

Upon comparison, it is immediately clear that current
readout of the magnetomechanical detector scheme and
voltage readout of the electromechanical detector scheme
share similarities with the noise PSD for standard op-
tomechanical position sensing, specifically the ‘flat at low
frequency’ feature. Furthermore, voltage readout of the
magnetomechanical detector scheme and current readout
of the electromechanical detector scheme bear striking
similarity to the noise PSD for velocity sensing. Both
show a decrease in total noise near the mechanical reso-
nance, and share the same frequency dependence in this

region, namely, going as ν−2 below resonance and ν2

above resonance.

We understand these similarities by using the funda-
mental relations describing how the mechanics are tran-
duced to an electrical signal in each detector configura-
tion, outlined in Section II. In the magnetomechanical
case, the flux (comparable to current) is proportional
to the position x of the mechanical oscillator, while in
the electromechanical case, charge (comparable to volt-
age) is proportional to position. Thus, by coupling the
parametric cavity to a specific circuit degree of freedom,
both of these readout schemes access the position of the
mechanical oscillator. Alternatively, it is voltage in the
magnetomechanical case and current in the electrome-
chanical case which are directly proportional to velocity.
Therefore, electromechanical current readout and mag-
netomechanical voltage readout directly access the ve-
locity of the oscillator, providing a way to reduce the
measurement-added backaction noise over certain band-
widths of frequencies.

These results indicate that if we want to attain a
QND-like measurement using an electrical circuit setup
in the microwave domain, we need to combine a magne-
tomechanical or electromechanical detection scheme with
the appropriate measurement readout. Namely, voltage
readout for a magnetomechanical detector and current
readout for an electromechanical detector may yield a

FIG. 4. The noise PSD representing total measurement-
added noise in an optomechanical system is plotted for both
position- and velocity-sensing protocols while operating at the
optimal power for position sensing with a 0.1 MHz target
frequency (using Eq. G6). This is derivative of work from
Refs. [6, 52]. The noise for velocity sensing is lower than po-
sition sensing across a broad frequency range, with the func-
tional dependence ν−2 below resonance and ν2 above. The
optomechanical coupling strengths in these techniques are re-
lated by the velocity coupling coefficient G′ → G/(mκ), with
position coupling coefficient G/2π ≈ 1023 Hz/m, mechanical
frequency ωm/2π = 10 Hz, cavity decay rate κ/2π = 1 MHz,
detector mass m = 1 g, and mechanical damping rate µ/2π =
0.1 mHz.
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QND-like measurement with reduced backaction over a
broad frequency range. We note that upon comparing
the relative scale of the noise between these cases, volt-
age readout of the magnetomechanical detector scheme
yields a considerably lower noise floor than current read-
out of the electromechanical detector scheme. However,
the total noise and its associated resonances (discussed
in Section IVD) are dependent on the system parameters
and relevant frequencies.

D. Details of the noise curves

Upon closer inspection of Eqs. (48), (51), (55), and
(58), we find that each of the noise PSDs has a term in-
versely proportional to the coupling coefficient squared,

i.e., G
(E,x)
Q

2
and G

(E,v)
Q

2
for the voltage measurement sce-

narios or GB2
for the current measurement scenarios.

These terms originate from the ⟨Ŷ 2
in⟩ contribution to the

noise PSD, corresponding to the factor |γ|2
2 in Eq. (45).

As we are interested in monitoring the Ŷout quadrature,
we understand this contribution as shot noise — it con-
stitutes the statistical counting error at the output port.
In addition, each noise PSD has another term which is
directly proportional to the coupling coefficient squared.
These terms arise from the ⟨X̂2

in⟩ contribution to the noise

PSD, corresponding to the factor |β|2
2 in Eq. (45). These

terms form the basis of backaction noise on the measure-
ment of the output phase quadrature. Fig. 5 shows curves
representing these shot noise and backaction noise con-
tributions to the total noise PSD, for each of the differ-
ent detector and readout combinations. Also included in
Fig. 5 is a comparison of two different coupling strengths
for each noise contribution, where we see that the shot
noise decreases with an increase in coupling strength (i.e.,
a stronger drive) while the backaction noise increases.

We also note the presence of various resonances. For
voltage readout of the magnetomechanical system, shown
in Fig. 5a and described by Eq. (48), the backaction
noise term exhibits a resonance at the mechanical fre-
quency ωm while the shot noise term has two resonances:
one near ωm and the other near the self-resonance of the
detector circuit ωc. This is a consequence of our chosen
parameters which result in ω2

l ≫ ω2
c ≫ δ2v ≫ ω2

m, where
the frequency δv represents the shift in the mechanical
resonance due to the circuit coupling. Similarly, for cur-
rent readout in the magnetomechanical system, shown
in Fig. 5b and described by Eq. (51), resonances occur
near δv in both the backaction and shot noise terms. Here
the mechanics are dressed by the circuit, yielding an ef-
fective mechanical resonance at δv with a negligible con-
tribution from ωm.
For the electromechanical system, described by

Eqs. (55) and (58) and shown in Figs. 5c and 5d,
both voltage and current readout demonstrate resonances
near ωm. In addition, a resonance near the circuit’s self-
resonance ωce is visible in the voltage measurement case

in Fig. 5c. As before, the locations of these resonances are
a consequence of our chosen parameters and the coupling
between the mechanical system and the circuit, where we

note G
(E,x)
Q ≫ Gx and ω2

le ≫ ω2
ce ≫ ω2

m ≫ δ2x. Here
again the mechanics dress the circuit; however, in con-
trast to the magnetomechanical case, the contribution
from δx is negligible in comparison to the bare mechani-
cal resonance at ωm.

While these resonance features might be useful for
some applications, our interest is in the broadband sensi-
tivity, rather than the sensitivity to monochromatic sig-
nals. With monochromatic signals, noise optimization
at a specific frequency, especially efforts to tune a setup
around the resonance frequencies, is important. In par-
ticular, the resonances present in the backaction noise
term correspond to target frequencies for which backac-
tion noise is completely eliminated. This strict backac-
tion evasion is distinct from a reduction in backaction
noise over a broad range of frequencies, characteristic of
QND-like measurements, as we now discuss.

Of particular interest is the behavior observed in the
region of frequency above the mechanical resonance but
below the cavity decay rate κ. This is a consequence of
our signal of interest: an impulse delivered over a very
short time. Thus, we are interested in making measure-
ments on the timescale associated with this frequency
range. We note a sharp contrast in the behavior of the
magnetomechanical current readout and electromechan-
ical voltage readout cases (Figs. 5b and 5c) when com-
pared to that of magnetomechanical voltage readout and
electromechanical current readout (Figs. 5a and 5d) — a
consequence of the different mechanical degrees of free-
dom accessed in each set of cases. In the former, backac-
tion and shot noise are constant in the regions for which
ν < ωm, δv, and in the region ωm, δv < ν < κ, diverge
as ν4. This is consistent with the behavior observed in
the position-sensing case shown in Fig. 4. In the latter,
backaction and shot noise go as ν−2 for ν < ωm and ν2

for ωm < ν < κ. In other words, the magnetomechanical
voltage and electromechanical current schemes exhibit a
decrease in backaction noise in the vicinity of the mechan-
ical resonance, analogous to the velocity-sensing case.

At high frequency where ν > κ, we see similar behav-
ior in the backaction and shot noise terms across all of
the detector and readout combinations. In particular,
backaction noise is either constant in this region, as in
Figs. 5a and 5d for magnetomechanical voltage readout
and electromechanical current readout, respectively, or
diverges as ν2, as in Figs. 5b and 5c for magnetomechan-
ical current readout and electromechanical voltage read-
out, respectively. On the other hand, shot noise diverges
as either ν4 for magnetomechanical voltage readout and
electromechanical current readout or ν6 for magnetome-
chanical current readout and electromechanical voltage
readout.
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FIG. 5. Shot noise (light blue) and backaction noise (dark red) curves at different coupling strengths for the magnetomechanical
and electromechanical setups. In all instances solid curves correspond to weaker coupling strengths relative to the dashed curves,

as indicated in the legend. The weak coupling strengths correspond to the values G
(E,v)
Q /2π = G

(E,x)
Q /2π = 1023 Hz/C and

GB/2π = 1023 Hz/Wb, while strong coupling strengths correspond to the values G
(E,v)
Q /2π = G

(E,x)
Q /2π = 1025 Hz/C and

GB/2π = 1025 Hz/Wb. Plots in (a) and (b) show the curves for the magnetomechanical detector configuration, where (a)
represents the electric field-dependent parametric cavity or voltage readout and (b) represents the magnetic field-dependent
parametric cavity or current readout. Plots in (c) and (d) show the curves for the electromechanical detector configuration,
where (c) represents the electric field-dependent parametric cavity or voltage readout and (d) represents the magnetic field-
dependent parametric cavity or current readout. The parameters used for generating these plots are as follows: detector mass
m = 1 g, mechanical resonance frequency ωm/2π = 10 Hz, cavity decay rate κ/2π = 1 MHz, inductance L = 10 µH, mutual
inductance LM = 1 nH, circuit resonance frequencies ωc/2π = 10 MHz and ωce/2π ≈ 1 MHz, capacitance CP = 25 fF, with

transducer constants Tv = 2 T ·m and Tx = -10−10 C/m and coupling coefficient Gx ≈ TxG
(E,x)
Q .

E. Analysis in the context of Windchime

Recent advances in sensing technologies suggest that
we can search for dark matter (DM) candidates through
their gravitational interaction alone by building an ar-
ray of many mechanical sensors [7]. Based on this pro-
posal, the Windchime collaboration is developing the nec-
essary experimental techniques and devices for the grav-
itational detection of DM candidates around the Planck
mass range (∼ 21.76 µg) [8]. In particular, we are con-
sidering milligram- to gram-scale sensors with very low

natural resonance frequencies (about 1-100 Hz) and with
significant environmental isolation using a dilution refrig-
erator at temperatures of 10 mK, which makes the ther-
mal noise floor extremely low. We are thus mostly limited
by measurement-added noise. We wish to compare the
performances of voltage and current readout of the mag-
netomechanical detector scheme to the SQL-level bench-
mark associated with force measurement, specifically in
the context of a signal of interest for the Windchime col-
laboration.

For an individual sensor of mass m in the array, a DM
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candidate of mass mdm, passing at a distance b and with
velocity v, interacts with the sensor through the Newto-
nian gravitational force. We are interested in the com-
ponent of the gravitational force which is perpendicular
to the DM candidate’s trajectory. This is our intended
signal [6],

Fsig(t) =
GNmmdmb

(b2 + v2t2)3/2
. (61)

In the frequency domain, it takes the form

Fsig(ν) =

√
2

π

GNmmdm|ν|
v2

K1

(
b

v
|ν|

)
, (62)

where GN is the gravitational constant and K1 is a mod-
ified Bessel function. We note that this signal is well
approximated by

F approx
sig (ν) =

√
2

π

GNmmdm

bv
e−b|ν|/2v , (63)

which we use to estimate a signal-to-noise ratio (SNR).
The signal is delivered over a very short period of time,

set by the timescale τ ∼ b/v. In the frequency do-
main, this translates to a constant broadband signal that
rapidly diminishes at a frequency set by the timescale
τ , thereby determining the signal bandwidth. For ex-
ample, if we consider a DM candidate with a velocity
around 200 km/s [53] passing at a distance b ∼ 1 mm,
the timescale of the signal is approximately τ ∼ 10−8 s.
In the frequency domain, this signal is constant until very
high frequency, approximately 1 GHz, after which the sig-
nal falls off to zero. We wish to identify this signal amidst
collected time series data. As explored in Ref. [6], an ef-
ficient search strategy for such a broadband signal is to
use an optimal filter to scan through the time series data,
yielding the SNR

SNR2
opt =

∫ ∞

0

|Fsig(ν)|2

SFF(ν)
dν , (64)

where the effective bandwidth of integration is set by the
signal’s timescale.

We estimate the SNR using the approximated signal
in Eq. (63) and the noise PSDs appropriate for voltage
or current readout of the magnetomechanical detector
scheme, given by Eqs. (48) and (51), respectively. In
Fig. 6, we show the SNRs as a function of the radius R
of the cylindrical test mass (i.e., the sensor of mass m).
Scaling the radius impacts a variety of parameters and
circuit quantities, including the mass of the magnetic sen-
sor, the inductance of the voice coil, and the transducer
constant, as increasing the size of the magnetic mass re-
quires the voice coil to scale up as well. Relevant details
can be found in the caption of Fig. 6. We note that we
take the distance b to scale linearly with R, which yields a
timescale τ that inherently depends on R. Therefore, in
calculating the SNR in Eq. (64), the effective bandwidth
of integration is implicitly set by the size of the mass.

FIG. 6. The SNR2
opt plotted as a function of the radius of

the sensor, starting from an original radius of R ≈ 1 mm
and the parameters listed in Figs. 3 and 5 for the magne-
tomechanical detector scheme. The mass scales according to
m = ρπR2h, where we fix the mass density to ρ = 7500 kg/m3

and allow the height h to scale linearly with R to maintain a
fixed height to radius ratio of approximately 40. The trans-
ducer constant Tv and inductance of the voice coil L scale

according to Eq. (1) and L = µ0N
2πR2

h
, respectively, where

the total turn number scales according to N = nh and we fix
the turn density to n ≈ 7725 turns/m and the magnetic field
to B = 1 T. We fix the characteristic impedance of each LC
circuit to Zv

0 = 2π · 102 Ω for voltage readout and Zx
0 ≈ 2π Ω

for current readout, maintaining the ratio L/LM = 104 and
forcing the capacitance CL to scale with R. As the optimized
coupling strengths given by Eqs. (50) and (54) depend on

these scaling parameters, G
(E,v)
Q and GB also scale with R

where we opt to scale the target frequency as R−1 from the
original 1 MHz. The same scaling applies to the SNR2

opt for
position measurement (yellow), using the noise PSD and ini-
tial parameters indicated in Fig. 4 where we neglect damping
and scale the target frequency down from 0.1 MHz.

We compare these SNRs with that of the SQL-level
noise floor associated with a force measurement [1], in
which we infer the force acting on the sensor by moni-
toring the position of a free particle over time, where the
measurements are separated by time τ . This is given by
the relation

∆FSQL ∼
√

ℏms

τ3
. (65)

In Fig. 6, we plot the ratio [Fsig(τ)/∆FSQL]
2 as a function

of R. For additional comparison, we include the SNR2
opt

corresponding to the position-sensing noise PSD of an
optomechanical system shown in Fig. 4 and described in
Appendix G.
We find the magnetomechanical detection scheme with

either readout option offers an improved sensitivity over
both the SQL benchmark and standard optomechanical
position sensing. In particular, voltage readout demon-
strates orders of magnitude improvement in the SNR. For
example, at a radius of approximately 10 cm, we observe
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about a 39 dB improvement over the SQL benchmark
and a 26 dB improvement relative to standard position
sensing. In contrast, current readout of the magnetome-
chanical detector scheme only offers about a 21 dB im-
provement over the SQL benchmark and a 8 dB improve-
ment over standard position sensing. In addition, we see
an overall improved sensitivity as the size of the test mass
is scaled up, with the SQL benchmark, position-sensing
case, and current readout of the magnetomechanical de-
tector scheme scaling as R2 and voltage readout of the
magnetomechanical detector scheme scaling as R2.5. We
attribute the difference in scaling between the two read-
out options to be a consequence of the distinct circuits
associated with each scheme, resulting in unique noise
PSDs each with a different dependence on R. While
these are encouraging results, we caution that these im-
provements indicate a 10 cm-radius sensor requires a test
mass of 103 kg (1 metric ton) in order to measure a volt-
age signal on the order of attovolts. Granted, these esti-
mates may be improved by considering instead the den-
sity and magnetic field of a superconducting material,
rather than a strong permanent magnet (neodymium),
as we have here.

V. OUTLOOK

Here we develop specific approaches for velocity and
position sensing using voltage or current measurements
of magnetomechanical and electromechanical transduc-
ers. We find that our specific electrical circuit-based ap-
proach to velocity sensing, namely voltage measurement
of a magnetomechanical transducer, allows for a reduc-
tion in measurement-added noise while monitoring the
mechanical motion in the microwave domain. While it
is well known that Faraday’s law connects voltage and
velocity, this has not been used as a method for veloc-
ity measurement to date. Here we have shown that this
may be a very fruitful domain for future exploration that
is immediately compatible with existing mechanical sys-
tems, such as levitated superconducting spheres (e.g., the
ones described in Refs. [43, 44]), by effectively changing
their motional readout from current to voltage.

Applying the approaches we describe here to the chal-
lenge of direct dark matter detection showcases how this
type of readout enables scaling to very large masses while
keeping a very low floor of quantum noise. In this work,
using very large objects is advantageous for measuring
gravitational signals, as we focus primarily on observing
small accelerations. In contrast, the observation of small
forces requires a very different operating regime, offering
an intriguing prospect for future work: the design of an
effective small force sensor.

This type of velocity measurement is a QND-like mea-
surement — a consequence of the QND structure of the
velocity variable in the context of a mechanical oscillator
well above its resonance frequency, i.e., in the free par-
ticle limit. Consequently, we anticipate that this could

be a critical choice to make for future systems that in-
corporate sensors that need to operate in an impulse-
sensing domain. Furthermore, our simple implementa-
tion of voltage measurement for a magnetomechanical
transducer, which is a variation on the well-known rf-
SET, can likely be improved with modern circuit QED
techniques.
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Appendix A: Faraday’s law

In the magnetomechanical detection scheme, our inter-
est lies in the voltage generated when the magnetic mass
moves through the stationary voice coil as a result of
some impulse. This induced voltage ε is given by Fara-
day’s law [31, 32]. Faraday’s law relates ε to the time
derivative of the magnetic flux ΦB =

∫
S
B · dA through

an open surface S:

ε = −dΦB

dt
= − d

dt

(∫
S

B · dA
)

. (A1)

However, in this case it is advantageous to re-express
Eq. (A1) in terms of two contributions, both integrated
around the closed path C that bounds the surface S:

ε =

∮
C

E · dℓ+
∮
C

(v ×B) · dℓ . (A2)

The first term accounts for the electric field E generated
by a time-varying magnetic field, while the second term
accounts for time-varying changes in S and C, i.e., mo-
tion of the curve with some velocity v. By considering
the rest frame of the magnetic mass and taking the coil
to be moving with a velocity v = vẑ, Eq. (A2) can be
evaluated to yield the induced voltage given by Eq. (1)
in the main text.
By expressing Faraday’s law as in Eq. (A2) we more

readily understand the equivalence between the rest
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frames of the magnetic mass and voice coil. In the rest
frame of the coil, the velocity is zero, however, a time-
varying magnetic field will be present due to the mag-
net’s motion, yielding a non-zero electric field. We use
a transformation between rest frames [31, 32] to express
this electric field in terms of the magnetic field in the
magnet’s rest frame: E = v ×B. In this way, we see how
the induced voltage in our detection scheme is equivalent
to that given by Eq. (1).

Appendix B: Circuit analysis of the detector
schemes

In this appendix, we provide a pedagogical presenta-
tion of circuit quantization techniques (specifically the
node flux method, following Ref. [33]) as applied to the
detector schemes outlined in Section II of the main text.
This connects the circuit degrees of freedom to those
of the mechanical systems we consider to arrive at the
Hamiltonians in Eqs. (4), (5), and (6).

In an electrical circuit, every circuit element is char-
acterized by a branch voltage and a branch current,
whose time integral defines the element’s branch flux and
branch charge, respectively:

Φb(t) =

∫ t

−∞
vb(t′)dt′ ,

Qb(t) =

∫ t

−∞
ib(t′)dt′ .

(B1)

We use the superscript b to denote branch variables
throughout the text; this is to distinguish from other
variables, such as velocity v, present in our analysis. Cir-
cuit elements are characterized by fundamental equations
that relate their branch current or charge to their branch
voltage or flux. For example, in capacitors, vb = Φ̇b =
Qb/C, while for inductors ib = Q̇b = Φb/L. A nonlinear
element such as a Josephson junction is characterized by
the relation ib = Q̇b = IC sin

(
2πΦb/Φ0

)
+CJ Φ̈

b, with IC
its critical current, CJ its self-capacitance, and Φ0 the
magentic flux quantum.

Kirchhoff’s laws determine how the branch variables of
each element of a circuit relate. Kirchhoff’s current law
enforces charge conservation at each node by equating the
currents flowing into and out of each node. Kirchhoff’s
voltage law (an instance of Faraday’s law) demands that
the voltage around a closed loop must sum to zero. How-
ever, the branch variables do not constitute the degrees
of freedom of the circuit, as they are not independent
variables. In order to appropriately define independent
degrees of freedom for a circuit, a so-called ‘spanning
tree’ [33] must be chosen. The spanning tree determines
how each of the branch variables may be expressed in
terms of the defined independent degrees of freedom.

In the node flux formulation, a spanning tree is con-
structed as follows. Starting from a designated ground

or reference node, a path is chosen along each branch el-
ement such that each non-reference node of the circuit
is reached by a single path. Each non-reference node is
then associated with a node flux, defined as the sum (or
difference) of the branch fluxes along the path to each
node. The various possible spanning trees for a given
circuit amount to different gauge choices and are there-
fore distinct but equivalent descriptions. Once expressed
in terms of node fluxes, the set of equations found from
Kirchhoff’s current law become the equations of motion
for each degree of freedom, which are used to then in-
fer the Lagrangian of the system. With this method,
capacitive terms yield time derivatives of the node flux,
thereby playing the role of kinetic energy terms. In con-
trast, inductive terms are written in terms of the node
flux, hence acting like potential energy terms. In this
way, Kirchhoff’s current laws become equations of mo-
tion, while the Kirchhoff’s voltage laws determine how
the branch fluxes are defined in terms of the node fluxes.
We use this general procedure to find the Lagrangians

and derive the Hamiltonians for each of the detector con-
figurations presented in the main text. In the magne-
tomechanical case (Section IIA), we consider the lumped-
element circuit shown in Fig. 1b. We highlight two dis-
tinct yet equivalent gauge descriptions, which when com-
bined with the mechanics of the system, reveal different
couplings between the circuit and mechanical degrees of
freedom. In the electromechanical case (Section II B),
we examine the lumped-element circuit shown in Fig. 1d,
where we find a nonlinear coupling between the circuit
and mechanical degrees of freedom. We then perform an
expansion about the minimum energy configuration to
linearize this coupling.

1. Magnetomechanical circuit analysis

For the magnetomechanical case, we consider the de-
tector circuit shown in Fig. 1b of the main text. Upon
choosing the bottom node as the ground node, we write
the equations found using Kirchhoff’s laws as

CLΦ̈
b
CL

=
Φb

L

L

Φ̇b
L + Φ̇ext = −Φ̇b

CL
,

(B2)

where we have chosen an orientation of the coil relative
to the magnet such that the self-induced voltage and ex-
ternally generated voltage are additive. Note that the
inductor’s voltage must reflect both its own contribution
(the self-induced voltage) as well as that from the exter-
nal flux of the magnet, namely, its time-derivative, given
that Φext is generally a time-dependent quantity.
In this case, there is only one non-reference node and

only two potential paths to reach it: through the capac-
itor or through the inductor. For each of these spanning
trees, shown in Fig. 7, we define an appropriate node
flux. The presence of an external flux results in two
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FIG. 7. Schematic highlighting the two spanning trees as-
sociated with each gauge in the magnetomechanical detector
configuration.

spanning trees with distinct definitions of each branch
flux in term of the node flux. For the first path (through
the inductor), we define Φ = Φb

L. Alternatively, for the
second path (through the capacitor) we find Φ = −Φb

CL
.

By implementing these distinct node flux definitions in
Eq.(B2), we see that the voltage law defines each alter-
nate branch flux in terms of the node flux, and the current
law provides the equation of motion governing Φ.

In the first case, where Φ = Φb
L, Eq.(B2) implies that

Φ̇b
CL

= −(Φ̇ + Φ̇ext) and yields the equation of motion

CL(Φ̈ + Φ̈ext) = −Φ

L
. (B3)

In the second case, where Φ = −Φb
CL

, Eq.(B2) implies

that Φ̇b
L = Φ̇− Φ̇ext and yields the equation of motion

CLΦ̈ = − (Φ− Φext)

L
. (B4)

These equations of motion can be used to obtain the
Lagrangians, which for each respective spanning tree are
written as

L1 =
1

2
CL(Φ̇ + Φ̇ext)2 − Φ2

2L
(B5)

and

L2 =
1

2
CLΦ̇

2 − (Φ− Φext)2

2L
. (B6)

With the Lagrangians of each spanning tree specified,
we use the usual Legendre transformation to obtain the
Hamiltonians [54] in each case:

H1 =
Q2

2CL
+

Φ2

2L
−QΦ̇ext (B7)

and

H2 =
Q2

2CL
+

(Φ− Φext)2

2L
, (B8)

where Q = dLi

dΦ̇
represents the canonical charge degree of

freedom, conjugate to the node flux Φ. With only the

lone capacitance CL connected to the node, Q represents
the charge on this capacitor’s plates. These Hamiltonians
are related by the gauge transformation given by Eq. (2)
in Section IIA of the main text.
To incorporate the mechanical degrees of freedom due

to the magnetic mass’s motion, we recall that Φext repre-
sents the flux penetrating the voice coil due to the pres-
ence of the magnetic mass. Therefore, Φ̇ext corresponds
to the induced voltage ε in Eq. (1) of the main text.
This enables us to rewrite Eq. (1) in terms of Φext, the
mechanical degrees of freedom, and the transducer con-
stant Tv:

Φ̇ext = Tvẋ

Φext = Tvx ,
(B9)

where x represents the mass’s position and ẋ its veloc-
ity v. We then incorporate the motion of the mass and
its attached spring in the Lagrangians of Eqs. (B5) and
(B6) by making the substitutions indicated in Eq. (B9)
and including terms that describe the energy associated
with the mechanical motion. In full, we come to the La-
grangians

L(E,v)
1 =

1

2
mẋ2 − 1

2
kx2 +

1

2
CL(Φ̇ + Tvẋ)

2 − Φ2

2L
(B10)

and

L(E,v)
2 =

1

2
mẋ2− 1

2
kx2+

1

2
CLΦ̇

2− (Φ− Tvx)
2

2L
. (B11)

Moving to the Hamiltonian description via a Legen-
dre transform yields the Hamiltonians given in Eqs. (4)
and (5).
As an aside, we can confirm the Lagrangians in

Eqs. (B10) and (B11) appropriately characterize the me-
chanics by considering the forces acting on the magnetic
mass. Theses forces include the restorative force of the
spring as well as a magnetic force due to the interaction
between the current-carrying voice coil and the magnetic
mass. Due to the interaction between the current in the
voice coil and the magnetic field in the air gap of the mag-
netic mass, the voice coil experiences a magnetic force of
the form F =

∫
ibLdℓ×B = −Tvi

b
L. As a result of New-

ton’s third law, the force felt by the magnetic mass is
equal and opposite to the force felt by the voice coil.
The equation of motion for the position of the magnetic
mass can then be written as

mẍ = −kx+
Tv

L
Φb

L , (B12)

where we have made the substitution for the branch flux
of the inductor via ibL = Φb

L/L. One can confirm that
by making the appropriate substitutions for branch flux
in each gauge yields an equation of motion (combined
with either Eq. (B3) or Eq. (B4)) generated by the La-
grangians in either Eq. (B10) or Eq. (B11).
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2. Electromechanical circuit analysis

For the electromechanical configuration, we begin with
the lumped-element circuit shown in Fig. 1d of the main
text and designate the bottom node as the ground or
reference node and assemble the appropriate expressions
from Kirchhoff’s laws. This yields the equations

d

dt

[
C(x)Φ̇b

C

]
=

Φb
L

L
+ CP Φ̈

b
CP

,

VDC+Φ̇b
C + Φ̇b

L = 0 ,

Φ̇b
L = Φ̇b

CP
,

(B13)

where the first equation arises from applying Kirchhoff’s
current law to the top node and the remaining equations
are the result of applying Kirchhoff’s voltage law around
each of the circuit’s two loops. Note that we have writ-
ten the current through the mechanically-varying capac-
itor generally in terms of the total time derivative of the
charge on the capacitor’s plates Qb

C = C(x)Φ̇b
C . This is

due to the fact that the capacitance is a function of the
mechanical position.

We next construct a spanning tree to define the node
flux Φ. While there are three potential spanning trees in
this circuit, without any externally threaded flux all three
choices yield identical definitions of the branch fluxes in
terms of the node flux. Namely, Φ̇b

C = Φ̇ − VDC and

Φ̇b
L = Φ̇b

CP
= −Φ̇. Expressing Kirchhoff’s current law in

Eq. (B13) in terms of the node flux, we find the equation
of motion

d

dt

[
C(x)

(
Φ̇− VDC

)]
= −Φ

L
− CP Φ̈ . (B14)

Working backwards, we infer the Lagrangian that de-
scribes the circuit dynamics:

L =
1

2
C(x)

(
Φ̇− VDC

)2

+
1

2
CP Φ̇

2 − Φ2

2L
. (B15)

This Lagrangian does not fully describe the system as
it does not completely account for the mechanical mo-
tion. However, we need only add the usual mechanical
contributions due to the kinetic energy of the plate and
the potential energy of the attached spring, yielding the
total Lagrangian

L(E,x) =
1

2
mẋ2 − 1

2
kx2 +

1

2
C(x)

(
Φ̇− VDC

)2

+
1

2
CP Φ̇

2 − Φ2

2L
.

(B16)

We can confirm that this Lagrangian appropriately ac-
counts for the mechanical degrees of freedom by consider-
ing the forces acting on the movable plate: the restorative
force of the attached spring and the electrostatic attrac-
tion between the oppositely charged plates of the capaci-
tor. When the plates are uncharged, we take the spring to
be in its equilibrium position so that the plate’s position

is x = 0 and the plate separation is d0. In this coordinate
system, we express the mechanically-varying capacitance
as C(x) = ϵ0A

d0−x where A is the area of the two plates
and ϵ0 the permittivity of free space. Assuming that the
area of plates is much larger than their original sepa-
ration such that they may be treated approximately as
two infinite sheets with charge ±Qb

C , the electric field

between them is uniform, given by E =
Qb

C

ϵ0A
, and the

force of attraction felt by the movable plate is given by

F = 1
2EQb

C =
(Qb

C)2

2ϵ0A
. Using Newton’s second law, the

equation of motion for the position of the movable plate
is then

mẍ = −kx+
(Qb

C)
2

2ϵ0A

= −kx+
C(x)2(Φ̇− VDC)

2

2ϵ0A

= −kx+
1

2

∂C(x)

∂x
(Φ̇− VDC)

2 ,

(B17)

where in the second line we have made the substitution
Qb

C = C(x)Φ̇b
C = C(x)(Φ̇− VDC) such that the mechan-

ical equation of motion is expressed in terms of the cir-
cuit’s degree of freedom, the node flux Φ. This is further

simplified in the third line by noting ∂C(x)
∂x = ϵ0A

(d0−x)2 =
C(x)2

ϵ0A
. Working backwards, we can confirm that this

equation of motion for x is generated by the Lagrangian
in Eq. (B16).
We then use this Lagrangian and the usual Legendre

transformation [54] to find the Hamiltonian:

H(E,x) =
p2

2m
+

Φ2

2L
+ V (Q, x) , (B18)

where we define the quantity V (Q, x) as

V (Q, x) =
1

2
kx2 +

Q2 + 2C(x)VDCQ− CPC(x)V 2
DC

2(C(x) + CP )
(B19)

and identify Q and p as the canonical node charge and
momenta conjugate to the node flux Φ and position x,
respectively. In this case, Q corresponds to the sum of
the charge on the plates of the two capacitors connected
to the node, while p is the mechanical momentum of the
movable plate. The coupling between the circuit and the
mechanical degrees of freedom is contained in V (Q, x)
and unsurprisingly, this coupling is nontrivial since the
capacitance C(x) is inversely proportional to x. How-
ever, by considering small displacements of the movable
plate of the capacitor, we can linearize the Hamiltonian
by expanding about the equilibrium of the circuit and
mechanical systems.
We understand this equilibrium as follows. When the

plates are uncharged, the separation between them is
given by d0 and the location of the movable plate is at
x = 0. Once charged, the electrostatic attraction be-
tween the oppositely charged plates brings them closer
together, resulting in a new position for the movable
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plate at x = x0. This position corresponds to the po-
sition where the restorative force of the spring and the
force of electrostatic attraction are balanced. Examin-
ing the Hamiltonian, the contribution V (Q, x) describes
a two-dimensional potential energy landscape dependent
on charge and position in which this point must be min-
imum. This equilibrium is where the plate exists upon
perturbation due to some detection event. If we assume
these perturbations are small, we can approximate this
two-dimensional landscape by considering just the region
in the vicinity of the equilibrium {Q0, x0}, thereby lin-
earizing the charge-position interaction. Therefore, we
seek the solution {Q0, x0} to the equation ∇V (Q, x) = 0
such that {Q0, x0} is a minimum.

With this equilibrium point in hand, we expand
V (Q, x) about this point to find

V (Q, x) =V (Q0, x0) +∇V (Q0, x0) ·Q

+
1

2
QTD Q+ ... ,

(B20)

where we have defined the vector Q = {Q−Q0, x− x0}
and the matrix D as the Hessian matrix evaluated at the
minimum {Q0, x0}. We express D in the compact form

D =

[
1

Ceff
− Tx

CP

− Tx

CP
keff

]
(B21)

where have defined the effective capacitance Ceff =
C(x0) + CP , the effective spring constant keff = k −
CeffT

2
x

C(x0)CP
, and the transducer constant Tx as

Tx = CP
(Q0 − CPVDC)

ϵ0A

(
C(x0)

Ceff

)2

. (B22)

We understand this transducer constant to be the con-
stant of proportionality that takes changes in the position
of the movable plate to changes in the charge on the ca-
pacitor’s plates. That is, if we examine the expression for
the charge on the mechanically-varying capacitor’s plates
and expand about the minimum {Q0, x0},

Qb
C =

C(x) (Q− CPVDC)

C(x) + CP

≈ C(x0)

Ceff
(Q− CPVDC) + Tx(x− x0) + ... ,

(B23)

we find the approximately linear relationship between
the movable plate’s position and the charge on the
mechanically-varying capacitor’s plates via the trans-
ducer constant Tx.

Inserting the expansion of V (Q, x) from Eq. (B20) into
the Hamiltonian of Eq. (B18) (noting that the linear
order term is zero at the minimum), the expanded lin-
earized Hamiltonian then takes the form given by Eq. (6)
in the main text.

Appendix C: Adding the drive and moving to the
linearized regime

In this appendix, we provide a brief overview of the
standard methods employed in optomechanical analy-
ses [48–50] (as applied to our systems of interest) that
lead to Eqs. (25)-(29) in Section III of the main text.
We begin by coupling the schemes for electric and mag-
netic field sensing to a bath that serves as a source of
drive and mode of dissipation. Thus, we include in the
Hamiltonians the terms

ĤB =

∫ ∞

−∞
dωℏωb̂†(ω)b̂(ω) , (C1)

and

Ĥint = iℏ
√

κ

2π

∫ ∞

−∞
dω

[
b̂†(ω)â− b̂(ω)â†

]
, (C2)

where b̂†(ω), b̂(ω) are the creation and annihilation oper-
ators for the bath modes, which satisfy the commutation

relation [b̂(ω), b̂†(ω′)] = δ(ω − ω′), and κ corresponds to
the cavity decay rate. Eq. (C1) represents the Hamilto-
nian of the bath while Eq. (C2) is the coupling between
the parametric cavity and the bath.
Upon coherently driving the cavity, the cavity modes

are displaced from their average value such that â →
(α + δâ)eiωLt, where α represents the drive strength, δâ
the operators corresponding to the dynamical quantum
fluctuations about the average, and ωL the frequency of
the drive. It is then convenient to move to a frame ro-
tating with the drive via the unitary transformation

Ĥ → Ĥ ′ = ÛĤÛ† + iℏ
dÛ

dt
Û† (C3)

with

Û = eiωLâ†ât . (C4)

This unitary transformation serves to eliminate the time-
dependence from the Hamiltonian, namely, in the cavity-
bath interaction term Ĥint, as well as introduce a term
−ℏωLâ

†â.
Finally, we move to the linearized regime of optome-

chanics and assume a strong drive such that we can lin-
earize the interaction between the parametric cavity and
the circuits for both voltage and current measurement.
For a strong drive, the drive strength α increases in mag-
nitude while also increasing the fluctuations associated
with the operators δâ, δâ†. Thus, in the cavity-circuit
coupling term (across all detector schemes, readout op-
tions, and gauges) we neglect the term going as δâ†δâ as
being a factor smaller in α than the terms α∗δâ+ αδâ†.
We also neglect contributions which do not dynamically
affect the evolution of the system, namely, constant terms
and terms linear in system operators.
By choosing the drive strength α to be real, and let-

ting δâ, δâ† → â, â† (for convenience) we arrive at the
Hamiltonians given by Eqs. (25)-(29) in Section III of
the main text.
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Appendix D: Defining the input and output bath
modes

Here we provide a review of input-output theory [51]
to establish the quantum Langevin equation and define
the input and output modes for the system. We be-
gin with the Heisenberg equation of motion for the bath

modes b̂(ω). This equation is identical across all detector
schemes, readout options, and gauges,

db̂(ω, t)

dt
=

−i

ℏ

[
b̂(ω), Ĥ ′

]
= −iωb̂(ω) +

√
κ

2π
â , (D1)

and may be solved in reference to either an initial time
or final time. This solution is written as

b̂(ω, t) = e−iω(t−t0)b̂(ω, t0) +

√
κ

2π

∫ t

t0

dt′e−iω(t−t′)â(t′) ,

(D2)
where for times t > t0 the solution references an initial
state at time t0 and for times t < t0 the solution refer-
ences a final state at time t0.

We then substitute this solution into the Heisen-
berg equations of motion for â, â† to find the quantum
Langevin equation. In doing so, we define the input and
output modes as

1√
2π

∫ ∞

−∞
dω e−iω(t−t0)b̂(ω, t0) =

{
b̂in(t) if t > t0
b̂out(t) if t < t0

(D3)

and note the identities∫ ∞

−∞
dωe±iω(t−t′) = 2πδ(t− t′) (D4)

and

∫ b

a

dxf(x)δ(x− a) =

{
f(a)
2 if b > a

−f(a)
2 if b < a

. (D5)

We note that the equations of motion for â, â† are unique
to each detector scheme, readout option, and gauge. As
an example, for electric field sensing in the magnetome-
chanical detector scheme the equation takes the gauge-
independent form

dâ

dt
= i∆â+ iG

(E,v)
Q Q̂−

√
κb̂in − κ

2
â . (D6)

Taking the difference between the equations which refer-

ence an initial time t > t0 (in terms of b̂in) or a final time

t < t0 (in terms of b̂out) yields the familiar input-output
relation

b̂out(t) = b̂in(t) +
√
κâ(t) , (D7)

which describes how the output bath modes are related
to the input bath modes and the cavity operator.

Appendix E: Explicit solutions for the output phase quadratures

Here we list the solutions for the output phase quadratures found from different transducer and receiver com-
binations, as outlined in Section IV of the main text. For the magnetomechanical detector configuration, voltage
measurement via electric field sensing yields the solution

Ŷ
(E,v)
out (ν) =−

( κ
2 − iν
κ
2 + iν

)
Ŷin +

ℏG(E,v)
Q

2
κ(ν2 − ω2

m)

L(κ2 + iν)2 [(ν2 − ω2
c )(ν

2 − ω2
m)− δ2vν

2]
X̂in

+
iG

(E,v)
Q

√
κδvν√

mL(κ2 + iν) [(ν2 − ω2
c )(ν

2 − ω2
m)− δ2vν

2]
F̂in

, (E1)

while for current measurement via magnetic field sensing we find the expression

Ŷ
(B,v)
out (ν) =−

( κ
2 − iν
κ
2 + iν

)
Ŷin +

ℏGB2
κLω2

c

(
ν2 − ω2

m − δ2v

)
(κ2 + iν)2 [(ν2 − ω2

c − ω2
l )(ν

2 − ω2
m)− δ2v(ν

2 − ω2
l )]

X̂in

+
GB

√
κLδvω

2
c√

m(κ2 + iν) [(ν2 − ω2
c − ω2

l )(ν
2 − ω2

m)− δ2v(ν
2 − ω2

l )]
F̂in

. (E2)
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For the electromechanical case, voltage measurement via electric field sensing yields

Ŷ
(E,x)
out (ν) =−

( κ
2 − iν
κ
2 + iν

)
Ŷin +

ℏκ
[
G

(E,x)
Q

2
m(ν2 − ω2

m)− 2G
(E,x)
Q Gx

√
mLδxωce +G2

xL(ν
2 − ω2

ce)
]

mL(κ2 + iν)2 [(ν2 − ω2
ce)(ν

2 − ω2
m)− δ2xω

2
ce]

X̂in

+
κ
[
GxL(ν

2 − ω2
ce)−G

(E,x)
Q

√
mLδxωce

]
mL(κ2 + iν) [(ν2 − ω2

ce)(ν
2 − ω2

m)− δ2xω
2
ce]

F̂in

, (E3)

while for current measurement via magnetic field sensing we find the expression

Ŷ
(B,x)
out (ν) =−

( κ
2 − iν
κ
2 + iν

)
Ŷin +

ℏGB2
κLω2

ce

(
ν2 − ω2

m + δ2x

)
(κ2 + iν)2 [(ν2 − ω2

ce − ω2
le)(ν

2 − ω2
m)− δ2x(ω

2
ce + ω2

le)]
X̂in

+
iGBTx

√
κLωceν√

m(κ2 + iν) [(ν2 − ω2
ce − ω2

le)(ν
2 − ω2

m)− δ2x(ω
2
ce + ω2

le)]
F̂in

. (E4)

In all instances, we have utilized the frequencies defined Eq. (46) of the main text.

Appendix F: Explicit noise PSD solutions

In this appendix, we list the noise PSD expressions for each combination of detector configuration and measurement
scheme. In contrast to those shown in the main text, here we write these expressions explicitly in terms of their
frequency dependence and the relevant frequencies given in Eq. (46). We also include the coupling Gx present in
the electromechanical scheme, which we neglect due to its small size in the expressions in the main text. For the
magnetomechanical detector configuration, voltage measurement via electric field sensing yields the noise PSD

S
(E,v)
FF =

ℏ2G(E,v)
Q

2
κm(ν2 − ω2

m)2

2Lδ2vν
2
(
κ2

4 + ν2
) +

mL
(
κ2

4 + ν2
) [

(ν2 − ω2
m)(ν2 − ω2

c )− δ2vν
2
]2

2G
(E,v)
Q

2
κδ2vν

2
+NBM , (F1)

while for current measurement via magnetic field sensing we find the expression

S
(B,v)
FF =

ℏ2GB2
κmL

(
ν2 − ω2

m − δ2v

)2

2δ2v
(
κ2

4 + ν2
) +

m
(
κ2

4 + ν2
) [

(ν2 − ω2
m)(ν2 − ω2

c − ω2
l )− δ2v(ν

2 − ω2
l )
]2

2GB2
κLδ2vω

4
c

+NBM . (F2)

In the electromechanical case, voltage measurement via electric field sensing yields the noise PSD

S
(E,x)
FF =

ℏ2κ
[
G

(E,x)
Q

2
m(ν2 − ω2

m)− 2G
(E,x)
Q Gx

√
mLδxωce +G2

xL(ν
2 − ω2

ce)
]2

2
(
κ2

4 + ν2
) [

G
(E,x)
Q

√
mLδxωce −GxL(ν2 − ω2

ce)
]2

+
m2L2

(
κ2

4 + ν2
) [

(ν2 − ω2
m)(ν2 − ω2

ce)− δ2xω
2
ce

]2
2κ

[
G

(E,x)
Q

√
mLδxωce −GxL(ν2 − ω2

ce)
]2 +NBM ,

(F3)

while for current measurement via magnetic field sensing we find the expression

S
(B,x)
FF =

ℏ2GB2
κmLω2

ce

(
ν2 − ω2

m + δ2x

)2

2δ2xν
2
(
κ2

4 + ν2
) +

m
(
κ2

4 + ν2
) [

(ν2 − ω2
m)(ν2 − ω2

ce − ω2
le)− δ2x(ω

2
ce + ω2

le)
]2

2GB2
κLδ2xω

2
ceν

2
+NBM . (F4)
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Appendix G: Analysis of optomechanical systems for
comparison

Here we consider the continuous measurement of an
optomechanical system subject to either direct position
or direct momentum coupling. In the case where the
probing optical amplitude quadrature X̂ directly inter-
acts with the position x̂ of the mechanical system, the
interaction Hamiltonian takes the form

Ĥint = ℏGx̂X̂ . (G1)

This is the basis of the standard optomechanical position-
sensing problem. If instead the optical quadrature di-
rectly interacts with the velocity, i.e., the mechani-
cal momentum of the system, which can be practically
implemented by specific designs of the system as in
Refs. [6, 52], the interaction Hamiltonian becomes

Ĥint = ℏG′p̂X̂ . (G2)

Following the standard procedures in Appendix D and
Section IV, we write down the full Hamiltonian and de-
rive the equations of motion for these systems. Here we
additionally consider a mechanical damping with damp-
ing rate µ. Then, we solve for the output phase quadra-
ture of light Ŷout using the input-output relations. These
yield the estimated force expressions [52]

F̂Ex
= −GℏχcX̂in +

eiϕc Ŷin

Gχcχm
+ F̂in , (G3)

and

F̂Ev
= −iG′ℏχcm

ω2
m

ν
X̂in +

ieiϕc

G′mνχcχm
Ŷin + F̂in .

(G4)

Here we define the cavity response function χc, the me-
chanical response function χm, and the cavity phase
shift eiϕc as

χc =

√
κ

−iν + κ/2
,

χm =
−1

m(ν2 − ω2
m + iµν)

,

eiϕc =
−iν − κ/2

−iν + κ/2
.

(G5)

For position sensing, this helps us establish the tar-
get frequency-dependent optimization of the coupling
strength G:

G(ν) → 1√
ℏ|χm(ν)|1/2|χc(ν)|

. (G6)

Using these estimated force expressions, we derive the
noise PSD solutions analogously to those derived in the
main text and use them to generate the broadband noise
PSD plot shown Fig. 4 for comparison with that of our
electrical readout schemes.
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