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ABSTRACT

We present the full Hubble diagram of photometrically-classified Type Ia supernovae (SNe Ia) from
the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN can-

didates and obtained spectroscopic redshifts of 7,000 host galaxies. Based on the light-curve quality, we
select 1635 photometrically-identified SNe Ia with spectroscopic redshift 0.10 < z <1.13, which is the
largest sample of supernovae from any single survey and increases the number of known z > 0.5 super-

novae by a factor of five. In a companion paper we present cosmological results of the DES-SN sample
combined with 194 spectroscopically-classified SNe Ia at low redshift as an anchor for cosmological fits.
Here we present extensive modeling of this combined sample and validate the entire analysis pipeline
used to derive distances. We show that the statistical and systematic uncertainties on cosmological

parameters are σΛCDM
ΩM ,stat+sys =0.017 in a flat ΛCDM model, and (σΩM

, σw)
wCDM
stat+sys = (0.082, 0.152) in a

flat wCDM model. Combining the DES SN data to the highly complementary CMB measurements by
Planck Collaboration (2020) reduces by a factor of 4 uncertainties on cosmological parameters. In all

cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photo-
metric classification make up less than 10% of the total systematic uncertainty budget. This result sets
the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time.

Keywords: supernovae, cosmology, dark energy, calibration

1. INTRODUCTION

The modern understanding of the physical evolution
of our universe comes from a number of cosmological
probes that can constrain the Universe’s expansion his-
tory and growth of structure. The Dark Energy Survey
(DES) employs multiple probes (Type Ia supernovae,

⋆ maria.vincenzi@duke.edu

weak lensing, large scale structure, galaxy clusters) to
accurately measure a generation-defining picture of the
components of the Universe. In this paper, we present
the analysis and distance constraints of the full five years
of Type Ia supernovae (SNe Ia) discovered and measured

by the DES Supernova program (DES-SN).
SNe Ia are used to make some of the most precise

constraints on the nature of dark energy and the expan-
sion history of the Universe from a large span in cosmic
history 0 ≲ z ≲ 2. The latest compilations (e.g., Pan-
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theon+: Scolnic et al. 2022; Brout et al. 2022a) include
∼ 1500 distinct SNe; however, they have relied on real-
time spectroscopic confirmations of the SNe themselves
to be verified as type Ia. There is already an equally
large number of SNe discovered for which spectroscopic
confirmation was not possible, and recent cosmological
analyses have begun to show that the contamination
from other types of SNe in the analyses is not debili-
tating, and not even the largest systematic uncertainty
(Sako et al. 2011; Campbell et al. 2013; Jones et al.
2018, 2019, and Popovic et al. in prep.). This is, in
part, due to the advancement of photometric classifica-
tion algorithms (e.g., Möller & de Boissière 2020; Qu
et al. 2021) that incorporate an improved set of non-Ia
spectro-photometric templates and modeling (Vincenzi
et al. 2019). Despite the success of recent photometric
analyses (Jones et al. 2018, 2019), these samples have
not received the same level of use in the broader cos-
mological community of combined-probe analyses. The

onus has remained on the SN community to demonstrate
that the accuracy of photometric SN analyses is not a
limitation. This work presents an opportunity to set the
stage for future analyses of orders of magnitude larger

SN samples, such as the Rubin Observatory Legacy Sur-
vey of Space and Time (LSST; Ivezić et al. 2019) and the
Nancy Grace Roman Space Telescope (Roman; Houn-

sell et al. 2018; Rose et al. 2021), where photometric
classification represents the only viable path to fully ex-
ploit the statistical power of these surveys.

The analysis presented here is of the full 5-year pho-
tometrically classified set of SNe from DES and addi-
tional external samples of spectroscopically confirmed
low-z SNe (the DES-SN5YR analysis). This work was

preceded by the analysis of the first 3 years of spectro-
scopically classified DES SNe Ia (DES-SN3YR: Abbott
et al. 2019, also including external low-z SN samples).

The DES-SN3YR sample included 207 SNe Ia from DES
and was critical in the development and motivation of
analyses leading up to the work presented here. This
includes photometry and calibration (Burke et al. 2018;
Brout et al. 2019b; Lasker et al. 2019), survey and SN Ia
population modeling (Kessler et al. 2019a; Popovic et al.
2021b), understanding and modeling of the ‘mass/dust
step’ (Sullivan et al. 2010a; Lampeitl et al. 2010; Smith
et al. 2018; Scolnic et al. 2020; Brout & Scolnic 2021;
Popovic et al. 2021a; Wiseman et al. 2022; Duarte et al.

2022; Dixon et al. 2022; Chen et al. 2022; Meldorf et al.
2023), estimates and treatment of systematic uncertain-
ties (Brout et al. 2019a, 2020), and the automation of
the analysis pipeline (Hinton & Brout 2020).
In this work, we also introduce a number of new sup-

porting analyses that are part of the full DES-SN5YR

suite of papers. Besides photometric classification (Vin-
cenzi et al. 2021b,a; Möller et al. 2022), the biggest dif-
ferences and improvements in the methodology of DES-
SN5YR compared to the DES-SN3YR analysis are due
to:

• Upgrading to the SALT3 light-curve model from
the SALT2 model (Kenworthy et al. 2021; Taylor
et al. 2023).

• Improved modeling of SN Ia intrinsic scatter us-
ing host dust-based models (Popovic et al. 2021a),
focusing on modeling correlations between SN Ia
properties and both host mass and host color (rest-
frame u−r, following Kelsey et al. 2023) and mod-
eling the SN Ia progenitor age distribution (Wise-
man et al. 2022), thus significantly improving pre-
vious analyses that neglect modeling of host prop-
erties; (Scolnic & Kessler 2016).

• Modeling of the host spectroscopic redshift effi-
ciency (Vincenzi et al. 2021b) instead of efficiency
of spectroscopic typing as in the DES-SN3YR
spectroscopic sample (Smith et al. 2020a) and

modeling the fraction of host mis-matched SNe
(Qu et al. 2023).

• Updated DES internal calibration (Sevilla-Noarbe
et al. 2021) and cross-calibration (Brout et al.
2022b).

• The inclusion of wavelength-dependent atmo-
spheric effects on photometry (Lee & Acevedo
et al. 2023) in addition to the chromatic correc-

tions used in the DESSN-3YR analysis (Lasker
et al. 2019).

• Using an un-binned systematic covariance matrix
for cosmological constraints (Brout et al. 2020;
Kessler et al. 2023).

• Improved statistical validation of the methodology
(Armstrong et al. 2023; Camilleri et al. in prep.
2023).

This analysis is the culmination of these works. In
this paper, we provide the derivation of the DES-SN5YR
distances and the assessment of the impact of systematic
uncertainties on distances and cosmological fits. The
unblinded cosmological constraints from the techniques
established in this analysis are presented by The DES
Collaboration (in prep. 2023).
The structure of this paper is presented in Fig. 1.

In Sec. 2, we present the DES-SN5YR data set. In
Sec. 3, we briefly review the cosmological framework
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Figure 1. Overview of the paper.

implemented in the analysis, with particular attention
to how potential contamination from non-Ia SNe is ac-

counted for in the cosmological fitting. In Sec. 4, we
describe how simulations of DES-SN5YR are built. In
Sec. 5, we present the inferred SN distances and our fi-

nal Hubble diagram. In Sec. 6, we discuss the various
sources of systematic uncertainties included in our anal-
ysis and present our systematic error-budget. Finally,
in Sec. 7 and Sec. 8, we discuss our results and present
our conclusions.

2. DATA

2.1. Dark Energy Survey SN sample

The DES-SN program is a five-year survey using the
Dark Energy Camera (DECam; Flaugher et al. 2015) on
the Victor M. Blanco telescope (Cerro Tololo, Chile),
covering ten ∼ 3 deg2 fields distributed across the DES
footprint (two ‘E’ fields, two ‘S’ fields, three ‘X’ and ‘C’
fields, see Smith et al. 2020a, Figure 1 and Table 2). Two
out of ten fields (‘X3’ and ‘C3’) have been observed to
a single-visit depth of 24.5 mag in r-band (deep fields),
while the remaining eight fields we reach a single-visit

depth of 23.5 mag. Only a small fraction of the DES-SN

candidates have been spectroscopically followed-up us-
ing several spectroscopic facilities. For the majority of
the transients, host galaxy redshifts have been collected
using the auxiliary Australian DES survey (OzDES),
which used the 2dF fibre positioner and AAOmega spec-
trograph (Smith et al. 2004) on the Anglo-Australian
Telescope to collect host galaxy redshifts (Lidman et al.
2020). The SN sample collected by the DES-SN pro-
gram is the largest and deepest cosmological SN sample
from a single telescope to date (see Fig. 2). Kessler
et al. (2015) and Smith et al. (2020a) describe in de-
tail the SN search strategy and spectroscopic follow-up
associated with the DES SN program.

2.2. Low redshift samples

We combine the DES-SN sample with various external
low redshift (z < 0.1) SN surveys. These include CfA3
(Hicken et al. 2009), CfA4 (Hicken et al. 2012), CSP

(Krisciunas et al. 2017) (DR3) and the Foundation SN
sample (Foley et al. 2017). These external surveys span
a redshift range of 0.01 < z < 0.1 and provide a lever
arm to improve constraints on the dark energy equation

of state. For this analysis, we include only low-z SNe
above redshift 0.025 to mitigate the effects of peculiar
velocities. Finally, we add a 1 percent error floor in

quadrature to the low-z SN photometry (2 percent for
Foundation z-band), following Scolnic et al. (2018) and
Jones et al. (2019).
We don’t include other historical low-z SN samples

e.g., LOSS (Ganeshalingam et al. 2013), SOUSA1, or
intermediate redshift SN samples, e.g., the SDSS SN
sample (Sako et al. 2018). This choice is in order to

avoid including a larger number of systematic uncer-
tainties in our analysis (for every survey, we need to
take into account for additional systematics related to

survey calibration and survey-specific selection effects)
and emphasise the contribution of the DES SN program
at redshift z > 0.1.

2.3. SN Photometry

We measure DES-SN photometry using the Scene
modeling Photometry (SMP; Astier et al. 2013) pipeline
presented by Brout et al. (2019b), which simultane-
ously models the time-varying SN flux and the time-

independent background host-galaxy flux. In compari-
son to faster difference imaging pipelines, this technique
provides more accurate flux and flux uncertainty mea-
surements. Sanchez et al. (in prep. 2023) present a de-
tailed comparison between DES SMP photometry and
photometry from difference imaging and demonstrate

1 Light curves available at https://pbrown801.github.io/SOUSA/.

https://pbrown801.github.io/SOUSA/.
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that the implementation of SMP significantly reduces (i)
flux uncertainties and (ii) effects attributed to the so-
called surface-brightness anomaly (i.e., unexplained flux
scatter increasing with the host galaxy surface bright-
ness at the SN location, Kessler et al. 2015, 2019a).
In addition, DES-SN photometry is corrected for

wavelength-dependent atmospheric effects such as Dif-
ferential Chromatic Refraction (DCR, Filippenko 1982)
and wavelength-dependent (λ-dependent) seeing, which
affect ground-based observations. DCR occurs because
the index of refraction of our atmosphere is wavelength-
dependent, while λ-dependent seeing is caused by vari-
ations in the atmospheric refractive index due to at-
mospheric turbulence. These two effects cause a color-
dependent mis-modeling of the shape of the PSF (which
is reconstructed using stars that are generally redder
than the average SN at z = 0) and of the position
of the SN. Lee & Acevedo et al. (2023) describe the
methods used to correct DES-SN photometry for such

wavelength-dependent atmospheric effects and assess
their impact on DES-SN distance estimation and cosmo-
logical results. We do not include wavelength-dependent
atmospheric corrections for external low-z samples.

2.4. Calibration

Accurate photometric calibration of DECam filters
and inter-survey calibration is essential in SN cosmol-

ogy to estimate SN brightnesses at different redshifts
and when combining SNe from different surveys. For the
DES-SN sample, calibration is performed in two stages.

First, DES images are internally calibrated using a
catalog of 17 million tertiary standard stars within the
DES footprint built using the Forward Global Calibra-

tion Method (FGCM) as conceived by Stubbs & Tonry
(2006) and as implemented in DES by Burke et al.
(2018). Not only does this method provide accurate
(∼ 1%) absolute calibration, but it also provides excel-
lent all-sky uniformity of < 3mmag for DES (Sevilla-
Noarbe et al. 2021; Rykoff 2023).
The FGCM tertiary standard star catalog provided in

Burke et al. (2018) was utilized in the preliminary DES-
SN3YR cosmological analysis. The FGCM catalog was
updated in the period between DES-SN3YR and DES-
SN5YR and here we use the Y3GOLD stellar catalogs as
presented in Appendix 3 of Sevilla-Noarbe et al. (2021).
The improvements are summarized as follows: (i) im-
proved aperture photometry corrections, (ii) an update
to the publicly released DES Y3A2 Standard Bandpass
(see Sevilla-Noarbe et al. 2021), (iii) improved unifor-
mity in years following the bad weather of year 3, (iv)
improved astrometric solution utilizing longer temporal

baseline, and (v) other technical and practical improve-
ments.
Second, the tertiary standard stars are calibrated to

primary standard stars to place them on the AB sys-
tem. Within DES, AB offsets were calculated to the
HST Caslpec standard star C26202 in Rykoff (2023),
given in Table 1. However, because SNIa cosmology
analyses combine multiple surveys to cover both low
redshift and high redshift to obtain competitive cos-
mological constraints, here we utilize the calibration
of Brout et al. (2022b, Supercal-Fragilistic) which is
an improvement on the Scolnic et al. (2015, Supercal)
method. This method consists of simultaneously cross-
calibrating the FGCM catalog with the AB calibrated
stellar catalogs from numerous other wide-field surveys
(e.g., PS1, SDSS, SNLS). Supercal-Fragilistic use pri-
ors on each modern survey’s published AB calibrations

and re-fit for a new solution that minimizes the dif-
ferences between surveys and mitigates potential sys-
tematic errors. Supercal-Fragilistic find similar offsets

as those found in Rykoff (2023), but of larger magni-
tude (see Table 1); though these offsets are consistent
with each other given that the external data used to

perform the calibration is largely independent. In this
work we have chosen to adopt the offsets from Supercal-
Fragilistic because: (i) the low-z samples also analyzed
in this work have been calibrated in Supercal-Fragilistic,

(ii) this includes covariance between DECam filters and
low-z filters (utilized in our distance likelihood Eq. 1),
(iii) Supercal-Fragilistic provides the mechanism to cre-

ate multiple realizations of inter-filter correlated cali-
brations from the Supercal-Fragilistic covariance matrix
with the other low-z samples, (iv) Supercal-Fragilistic
obtain smaller uncertainties due to the utilization of

more external data. This change results in a ∼5 mmag
color correction for g − z (∼3 mmag for g − i) relative
to what was used in DES-SN3YR.

The AB offset uncertainty reported in the C26202-
based analysis of Rykoff (2023) is ∼0.011 mags. The re-
ported DES5YR uncertainties (stat+syst) in Supercal-
Fragilistic covariance are roughly half of the size on the
diagonal (6 mmag), which is the result of leveraging the
cross-calibration of multiple surveys utilizing multiple
primary standard stars. The full Supercal-Fragilistic co-
variance2 is used to determine the effects of correlated
systematic uncertainties in both light-curve fitting and
in SALT3 model training. Systematic uncertainties due
to absolute calibration of the DECam and low-z filters
are discussed in Section 6.

2 https://github.com/PantheonPlusSH0ES/DataRelease

https://github.com/PantheonPlusSH0ES/DataRelease
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Table 1. DECam AB Offsets and Uncertainties

Ref g r i z

Rykoff (2023) +0.001± 0.011 −0.003± 0.011 −0.001± 0.011 +0.002± 0.012

Brout et al. (2022b) +0.002± 0.006 −0.009± 0.006 −0.007± 0.006 +0.006± 0.006

0.2 0.4 0.6 0.8 1.0 1.2
Redshift
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50
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High redshift (z > 0.1) SN cosmological samples
Comparison with DES-SN
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(combines 17 SN surveys
between 2000-2017)

DES-SN

Figure 2. Redshift distribution of the DES-SN sample com-
pared to the Pantheon+ compilation. DES-SN is the largest
and deepest sample of SN Ia to date. The dashed lines repre-
sent the different surveys’ redshift distributions contributing
to the total Pantheon+ compilation. The Pantheon+ and
the DES-SN samples presented in this paper have a small
overlap of 146 SNe (previously published by Brout et al.
2019b)).

2.5. Host galaxy association, redshifts and host
properties

For each SN, we identify the host galaxy using the

Directional Light Radius (DLR) method presented by
Sullivan et al. (2006a); Gupta et al. (2016). We define
as ‘hostless’ SNe for which no galaxy is detected with
DLR< 4. The galaxies identified as likely hosts of DES
transients are targeted using the AAOmega spectro-
graph on the 3.9-m Anglo-Australian Telescope (AAT)
as part of the OzDES programme (Yuan et al. 2015;

Childress et al. 2017; Lidman et al. 2020). A full descrip-
tion of the different sources of redshifts used in our sam-
ple and the host spectroscopic redshift efficiency for the
DES-SN sample are presented by Vincenzi et al. (2021b)
and Sanchez et al. (in prep. 2023).
To characterize SN host galaxies, we mainly focus on

two global host galaxy properties: stellar mass (M⋆)
and rest-frame u − r color. These are the two prop-
erties we can most reliably estimate given the limited
broad-band photometry available for our SN hosts. For

DES SN hosts, these galaxy properties are measured us-
ing DES broad-band photometry and, when available,
u-band and JHK photometry from external surveys

(Wiseman et al. 2020; Hartley et al. 2022). We use the
galaxy Spectral Energy Distribution fitting code by Sul-
livan et al. (2010b) and the PÉGASE2 galaxy spectral
templates (Fioc & Rocca-Volmerange 1997; Le Borgne
& Rocca-Volmerange 2002), assuming a Kroupa (2001)
initial mass function. In the DES SN cosmological sam-
ple used in this work (see Sec. 5), we find that 68 per
cent of the DES SN hosts are assigned to high stellar
mass (> 1010M⊙).

For consistency, we remeasure stellar masses and rest-
frame u − r colors of the low-z SN host galaxies using
the same code and initial mass function used for the
DES SN hosts. We use optical and UV photometry3

to ensure the same rest-frame wavelength coverage used
for the DES SN hosts. We find that a significant frac-
tion of low-z hosts previously assigned a stellar mass

lower than 1010M⊙ are re-assigned a larger stellar mass
(> 1010M⊙). As a result, the fraction of low-z SNe in
high mass hosts is 69 per cent, compared to 59 per cent

in previous analysis (we only consider SNe included in
the cosmological sample presented in Sec. 5). The de-
tails of the host property measurements for DES-SN and
for the external low-z samples are presented in Sanchez

et al. (in prep. 2023) and Kelsey et al. (2023).
Spectroscopic redshifts for the low-z sample are in-

corporated following the revisions presented by Carr

et al. (2022). Low-z SN redshifts require additional cor-
rections for peculiar velocities (that are negligible for
high redshift DES SNe). The nominal peculiar veloci-
ties used for this analysis were determined by Peterson
et al. (2022) and are based on 2M++ density fields (Car-
rick et al. 2015) with global parameters found in Said
et al. (2020), combined with group velocities estimated

by Tully (2015). We consider uncertainties on peculiar
velocity estimates to be 250 km s−1 (Scolnic et al. 2018).

2.6. Non-Ia Classification

In our baseline approach, we classify the DES-SN
sample using the open-source algorithm SuperNNova

3 We use UV photometry from GALEX (Bianchi et al. 2017) and
SDSS (u band).
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(Möller & de Boissière 2020),4 a photometric SN clas-
sifier based on recurrent neural networks. SuperNNova
is trained to classify different types of transients using
photometric data only (i.e., fluxes and flux uncertainties
in different filters) and, optionally, redshift information.
It does not rely on feature extraction or light-curve fit-
ting and it uses machine learning techniques, e.g., recur-
rent neural networks. This is the first SN cosmological
analysis that exploits machine learning techniques for
classification.
The training of SuperNNova (and most classification

algorithms based on machine-learning) requires large
(> 100, 000) and representative samples of SN light-
curves (Möller & de Boissière 2020). For this reason,
the subset of spectroscopically confirmed DES SNe is not
suitable as a training sample, and simulations are used
instead. We train SuperNNova on realistic simulations
of DES-like light-curves, built following the approach de-
scribed in Sec. 4 and by Vincenzi et al. (2021b). Simula-

tions include SNe Ia, peculiar SNe Ia and core-collapse
SNe generated using the core-collapse template library
by Kessler et al. (2019b); Vincenzi et al. (2019). A de-
tailed analysis of training methods and performances of

SuperNNova in the context of the DES-SN5YR analy-
sis is presented by Vincenzi et al. (2021a); Möller et al.
(2022).

Using SuperNNova, we estimate for each SN event its
probability of being a SN Ia, PIa. These probabilities
are then incorporated in the cosmological analysis as

described in Sec. 3.3.

2.7. Milky Way Extinction corrections

Milky Way extinction corrections are applied to the
light-curve fitting model. In the analysis, we exclude
SNe with Milky Way reddening larger than 0.25. The

10 DES SN fields have been specifically chosen in low
Milky Way dust extinction regions (median reddening
E(B − V )MW < 0.02); however, significant differences
are observed from field to field (average E(B − V )MW

is < 0.01 in E,C fields, ∼ 0.02 in X fields and ∼ 0.03 in
S fields). SNe in the low-z SN samples have a median
Milky Way extinction of 0.04 (low redshift SN surveys
generally require large sky coverage, therefore higher
Milky Way dust extinction regions cannot be avoided).
For each SN, we estimate E(B−V )MW using the Milky

Way reddening maps presented by Schlafly et al. (2010a)
and use the reddening law by Fitzpatrick (1999), with
RV = 3.1.

3. COSMOLOGICAL ANALYSIS FRAMEWORK

4 https://github.com/supernnova/SuperNNova

In this section, we give an overview of the cosmological
framework used to go from observed light-curves to SN
distances and cosmological fitting. SN distances are ob-
tained after light-curve fitting (Sec. 3.1) using the BBC
framework (‘BEAMS with Bias Corrections’ Sec. 3.3,
3.4 and 3.5). In Table 2, we present a schematic overview
of the inputs and (intermediate and final) outputs of the
BBC framework.

3.1. Light-curve fitting

The first step to measure SN Ia distances is to per-
form light-curve fitting of the multi-band photometry
observed for each SN. This step is necessary to stan-
dardize SN brightnesses. In this analysis, we perform
light-curve fitting using the SALT3 model framework

(Kenworthy et al. 2021). The SALT3 model is defined by
five SN-dependent parameters: redshift z, day of peak
brightness (tpeak), stretch x1, color c and an amplitude

term mx or x0 (where mx = −2.5log10(x0) and it is ap-
proximately the B-band peak brightness of the SN). In
the SALT3 fitting process, the best fit values and un-

certainties of each parameter are determined in order to
measure SN distances (see Sec. 3.2). In our analysis, SN
redshifts are known with high accuracy (spectroscopic
redshifts included in our sample have an uncertainty of

∼ 10−4, see Sec. 2.5), therefore the parameter z is fixed
in the light-curve fitting.
The SALT3 model is based on the widely used SALT2

model (Guy et al. 2007); however, it provides improved
estimation of uncertainties as a function of phase and
color and an extended central passband wavelength
range 2800-8000Å (compared to a range of 2800-7000Å

in SALT2). The SALT3 model is trained on a com-
pilation of 1083 SNe with 1207 spectra presented by
Kenworthy et al. (2021). Taylor et al. (2023) showed
that there is negligible difference on SN cosmology re-
sults from the choice of SALT2 or SALT3 model, when
the models are trained on the same input data. In this

analysis, we train our own SALT3 model SALT3.DES5YR.
Following Taylor et al. (2023), we train the

SALT3.DES5YRmodel using the sample from (Kenworthy
et al. 2021), based on the calibration values presented by
Brout et al. (2022b). We choose to remove any observer-
frame U-band training data from the training set, as cal-
ibration of the near UV ground-based data is challeng-
ing (the atmospheric extinction is larger and variable
from site to site and with airmass, the filter’s charac-
terization historically poorer, and the cross-calibration
approach presented by Brout et al. (2022b) is not appli-

https://github.com/supernnova/SuperNNova
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cable). This affects 97 SNe in the training sample, from
CfA and miscellaneous low-z samples.5

Given the difficulty of training SN Ia in the UV where
SN flux is low and good quality SN data are limited,
we avoid the far UV and use passbands whose central
wavelength (λb) satisfies 3500 Å< (λb)/(1+z) < 8000 Å.
The lack of good rest-frame UV band modeling is an
important limitation for our analysis because the DES-
SN survey aims to probe the high redshift SNe (where
observer-frame optical is rest-frame UV).

3.2. Measuring SN Ia distances

SN Ia distance moduli, µobs, are defined as (e.g., Tripp
1998; Astier et al. 2006)

µobs = mx + αx1 − βc+ γGhost −M−∆µbias, (1)

where mx, x1 and c are the SALT3 light-curve parame-

ters discussed in Sec. 3.1. The global nuisance parame-
ters α and β set the amplitude of the stretch-luminosity
and color-luminosity corrections, and M is the absolute

magnitude of a SN Ia with x1 = 0 and c = 0. The fourth
term of the equation, γGhost, encapsulates any residual
dependency between SN Ia luminosities and their host
galaxy properties. This dependency is modelled as a

step function, γGhost, defined as

γGhost =

+γ/2 if P > Pstep,

−γ/2 otherwise,
(2)

where P is a SN host galaxy property, usually stellar
mass M⋆, γ is the size of the residual ‘step’ and Pstep

is the threshold at which the step is measured, usually
fixed to 1010M⊙ for stellar mass.
Many cosmological analyses have shown that SNe Ia

observed in high mass galaxies (M∗ > 1010 M⊙) are ap-
proximately 0.07 mag brighter than SNe in lower mass
galaxies after color and light curve stretch corrections

(Sullivan et al. 2010a; Lampeitl et al. 2010; Smith et al.
2020b; Kelsey et al. 2021). Recently, Brout & Scolnic
(2021) and Kelsey et al. (2023) highlighted that this so-
called ‘mass-step’ is highly color dependent: smaller (or
negligible) for blue SNe and significant (> 0.1 mag) for
redder SNe.
Brout & Scolnic (2021) (hereafter BS21), supported

by the work of Salim & Narayanan (2020), propose that

5 Our training sample still includes u-band data from the more re-
cent SDSS and CSP SN surveys, for which the filter transmissions
have been measured and well characterized. For the older CfA
U-band data, we do not have measured filter transmissions. This
has caused several calibration issues, as highlighted by various
cosmological analyses (Sullivan et al. 2011; Brout et al. 2022a).

Table 2. BBC input and outputs chart.

BBC Variants

Inputs S3 fit parameters (∗), σS3fit, PIa,
biasCor simulations

Intermediate
outputs

µbias (Eq. 7),
PBEAMS(Ia) (Eq. 6),
Mζ (Eq. 5), σfloor (Eq. 9)

Outputs
(for cosmology)

µobs, σµ,unbin (Eq. 8 and 10),
α, β, γ, σgray

(∗) SALT3 fitted parameters mx, x1, c.

dust is the underlying cause of the SN mass-step and
show how different RV ’s in high and low mass host
galaxies could explain the observed brightness step.

In addition, Kelsey et al. (2023) analyzed the DES-SN
sample and measured the SN brightness step between
SNe found in intrinsically blue and intrinsically red host

galaxies (a ‘color-step’, rather than a mass-step). Kelsey
et al. (2023) find a significant color-step even after cor-
rections for the dust-driven mass-step, and suggest that
either stellar mass is not the optimal proxy to describe

a dust-driven brightness step, or that other astrophys-
ical factors (e.g., SN progenitor physics) might play an
important role in explaining the dependence of SN Ia lu-

minosities on their host galaxies. For this reason, in our
analysis we implement Eq. 2 either assuming P = M⋆,
Pstep = 1010M⊙ (the mass-step, γM⋆

) or P = (u − r),

Pstep = 1 (the color-step, γu−r) (see also Sec. 4.2.1).
The parameters α, β and γ are determined prior to,

and independently of, the cosmological parameters, us-
ing the approach presented by Marriner et al. (2011, see

Sec. 3.3). The term β is treated as the observed, effec-
tive β, i.e., we do not fit separately for an intrinsic β and
a ‘dust β’ (or RV ) parameter (see further discussion in
Sec. 3.4). We note that without a calibrated absolute
distance scale, MB is degenerate with the cosmologi-
cal parameter H0 and therefore is not addressed in this
work. Finally, corrections for biases resulting from se-

lection effects and analysis choices are applied in the
∆µbias term of Eq. 1. These selection effects are deter-
mined from accurate simulations of the survey and using
models of the residual scatter. We discuss the modeling
and implementation of bias corrections in Sec. 3.4.

3.3. The BEAMS approach

Photometric SN samples require the application of
photometric classification algorithms to determine the
SN types. We incorporate type Ia classification probabil-
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ities in the cosmological fits using the ‘Bayesian Estima-
tion Applied to Multiple Species’ framework (BEAMS,
presented by Kunz et al. 2007; Kunz et al. 2012; Newling
et al. 2012).
The BEAMS approach was developed to incorporate

SN probabilities and marginalise over contamination
from non-Ia SNe while performing a cosmological fit.
Kessler & Scolnic (2017) extended the BEAMS frame-
work to include modeling and correction of selection
effects, and to incorporate the Marriner et al. (2011)
method of measuring nuisance parameters independent
of cosmological parameters. This extended framework
is referred as ‘BEAMS with Bias corrections’ (BBC). In
the BEAMS approach, the analytical form of the like-
lihood includes two terms, one that models the SN Ia
population, LIa, and the other that models a popula-
tion of contaminants, LCC,

NSNe∏
i=1

(
Li
Ia + Li

CC

)
. (3)

The two terms of the likelihood, Li
Ia and Li

CC, are de-
fined as

Li
Ia = P i

Ia ×DIa(zi, µobs,i, µref)

Li
CC = (1− P i

Ia)×DCC(zi, µobs,i, µref).
(4)

The term DIa is defined as:

DIa = exp

(
−
(
µobs,i +Mζ − µref(zi)

)2
σ2
µ,i

)
, (5)

where µobs,i is defined in Eq. 1, µref(zi) is the distance
modulus of the i-th SN as predicted assuming a fixed

reference cosmology (e.g., ΩM = 0.3, w = −1), and Mζ

are offsets quantifying by how much observations deviate
from the reference cosmology. They absorb the cosmo-

logical information, enabling a cosmology-independent
fit of the SN nuisance parameters (as shown by Mar-
riner et al. 2011).6 The Mζ offsets are calculated for 20
redshift bins (ζ), equally spaced on a logarithmic scale,
and they effectively constitute a ‘binned’ version of the
SN Hubble diagram (zζ ,Mζ + µref(zζ)). However, we
emphasise that we only use this binning to determine
the nuisance parameters α, β; we do not use this binned
Hubble diagram to fit cosmology as it has been shown to
lead to an overestimate of systematic uncertainties (see
Brout et al. 2020). We follow instead the unbinned ap-
proach described and validated by Kessler et al. (2023).

6 The estimated SN distances are not dependent on the choice of
the reference cosmology (see Kessler et al. 2023).

The distance modulus uncertainties σµ,i are discussed in
Sec. 3.5.
Finally, DCC in Eq. 4 is the contaminants likelihood

term, and it models the non-Ia SN distance moduli dis-
tribution on the Hubble diagram. Core-collapse SNe are
not standardized by the SALT3 framework, therefore it
is not trivial to model DCC analytically. In our base-
line analysis, we empirically model the term DCC using
the core-collapse simulations described in Sec. 4 and test
alternative approaches in the systematics analysis.
The two likelihood terms in Eq. 4 can be used to es-

timate a ‘BEAMS probability’:

PBEAMS(Ia),i =
P i
IaD

i
Ia

P i
IaD

i
Ia + (1− P i

Ia)D
i
CC

, (6)

which effectively quantifies the likelihood of a SN of
belonging to the Ia population or the contaminants
population, given not only its classification probability

(P i
Ia), but also its inferred distance modulus and dis-

tance modulus uncertainty. A more detailed descrip-
tion of the BEAMS framework is given by Kunz et al.
(2012); Hlozek et al. (2012), the BBC ‘binned’ approach

is described by Kessler & Scolnic (2017); Vincenzi et al.
(2021a) and the BBC ‘unbinned’ approach used in this
analysis is presented by Kessler et al. (2023).

3.4. Bias corrections

All SN surveys are affected by selection effects in-
troduced by their flux-limited nature. These selection

effects can introduce systematic biases in cosmological
analyses of SN Ia samples, and thus SN Ia distances
are usually corrected for such expected biases (Eq. 1).

The corrections are generally estimated using large SN
Ia Monte Carlo simulations that accurately model the
survey detection efficiency and other potential selection

effects (Hamuy & Pinto 1999; Perrett et al. 2010; Be-
toule et al. 2014; Kessler et al. 2019a; Popovic et al.
2021b).
In our analysis, bias corrections (∆µbias) are estimated

using the BBC framework and large SN Ia simulations
that model the different surveys considered in the anal-
ysis. We follow the approach presented in Popovic et al.
(2021b) referred to as ‘BBC4D’. In BBC4D, the term
∆µbias is modelled as a function of the four observables
z, x1, c, logM⋆, and it is defined as:

∆µbias = mx+αtruex1−βtruec+γtrueGhost+Mtrue
B −µtrue,

(7)
where αtrue, γtrue, Mtrue

B and µtrue are the true simu-
lated values of nuisance parameters, intrinsic SN bright-
ness and distance modulus. The parameter βtrue tech-
nically is not defined when simulating SNe following the
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dust-based model by BS21, in comparison to the his-
torical approach of simulating a single β. In the BS21
model, a forward modeled distribution of intrinsic color-
luminosity relations, βint, and a distribution of dust RV

are combined. For this reason, in the calculation of
bias corrections and uncertainties, an effective β must
be assumed. While the choice of βtrue in bias correc-
tions has a negligible effect on the inferred cosmology
(see discussion in Sec. 7.3), we set to βtrue = 2.87. In
the Popovic et al. (2021a) forward modeling process dis-
cussed in Sec. 4.2, this value of β is determined to be
the effective observed β.
Using realistic simulations of SN samples, Popovic

et al. (2021b) tested the ability of the BBC4D approach
to estimate unbiased SN distances and recover the input
α, β, γ and SN intrinsic scatter σint.
Throughout the analysis, we will also refer to the

‘BBC0D’ approach, i.e. the approach of fixing ∆µbias =
0 and ignoring bias corrections. This approach is not

used for cosmology, but it is useful to estimate raw SN
distances, removing any assumption on SN Ia intrinsic
properties and removing the modeling of selection ef-
fects.

3.5. SN distance uncertainties and intrinsic scatter

Within BBC, distance modulus uncertainties σµ,i in
Eq. 5 are described as

σ2
µ,i = f(zi, ci,M∗,i)σ

2
S3fit,i + σ2

floor(zi, ci,M∗,i)

+ σ2
z,i + σ2

vpec,i + σ2
lens,i,

(8)

where σS3fit,i is computed from the SALT3 light-curve fit
parameters,7 σvpec,i and σz,i are uncertainties associated
with estimates of peculiar velocities and spectroscopic

redshifts respectively, and σlens,i are uncertainties asso-
ciated with weak lensing effects due to the large scale
structure the SN photons are traveling through. The

terms f(zi, ci,M∗,i) and σfloor(zi, ci,M∗,i) are survey-
specific scaling and additive factors that are estimated
from the same simulations used for bias corrections to
ensure that the reduced χ2 in each cell of a {zi, ci,M∗,i}
grid is close to unity. The scaling term is introduced
to account for Malmquist bias that suppresses fainter
SNe. This bias results in naively computed uncertain-

ties that are overestimated, and thus f < 1 by construc-
tion. Conversely, the additive term accounts for any
additional scatter beyond the naively computed σS3fit.

7 The term σS3fit,i is defined as

σS3fit,i =(σmx )
2 + (ασx1 )

2 + (βσc)
2

+ 2αCmx,x1 − 2βCmx,c + 2− αβCx1,c.

It is the sum in quadrature of a gray term and a term
that depends on redshift, color and host mass:

σ2
floor(zi, ci,M∗,i) = σ2

scat(zi, ci,M∗,i) + σ2
gray. (9)

The two terms f(...) and σscat(...) are computed from
large simulations (also used to estimate bias correc-
tions). If f < 1, we set σfloor = 0 to avoid negative co-
variances; otherwise f = 1 and the σfloor term is added.
The term σgrey is global (not survey specific), it is fitted
within BBC and it enforces the reduced χ2 of the BBC
fit to be equal to one. This term is expected to be zero
if the scatter model used in the simulations is accurate.
This novel approach of modeling intrinsic scatter has
been first introduced by Brout et al. (2022a).
In the previous DES-SN3YR analysis, we used only

the scaling term, f , as described in Kessler & Scolnic
(2017). With the introduction of the Brout & Scolnic

(2021) intrinsic scatter model, however, we found that
f can take on values much larger than unity, leading to
pathologically large distance uncertainties. The σfloor al-
ternative avoids overly large uncertainties. When tested

on simulations, both methods provide unbiased cosmo-
logical results.
Although σµ,i are used in the BBC fit, they are not

suitable for a cosmology fit with an unbinned Hubble di-
agram containing photometrically classified events. Fol-
lowing Kessler et al. (2023), an unbinned Hubble dia-

gram requires redefining the distance uncertainties,

σµ,i,final = σµ,i × Sζ/
√

PBEAMS(Ia),i, (10)

where PBEAMS(Ia),i is the BEAMS probability (see Eq. 6
and Kessler et al. 2023) and Sζ is a scale such that the
weighted average uncertainty in each BBC-fitted red-

shift bin ζ is equal to the BBC-fitted offset uncertainty,
σMζ

. The average Sζ value is 1.01. Kessler et al. (2023)
used this prescription on 50 data-sized DES-SN5YR

samples, and showed that the w-bias is consistent with
zero at a level below 0.01 (including a CMB-like prior).
Finally, the SN distance uncertainties calculated as

described in Eq. 8 are renormalized for photometric SN
samples. The renormalization is applied to all SNe and
it is necessary to ensure that (i) likely SN contami-
nants have inflated distance uncertainties and are down-
weighted in the cosmological fit and (ii) uncertainties on
the ∆µζ offsets estimated with BBC for each redshift bin
are equal to the weighted average of the distance uncer-
tainties of the SNe in the bin. The formalism related to
the renormalization of the SN distance uncertainties is
described in detail in Kessler et al. (2023).

3.6. Covariance matrix and cosmological parameter
estimation
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The output of BBC is a set of SN distances (as well as
their uncertainties) corrected for biases from selection
effects and contamination. These SN distances are esti-
mated for the nominal analysis and for a set of analysis
variants, implemented to quantify systematic uncertain-
ties (see Sec. 6) and to build the uncertainty covariance
matrix.
The NSNe × NSNe uncertainty covariance matrix, C

is defined as the sum of a (diagonal) statistical term
(Cstat), and a systematic term (Csyst). Following Con-
ley et al. (2011) and Brout et al. (2019a, section 3.8.2),
we compute the systematic covariance matrix, Cij

syst, de-
fined as

Cij
syst =

Nsyst∑
S=1

(
∆µi

obs,S

) (
∆µj

obs,S

)
W 2

S , (11)

where, ∆µIa,S are the differences in SN distances after
changing the systematic parameter S, WS is the scale
of the systematic S, and the indices i and j are iterated
over the NSNe in the analysis (i, j = 1, ..., NSNe).

SN distances and the uncertainty covariance matrix C
are used in the final cosmological fit, and the χ2 of the
SN likelihood is defined as

χ2 = ∆µT · C−1 ·∆µ, (12)

where ∆µ is the NSNe-dimensional vector {µobs,i −
µtheory,i(ΩM , w)}i=1,..,NSNe

.

4. SIMULATIONS AND DATA COMPARISON

4.1. Overview of the simulations

In this section, we present the set of simulations used

in our analysis. These simulations are generated (i)
to predict the distance biases affecting our SN sam-
ples (DES-SN and external low-redshift samples), (ii)
to train photometric classification algorithms, and (iii)

to model the core-collapse likelihood in the BBC fit (see
Eq. 4). We compare our simulated DES-SN5YR samples
with the observed DES-SN5YR sample. The selection
criteria used to compile both the observed and simu-
lated DES-SN5YR sample will be discussed in detail in
Sec. 5.1.

Simulations are generated and analysed using the
SuperNova ANAlysis software (SNANA, Kessler et al.
2009),8 integrated in the pippin pipeline framework
(Hinton & Brout 2020).9

Simulations are built upon the work by Kessler et al.
(2019a) and Vincenzi et al. (2021b). Kessler et al.

8 https://github.com/RickKessler/SNANA
9 https://github.com/dessn/Pippin

(2019a) describes in detail the modeling and simulation
of the DES SN photometry and associated uncertainties,
DES cadence and observing strategy, and DES detection
efficiency and trigger logic to define candidates. Vin-
cenzi et al. (2021b) focuses on the modeling of contam-
ination from non-Ia SNe, simulations of SN host galax-
ies and characterization of selection effects introduced
by the requirement of a spectroscopic redshift from SN
host galaxies.
An SNANA simulation can generate realistic transient

light curves from various spectrophotometric models of
transients. In the DES SN simulations, we include SNe
Ia (Sec. 4.2) and various classes of SN contaminants
(Sec. 4.3).

4.2. Simulation of SNe Ia

SNe Ia are simulated using the SALT3 framework.
The SALT3 parameters (redshift, day of peak B-band

brightness, stretch and color) are simulated as following.
Redshifts are generated using SN Ia volumetric rates
from Frohmaier et al. (2019) and simulated tpeak are

uniformly distributed between August 2013 and March
2018. The distribution of x1 and the dependency of x1

with host galaxy properties is empirically determined
using the method presented by Popovic et al. (2021b).

While the SALT3 light curve fitting includes 4 SN-
related parameters per event, the simulation includes
additional parameters to describe intrinsic scatter and

the populations for stretch and color. We assume that
SN Ia intrinsic scatter, color distribution and color-
luminosity correlations are well described by the for-

malism presented by BS21, but with updated param-
eters following Popovic et al. (2021a). In the formal-
ism introduced by BS21, the distribution of SN colors
is modelled as the sum of an intrinsic color Gaussian

component (described by mean cint and standard devia-
tion σcint) and a reddening tail due to dust (described as
an exponentially decreasing function with the exponent
scaled by τE). SN luminosity color corrections are mod-
elled as βintcint + RV E(B − V )dust. Assuming that the
average RV values in high and low-mass galaxies differ

by approximately 1.25 reproduces the mass-step across
different SN colors.
The distributions of intrinsic color cint, intrinsic βint,

RV and E(B − V )dust in high and low mass galaxies
are determined using the ‘Dust2Dust’ fitting code pre-
sented by Popovic et al. (2021a). For different com-
binations of color/dust parameters, ‘Dust2Dust’ gener-
ates synthetic SNANA SN simulations and fits them
with BBC. The best fit color/dust parameters are deter-
mined by iteratively comparing the SNANA simulated
Hubble diagrams and the observed Hubble diagram (see

https://github.com/RickKessler/SNANA
https://github.com/dessn/Pippin
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Figure 3. Comparison between observed and simulated SN and host galaxy properties. We present the comparison both for
our baseline simulation (where dust and SN-host correlations are modelled as a function of host galaxy stellar mass, P21(M⋆))
and for an alternative simulation where dust and SN-host correlations are modelled as a function of host galaxy restframe u− r
color (P21(u − r), see Section 4). We present results for SNe in DES-SN Shallow fields (upper panels) and Deep fields (lower
panels) separately.
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Figure 4. Comparison between observed and simulated cor-
relations between SN stretch (x1), and host galaxy proper-
ties (stellar mass on the left, and u−r restframe color on the
right). We present results for SNe in DES-SN Shallow (up-
per panels) and Deep (lower panels) separately. Data (cir-
cle markers) are compared to our baseline simulation (mod-
eling SN-host correlations using host galaxy stellar mass,
P21(M⋆), solid lines) and to an alternative simulation where
SN-host correlations are modelled using host galaxy rest-
frame u− r color (P21(u− r), dashed line, see Section 4).

Fig. 3). ‘Dust2Dust’ in particular uses the simulated
and observed Hubble residuals calculated without ap-
plying bias corrections (i.e. the so-called ‘BBC0D’ ap-
proach) as bias corrections are estimated making strong

assumptions on SN colour/dust distribution. In Fig. 5,
we present the comparison for our ‘Nominal’ (also re-
ferred to ‘P21(M⋆)’) simulation, built using the BS21

formalism but with the ‘Dust2Dust’ best fit parameters,
which are summarized in Table 3 and Fig. 19. In our
baseline dust-modeling approach, we do not include a

mass-step or color step (we set γ = 0 in Eq. 2), how-
ever in Fig. 5 we notice a difference in the residuals for
c < 0 SNe that is not captured by simulations (but it is

captured by fitting for γ, see Sec. 5.2).

4.2.1. SN Ia and host galaxy colour

Following the findings of Kelsey et al. (2023) and anal-
ogous studies (e.g. Briday et al. 2022; Wiseman et al.
2023), we develop an alternative set of SN Ia simulations
that use host galaxy rest-frame u− r colour (instead of
host galaxy stellar mass) as the galaxy proxy to model
SN-host correlations.
First, we adapt the method presented by Popovic et al.

(2021b) to reproduce the (steeper) correlation between
x1 and host u− r color (see Fig. 4). Second, we run the
‘Dust2Dust’ fitting code splitting SNe by host galaxy
u − r rest-frame color instead of host stellar mass and
model dust parameters for intrinsically red and intrin-
sically blue galaxies (‘P21(u − r)’ simulation, see Table

3). For this model, we do not simulate any additional
‘color-step’ (see Eq. 2). In Sec. 6.2.1, we discuss how the
two simulations are implemented in the analysis.

4.3. Simulation of SN contaminants
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Figure 5. Average Hubble residuals (left) and RMS of the
Hubble residuals (right) of the DES-SN sample as a func-
tion of SALT3 color c (residuals are measured without ap-
plying any bias correction, i.e., in the ‘BBC0D’ approach).
The sample is split between high and low host mass galaxies
(upper panels) and between intrinsically redder (rest-frame
u − r > 1) and intrinsically bluer (rest-frame u − r < 1)
galaxies (lower panels). Data are presented with upper point-
ing and down pointing triangles for high and low mass sub-
samples respectively. Simulations are presented with solid
and dashed lines for high-mass/red and low-mass/blue sub-
samples respectively. The models used to generate simula-
tions are described in Sec. 6.2.1. Equivalent plots for Low-z
in shown in Fig. 18.

In our simulations, we include four classes of SN
contaminants: two types of peculiar SN Ia (SN Iax
and 91bg-like SNe) and two types of core-collapse SNe
(stripped-envelope and hydrogen-rich SNe). SN Iax and
91bg are simulated using the templates and assumptions
presented by Kessler et al. (2019b), with the revisions
presented by Vincenzi et al. (2021b). Core collapse SNe

are generated using templates by Vincenzi et al. (2019),
using the rates by Strolger et al. (2015) and Shivvers

Table 3. Dust parameters used to model the SNe Ia popula-
tion and estimate systematic uncertainties. We present here three
sets of dust parmeters: ‘P21(M⋆) ’ (best fit parameters found us-
ing the algorithms by P21-dust and splitting the SN sample on
stellar mass), ‘BS20 ’ (using the original fudged dust parameters
presented in the BS21 paper), ‘P21(u − r) ’ (best fit parameters
found using the algorithms by P21-dust and splitting the SN sam-
ple on u− r rest-frame color).

Parameter P21(M⋆) BS21 (†) P21(u− r)

cint −0.07 −0.084 −0.07

σcint 0.053 0.042 0.035

βint 2.07 1.98 1.86

σβint 0.22 0.35 0.21

RV highM/red ∗ hosts 1.66 1.25 1.5

σRV highM/red hosts 0.95 1.3 1.0

RV lowM/blue hosts 3.25 2.75 3.05

σRV lowM/blue hosts 0.93 1.3 1.0

DES τE highM/red hosts 0.15 0.15 0.13

DES τE lowM/blue hosts 0.12 0.12 0.10

Low-z τE highM/red hosts 0.11 0.19 0.13

Low-z τE lowM/blue hosts 0.14 0.10 0.10

† Original BS21 dust parameters. BS21 did not use the dust
parameter optimizisation code by Popovic et al. (2021a);
∗ ‘highM’ refers to high Mass galaxies (> 1010M⊙), ‘lowM’ refers
to low Mass galaxies (< 1010M⊙), ‘red’ refers to intrinsically red
galaxies (u-r >1) and ‘blue’ refers to intrinsically blue galaxies
(u-r <1).

et al. (2017) and luminosity functions in Li et al. (2011)
(with revisions by Vincenzi et al. 2021b). A detailed

description of the core-collapse simulations used for the
DES analysis is presented by Vincenzi et al. (2021b).

4.4. Simulation of host galaxies and modeling survey
selection effects

We simulate host galaxies from the galaxy catalog pre-
sented by Qu et al. (2023). This catalog includes all
galaxies detected in the coadded images of the DES-
SN fields. For each galaxy, photometric redshifts (when
spectroscopic redshifts are not available) are measured
using the Self-Organizing Map (SOM) algorithm de-

scribed in Qu et al. (2023), and galaxy properties are
estimated from griz DES photometry using the same
galaxy SED fitting code used for the DES-SN hosts (Sul-
livan et al. 2010b). SNe Ia are assigned to galaxies fol-
lowing the SN rates presented by Wiseman et al. (2021).
For peculiar SNe Ia and core-collapse SNe, we follow the
same approach presented by Vincenzi et al. (2021b).

4.5. Simulations of the low redshift samples
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To simulate external low-z SN samples, we use the
same inputs and modeling assumptions presented by
Scolnic et al. (2018); Jones et al. (2017, 2019), with mi-
nor adjustments mainly related to the modeling of host
galaxy properties, as host galaxy properties have been
remeasured for this analysis (see Sec. 2.5).
Intrinsic color distributions and dust properties for the

low-z SN samples are the same as for the DES-SN sam-
ple (the dust fitting code by Popovic et al. (2021a) is
simultaneously run on the DES and low-z samples com-
bined), and only the τE dust parameters are differenti-
ated between high and low-z samples (see Table 3).

5. THE HUBBLE DIAGRAM

In Fig. 6, we present the Hubble diagram of the DES-
SN5YR analysis. This includes 1635 SNe from DES and
194 SNe from external low-z samples. The selection cuts

applied are summarized in Table 4 and discussed below.

5.1. Sample selection

First, we consider only DES SNe with a host galaxy

spectroscopic redshift. We do not include DES SNe for
which the host galaxy was not detected and the redshift
information could only be inferred from the SN spec-

trum (the sample selection function of this sample is
different, see Vincenzi et al. 2021b, for more details).
For this reason, the DES SN sample presented in this
analysis does not include all the DES SNe Ia presented

in the DES-SN3YR analysis (in this analysis, spectro-
scopically followed-up DES SNe were selected, regard-
less of host spectroscopic redshift information, see Brout

et al. 2019b; Abbott et al. 2019). To ensure good conver-
gence of the SALT3 fit, we apply several cuts based on
the quality of the light-curve. We select DES SNe with

two bands that each have at least one detection with
SNR> 5. In line with previous SN cosmological analy-
ses, we require at least one observation before phase +5
days after B-band peak (we do not require observations
before light-curve peak). In Appendix B, we discuss how
the size of our sample and the final cosmological results
change when requiring at least one detection before SN
peak brightness.
We also apply SALT3-based selection cuts in both

stretch and color (−3 < x1 < +3 and −0.3 < c < +0.3)
and σx1 < 1 and σtpeak

< 2 days. These cuts are com-
monly applied in SN analyses to select ‘normal’ SNe Ia;
they also significantly reduce contamination from pecu-
liar SNe Ia and core-collapse SNe (Vincenzi et al. 2021b)

(see Table 4).
In addition, applying bias corrections (as described in

Sec. 3.4) constitute a sample selection cut in itself. In
BBC, for a small fraction of SNe it is not possible to

robustly determine bias corrections because the simula-
tions of SN Ia used to calculate bias corrections do not
have enough events in some regions of the SALT3 pa-
rameter space. As discussed in Vincenzi et al. (2021b),
this ‘valid bias correction’ requirement implicitly re-
duces contamination because SN contaminants generally
populate regions of the SALT3 parameter space that are
atypical for SNe Ia. Moreover, applying Chauvenet’s
criterion, we iteratively apply a 4σ cut on the Hubble
diagram residuals.
Finally, in order to build the unbinned systematics co-

variance matrix (see Sec. 3.6), we require each analysis
variant to have the same set of events as the nominal
model. This results in an additional 3.6 percent loss of
SNe. In total, there are 1635 DES SNe in the Cosmo-
logical Sample (see Table 4) for which 1499 (91%) are
classified as likely Type Ia (PIa > 0.5). When combin-

ing with the external low-z samples, the total number
of SNe on our Hubble diagram is 1829. This sample is
smaller than the photometric DES SN sample presented

by Möller et al. (2022), as it is built applying more strin-
gent selection criteria.
In Fig. 6, we present the weighted mean of Hubble

residuals as a function of redshift and do not observe
any significant residual trend in our data. In Fig. 7,
we present the weighted mean of bias corrections µbias

(see Eq. 7) as a function of redshift. These corrections

become increasingly significant (∼ 0.1 mag) at higher
redshifts (redshift 0.5 for the SNe in the shallow DES SN
fields, 0.8 for the deep DES SN fields), where selection

effects have a more significant effect. Bias corrections
have also strong dependency on SN color and SN stretch.

5.2. Nuisance parameters

In our baseline analysis, we fit for the nuisance pa-

rameters α, β, γ and σgray, and we present the fitted
values in Table 5. We do not fix γ to zero because we
want to test for any residual brightness step that is not
explained by our dust model, and might be related to
intrinsic SN astrophysics.
When combining the DES sample with the external

low-z samples, we find α = 0.161±0.001, β = 3.12±0.03.

After accounting for dust law variation in the reported
distances and uncertainties, we find γ = 0.038 ± 0.007
(> 5σ residual mass step) and a residual intrinsic scat-
ter, σgray, of 0.04. From the DES sample alone, we
find consistent β (β = 3.14 ± 0.03), slightly higher
α (α = 0.170 ± 0.004) and still significant mass-step
(γ = 0.046 ± 0.009), with a residual intrinsic scatter of
0.04. We also compare nuisance parameters estimated
from the DES-SN combined with the different low-z
samples. We find that most nuisance parameters are
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Table 4. # SN After Iteratively Applied Cuts

DES-SN

Requirement Low-z # all PIa > 0.5 (1) Total

Spec-z available, SALT3 fit converged and z > 0.025 247 3621 2200 [60%] 3868

‘Normal SNIa’ (|x1| < 3 & |c| < 0.3) 238 2449 2052 [83%] 2687

‘Well constrained’ (σx1 <1, σtpeak < 2) 238 1917 1639 [85%] 2155

Fit probability (fitprob> 0.001) 221 1835 1627 [88%] 2056

Detected host galaxy 211 1806 1602 [88%] 2017

Spec-z from the host galaxy emission lines (not SN spectrum) (2) 211 1765 1563 [88%] 1976

Chauvenets criterion 209 1757 1557 [88%] 1966

Valid bias correction 204 1694 1541 [90%] 1898

Sub-sample of common CIDs across all systematic variants (3) 194 1635 1499 [91%] 1829

Cosmological Sample 194 1635 1499 [91%] 1829

(1) Probabilities are from SNN classifier trained on V19. In parenthesis, we report the percentage of likely SN Ia for each given cut.
(2) We exclude SNe for which a host was not detected and/or redshift information is from SN spectroscopic data, not from host galaxy
emission lines.
(3) In order to build the systematic covariance matrix, we require to have the same SNe across all systematic variants.
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Figure 6. Hubble diagram (upper panel) and Hubble residuals (lower panel) combining the DES sample (blue) and external
low-z SN samples (orange, see Section 2.2). For each SN event in the DES, we present classification probabilities, PIa, estimated
using the SuperNNova algorithm (see Section 2.6). Distance uncertainties are calculated using Eq. 8 and do not include the
renormalization term included in Eq. 10.
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Table 5. Nuisance parameters and cosmological fit when combining DES with different
low-z external samples and when using DES alone

Sample NSNe α β γ σgray RMS ∗

DES-SN + low-z 1829 0.161(1) 3.12(3) 0.038(7) 0.04 0.168

DES-SN only 1678 0.170(4) 3.14(3) 0.046(9) 0.04 0.177

DES-SN + Foundation 1796 0.166(3) 3.13(0) 0.042(8) 0.04 0.173

DES-SN + CfA/CSP 1760 0.167(3) 3.12(4) 0.043(9) 0.04 0.175

Foundation+ CfA/CSP only 204 0.137(8) 2.90(10) 0.019(19) 0.06 0.118

*RMS is measured applying a cut of PIa > 0.5 on the DES SN sample.
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survey, corrections for selection effects start increasing at
different redshifts.

consistent between the different sample combinations
considered. The most significant discrepancy is in the

fitted α for low-z samples alone (we find a significantly
lower α compared to the value found when including
the DES-SN sample). We discuss these discrepancies in

Sec. 7.1.3.

5.3. Hubble residuals

In Fig. 6 and Fig. 8, we present Hubble residuals of

DES-SNe and low-z SNe as a function of redshift and
other relevant SN and host parameters. These are the
residuals estimated after applying the BBC4D approach

described in Sec. 3.4.
In Fig. 6 and Fig. 8, we do not observe any significant

residual trend in our data. In general, we highlight that

the BBC4D approach (with the additional grey resid-
ual step γ) fully corrects the color trends highlighted in
Fig. 5. Hubble residuals as a function of host stellar
mass and host restframe u− r color present discontinu-

ities at 1010M⊙ and restframe u−r color ∼ 0.75 respec-
tively, which might suggest that our modeling of discon-
tinuous dust properties in high/low mass host galaxies
might be too simplistic.

6. SYSTEMATIC UNCERTAINTIES

In this section, we describe the various sources of sys-
tematic uncertainties considered in the analysis. These
are also summarized in Table 6.

6.1. Calibration and light-curve modeling

In this section, we discuss all the sources of system-
atics uncertainties related to the calibration of the DES
SN Ia fluxes and of the samples of SNe Ia that are used

in the training of the SALT3 light-curve model.
The photometric systems of DES, Foundation and

the other low-z SN samples are cross-calibrated us-
ing the large and uniform sky coverage of the public

Pan-STARRS stellar photometry catalog (Brout et al.
2022b). In this cross-calibration approach, the filter
zero point and mean wavelength in all systems are fit-
ted simultaneously in order to produce a calibration
uncertainty covariance matrix10 that can be used in
cosmological-model constraints. The calibration uncer-
tainty covariance matrix is used to randomly draw ten
mock realizations of zero-point calibration offsets and ef-
fective mean wavelength shifts. These correlated shifts
are applied to re-calibrate the SALT3 training sample
and produce ten perturbations of the SALT3 model.
Following this approach, calibration uncertainties and
light-curve modeling uncertainties are propagated si-
multaneously to the light curve fitting (and not decou-
pled as in most previous SN cosmological analyses). The
calibration uncertainty covariance matrix implemented
in our analysis is presented by Brout et al. (2022b) and
the relative set of SALT3 surfaces is presented by Taylor
et al. (2023).
In addition, we consider uncertainties associated to

the fundamental flux calibration of the HST CALSPEC
standards. These uncertainties are estimated to be of
5 mmag/7000 Å (Bohlin et al. 2014).

6.2. SN Ia properties and astrophysics

In this section, we discuss sources of systematics un-

certainties related to the astrophysics of SN Ia and their
host galaxies. Assumptions on SN Ia intrinsic proper-
ties, their correlations with host galaxy properties, and

their evolution with redshift primarily affect the bias
corrections.

6.2.1. Intrinsic scatter model

As discussed in Sec. 4.2, SNe Ia intrinsic scatter
is modelled using dust-based formalism introduced by
BS21. For our nominal analysis, we use the best-fit dust
parameters determined using the MCMC fitting code
‘Dust2Dust’ by P21-dust and splitting SNe by their host
galaxy stellar mass (see values summarized in Table 3).
In addition to the baseline approach (also referred to
as ‘P21(M⋆)’), we consider the following variations of
dust-based intrinsic scatter models:

• We randomly draw three sets of dust parameters
from the MCMC chains produced by ‘Dust2Dust’.
The three realizations are presented in Fig. 5. We
refer to these models as ‘P21 population 1’, ‘P21

population 2’and ‘P21 population 3’;

10 https://github.com/PantheonPlusSH0ES/DataRelease/tree/
main/Pantheon+ Data/2 CALIBRATION/
FRAGILISTIC COVARIANCE.npz

https://github.com/PantheonPlusSH0ES/DataRelease/tree/main/Pantheon+_Data/2_CALIBRATION/FRAGILISTIC_COVARIANCE.npz
https://github.com/PantheonPlusSH0ES/DataRelease/tree/main/Pantheon+_Data/2_CALIBRATION/FRAGILISTIC_COVARIANCE.npz
https://github.com/PantheonPlusSH0ES/DataRelease/tree/main/Pantheon+_Data/2_CALIBRATION/FRAGILISTIC_COVARIANCE.npz
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Figure 8. Hubble residuals from the DES sample (top row) and external low-z SN samples (bottom row) as a function of (from
left to right) SALT3 stretch x1, SALT3 color c, host galaxy stellar mass and host galaxy rest-frame u− r color. Note that the
residuals shown include bias corrections and the ‘mass step correction’ following Eq. 1.

• We use the dust parameters originally presented
in BS21 (see Table 3);

• The ‘Dust2Dust’ best fits when splitting SNe by
host galaxy u − r rest-frame color instead of host

stellar mass. We refer to this model as ‘P21(u−r)’.
For this model, we measure the color-step γu−r

(see Sec. 3.2).

In Fig. 5, we show how the different models listed
above reproduce the observed correlations between Hub-

ble residuals and SN color, both for SNe in high and low
mass galaxies and for SNe in red and blue galaxies.
Historically, most SN cosmological analyses have in-

cluded the two following intrinsic scatter models:

• The model presented by Guy et al. (2010a) (gener-
ally referred as ‘G10’), according to which the SN

luminosity dispersion is mostly (70%) wavelength-
independent and 25% chromatic.

• The model presented by Chotard et al. (2011) (re-
ferred as ‘C11’) according to which the SN lumi-
nosity dispersion is mostly chromatic dependent

(70%).

We do not include these models in our analysis as they
are highly disfavoured by both publicly released (Brout
et al. 2022a) and the DES-SN5YR data in this work (see
discussion in Sec. 7.1.1).

6.2.2. Modeling of residual intrinsic scatter and distance
uncertainties

In Eq. 8 and Eq. 9, we present how uncertainties and

residual intrinsic scatter floor (σgray) are modelled in

our analysis. The scaling and additive terms in Eq. 8
and Eq. 9 are used to deflate and inflate SN distance
uncertainties so that the reduced χ2 of the cosmologi-

cal fitting is close to unity across different regions of the
redshift/color/host stellar mass parameter space. The
additive term encapsulates any unaccounted for SN in-

trinsic scatter.
We test the alternative approach of fitting the unex-

plained intrinsic scatter as a constant floor and using the
scaling term only to inflate/deflate uncertainties when

necessary. The two approaches should be fundamentally
identical (and, in fact, when testing the two methods on
25 simulations, we recover the input cosmology in both

cases). However, the approach used in our nominal anal-
ysis allows us to directly test whether our simulations re-
produce SN Ia intrinsic scatter by testing whether σgray

is 0.

6.2.3. Modeling host galaxies and SN-host galaxy
correlations

In our nominal analysis, we model correlations be-

tween SN stretch x1 and SN host stellar mass M⋆ follow-
ing the empirical approach presented by Popovic et al.
(2021b). However, we incorporate in our systematic er-
ror budget an alternative ‘galaxy-driven’ approach that
models x1 − M⋆ correlations starting from our current
knowledge of the underlying astrophysics causing this
correlation.
The galaxy-driven model used in this analysis is pre-

sented by Wiseman et al. (2022, hereafter W22). This
model is based on the SN rates and SN delay time dis-

tributions presented by Wiseman et al. (2021).
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Table 6. Sources of Uncertainty

Baseline Sizea Systematic Label

Calibration and Light-curve Modeling (Section 6.1)

SALT3 surfaces & ZP 1/10 10 covariance realizations ‘SALT3+Calibration’

HST Calspec 2020 Update 1 5 mmag/7000Å ‘HST Calspec’

SN Ia properties and astrophysics (Section 6.2)

Dust-based model Popovic et al. (2021a) (‘P21(M⋆)’) 1/3 3 realizations from MCMC dust
model fitting code

‘P21 dust pop 1/2/3’

1 Original BS21 dust parameters ‘BS21’

1 Splitting on u− r ‘P21(u− r)’

Empirical modeling of x1-M⋆ correlations 1 Modeling SN age following Wise-
man et al. (2022)

‘Model SN age’

No α evolution 1 α(z) = α0 + α1 × z ‘α Evolution’

No β evolution 1 β(z) = β0 + β1 × z ‘β Evolution’

No γ evolution 1 γ(z) = γ0 + γ1 × z ‘γ Evolution’

Mass step location at 1010M⊙ 1 1010.3M⊙ ‘Mass Location’

σint modeling with scaling+additive scatter terms (eq. 9) 1 Scaling term only ‘σint modeling’

Milky Way extinction (Section 6.3)

MW scaling Schlafly & Finkbeiner (2011) 1 5% scaling ‘MW scaling’

MW color law RV =3.1 and F99 1/3 RV =3.0 and CCM ‘MW color law’

Host and survey modeling (Section 6.4)

SN host catalog by Qu et al. (2023) 1 SN host catalog using DES-SVA
galaxy catalog

‘DES SV catalog’

Efficiency ϵspecz presented by V21 1 Shift of ±0.2 mag in the efficiency
curves

‘Shift in host spec eff’

Contamination and photometric classifiers (Section 6.5)

Classification using SuperNNova 1 SCONE, SNIRF

Classifier training sample simulated using V19 templates 1 J17 templates, DES CC templates
(‘SuperNNova training’)

Core-collapse SN prior using V19 simulation 1 Polynomial fit as in Hlozek et al.
(2012)

‘CC SN prior’

Redshift (Section 6.6)

Peculiar velocities using 2M++ 1 2M++(Line-of-sight integration) or
2MRS

‘Pec Velocities’

No redshift shift 1/6 ∆z = 4× 10−5 ‘Redshift shift’

aWeighting adopted for each source of systematic uncertainty when building the systematic covariance matrix (see also Eq. 11). In
Sec. 6, we provide an explanation for the weights that are different from 1.

The model uses galaxy evolution models to generate
mock catalogs of galaxies and their properties, e.g., stel-
lar population age, stellar mass, star formation rate and
observed optical photometry. For each galaxy, the distri-
bution of SN progenitor ages is determined by convolv-

ing the SN delay time distribution by Wiseman et al.
(2021) with the galaxies’ star-formation histories and
stellar populations.

Given a galaxy and its associated SN age estimate, the
stretch parameter x1 is assigned following the prescrip-
tion presented by Nicolas et al. (2021) (old and young
SN progenitors are associated to two separate distribu-
tions determined from external nearby SN sample and

represented in Fig. 9). In this galaxy-driven approach,
x1 −M⋆ correlations are the result of a physically moti-
vated modeling of correlations between SN age and SN
host galaxy mass.
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In Fig. 9, we present the distribution of SN stretch and
SN host galaxy properties simulated using this galaxy-
driven approach and compare it to the observed proper-
ties for both DES-SN and external low-z samples. We
find good agreement between simulated and measured
SN stretch and SN host stellar mass distributions, with
the exception of low-mass galaxies. However, we find
that the simulations built using this alternative model
significantly underestimate the number of intrinsically
red host galaxies (host rest-frame u-r > 1). This is likely
to be caused by an oversimplified approach to modeling
galaxy quenching in the initial galaxy catalog. More-
over, correlations between x1 and host properties ob-
served in the data are steeper than what is reproduced
by this alternative simulation, and this suggests that
a revision of the modeling proposed by Nicolas et al.
(2021) is required.
Despite the discrepancies between observations and

simulations, we include this model in the systematic er-

ror budget as it provides an astrophysically-motivated
method to model SN-host galaxy correlations.
Finally, we include as an additional systematic uncer-

tainty shifting the splitting point to measure the mass

step from 1010M⊙ to 1010.3M⊙, since the typical uncer-
tainty on our stellar mass estimates is 0.3 dex.

6.2.4. Standardization parameter evolution

Given the wide redshift range probed by the DES-SN

sample (see Fig. 2), we test for evolution of the standard-
ization parameters α, β and γ, as well as the inferred
σfloor (see Eqs. 8 and 9). We define α(z) = α0 + α1 × z,

and similarly for β(z) and γ(z). We present and discuss
our results in Sec. 7.1.3.

6.3. Milky Way extinction corrections

Inaccurate Milky Way extinction corrections can in-
troduce biases in cosmology, especially because Milky
Way extinction affects low and high redshift SNe differ-
ently (the average Milky Way reddening in low redshift
SNe is twice the average Milky Way reddening in DES
SNe, see Sec. 2.7).

For our systematic analysis, we test the effect of a
global 5% scaling on Milky Way corrections, following
the reanalysis and uncertainties presented by Schlafly
& Finkbeiner (2011). As discussed in Schlafly et al.
(2010b), the Milky Way reddening law favoured by
the data is a Fitzpatrick (1999) reddening law with
RV = 3.1. However, we conservatively include a sys-
tematic uncertainty in the Milky Way reddening law and
analyze the data using a Cardelli et al. (1989) color law.
The Cardelli et al. (1989) color law has the second low-
est χ2 when compared to the extinction derived from
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Figure 9. Comparison between data and alternative simu-
lations generated using the galaxy-driven model by Wiseman
et al. (2022). We compare distributions of (from top to bot-
tom) SN x1, SN host stellar mass, SN host u − r restframe
color, and correlations between x1 and host M⋆ and host
u − r restframe color. We present our results for DES-SN
(left) and low-z samples (right). We also present the under-
lying distributions of young and old progenitors from which
SN x1 values are inferred. A similar comparison using our
baseline simulations is presented in Fig. 3.
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star photometry (twice the χ2 associated to the Fitz-
patrick (1999) reddening law, see Schlafly et al. 2010b,
section 5.1.3) therefore we weight the Milky Way color
law systematic by a factor of 1/3 (W 2

S = 1/3, see eq. 11).

6.4. Host association and survey modeling

In this section, we discuss systematic uncertainties
related to the modeling of host association and host-
related survey selection effects.

6.4.1. Host galaxy mismatch

Host galaxy mis-association can occur for various rea-
sons: the true host and/or the true host outskirts are too
faint to be detected and a brighter, apparently closer (in
terms of DLR) galaxy is identified as the likely host in-
stead; or the SN is far from the true host, and fails our
DLR cut. In the first case, deeper images can reduce

host mis-association.
After upgrading from the shallower DES Science Ver-

ification (SV) images to the deeper co-added images,
Wiseman et al. (2020) finds that less than 1.1 per cent

of the DES SN candidates change host galaxies, thus
providing a preliminary estimate of the fraction of host
mis-associations expected in the DES sample.

Qu et al. (2023) provide a more robust assessment of
host mis-association in DES-SN and estimated the per-
centage of misidentified hosts to be 1.7 per cent. This
prediction is based on high quality simulations, built

from a galaxy catalog that accurately models galaxy
light profiles. These simulations reproduce the observed
distributions of SN-galaxy separations and DLRs for

DES-SN (Fig. 5 and 6 of Qu et al. 2023).
When comparing the two deep SN catalogs by Wise-

man et al. (2020) and Qu et al. (2023), we find that 7

of 1635 DES SNe (0.5 per cent) have uncertain assigned
hosts (i.e., they are assigned to different hosts depending
on the catalog used). Therefore, we assume this source
of systematic is negligible for our analysis.

6.4.2. Galaxy catalog for SN host simulations

In our analysis, we test two different galaxy catalogs
for simulations of DES-SN hosts. The first is gener-
ated using deep DES coadded images and is described
in Sec. 4.4 and presented in detail by Qu et al. (2023).
The second is compiled using galaxies detected in the

(shallower) DES SV images and is presented by Smith
et al. (2020b). The DES SV catalog includes photo-z’s
from template fitting techniques and galaxy properties
measured using the galaxy SED fitting code by Sullivan
et al. (2006b). This second galaxy catalog is inferior in
depth compared to our nominal catalog; however, we
decide to include it in our systematic error budget be-

cause it has been used in many previous DES-SN studies
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Figure 10. Comparison between observed and simulated
distributions of SN redshifts (zoomed at higher redshifts, left
panel), host galaxy mass (center panel) and host galaxy r-
band magnitudes (the Kron-like MAG_AUTO magnitudes mea-
sured with SExtractor (Bertin & Arnouts 1996) from the
r-band deep coadds, right panel) for our nominal simulation
and two variants: using the galaxy catalog from DES Science
Verification images (instead of catalog by Qu et al. 2023) and
using a shifted spectroscopic redshift efficiency instead of the
nominal efficiency by Vincenzi et al. (2021b).

(Smith et al. 2020b; Kessler et al. 2019a; Vincenzi et al.
2021b,a; Wiseman et al. 2021). A comparison between
simulations generated using the two galaxy catalogs is

presented in Fig. 10.

6.4.3. OzDES selection effects

One of the most important selection effects in the DES
SN sample is the requirement of a spectroscopic redshift
from the SN host galaxy. The spectroscopic redshift
efficiency for the DES SN sample is presented by Vin-
cenzi et al. (2021b) and modelled as a function of the
host galaxies’ total brightness (MAG AUTO in Source Ex-
tractor). We apply a shift of 0.2 mag to the efficiency
curves presented by Vincenzi et al. (2021b) and include
this in the systematic error budget. A comparison be-
tween simulations generated using the alternative spec-
troscopic redshift efficiency is presented in Fig. 10.

6.5. Contamination and photometric classification

To correct for core-collapse SN contamination, we test
different photometric classification algorithms and dif-
ferent training methods. We include the different clas-
sification variants in the systematic error budget.
For the baseline analysis, we use the algorithm Su-

perNNova by Möller & de Boissière (2020). Vincenzi
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84 (5.1%) non-Ia
according to all

classifiers

3 SNe Ia
(0.2%)

11 SNe Ia
(0.7%)

47 SNe Ia
(2.9%)

54 SNe Ia
(3.3%)

61 SNe Ia
(3.7%)

41 SNe Ia
(2.5%)

1387 SNe Ia
(84.9%)

SuperNNova
(trained on V19)
1498 classified Ia

SCONE
(trained on V19)
1486 classified Ia

SNIRF
(trained on V19)
1543 classified Ia

71 (4.3%) non-Ia
according to all

classifiers

3 SNe Ia
(0.2%)

23 SNe Ia
(1.4%)

15 SNe Ia
(0.9%)

7 SNe Ia
(0.4%)

13 SNe Ia
(0.8%)

42 SNe Ia
(2.6%)

1467 SNe Ia
(89.8%)

SuperNNova
(trained on V19)
1498 classified Ia

SuperNNova
(trained on J17)
1547 classified Ia

SuperNNova
(trained on DESCC)

1529 classified Ia

Figure 11. Likely DES SNe Ia (i.e., PIa > 0.5) accord-
ing to the different classification models used in our analy-
sis. Upper diagram : we compare three classification tools:
SuperNNova (red), SCONE (dark teal) and the ‘Supernova
Identification with Random Forest’ (SNIRF, teal). Lower
diagram: we compare three different SuperNNova models:
one trained using core-collapse templates by Vincenzi et al.
(2019) (V19, red), one trained using core-collapse templates
by Jones et al. (2017) (J17, blue) and one trained using core-
collapse templates from DES data (DES-CC, orange).

et al. (2021a) present a detailed analysis of the training
and performances of SuperNNova in the context of the
DES SN cosmological analysis. For our baseline anal-
ysis, we train SuperNNova using the simulations pre-
sented in Sec. 4. For our systematic analysis, we train

SuperNNova using two alternative and independent li-
braries of core-collapse SN templates: the one presented
by Jones et al. (2017, hereafter J17) and the one built
from core-collapse SNe observed in DES (Hounsell et al.
in prep., hereafter DES-CC).
As an alternative to SuperNNova we consider two ad-

ditional classification algorithms: the classifier SCONE
by Qu et al. (2021) and the ‘Supernova Identification
with Random Forest’ (SNIRF) algorithm.11 We train

11 https://github.com/evevkovacs/ML-SN-Classifier

SCONE and SNIRF on the same set of simulations used
to train the SuperNNova baseline model. We compare
results from the different classifiers in Fig. 11 and discuss
the results in Sec. 7.1.5.
Finally, we test different approaches of modeling the

contamination likelihood term in eq. 4. While the base-
line approach uses simulations based on Vincenzi et al.
(2021b), we test the approach of using a polynomial fit-
ting as in Hlozek et al. (2012) (see Vincenzi et al. 2021a,
for a detailed comparison of the two methods).

6.6. Redshift and Peculiar velocity corrections

All SN redshifts are corrected for peculiar velocities
and converted to CMB frame. For the nominal analysis,
we measure peculiar velocity corrections from 2M++.
For systematics, we test two alternative approaches for
the correction of peculiar velocities, both discussed in

Peterson et al. (2022). The first approach uses the
2M++ corrections integrating over the line-of-sight re-
lation between distance and the measured redshift. The

second approach is to use the 2MRS (Lilow & Nusser
2021) peculiar velocity map. The two approaches both
have WS = 0.7 (see Eq. 11) so that their sum in quadra-
ture results in an effective contribution of 1. The details

of how peculiar velocity uncertainties are incorporated
into the systematic covariance matrix Csyst are presented
in Brout et al. (2022a, , sec. 3.1.3).

Additionally, we account for potential biases due to a
local void or other systematic redshift error and apply
a systematic redshift shift of 4× 10−5 (Calcino & Davis
2017).

7. DISCUSSION

7.1. Systematic uncertainty budget on w

The sources of systematic uncertainties described in

Sec. 6 are used to construct the covariance matrix C
(Sec. 3.6). The unbinned Hubble diagram and C are
used in a cosmological fit to determine constraints on
cosmological parameters w and ΩM using a flat wCDM
model. Here we present our sensitivity to cosmological
parameters; the final unblinded results are presented in

the DES key paper (DES Collaboration 2024). The total
uncertainty budget on w is presented in Fig. 12 and
Table 7.
In Fig. 12, we compare statistical-only and systematic-

only uncertainties on w. We present uncertainties both
when measuring cosmological constraints from SN only
(DES and low-z external SNe), and when combining
SNe with CMB (see inset in Fig. 12). The contribu-
tion from systematic uncertainties only is evaluated as√

σ2
w,tot − σ2

w,stat, where σw,tot is the total uncertainty

https://github.com/evevkovacs/ML-SN-Classifier
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Table 7. Size of Systematic uncertainty (SN-only, no CMB
prior). A detailed description of the different sources of system-
atics and the labelling conventions are presented in Sec. 6 and
Table 6.

Systematic σw,syst
∗ %σtot δw†

syst

Total Stat+Syst 0.152 100 −0.032

Total Statistical 0.132 87 0.000

Total Systematic (Cunbin) 0.076 50 −0.032

Calibration & LC model 0.057 15

SALT3+Calibration 0.052 34 −0.036

HST Calspec 0.006 4 0.002

SN Ia astrophysics 0.133 35

P21 dust pop 1 0.019 12 −0.010

P21 dust pop 2 0.024 16 0.003

P21 dust pop 3 0.020 13 −0.004

P21(u− r) 0.000 0 0.048

Dust model as in BS21 0.027 18 −0.006

Model SN age (Sec. 6.2.3) 0.000 0 0.048

Change αβ initial estimate 0.002 1 0.000

α Evolution 0.020 13 −0.008

β Evolution 0.000 0 −0.007

γ Evolution 0.011 7 −0.001

Mass step location 0.000 0 −0.002

σint modeling 0.013 8 −0.002

Milky Way extinction 0.034 9

MW 5% scaling 0.020 13 −0.011

MW colour law CCM 0.014 9 −0.003

Survey modeling 0.015 4

DES SV catalog 0.009 6 0.002

Shift ϵspecz 0.005 4 0.002

Contamination 0.028 7

Classifier SCONE 0.006 4 −0.000

Classifier SNIRF 0.013 9 −0.003

SuperNNova different training 0.006 4 −0.000

Core-collapse SN prior 0.003 2 −0.000

Redshift 0.037 10

Redshift shift 0.012 8 0.002

Peculiar velocities 0.025 16 −0.012

†Shift in w when including ONLY this systematic;

*The quadrature sum of systematic uncertainties is larger than
the total systematic uncertainty. Internal correlations in the
sample cause the effects of some systematics to partially cancel
out when considering the full covariance matrix.

σSN−only
w
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σSN−only
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(syst-only)
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σSN−only
w

(syst-only)
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σSN−only
w (Total): 0.152

Systematic w uncertainty budget

DES-SN5YR, no CMB prior
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SALT3+Calibration

P21 dust pop1

P21 dust pop2

P21 dust pop3

BS21

P21 (u− r)
Model SN age (W22)

Change αβ init guess

α Evolution

β Evolution

γ Evolution

Mass Location

σint modelling

MW scaling

MW color law

DES SV catalogue

Shift in host spec eff

SuperNNova training

CC SN prior

SCONE

SNIRF

Redshift shift

Pec Velocities

σSN+CMB
w
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σSN+CMB
w

(syst-only)

0.0

0.01

0.02

0.03

σSN+CMB
w

(stat)
0.032

σSN+CMB
w

(syst-only)
0.017

σSN+CMB
w (Total): 0.036

DES-SN5YR + CMB prior

Figure 12. Systematic error budget on w and comparison
with statistical uncertainty on w. We present results both
with and without including a CMB prior (left and right plots
respectively, note the different y-axis scale in the two plots).
The different sources of systematic uncertainty considered in
this analysis are presented in Table 6 and 7 and described in
detail in Section 6.

on w measured including the covariance matrix Csyst de-
scribed in Eq. 11.
For a FlatwCDM model considering SNe alone,

we find that statistical uncertainties on w domi-
nate at σwCDM

w,stat =0.132 which increases slightly to

σwCDM
w,stat+syst =0.152 when including both systematic and
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Table 8. BBC-fitted nuisance parameters, and cosmology-fitted χ2
S , Hubble residuals RMS and shift in best fit w for different

analysis variants. The χ2
S and RMS are measured after applying a cut of PIa > 0.5. In the χ2

S calculations (see eq. 13), residuals
are measured w.r.t. the best fit cosmology estimated from each analysis variant, and always using residual uncertainties from
the Nominal analysis. A detailed description of the different sources of systematics and the labelling conventions are presented
in Sec. 6 and Table 6.

BBC-fit Cosmology-fit (SN-only, no CMB prior)

Model α (c) β (c) γ (c) σgray ∆χ2
S
(d) RMS ∆wstat

(e)

DES-SN+low-z data

Nominal(a) 0.161(1) 3.12(3) 0.038(7) 0.04 - 0.168 -

BiasCor sim: P21 dust pop 1 0.162(0) 3.17(0) 0.043(7) 0.06 −1 0.168 −0.038

BiasCor sim: P21 dust pop 2 0.160(3) 3.06(3) 0.033(8) 0.04 +5 0.169 0.079

BiasCor sim: P21 dust pop 3 0.161(0) 3.09(0) 0.040(8) 0.05 +18 0.17 0.039

BiasCor sim: Original BS21 param. 0.161(4) 3.18(1) 0.026(8) 0.06 +9 0.169 −0.110

BiasCor sim: P21(u− r) (fit γu−r)
(b) 0.158(0) 3.11(0) 0.033(7) 0.06 +16 0.169 0.066

BiasCor sim: model SN age (W22) 0.148(3) 3.06(3) 0.017(8) 0.05 +1 0.168 0.113

Change αβ init estimate 0.171(3) 3.34(0) 0.037(8) 0.05 +0 0.168 0.002

α evolution 0.149(0) 3.12(0) 0.036(8) 0.04 −5 0.168 −0.007

β evolution 0.161(3) 2.99(0) 0.037(8) 0.04 +0 0.168 −0.009

γ evolution 0.161(0) 3.12(0) 0.046(14) 0.04 +0 0.168 −0.006

BiasCor sim: no x1-M⋆ correlations 0.152(2) 3.07(2) 0.019(8) 0.04 +6 0.167 0.006

BiasCor sim: G10 (no dust model) 0.157(6) 3.20(6) 0.055(9) 0.11 +102 0.172 −0.120

DES-SN+low-z simulations (average of 25 independent simulations) (f)

Nominal(a) 0.144(2) 2.83(4) 0.002(8) 0.00 - 0.160(4) -

BiasCor sim: P21 dust pop 1 0.146(3) 2.90(5) 0.006(7) 0.00 −1(4) 0.161(4) 0.008

BiasCor sim: P21 dust pop 2 0.143(2) 2.77(4) −0.002(8) 0.00 5(4) 0.161(4) 0.015

BiasCor sim: P21 dust pop 3 0.146(3) 2.80(4) 0.005(8) 0.00 0(8) 0.161(4) 0.113

BiasCor sim: Original BS21 param. 0.146(2) 2.89(5) −0.009(8) 0.00 1(5) 0.161(4) −0.042

BiasCor sim: P21(u− r) (fit γu−r)
(b) 0.141(3) 2.87(4) −0.020(8) 0.00 +35(11) 0.163(4) 0.051

BiasCor sim: model SN age (W22) 0.137(3) 2.79(4) −0.009(8) 0.00 19(12) 0.162(4) 0.110

Change αβ init estimate 0.154(2) 3.05(4) 0.002(7) 0.00 1(0) 0.160(4) 0.004

α evolution 0.148(6) 2.83(4) 0.002(8) 0.00 −1(2) 0.160(4) 0.006

β evolution 0.144(2) 2.88(7) 0.002(8) 0.00 −2(2) 0.160(4) 0.007

γ evolution 0.144(2) 2.83(4) −0.003(15) 0.00 −1(2) 0.160(4) 0.005

BiasCor sim: no x1-M⋆ correlations 0.135(3) 2.77(4) −0.011(7) 0.00(0) +7(6) 0.150(5) 0.083

BiasCor sim: G10 (no dust model) 0.148(4) 2.87(9) 0.030(8) 0.07(0) +26(10) 0.151(5) −0.069

(a)Nominal is P21(M⋆) and the step is measured splitting on host galaxy stellar mass (γM⋆).

(b)For the alternative model P21(u − r), the dust is modelled for blue/red galaxies and the step is defined and measured as a
‘color’ step, γu−r(i.e., difference in brightness between SNe find in blue/red galaxies).

(c)For data, reported uncertainties are the uncertainties from the BBC fit. For simulations, uncertainties are estimated as the
standard deviations from 25 simulations.

(d)This is the increase (or decrease) in χ2
S (see eq. 13) compared to nominal (i.e., P21(M⋆)).

(e) w-shift from different intrinsic scatter model in biasCor sim (Csyst is not used), and without CMB prior in cosmology fit.

(f) Reported uncertainties are estimated as the standard deviations from 25 simulations. The 25 simulations are all generated
using the Nominal simulation approach.
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Figure 13. Effects of different sources of systematic
uncertainties on SN distances. Upper panel: Systematic
uncertainties presented in Table 6, excluding systematics
related to contamination and classification. Lower panel:
Contamination-related systematics. We note that the range
of the y-axis is a fifth compared to the upper panel.

statistical uncertainties. When adding a CMB prior

to the cosmological fit, we find σwCDM
w,stat =0.032 and

σwCDM
w,stat+syst =0.036. Both with and without the prior

the statistical uncertainties dominate over the system-
atic ones. CMB measurements are highly complemen-
tary to SN measurements and have an orthogonal direc-
tion of degeneracy on the ΩM−w plane for a FlatwCDM
model. For this reason, combining SNe and CMB sig-
nificantly reduces uncertainties on w, and also reduces
the impact of systematics for those that primarily move
the SN contours along the direction of SN degeneracy.
To separately evaluate the contribution from each

source of systematic uncertainty, we evaluate the w-
uncertainty using Cstat+syst with a single systematic and
compare to the stat-only uncertainty. In Fig. 12, we

show each systematic uncertainty contribution with a
separate color/pattern.
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Figure 14. Shifts in w (∆w) for different intrinsic scatter
models and α, β, γ evolution (see Sec. 6.2.1). ∆w measured
from the data (hexagons) are compared to ∆w measured
from averaging 25 DES+Low-z simulations (triangles). For
simulations, each errorbar is the standard deviation of the
∆w from the 25 simulated samples. Shifts are measured
w.r.t. the nominal intrinsic scatter model., i.e. P21 measur-
ing the mass step at 1010M⊙ (first data point on the left).
The statistical uncertainty on w from the DES data is rep-
resented by the grey shaded area.

In Table 7, we summarize the size of systematic un-
certainties visually presented in Fig. 12 (in the table,

we only focus on results determined using SN only,
without a CMB prior) and additionally, we present the
observed shifts on best-fit w when including statisti-

cal+systematic covariance matrix compared to statis-
tical only.
For the purpose of interpreting Table 7, we make two

important caveats. First, the quadrature sum of all sys-
tematic uncertainties presented in Table 7 is larger than
the total systematic uncertainty on w. The difference is
due to internal correlations in the sample that cause the

effects of some systematics to partly cancel out when
considering the full covariance matrix.12 For the same
reason, the δw’s measured for each systematic separately
do not necessarily sum to the overall δw.
Second, the size of a single systematic, σw,syst, and

size of the related δw, are not necessarily correlated and
some systematics might have a small impact on σw,syst

but cause a large δw (i.e., model SN age using W22 or

12 For the purpose of Fig. 13, every systematic contribution is
rescaled so that their sum is the total systematic uncertainty,
0.076 (or 0.019 when including the CMB prior).
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using the P21(u − r) intrinsic scatter model), or vicev-
ersa (i.e., including γ evolution). This difference be-
tween σw,syst and δw can arise if a systematic results in
significantly less/more scatter in the Hubble residuals or
in a significantly better/worse maximum likelihood.
In order to understand why some sources of systemat-

ics have larger σw,syst and/or δw, it is useful to look at
changes in SN distances and fitting χ2 when running the
nominal analysis and the analysis run changing the sys-
tematic S. For a subsample of systematics, we present
differences in SN distances in Fig. 13, while in Table 8 we
report differences in fitting chi-squared, fitted nuisance
parameters and cosmological best fits. We compute the
fitting chi-squared for each systematic variant as

χ2
S =

Nlikely−Ia∑
i=1

(µi
obs,S − µbest−fit,S(zi))

2

σ2
µ,Nominal

, (13)

where µobs,S are SN distances determined when chang-
ing the systematic S, µbest−fit,S are the theoretical dis-
tances given the best fit cosmology when adopting sys-

tematic S in the analysis, and σµ,Nominal are the un-
certainties on µIa determined for the Nominal analysis.
As described in Sec. 3.5, SN distance uncertainties are
rescaled and inflated using the terms f(zi, ci,M⋆,i) and

σfloor(zi, ci,M⋆,i) (see eq. 8). These terms are estimated
from simulations and can vary from systematic to sys-
tematic. In the χ2

S calculations, we fix the distance un-

certainties σµ,Nominal for all systematics to ensure that
changes in χ2

S (∆χ2
S) are not driven by inflated/reduced

uncertainties, but by an effective change in the modeling

of Hubble residuals. The χ2
S are measured using ‘likely

SNe Ia’, i.e., SNe with a PIa > 0.5.
To estimate the significance the observed changes in

χ2
S and best-fit w, we generate a set of 25 simulations of

the DES and Low-z SN samples and propagate the ef-
fects of the same systematics considered for the data
(simulations are generated following on our Nominal
modeling approach, i.e., P21(M⋆)). We perform a full
analysis on each simulated data sample and in Table 8,
we report the mean ∆χ2

S and its standard deviation
(highlighted in bold), BBC-fitted nuisance parameters
and best fit w determined from the simulations. Stan-
dard deviations measured from the 25 independent real-
izations of our SN sample provide a robust estimate of

uncertainties on the observed shifts.
Our evaluations of ∆χ2

S (and relative uncertainties)
enable us to quantify which models or analysis variants

are favoured by the data: χ2
S > χ2

Nominal or ∆χ2
S > 0

suggest that the analysis variant introduced with the
systematic S provides a worse modeling of the Hubble
residuals, while ∆χ2

S < 0 suggests a better modeling of
Hubble residuals intrinsic scatter. The more a system-

atic is favoured by the data (i.e., more negative ∆χ2
S),

the larger its impact on the final error budget will be
(especially if it significantly changes the best-fit cosmol-
ogy). For these reasons, the results presented in Table 8
and Fig. 13 are useful to interpret the error budget pre-
sented in Table 7 and Fig. 12. In the next sections, we
discuss in detail each sub-group of systematic uncertain-
ties considered in the error budget.

7.1.1. Systematic: SN Ia intrinsic scatter

Uncertainties related to the modeling of SN intrinsic
scatter are the largest source of systematic uncertainties
in our analysis. The different intrinsic scatter models
included in our analysis are all equally favoured by the
data, i.e., have χ2

S comparable to the nominal analysis.
This is shown in Table 8; the three P21 realizations (P21
population 1, P21 population 2 and P21 population 3),
the BS21 model, the dust model implemented splitting
on u − r color (P21(u − r)) and the SN age model by

W22 all have ∆χ2
S between 0 and +15. These fluctua-

tions are expected considering the ∆χ2
S scatter over 25

simulations, see bottom section of Table 8). The only

systematic that is significantly favoured by the data is
α evolution (∆χ2

S = −7 ± 2). We discuss the effects of
nuisance parameter redshift evolution in Sec. 7.1.3. For

comparison, we present in Table 8 the nuisance param-
eters and ∆χ2

S for the intrinsic scatter model by Guy
et al. (2010b) and Kessler et al. (2013) (historically re-
ferred to as ‘G10’ model). This model is significantly

disfavoured by the data (∆χ2
S = 102) and therefore is

not included in our systematic error budget. We make a
similar test and reach the same conclusion when testing

the model by Chotard et al. (2011) (historically referred
to as ‘C11’ model)
While the different intrinsic scatter models considered

in Table 8 are almost equally favoured by the data, the
relative best-fit cosmologies can change. In Fig. 14, we
present the shifts in the best fit w determined for each
variant in Table 8. We present our results both for the
data and for the simulations. The size and direction of
the w-shifts observed in the data are well reproduced by
the simulations (which are all generated assuming our
nominal intrinsic scatter model i.e., P21(M⋆)).

7.1.2. Systematic: Residual mass/color steps

The most interesting result in Table 8 is related to
the recovered nuisance parameters. As already noted
in Sec. 5.2, the recovered mass step for the data is
γM⋆ ∼ 0.039 mag (5σ significance) across most anal-
ysis variants, and regardless of what SN sub-sample is
considered (DES-SN only or DES-SN + Low-z, see Ta-
ble 5). When fixing β = 3.14 and considering either only
blue SNe Ia (c < 0) or only reddened SNe Ia (c > 0),
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we find γM⋆
= 0.039 ± 0.012 and γM⋆

= 0.028 ± 0.014,
which shows no significant color dependence.
The mass step decreases when considering the BS21

model (γM⋆
= 0.026) and the modeling approach by

W22 (γM⋆
= 0.017). In the first case, BS21 assume the

intrinsic colour distribution to be bluer (cint = −0.084)
and dust to have longer tails (i.e., larger τE values) com-
pared to our nominal analysis model. In the second case,
the reduced mass step is likely a consequence of the fact
that the SN age modeling approach by W22 does not
reproduce x1 − M⋆ correlations well (see Fig. 9). In
the BBC approach, if the simulations used to determine
bias corrections underestimate x1−M⋆ correlations, the
mass step can be partially absorbed into the the bias cor-
rection term µbias (this has been discussed and demon-
strated by Smith et al. 2020b; Popovic et al. 2021b).
As a test, we generate a large simulation following the
same approach used for our Nominal simulations, but
removing x1 −M⋆ correlations. We use this alternative

simulation to bias-correct our SN sample and measure
the mass step. We recover a mass step of 0.019 mag,
half of the mass step found in the nominal analysis (see

Table 8).
The color-step measured for the P21(u − r) model is

also non negligible (γu−r = 0.033±0.007 mag, ∼ 5σ sig-
nificance) but slightly smaller than the mass-step, which

suggests that u − r colour is a better proxy to describe
SN-host correlations (even though P21(u − r) model is
not significantly favoured by the data).

In simulations, we recover a mass step consistent with
zero (average uncertainty on γM⋆

is less than 0.01) and
lower values of fitted β. While the zero mass step is ex-

pected (by construction, simulations have only a dust-
based mass step), it is interesting to note that the ‘ef-
fective’ β measured from the simulations and the data
is different. This is unexpected since simulations are

generated using a dust-based model specifically built to
reproduce the intrinsic (βint) and extrinsic (RV ) color-
luminosity corrections. The 4σ discrepancies in the β
and γ recovered in data and simulations suggest that ei-
ther (i) dust-parameter errors from ‘Dust2Dust’ fit are
larger than the statistical uncertainties because of our
incomplete understanding of SN Ia intrinsic properties

and correlations, or (ii) the mass step is not fully ex-
plained by dust.
Despite the discrepancies observed between data and

simulations and our likely still incomplete modeling of
SNe Ia intrinsic scatter, our overall modeling of bias
corrections is significantly improved over previous mod-
els (e.g., ‘G10’ from Kessler et al. 2013). The associated
systematics from our current discrepancies are discussed
in Sec. 7.3.

Table 9. Nuisance parameter evolution

α0 α1

DES-SN+low-z 0.146(6) 0.033(14)

DES-SN only 0.176(10) −0.013(20)

DES-SN+low-z (25 sims §) 0.147(5) 0.003(12)

β0 β1

DES-SN+low-z 3.05(0) 0.17(6)

DES-SN only 3.13(0) 0.04(6)

DES+low-z (25 sims §) 2.88(8) −0.03(14)

γ0 γ1

DES-SN+low-z 0.051(15) −0.033(34)

DES-SN only 0.068(24) −0.045(49)

DES+low-z (25 sims §) −0.006(12) 0.010(34)

§Reported uncertainties are estimated as the standard de-
viations from 25 simulations.

7.1.3. Systematic: Nuisance parameter evolution
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Figure 15. Values of α, β, γ and σgray for discrete redshift
bins using the DES-SN + Low-z samples. The Low-z sample
is divide into two redshift bins (0.025 < z < 0.04 and 0.04 <
z < 0.1, ∼ 80 SNe in each bin), while the DES-SN sample is
divided into equally spaced bins of ∆z = 0.1. The baseline
fit (assuming no redshift evolution of nuisance parameters)
is shown in black for each panel. Fitted α, β, γ evolution are
presented in Table 9.

When considering the combined DES and Low-z sam-
ples, we detect a significant (> 2σ) redshift evolution in
the α and β nuisance parameters. The best fit param-
eters for the redshift evolution of α, β and γ are sum-
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marized in Table 9. The fitted parameters suggest that
α and β increase with redshift (α < 0.15 and β < 3.05
at lower redshifts and α > 0.16 and β > 3.2 at higher
redshifts). The effects of redshift evolving α and β on
SN distances are presented in Fig. 13. For both α and
β evolution, there is no evidence of a net trend in the
binned SN distance differences and, as a result, the dif-
ferences between the best fit w with and without α and
β evolution is consistent with zero (see ‘α evolution’ and
‘β evolution’ in Table 8 and Fig. 14).
While we do not detect significant γ evolution in our

sample, we conservatively allow for the possibility of a
redshift evolution in γ and include this as a source of sys-
tematic uncertainty. The contribution to the systematic
error budget from nuisance parameter evolution (α, β
and γ) is presented in Fig. 12 and Table 7.
When measuring α, β and γ evolution on the 25

simulations of DES-SN+Low-z, we successfully recover
zero evolution for all nuisance parameters (see Table 9),

which indicates that evolution is not an artifact of our
analysis.
Finally, we note that evolution of α and β are negli-

gible when considering the DES-SN sample only. This

is particularly clear when looking at the values of α, β
and γ evaluated in discrete redshift bins, as shown in
Fig. 15. The parameters α, β and γ are consistent be-

tween redshift 0.2 and 1 (the redshift range covered by
the DES-SN sample) and present more significant dis-
crepancies at low redshift. This was also highlighted in

Sec. 5.2, where we presented the best-fit nuisance param-
eters for DES alone and low-z alone, and note significant
α discrepancies.
If the underlying cause of the observed evolution and

nuisance parameters discrepancies between DES and
low-z (Table 5) had an astrophysical origin (e.g., SN
progenitor physics), it would be challenging to explain

how this could produce such large fluctuations in nui-
sance parameters at z ∼ 0.1. A likely explanation of
the observed evolution is an incomplete understanding
of the properties and selection effects of the low-z SN
samples. The modeling of the low-z samples is chal-
lenging for two reasons. First, the selection functions of
the low-z SN samples are poorly understood. Second,
the small statistics in the low-z samples makes (i) dust
modeling more uncertain, and (ii) empirical modeling
of x1 −M⋆ or x1 − (u− r) correlations more difficult to

model (see Fig. 17 and Fig. 18).

7.1.4. Systematic: Photometry and Calibration

Historically, calibration uncertainties — especially be-
tween low and high redshift samples — have been the
largest source of systematic uncertainties in SN analy-

ses. In our analysis, systematic uncertainty associated
to calibration is smaller than systematic uncertainties
related to SN Ia intrinsic properties.
The reduced impact of calibration on our systematic

error budget is due to various factors:

• The FGCM method presented by Burke et al.
(2018) improve the accuracy of the DES internal
calibration to ∼ 5 mmag in griz bands;

• In our analysis, we combine samples from differ-
ent surveys, with different filter systems and cal-
ibrations. The work presented by Scolnic et al.
(2015) and extended by Brout et al. (2022b) sig-
nificantly improved cross-calibration between the
different SN surveys used in this work. In partic-
ular, it improved the calibration of older low-z SN
samples;

• Calibration affects our ability to train light-curve

fitting models like SALT3. For this analysis, we
train the SALT3 model on a larger and more ac-
curate training sample compared to the Betoule

et al. (2014) SALT2 model of previous SN cosmol-
ogy analyses, which makes our SALT3 model less
sensitive to calibration uncertainties. As shown
in Taylor et al. (2023), scatter between SALT3

surfaces considered for systematic uncertainties is
significantly reduced compared to previous SALT2
models;

• The approach introduced by Brout et al. (2022b)
to propagate calibration uncertainties to cosmol-
ogy has significantly reduced the impact of this

source of systematics. Following Brout et al.
(2022b), we propagate calibration uncertainties si-
multaneously on the SALT3 training and on the

SN light-curves, thus accounting for calibration
correlations for data used in both the training and
cosmology analysis. 13

7.1.5. Systematic: Non-Ia Contamination

One of the most remarkable results of our analysis is

that systematic uncertainties associated with contami-
nation are only 9 per cent of the total systematic error
budget and they bias SN distances by only a few mmag
(see Fig. 13, lower panel).
As discussed by Vincenzi et al. (2021a) and high-

lighted in Table 4, even before photometric classifiers are

13 This approach was implemented in Joint-Lightcurve-Analysis
(Betoule et al. 2014), but it was not applied in subsequent SN cos-
mological analyses due to the unavailability of the SALT2 train-
ing code.
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applied, contamination is reduced to 9 per cent. This
reduction is due to fact that the SALT3 fitting and the
BBC fitting serve as classifiers themselves:

1. The SALT3 model fitting (and associated qual-
ity cuts) already eliminate a significant fraction
of non-Ia SNe (from ∼ 40 per cent to ∼ 11 per
cent, see Table 4);

2. The requirement of a valid bias correction further
adds the constraint that the fitted SALT3 parame-
ters of each SN are representative of what is found
in the 3 dimensional parameter space populated by
large SN Ia simulations used for bias corrections;

3. Chauvenet’s criterion iteratively applied in BBC
provides a cosmological model independent outlier
rejection.

Classifiers contribute to further reduce the weight of
contaminants in the cosmological fit. When testing clas-
sifiers on simulations, algorithms like SuperNNova and

SCONE can achieve levels of purity and efficiency > 98%
(see results reported in Möller & de Boissière 2020;
Qu et al. 2021; Vincenzi et al. 2021a). In Fig. 11, we

compare classification of DES data using the different
algorithms tested in our analysis, and we note some dis-
crepancies. The three classification algorithms (SuperN-

Nova, SCONE and SNIRF, all trained on V19) have con-
sistent classification on 90.0 per cent of DES-SNe (84.9
per cent are classified as Ia by all three classifiers and 5.1
per cent are classified as non-Ia by all three classifiers),

while the three SuperNNova models trained on the V19,
J17 and DES-nonIa templates have consistent classifica-
tion for 94.2 per cent of SNe (89.8 per cent Ia and 4.3

per cent non-Ia). In particular, we note that the base-
line classifier SuperNNova (trained on V19) and SCONE
are the more ‘conservative’ classifiers (smaller number of
SNe are classified as SNe Ia).
When testing the classifiers on the sample of 207 spec-

troscopically classified SNe Ia from the DES-SN3YR
analysis (Abbott et al. 2019; Smith et al. 2020a) and on
the sample of 43 spectroscopically classified non-Ia from
the first three years of the DES survey (see DES-nonIa),
we find that SuperNNova trained on V19 templates have
the highest accuracy (correctly classifying as Ia 203 out
of 207 SNe Ia, and misidentify only 2 out of 43 non-Ia),
SuperNNova trained on J17 has the lowest purity (6 out
of 43 non-Ia are misclassified as SNe Ia) and SNIRF

has the lowest efficiency (192 out of 207 SNe classified
as Ia). These results confirm that our baseline classi-
fier (SuperNNova) provides excellent results not only on
simulations but also data.

In general, it is not surprising that classification ac-
curacy is lower on real data rather than on simulations,
as data often present defects and outliers that are not
fully modelled in simulations (for the DES data, these
artefacts are significantly reduced by SMP, and this con-
tributes to improve classification, see Sanchez et al. in
prep. 2023). Despite the differences between the clas-
sification algorithms used in our analysis and despite
the additional challenges that classification on real data
presents, we find that SN distances measured from us-
ing different classification algorithms vary by 10 mmag
at most (see Fig. 13) and differences in the estimated w
are not significant (see Table 10).
In order to further validate that contamination and

classification are consistent between simulations and
data, we consider an additional metric. The true num-
ber of contaminants in the DES data is unknown, how-

ever the BEAMS contaminants likelihoods,
∑Li

CC(see
eq. 4) provides an estimate of how many SNe are associ-
ated with the contaminants population. We determine

the sample contamination as the fraction of the con-
taminants total likelihood divided by the total sample
likelihood

∑
(log(Li

Ia + Li
CC)). This fraction provides a

measurement of the fraction of contaminants estimated
in the Hubble diagram during the BBC cosmological fit.
This quantity is also defined in Kessler et al. (2023) as
the sum of the ‘BEAMS probabilities’ (see equation 9 in

Kessler et al. 2023).
In Table 10, we present the contaminants likelihood

fractions estimated on data and simulations when im-

plementing different classifiers. For every classification
method, the contamination predicted in the simulations
is consistent with the contamination observed in data,

and it is ∼ 6 − 7 per cent. This is the first SN anal-
ysis that demonstrates such a close agreement between
contamination estimated in the data and in simulations.
The true percentage of contaminants to total likelihood

estimated from the simulations 5.3±0.4 and the simu-
lated value of w = −1 is fully recovered by our pipeline.

7.2. Validation of the BBC fitting approach and final
cosmological contours

In SN cosmological analyses, one of the most criti-
cal aspects is to model and correct for sample selection
biases. For the majority of cases, analytical modeling
of selection effects in SN experiments is an intractable
problem. For this reason, we have to rely on complex
simulations like the ones described in Sec. 4. An im-
portant limiting factor of using simulations is that they
require assumptions of the input cosmology (as it is com-
putationally prohibitive to generate a new simulation
for every step of the cosmological fit). For this rea-



29

Table 10. Fraction of contaminants likelihood to total likelihood.∑Li
CC/

∑Li
tot

∗ ∆w‡
stat

Classification systematic data 25 sims† data 25 sims†

Nominal (SuperNNova trained on Vincenzi et al. 2019) 0.065 0.066 ± 0.008 0.000 0.000 ± 0.024

SuperNNova trained on J17 (Jones et al. 2017) 0.074 0.067 ± 0.009 −0.005 0.016 ± 0.024

SuperNNova trained on DESCC (Hounsell et al. in prep. 2023) 0.069 0.066 ± 0.009 0.015 0.013 ± 0.024

SNIRF classifier 0.059 0.063 ± 0.009 0.029 0.037 ± 0.022

Replace sim core-collapse SN prior with fitted polynomial prior § 0.069 0.068 ± 0.011 0.002 0.003 ± 0.025

*∑Li
tot is the total likelihood,

∑
(Li

Ia +Li
CC) described in eq. 3. See Eq. 4 and 5 in Sec. 3.3 for the definition of the SN

Ia and contaminants likelihood terms.
†Mean and standard deviation of the fraction of contaminants to total likelihood measured over 25 simulations. The
true fraction of contaminants to total likelihood is 0.053±0.004 per cent.

‡Shifts in w when considering different classification methods (no systematic covariance matrix is used to measure these
shifts). w is constrained using SN only data (no additional CMB prior).

§See Hlozek et al. (2012).

son, it is important to (i) quantify the size of the bi-
ases on w when assuming the wrong input cosmology
in the bias correction simulations, and (ii) validate the
Bayesian cosmological contours determined from SN dis-

tances bias-corrected assuming a specific input cosmol-
ogy.
The first aspect has been discussed in section 6.1 in

Kessler & Scolnic (2017) and further tested by Camilleri
et al. (in prep. 2023). Kessler & Scolnic (2017) use
a set of simulated SN samples and demonstrate that
the effects on w of assuming the wrong input cosmology

in the bias correction simulations is small (one seventh
of the statistical uncertainties) when including a strong
ΩM prior.

Camilleri et al. (in prep. 2023) reproduce an analo-
gous test without including the ΩM prior and show that
the direction of the bias is always along the SN con-

tour degeneracy (hence the small biases when including
a ΩM prior, which is orthogonal to the SN contour de-
generacy).
The validation of the Bayesian cosmological contours

is addressed by Armstrong et al. (2023). Armstrong
et al. (2023) validate the Bayesian cosmological contours
produced using BBC Hubble diagram by generating 150
realizations of the DES-SN sample and making use of
approximate Neyman confidence intervals. This work
demonstrates that the size of the cosmological contours
produced with our pipeline and the Neyman confidence
intervals agree at the > 95% level.

7.3. Analysis variants and their impact on w

In this section, we present different analysis variants
and their impact on w. These analysis variants aim to

answer different questions: (a) Do our cosmological re-

sults vary significantly when considering different groups
of DES fields and measuring cosmology along different
directions in the sky? (b) Do our cosmological results

vary significantly when considering sub-samples of SNe
found in specific host environments? (c) Do our cosmo-
logical results vary significantly when considering dif-
ferent SALT3 wavelength ranges? (d) What is the im-

pact on cosmological results of incorrect implementation
of e.g., MW corrections? The analysis variants imple-
mented to answer (a) and (b) and (c) are not included

in our systematic error budget because they effectively
select only specific sub-sample of the data-set. The anal-
ysis variants implemented to answer (d) are also not in-

cluded in the main analysis because they are incorrect
implementations of the cosmological analysis.
The tested analysis variants and the associated w

shifts are shown in Table 11. We present not only the
shifts in w estimated from DES SNe (no external priors)
and but also the standard deviation of the w shifts mea-
sured from 25 simulations (for a robust estimation of the

significance of the measured w shifts). When consider-
ing different DES-SN sub-fields (a) or host-dependent
sub-samples (b), we do not see significant (> 2.5σ) de-
viation from the baseline w. When we incorrectly im-
plement the cosmological analysis (d), we note that not
including bias corrections (i.e., using the BBC0D ap-
proach), ignoring Milky Way extinction corrections or
modeling bias corrections for deep and shallow fields to-
gether would have potentially produced the most signif-
icant biases on w.

7.4. Systematic budget on w0wa Figure of Merit
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Table 11. Miscellaneous w-shifts (no CMB prior included)
when implementing analysis variants described in Sec. 7.3
and not included in the analysis error budget.

Analysis variant ∆wstat
∗ std(∆w)

[25 sims]

(a) Different sets of DES SN fields

DES-SN(C3)+Low-z -0.249 0.126

DES-SN(X3)+Low-z -0.196 0.180

DES-SN(X1,X2)+Low-z -0.008 0.207

DES-SN(C1,C2)+Low-z -0.535 0.239

DES-SN(S1,S2)+Low-z 0.023 0.218

DES-SN(E1,E2)+Low-z 0.016 0.219

DES-SN(Deep)+Low-z -0.166 0.098

DES-SN(Shallow)+Low-z -0.069 0.135

(b) Host prop sub-samples

Only SNe in M⋆ > 1010M⊙ -0.071 0.081

Only SNe in M⋆ < 1010M⊙ 0.138 0.213

Only SNe in u-r >1 hosts -0.000 0.041

Only SNe in u-r <1 hosts -0.220 0.149

(c) SALT3 wavelength coverage

SALT3 using 3500-7000Å† -0.027 0.024

SALT3 using 4000-8000Å† -0.105 0.128

(d) Incorrect implementation

No BBC ‡ -1.024 0.116

No BEAMS, only PIa > 0.5 cut § -0.033 0.034

No Milky Way Ext corrections 0.185 0.035

Biascor Deep/Shall together -0.136 0.040

Ignore SB anomaly in data -0.012 0.000

Force γ = 0 in BBC fit -0.113 0.007

† In the nominal analysis, the wavelength range used for the
SALT3 model is 3500-8000Å.

*Shift in w when implementing each analysis variance (no
CMB prior included). w is measured using SN only (DES
and low-z) and without including any systematic covari-
ance matrix (statistical uncertainties only).

‡No BEAMS and no bias-corrections.

§We apply a PIa-based cut and assume every SN is a type
Ia. We apply bias corrections but we do not implement the
full BEAMS approach and we do not incorporate proba-
bilities in the BEAMS framework.

The unbinned Hubble diagram and C can also be
used to determine constraints on cosmological param-
eters w0 and ΩM using a flat w0waCDM model. The
evaluation of present and forthcoming dark energy ex-
periments involves assessing their capacity to enhance
the Dark Energy Task Force Figure of Merit (DETF-
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Figure 16. Decrease in the DES-SN5YR Figure of Merit
(FoM) when including systematic uncertainties. Similarly to
the systematic error budget presented in Fig. 12, we highlight
the sources of systematic uncertainties that degrade the FoM
the most.

FoM, Albrecht et al., 2006), which is determined as the
reciprocal of the region enclosed within the w0wa con-

tours. In this section, we present the w0wa constraining
power of DES-SN5YR, before and after including sys-
tematic uncertainties. In Fig. 16, we present the w0wa

FoM with and without including systematic uncertain-
ties (similar to the systematic σw budget presented in
Fig. 12). We estimate the FoM including DES-SN5YR
and CMB-like prior by Planck Collaboration (2020). We
find wstat

0 = 0.098 and wstat
a = 0.49 and wstat+syst

0 = 0.12
and wstat+syst

a = 0.59. This corresponds to a ∼35 per
cent decrease in FoM (from 83.5 when including statis-

tical uncertainties only to 54 when including statistical
and systematic uncertainties) and we find that calibra-
tion, light-curve modeling and modeling of dust proper-
ties are the dominating sources of systematics.

8. CONCLUSIONS AND FUTURE

We present the DES-SN5YR cosmological analysis us-
ing the 5-year photometric SN sample for the DES-SN
program. This new independent sample constitutes the
largest and deepest SN sample from a single telescope



31

to date and provides constraints on the dark energy EoS
competitive with the best existing compilation of all
high-z SNe Ia previously discovered (Brout et al. 2022a).
Additional DES-SN cosmological analyses using photo-z
information only (Chen et al. in prep.) and using addi-
tional DES SN spectroscopic data are currently ongoing.
In the following paragraphs, we summarise the main

conclusions of the analysis presented in this paper, and
outline key areas for future research, particularly in light
of upcoming SN Ia surveys such as LSST and Roman.
Historically, the limiting systematic for SN analyses

has been photometric calibration. We are entering a
new phase in SN cosmology where intrinsic SN proper-
ties are becoming the dominating source of systematic
(a third of the systematic w-uncertainty budget, and
half of the w0wa FoM budget). For the future of SN
cosmology, it will be crucial to significantly improve our
understanding of SN intrinsic scatter and correlations
with hosts. Alternatively, our way of doing SN Ia cos-

mology will likely be revised, for example, by selecting
only specific sub-samples of SNe Ia (e.g., only blue SNe
Ia in low mass or blue environments as suggested by
Kelsey et al. 2023).

For the modeling of SN Ia intrinsic scatter, the dust-
driven model proposed by BS21 is the most successful
currently available, however it requires further improve-

ments. This is highlighted by the several discrepancies
observed between the simulations and data. In our anal-
ysis, we build simulations using ‘Dust2Dust’ (P21-dust),

a software designed to infer the dust properties of any
SN Ia sample, operating under the assumption that the
BS21 model accurately describes SN dust and its corre-
lations with SN host properties. When comparing simu-

lations and data, we find interesting discrepancies in the
inferred nuisance parameters (especially β and γ). In
particular, we find a non-negligible residual mass step,

which might indicate the need of including additional
astrophysics in the BS21 model.
Moreover, contamination has been one of the most

important challenges for the DES-SN5YR analysis com-
pared to the DES-SN3YR analysis. We demonstrated
that contamination from non-Ia SNe is not the dominat-
ing source of systematic uncertainties for photometric
SN samples. Our analysis is also the first SN cosmolog-
ical analysis to present simulations that can accurately
model and reproduce the amount of core-collapse con-

tamination observed in the data (Table 10). Our results
mark a transition point for future SN experiments such
as LSST, for which spectroscopic classification of SNe
will be extremely limited (see Frohmaier et al. in prep.).
Finally, in the next era of high-redshift SN exper-

iments (e.g., Rubin Observatory’s Legacy Survey of

Space and Time, and Nancy Grace Roman Space Tele-
scope), it will be essential to obtain low-z SN samples
with well defined selection functions and accurate cali-
bration. Experiments like the Young Supernova Exper-
iment (Jones et al. 2021; Aleo et al. 2023) and Zwicky
Transient Factory (Dhawan et al. 2022, Smith et al. in
prep.) and DEBASS (PI: Dillon Brout) will provide the
next generation of low-z samples and significantly im-
prove cosmological constraints from SNe Ia.
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Figure 17. Same as Fig. 3 but for the low redshift samples included in this analysis.

APPENDIX

A. MODELLING THE EXTERNAL LOW-Z SAMPLES AND DES-SN SPECTROSCOPIC SAMPLE

In this Appendix, we focus on modelling of low-z external samples (CfA, CSP and Foundation SN surveys). In Fig. 17,

we present a comparison between observed and simulated distributions of various SN and host galaxy properties (e.g.,
SN stretch, SN colour, SN host stellar masses) and correlations between x1 and host stellar mass and host rest-frame
u− r colour.

Dust properties and correlations between x1 and host properties are modelled following the same techniques used for
the DES SN sample. In Fig. 18, we present a comparison between observed and simulated Hubble residuals measured
using the BBC0D approach (same as Fig. 5, but for external low-z samples). The dust models implemented in our

analysis generally reproduce the observed trends, however the low statistics makes it challenging to infer SN dust
properties in these samples.
Moreover, we note that the selection functions of the low-z SN samples are not as well understood as for the DES

SN sample. Early SN surveys such as CfA were designed as targeted surveys, specifically focused on the discovery and

follow-up of the brightest SNe Ia in high mass nearby galaxies. Therefore, the selection function in the low-z samples
can only be inferred fudging simulations to match the data.

B. SELECTING ONLY SNE DETECTED BEFORE SN PEAK BRIGHTNESS

The lack of pre-peak SN observations can significantly impact the accuracy of SN stretch and SN color estimates, and
therefore estimates of SN distances. Conversely, selecting only SNe detected before peak brightness can significantly
reduce the size of a SN sample, especially for the oldest low-z targeted surveys. For the DES SN sample we have
that only 1599 out of 1635 (2%) have the first detection after −2 days from peak brightness. In the low-z sample, the
fraction increases to 80 over 194 (41%).
In order to test the effects of this cut, we run our cosmological analysis selecting only SNe with pre-peak data

(at least a detection before −2 days from peak brightness) and compare the results with the nominal analysis (that
only requires at least a detection before +2 days from peak brightness). We find that the fitted nuisance parameters

are consistent within uncertainties (see Table 12) and that the cosmological parameter w shifts by 0.013. To test the
significance of this w-shift, we perform the same test on a set of 25 DES-SN5YR simulated samples. We find an average
shift in w of 0.013, with standard deviation of 0.051. Therefore, the shift observed in the data is not significant.

C. AFFILIATIONS

1 Department of Physics, Duke University Durham,
NC 27708, USA
2 Einstein Fellow

3 Department of Astronomy, Boston University, 725
Commonwealth Ave., Boston, MA 02215, USA
4 Department of Physics, Boston University, 590 Com-
monwealth Ave., Boston, MA 02215, USA



34

−0.2 0.0 0.2
c

−0.1

0.0

0.1

0.2

R
es

id
u

al
s

fr
om

b
es

t
fi

t
w

C
D

M
(B

B
C

0D
) CfA/CSP + Foundation

(Host M? > and < 1010M�)

−0.2 0.0 0.2
c

0.0

0.1

0.2

0.3

0.4

R
M

S
of

th
e

re
si

d
u

al
s

CfA/CSP + Foundation
(Host M? > and < 1010M�)

P21 dust pop1

P21 dust pop2

P21 dust pop3

P21(u− r)
BS21

Nominal - P21(M?)

Data (M? > 1010M�)

Data (M? < 1010M�)

−0.2 0.0 0.2
c

−0.1

0.0

0.1

0.2

R
es

id
u

al
s

fr
om

b
es

t
fi

t
w

C
D

M

CfA/CSP + Foundation
(Host u− r > and < 1)

−0.2 0.0 0.2
c

0.0

0.1

0.2

0.3

0.4

R
M

S
of

th
e

re
si

d
u

al
s

CfA/CSP + Foundation
(Host u− r > and < 1)

P21 dust pop1

P21 dust pop2

P21 dust pop3

P21(u− r)
BS21

Nominal - P21(M?)

Data (u− r > 1)

Data (u− r < 1)

Figure 18. Same as 5, but for the external low-z samples (all combined).

Table 12. Nuisance parameters and cosmological fit when combining DES with different low-z external samples and when using
DES alone.

Sample NSNe α β γ σgray RMS ∗ ∆wstat
†

DES-SN + low-z 1829 0.161(1) 3.12(3) 0.038(7) 0.04 0.168 0.000±0.133

DES-SN + low-z (detection before −2 days from peak) 1713 0.161(3) 3.13(3) 0.036(8) 0.04 0.17 0.013±0.139

*RMS is measured applying a cut of PIa > 0.5 on the DES SN sample.
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Figure 19. Best fit from Dust fitting code (Popovic et al. 2021a) and three realizations included in the systematic uncertainties
(see Sec. 6.2.1).
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